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Introduction

In this paper we investigate numerically Newhouse sinks of Hénon map. For
nearly classical parameter values of Hénon map, we search numerically for a se-
quence of Newhouse sinks and investigate their basins and average rambling time.

Firstly, we obtain the first few Newhouse sinks by using an algorithm based on
the proof of existences of Newhouse sinks and investigate the basin of attraction of
the sink. In the case that we observed, when the sink exists, most orbits converge
to it, and the orbit that seems to be Hénon attractor is not an attractor but just a
long chaotic transient. The appearances of Newhouse sinks in our cases cause the
changes from Hénon attractor to a long chaotic transient.

Secondly, we show how to find successively the Newhouse sinks of higher pe-
riod. In general, simple iterations of some initial points converge to an attractor.
However, it is difficult for simple iterations of some initial points to find Newhouse
sinks because the parameter ranges in which these sinks exist are too short. It
is known that properties of Newhouse sinks satisfy power laws. We estimate the
parameter values and coordinates of the succeeding Newhouse sinks from the power
laws and search in a neighborhood of the estimation values by simple iterations.
From our estimation, we obtained numerically a sequence of sinks of period from 8
to 60. We also show numerical data of power laws of the sequence of the sinks.

Thirdly, we verify our obtained sinks by applying Brouwer fixed point theorem
with interval arithmetic. Fourthly, we discuss the rambling time of the chaotic
transients of these sinks.

The sequence of sinks are constructed to prove coexistence of infinitely many
sinks. Newhouse showed coexistence of infinitely many sinks when a one-parameter
family of two dimensional dissipative diffeomorphism creates a homoclinic tan-
gency nondegenerately [New74, New79]. For a homoclinic tangency, there exists
a horseshoe in a neighborhood of the coordinate of the tangency and in a neighbor-
hood of the parameter that the tangency occurs. When we perturb the parameter
of the horseshoe, a periodic point in the horseshoe becomes stable. Such sinks at
different parameters compose a sequence converging to the homoclinic tangency,
which is our object in this paper. In addition, when we fix a homoclinic tangency,
because of abundance of diffeomorphisms having a different homoclinic tangency in
a neighborhood of the parameter of the fixed homoclinic tangency, infinitely many
sinks coexist at a parameter.

The convergence of the aforementioned sequence to the homoclinic tangency
means the following. If a one parameter family {Ft} of two-dimensional dissipative
diffeomorphisms has a homoclinic tangency q0 at a parameter t0, there is a sequence
of parameters {tj} accumulating to t0 such that the diffeomorphism Ftj has a sink
qj of period nj and, as j varies to infinity, the sequence of sinks {qj} accumulates
to q0 and the sequence nj goes to infinity [GS72, New74, Rob83]. We refer
to the sequence of sinks as an infinite cascade of sinks. This phenomenon gives
the existence of a diffeomorphism with a sink of arbitrarily high period near a
diffeomorphism having a homoclinic tangency.
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6 INTRODUCTION

Each sink in an infinite cascade of sinks is obtained as below. Perturbing a
diffeomorphism with a homoclinic tangency, we can construct a horseshoe near the
homoclinic tangency. To be more precise, we can take a rectangle region near the
homoclinic tangency in an appropriate coordinate such that some iterations of the
diffeomorphism map the rectangle back to its neighborhood and the image of the
rectangle is bent and has two components of intersections with the rectangle. As
the parameter varies to the homoclinic tangency the horseshoe are destroyed. Full
horseshoe, that is, a situation so that the intersection of the rectangle and its image
consists of two components, has two saddle periodic points. As the parameter varies
slightly so as to break the full horseshoe of the dissipative diffeomorphism, one of
the two saddle periodic points becomes stable. As the parameter varies further
to the tangency, the subsequent horseshoes appear and destroy in turn. One sink
appears in each horseshoe and these sinks in the horseshoes constitute the cascade.

We deal with only such sinks that appear in the horseshoes in a neighborhood of
a homoclinic tangency. Tedeschini-Lalli and Yorke called them “simple” Newhouse
sinks and investigated measure of parameters where such sinks exist [TLY86]. The
“simple” Newhouse sinks are defined as the sinks having their orbits consisting of
the following two parts: one part near the saddle fixed point mapped by almost
linear map and the other part mapped by a nonlinear map. They proved that the
parameters of coexistence of only infinite “simple” Newhouse sinks has zero mea-
sure. Therefore, it is not easy that we find parameter values of “simple” Newhouse
sinks and we need the estimation described in the following sections.

We consider Hénon map [Hén76]:

Ta,b(x, y) = (1 + y − ax2,−bx).(1)

It is shown in [FG92, AM06] that the stable and unstable manifolds of the saddle
fixed point (0.631 · · · ,−0.189 · · · ) have a homoclinic tangency for the parameter
a near 1.3924198079 when we fix b = −0.3. We deal with the same homoclinic
tangency in the following sections.

An infinite cascade of sinks is governed by power laws [CJ82, Rob83, TS94].
We translate the power laws to estimations of parameter values and coordinates of
a sequence of sinks by using calculation of stable and unstable manifolds of a fixed
point. In the result, our numerical search obtained a sequence of sinks of period from
8 to 60. The sinks of period from 8 to 60 converge only in numerical experiments
and and their existences of the sinks are not rigorous mathematically. We also
consider the verification of the sinks. We construct numerically an inclusions in a
neighborhood the sinks and apply Brouwer fixed point theorem. The verification is
performed by using interval arithmetic. We proved mathematically the existences
of the sinks of period from 8 to 14.

We also concerned with the basins of the sinks. In particular, for the obtained
sinks, our numerical investigation shows that the basins of the sinks have intersec-
tions with the unstable manifold of the saddle fixed point. Therefore, when the
sink exists, the Hénon attractor loses its stability and orbits of most initial points
in phase space converge to the sink near the homoclinic tangency. Buszko and
Stefański investigated transients of sinks of lower period and showed the relation
of sizes of periodic windows and average rambling times [BS06]. We apply the
same analysis of [BS06] to the transients of the obtained sinks. It is shown that
our sinks have the same properties as the sinks of lower period in point of average
rambling time.

Our numerical investigation presents an example such that Hénon attractor
appeared in numerical experiments is not an attractor but just a long chaotic tran-
sient. In addition, our numerical investigation indicates that because the width of
main band of the basin of the sink of high period is very narrow rounding errors
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of computation hide the existences of the sinks. It is known that the parameter
range of simple Newhouse sink is short and actually our numerical search for simple
Newhouse sinks needs the parameter estimation. Accordingly, it is unlikely that
all Hénon attractors that we observe in numerical experiments are long chaotic
transients.

Acknowledgments. The author would like to thank Professor Kenji Mat-
sumoto for all of his guidance and advice.





CHAPTER 1

Preliminaries

1. Hénon map

Hénon introduced the two-dimensional quadratic map for numerical experi-
ments and revealed that orbits of the map show a chaotic attractor in Fig. 1
[Hén76]. In this paper we use the form of Hénon map (1) and the parameters in
his paper correspond to a = 1.4 and b = −0.3. The map is a diffeomorphism and
its inverse is

T−1a,b (x, y) =

(
−y
b
, a
(y
b

)2
+ x− 1

)
.(2)

If (1 + b)2 + 4a > 0 then Ta,b has two fixed points;

x =
−(1 + b)±

√
(1 + b)2 + 4a

2a
, y = −bx.(3)

The Jacobian matrix of Ta,b is

DTa,b(x, y) =

(
−2ax 1
−b 0

)
.(4)

The determinant of DT (x, y) equals b and is constant.

2. Infinite cascade of sinks

In this section, we recall the construction of Newhouse sink according to [Rob83].
We consider a discrete dynamical system of a diffeomorphism F on R2. Let DF (p)
denote the derivative of F at p. A point p is called a periodic point of period n
if Fn(p) = p and F i(p) 6= p for 0 < i < n. In particular, a periodic point p of
period 1 is called a fixed point. A periodic point p is called a sink if the absolute
values of all eigenvalues of DF (p) are less than one. A periodic point p is called a
saddle periodic point if the two eigenvalues λ and µ of DF (p) satisfy |λ| < 1 and
|µ| > 1. In addition, the periodic point p is called a dissipative periodic point if

-0.4

-0.3

-0.2

-0.1

 0

 0.1

 0.2

 0.3

 0.4

-1.5 -1 -0.5  0  0.5  1  1.5

Figure 1. The orbits of Hénon map (1) whose initial point is (0,
0) and parameters 1.4 and −0.3.
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Figure 2. The stable and unstable manifolds of the saddle
fixed point (6.32536 · · · , 0.18976 · · · ) of Hénon map with a =
1.3927060035 and b = −0.3 near which a homoclinic tangency oc-
curs. The stable manifolds are the vertically long curves, which are
u-shaped and reach to the top of the figure. The unstable manifolds
are the horizontally long curves in the rectangle [−1.5, 1.5]×[−1, 1],
which are bow-shaped and twine Hénon attractor.

|detDF (p)| = |λµ| < 1. We define the stable manifold W s(p, F ) and the unstable
manifold Wu(p, F ) of a saddle fixed point p of F ;

W s(p, F ) := {x ∈ R2 | |fn(p)− p| → 0 as n→∞}(5)

Wu(p, F ) := {x ∈ R2 | |fn(p)− p| → 0 as n→ −∞}.(6)

It is known that if F is a Cr diffeomorphism then these invariant manifolds are
Cr curves and tangent to the eigendirections of DF (p) at p. We call a point q a
homoclinic point if q is in both W s(p, F ) and Wu(p, F ). The homoclinic point q is
called a homoclinic tangency if Wu(q, F ) and W s(q, F ) are tangent at q. Otherwise,
we call q a transverse homoclinic point.

The existence of an infinite cascade of sinks is formulated by the following
theorem.

Theorem 1.1 ([Rob83]). Let {Ft : R2 → R2} be a one parameter family of C1

diffeomorphisms depending continuously on t. Assume {Ft} creates a homoclinic
intersection at t0 for the dissipative fixed point pt. That is, there is some ε > 0
such that for t0 − ε < t < t0 + ε the subarcs γst ⊂ W s(pt, Ft) and γut ⊂ Wu(pt, Ft)
depending continuously on t satisfy the following condition:

(1) γst ∩ γut = ∅ for t0 − ε < t < t0 (respectively, t0 < t < t0 + ε),
(2) for t0 < t < t0 + ε (respectively, t0 − ε < t < t0), there are two transverse

intersections of γst and γut and the directions at the two intersections are
different from each other.

Then there is a sequence of parameters tj converging to t0 such that Ftj has a sink
of period nj and nj diverges for j → ∞. Moreover, {nj} satisfies nj+1 − nj = 1
for all j if Ft preserves the orientations on W s(pt, Ft) and Wu(pt, Ft). Otherwise,
nj+1 − nj = 2 for all j.



2. INFINITE CASCADE OF SINKS 11

Figure 3. The situation of simple Newhouse sink. Perturbing the
diffeomorphism Ft0 of a homoclinic tangency, we obtain the box B

and the horseshoe region Fm+N
t (B) near the point of the tangency

u0. The diffeomorphism Ft is linear in the neighborhood of the
saddle fixed point pt; F

m
t makes the box B shrink horizontally

and stretch vertically. We obtain the rectangle Fmt (B) near v0.
FNt maps a neighborhood of v0 to a neighborhood of u0; this map
is nonlinear and pulls the rectangle Fmt (B) across B. The B ∩
Fm+N
t (B) includes two saddle periodic points of period m + N .

One of these two saddles becomes stable when the parameter varies
to the homoclinic tangency.

Let us describe the situation of the theorem (Fig. 3). Let λt and µt be the two
eigenvalues of DFt(pt). We assume that 0 < λt < 1 and µt < −1. This settings
are similar to the case of Hénon map (1) for the parameters a ≈ 1.3924198079
and b = −0.3, which is numerically investigated in the following sections. We
consider the case such that γst ∩ γut = ∅ for t0 − ε < t < t0 and there are transverse
intersections of γst and γut for t0 < t < t0 + ε. Let u0 be the point of the tangency;

W s(pt0) is tangent to Wu(pt0) at u0. We also let v0 be F−Nt0 (u0) for some integer
N > 0. We consider sufficiently small neighborhood U of pt and assume that Ft is
linear in U . Transforming coordinate, we assume Ft(x, y) = (λtx, µty) in U . We
replace u0 and v0 by Fm1

t0 (u0) and F−m2
t0 (v0) respectively for some integers m1,m2,

if necessary, and we let u0 and v0 be in U , because u0 and v0 are a homoclinic point
of Ft0 . Also we assume pt = (0, 0), ut = (x0, 0), and vt = (0, y0) for simplicity.

We take a box B = {(x, y) | |x− x0| ≤ δs, δu1 ≤ y ≤ δu2 } near u0 for δs, δu1 , δ
u
2 ≥

0. Because Ft is linear in U , the box B shrinks horizontally and stretches vertically
by some iterations of Ft. We obtain a box Fmt (B) near v0 for some integer m. Let
N be an integer such that a neighborhood of v0 is mapped to a neighborhood of
u0 by N iterations of Ft. Then Fm+N

t (B) is a thin region having horseshoe shape

parallel to Wu(pt, Ft). For suitable δs, δu1 , δ
u
2 and m, Fm+N

t1 (B)∩B consists of two
components for some parameter t1. Two saddle periodic points of period m + N
exist in Fm+N

t1 (B)∩B (Fig. 4). When the parameter t approaches to t0, Wu(pt, Ft)
moves to the tangency point u0. Eventually for the parameter t2 smaller than t1,
B∩Fm+N

t (B) is the empty set. There is a parameter t between t1 and t2 such that
one saddle periodic point of period m+N becomes stable.
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Figure 4. The left case is the situation such that each of two
components of Fn(B)∩B includes one saddle periodic point. The
right case is the situation such that no periodic point exists in
Fn(B) ∪ B. If Fn is dissipative, in the process of destruction of
the horseshoe, that is, in the transformation from the left case to
the right case, one of the two saddle periodic points obtains sta-
bility.
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logarithm of increase of width

Figure 5. Distribution of increase ratios of widths of interval vec-
tors after 10 iterations. The scale of x-axis is common logarithm.
We calculate increases of width for 3312544 points except points
that seem to diverge. Much of the increases of widths are less than
103 and the maximum increase of width is 105.766122352727922.

To obtain a sink of period m′+N higher than m+N , we take a suitable box B′

closer to W s(pt, Ft) than the box B, in which case Fm
′

t (B′) is also closer to v0 than
Fmt (B′). Similarly to the case of the box B, we obtain a sink of period m′+N from
the box B′. We remark that the above-mentioned two sinks that are constructed
from B and B′ do not coexist because the sink of period m′ + N exists at the
parameter closer to the tangency than that of the sink of period m + N Taking
boxes closer to W s(pt, Ft) in turn, we obtain a sequence of sinks approaching to the
point of the tangency. If the eigenvalue µt is negative then there are two cascades of
sinks for t0 > t and for t0 < t respectively. The periods of all sinks in the sequence
for t0 > t are even and the periods for t0 < t are odd, or vice versa.

3. Computer program and precision

A feature of our numerical investigation is to use multiple precision library,
in particular, MPFR1 based on GMP2 (The GNU Multiple Precision Arithmetic

1http://www.mpfr.org/
2http://gmplib.org/
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Library). For interval arithmetic with multiple precision, we use MPFI3. Our com-
putation can show finer structure of the system than computations with double
precision.

To set suitable precision, we estimate errors when iterating points by Hénon
map (1) whose parameters are a = 1.4 and b = −0.3 with interval arithmetic.
We consider uniformly distributed points that seem to diverge. In particular, we
collect points at a lattice of size 10−3 in [−1, 1]×[−1, 1] except points whose 10 times
iteration goes out of [−10, 10] × [−10, 10]. We take an interval vector with width
2−250 around each point and iterate it 10 times. Then, we calculate the ratio of the
width of first interval vector and the width of iterated interval vector. Fig. 5 shows
the distribution of the increase ratios of the widths for 3312544 points. Although
the maximum increase of width is 105.766122352727922, much of the increases of widths
are less than 103. Roughly speaking, errors increases to about 1000 times when we
carry out 10 iterations of points. The calculation in the following sections were
usually carried out with precision from 256 bits to 1024 bits and we increased up
to 12000 bits if needed.

The source code that we used to search for the cascade of sinks is available at
the repository4.

3http://mpfi.gforge.inria.fr/
4https://gitorious.org/math-numerical-experiment/math-henon-tangency/





CHAPTER 2

Basin of attraction of Newhouse sink

1. Settings and first sink in a sequence

We show locally and globally basins of attraction of the first few Newhouse
sinks in this chapter. We deal with the Hénon map (1) of which parameter b is
−0.3 and parameter a is varied in the neighborhood of 1.4. Then, the determinant
of DT (x, y) is −0.3 and the system is dissipative.

We sketch our procedure to obtain the first few sinks. Firstly, our investigation
searches a parameter range including the parameter of a homoclinic tangency. We
fix the value of the parameter a and calculate the stable and unstable manifolds
of the fixed point (Fig. 2). We repeat the calculations with subtle changes of
the parameter a and specify the parameter range that includes an occurrence of
a homoclinic tangency (Fig. 1). Furthermore, we bisect the range of parameter a
including the homoclinic tangency and obtain the narrower parameter range

[1.39241980792391250304093437105, 1.39241980792391250304093437106].(7)

Next, we seek coordinates of sinks and their parameters, by using the algorithm
in Appendix 2, which is based on the proof of existences of Newhouse sinks. We
obtained sinks of periods 13, 15, and 17 as a consequence of our computation. To
obtain sinks of higher period we use the estimation in section 2.

Fig. 2 shows the orbit of the sink of period 13 and the stable and unstable
manifolds of the saddle fixed point. The orbit starting from the point 0 in the
figure goes to the saddle fixed point along the stable manifold and returns to the
point 0 along the unstable manifold. The figure ensures that the situation of the
sink is the same as that of the sink in Section . In the following sections, we focus
on the basins of the sinks.

Figure 1. The segments of the stable and unstable manifolds for
the saddle fixed point of Hénon map (1). The parameter b is con-
stant and −0.3. The left image is the case that the parameter a
is 1.3923 and the homoclinic tangency has not yet occurred. The
right image is the case that the parameter a is 1.3926 and the two
homoclinic points exist after the homoclinic tangency.

15



16 2. BASIN OF ATTRACTION OF NEWHOUSE SINK

Figure 2. The orbit of the sink of period 13 and the stable and
unstable manifolds for the saddle fixed point. The orbit starting
from the point denoted by 0 moves along the stable manifold at
first. After passing through the saddle fixed point the orbit moves
along the unstable manifold with reversal because the eigenvalue
of unstable direction for the saddle fixed point is negative.

2. Basin of attraction of a sink near a homoclinic tangency

Fig. 3, Fig. 4, and Fig. 5 show a neighborhood of the sink of period 13, which
is displayed by 0 in Fig. 2. The scale of the main band of the basin of attractor
as 10−7. The basin of attraction of the sink of period 13 is parallel to the stable
manifold of the saddle fixed point and the sink is nearly at the peak of the unstable
manifold of the saddle fixed point. Similarly to [GOY87] the boundary of basin
of the sink of period 13 consists of the stable manifold of the saddle fixed point of
period 13, where both of the sink and the saddle are simultaneously born at the
saddle-node bifurcation.

It is remarkable that the intersections of the basin of the sink of period 13
and the unstable manifold of the saddle fixed point in Fig. 4. The closure of the
unstable manifold of the saddle fixed point includes Hénon attractor. Because there
are the intersections of the basin of the sink of period 13 and the unstable manifold,
Hénon attractor does not exist. Most points in the phase space get through the
orbit like Hénon attractor and eventually converge to the sink. In other words,
there are the chaotic transients like the Hénon attractor (Fig. 6). We discuss the
transients in section 1. We note that the basin of attraction is large and covers
most of phase space except points to diverge (Fig. 8) and a basin of attraction
in this chapter is not correct. Because orbits with short transient are practically
important, in this chapter, we regard a set of initial points of short transient orbits
as a basin of attraction.

The basin of attractor that causes long chaotic transients is complicated. The
outline of initial points of short transient orbits is shown in Fig. 9, which is calcu-
lated by iterating points backward in a small neighborhood. If we take points in a
lattice and plot points that converges to the sink by iteration of fixed number, then



2. BASIN OF ATTRACTION OF A SINK NEAR A HOMOCLINIC TANGENCY 17

Figure 3. A neighborhood of the sink denoted by 0 in Fig. 2.
There are the two vertical lines parallel to each other. The left thick
one is the basin of attraction of the sink of period 13 denoted by
the square. The right one is the stable manifold of the saddle fixed
point. The curved line is the unstable manifold of the saddle fixed
point. We observe that the position of the sink is near the peak of
the curve of the unstable manifold and the basin of attraction is
narrow and parallel to the stable manifold.

sink

basin

Figure 4. Magnification near the sink of period 13, where the
sink is denoted by the diamond at the center. The thick line is
the basin of attraction and the thin and curved line is unstable
manifold of the saddle fixed point. There are two intersections of
the basin and the unstable manifold.
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Figure 5. The points denoted by the diamonds are the periodic
points of period 13. The upper one is a saddle and the lower one is
a sink. The stable manifold of the saddle periodic point composes
the boundary of basin of the sink.
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Figure 6. A chaotic transient and a stable manifold of a saddle
of period 13 at a = 1.3927060035 and b = −0.3. � is the sink of
period 13. The orbit like Hénon attractor is a long transient orbit.
After sufficiently large iterations (about 1500000 iterations on the
average), most orbits converge to the sink of period 13.

scattered points appear (Fig. 10). The procedure to calculate the points in Fig. 10
is the following. We iterate the points 1000×13 times with 12000 bit precision and
we regard iterated points whose distance from the sink is less than 10−20 as points
in the basin. The scattered points are not isolated points, but this means sensitive
dependence on initial points of orbits. Actually, if we take points in a smaller lattice
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Figure 7. The vertical axis is x-coordinate of points in R2. The
horizontal axis is the parameter a of (1). The lowest curve denotes
the saddle fixed point of period 13. The upper curve and the
following countless points denote the sink of period 13 denoted
by 0 in Fig. 2 and the attractor arising from the sink by period-
doubling bifurcation. The attractor collides with the saddle fixed
point and then the attractor disappears, that is, the crisis occurs.

-2

-1

 0

 1

 2

-1.5 -1 -0.5  0  0.5  1  1.5

Figure 8. We plot points whose iterations approach to the sink
of period 13. We test every point at a lattice of size 6 × 10−3 in
the region [−3, 3]× [−3, 3].

in a neighborhood of a scattered point and plot points that converges by iteration
of fixed number, we obtain a thick line of the basin of attraction (Fig. 11).

Let us mention the bifurcation of the sink of period 13. This sink is cre-
ated through saddle-node bifurcation and proceeds to period-doubling bifurcation
[YA85]. The period-doubling bifurcation is terminated by the crisis; the attractor
arising from period-doubling bifurcation collides with the saddle periodic point of
period 13. Fig. 7 shows the bifurcation diagram of the sink of period 13.

We show the movements of the stable and unstable manifolds, the sinks of
period 13, 15, and 17, and their basins of attraction. Fig. 12 shows the region near
the sink denoted by 0 in Fig. 2. When the parameter a decreases from about 1.3927
to the parameter value of the homoclinic tangency, the stable manifold moves to
right and the unstable manifold moves to left; then these manifolds approaches to
the tangency. In the next section, we estimate the position of the sink from the
move of the stable and unstable manifolds.
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Figure 9. The main band of basin of attraction for the orbit of
sink of period 13 denoted by �.
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Figure 10. The basin of attraction near the sink of period 13
denoted by the square at the center. All scattered points apart
from the central basin of attraction are also in the basin. There
are scattered points around the basin that are in the basin of at-
traction. Because the basin bands around the scattered points are
very narrow, the basins around these points are not displayed as
lines. Actually, the scales of the basin bands are from 10−13 to
10−2201.
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Figure 11. The basin of attraction around the scattered point ×
in Fig. 10. The scattered point is not displayed and its position is
the center of the figure.

basins

sinks

Figure 12. The movements of sinks, their basins of attraction,
and the stable and unstable manifolds of the fixed points when the
parameter a changes. The lines W s

1 and Wu
1 are the stable and

unstable manifolds of the fixed point for a = 1.39270603828125.
Similarly, W s

2 and Wu
2 are the stable and unstable manifolds for

a = 1.392497593643890380859375, and W s
2 and Wu

2 are the sta-
ble and unstable manifolds for a = 1.3924409549236297607421875.
When the parameter a increases, the stable manifold moves from
left to right and the unstable manifold moves from right to left.
The sinks exist near the peaks of the unstable manifolds and these
basins are lines parallel to each stable manifold. Starting from the
left of figure, the periods of the sinks are 13, 15, and 17, respec-
tively.





CHAPTER 3

Estimation of sinks and power laws

1. Power laws of Newhouse sinks

In this chapter, we show an algorithm to obtain the succeeding sinks of a
cascade from the first few sinks, the stable and unstable manifolds of the fixed
point. The algorithm is derived from power laws of Newhouse sinks. We also shows
numerical data of power laws of our obtained sinks. In this section, we recall the
known results on the asymptotic behavior and the power laws of the parameter
values of a cascade of sinks.

We consider the situation of Theorem 1.1 and for simplicity assume that the
two eigenvalues λt and µt are positive. For the two-dimensional map

(x, y) 7→
(

(µ− 1)

µ
,

(1− b)(µ− 1)

µ

)
,(8)

Curry and Johson observed numerically that a sequence of parameter values at
saddle-node bifurcations approaches a parameter of a homoclinic tangency at a rate
of an unstable eigenvalue at a fixed point [CJ82]. This phenomenon is formulated
according to [Rob83, 5.3. Remark] by

lim
n→∞

tn − tn−1
tn+1 − tn

= µt0 ,(9)

where tn is the parameter value that the sink of period n exists and t0 is the
parameter of homoclinic tangency. This fact enables us to estimate the parameter
value tn+1 from the last two parameter values tn−1 and tn.

The relations of bifurcation parameters are described in [TS94] as

lim
n→∞

t̄n − t0
t̄n+1 − t0

= lim
n→∞

t̃n − t0
t̃n+1 − t0

= µt0 ,(10)

where the saddle-node bifurcation creates the two periodic points of period n at
t̄n, one of the periodic points changes its stability at t̃n+1 through period-doubling
bifurcation, and t0 is the parameter of the homoclinic tangency.

We also are interested in the range of parameter such that a sink exists. The
evaluation in [TLY86] gives

lim
n→∞

t̄n − t̃n
t̄n+1 − t̃n+1

= µ2
t0 .(11)

This means that it becomes increasingly difficult to find sinks of higher period.

23
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Figure 1. The situation that Bn and Bn+2 include the sinks of
period n and n + 2 respectively. Then the relation (15) for ln,0
and nn+2,0 is satisfied. Note that the parameter tn such that Bn
includes a sink is different from the parameter tn+2 such that Bn+2

includes a sink.

To apply these relations to our case such that the unstable eigenvalue is nega-
tive, we replace the diffeomorphism Ft by F 2

t ;

lim
n→∞

tn − tn−2
tn+2 − tn

= µ2
t0 ,(12)

lim
n→∞

t̄n − t0
t̄n+2 − t0

= lim
n→∞

t̃n − t0
t̃n+2 − t0

= µ2
t0 ,(13)

lim
n→∞

t̄n − t̃n
t̄n+2 − t̃n+2

= µ4
t0 .(14)

2. Estimation of positions of sinks

To find sinks numerically we want to estimate the positions of the sinks. In
our case, because the unstable eigenvalue µt is negative, an infinite cascade of sinks
is split into two sequences by the stable manifold: a sequence of even period on
one side and a sequence of odd period on the other side. The estimation in such a
situation is to obtain the approximate position of the sink of period n+ 2 from the
position of the sink of period n for Hénon map Ft = Tt,−0.3.

The position of the box B in Fig. 3 relates to the position of stable manifold of
the fixed point as below. Let Bn be the box including the sink of period n and ln,i
be the distance between the stable manifold and the center point of F it (Bn) for an
integer i ≥ 0. The boxes Bn and Bn+2 are mapped to a neighborhood of v0 and Ft
is approximately linear in the neighborhood of the saddle fixed point. We obtain
ln,i = |µt|−iln,0. Let k be an integer such that F kt (Bn) is in a neighborhood of

v0. Then F k+2
t (Bn+2) must be in a neighborhood of v0 and ln,k = ln+2,k+2 holds.

Therefore, we obtain the relation on the positions of two boxes including the sinks,

ln,0
ln+2,0

= µ2
t .(15)

The relation (15) does not take into account the condition that one of the
two periodic points in the box is stable. We remember Fig. 4 and consider the
intersection of the box and the horseshoe when the periodic point is stable. If the
intersection of Bn and Fntn(Bn) is composed of two components, both of two periodic
points of period n are saddle. If the intersection is empty then there is no periodic
point. Therefore, at some parameter that the intersection is composed of one
component, one of the two periodic points is stable. The horseshoe region created
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by n iterations of the box Bn is narrow and is close to the unstable manifold of the
fixed point. Consequently, the unstable manifold approximates to the horseshoe
region and the sink is near the peak of the unstable manifold (Fig. 12). Let l̄ be
the distance between the stable manifold and the peak of the unstable manifold.
We can regard l̄ as ln,0 for the parameters such that the sinks exist. We search for
the parameter satisfying

(16)
ln,0
l̄

= µ2
t

and the obtained parameter is the estimation of parameter such that a sink exists.
We can also regard the peak of the unstable manifold from the stable manifold as
the estimation of position of the sink.

From the first three sinks of period 13, 15, and 17 mentioned in section 2.
we obtained eventually the sinks of period 8 to 60. For example, the procedure to
obtain the sink of period 19 from the two sinks of period of 15 and 17 is as below. We
calculate the distance l17,0 between the sink of period 17 and the stable manifold.
Applying (12) to the two sinks of period 15 and 17, we obtain the first estimation of
the parameter for the sink of period 19. To refine the estimation further, we search
for the parameter such that the condition (16) holds from the calculations of the
stable and unstable manifolds near the first estimation of parameter. We obtain
the final estimation of the parameter in this way and also obtain the position of
the peak of the unstable manifold at the parameter. The final estimation enables
simple search to find the next sink. Fixing both a parameter in a neighborhood of
the estimation of the parameter and an initial point in a neighborhood of the peak
point of unstable manifold, we test convergences of iterations. If the convergent
point is found then it is a sink of period 19. For the sinks of higher period, we
repeat the above procedure.

3. Numerical data of power laws of obtained sinks

By using the estimation described in the last section, our computer program
searched for sinks of odd period and sinks of even period, respectively. As a result,
we obtained a sequence of sinks of period from 8 to 60. The numerical data of the
sinks is listed in the tables in Appendix B: parameters values of sinks, coordinates
of sinks, eigenvalues at sinks, parameter intervals where sinks persist, parameter
intervals where attractors exist, lengths of these two types of parameter intervals,
ratios of lengths of these two types of parameter intervals, distances between stable
manifolds and peaks of unstable manifolds.

We make sure the known power laws of the cascade of sinks (12) and (15).
We calculate the sizes of parameter intervals of periodic windows and the distances
between stable manifolds and peaks of unstable manifolds. Fig. 2 shows that these
values are governed by the power law. The shrinking ratio of the sizes of periodic
windows is square of eigenvalue at the fixed point for unstable direction. The
distances between the stable manifolds and the peaks of the unstable manifolds get
smaller by absolute value of unstable eigenvalue at the fixed point. Because the
sinks were obtained by the estimation derived from the power law of the distances,
although it is trivial that the obtained sinks satisfy the power law, this data is for
confirmation that the obtained sinks are a sequence of Newhouse sinks.

Our numerical data shows that the eigenvalues of Jacobian matrix of n-times
composite at the sinks of period n exhibits the power laws shown in Fig. 3. The
absolute values of one of the two eigenvalues are approximately constant. The
absolute values of the other shrink at a rate of 0.3, which is the absolute value
of the determinant of Jacobian matrix. Because the map (1) has the constant
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Figure 2. Logarithm of distance between peak of unstable man-
ifold and stable manifold of a fixed point, logarithm of width of
main band of basin, and logarithm of size of parameter interval
that a sink exists. The slopes are about -0.650612, -1.30444, and
-1.30478, which agree with log |µt0 | ≈ 0.65130925 and log |µ2

t0 | ≈
1.3026185.

determinant b at all of the domain, the determinant of n-times composite is equal
to bn.

We state other numerical data of the obtained sinks. In about 43% of the
parameter intervals of periodic windows, the stable periodic point of minimum
period, that is, the sink appeared by saddle-node bifurcation, exist (Appendix B
Table 14). The lengths of the parameter intervals of the stable periodic points of
minimum period in the periodic windows also satisfy the same power law as that
of the lengths of the periodic windows (Appendix B Table 12).

We are interested in the properties of basins. As stated previously, the basins
of the obtained sinks are most of phase space except points that go to infinity.
However, in practice, there are points with long transients and points with short
transients, of course, which is not rigorous distinction. The basins composing points
with short transients are bands parallel to the stable manifolds shown in Fig. 12.
For some parameter values we calculated such basins, but we could not observe
radical change in neighborhoods of the sinks. As a sort of size of the basin, we
consider width in a neighborhood of the sink. We calculate two basin boundaries
in a neighborhood of the sink and we regard minimum distance between the two
boundaries as the width of the basin. The calculated result is shown in Fig. 2; the
shrinking ratio of the widths of basins is the square of eigenvalue.

We describe the difficulty of finding sinks of high period in the cascade of
sinks. For example, for the sink of period 27, the size of parameter interval is about
6.6× 10−15 and the width of the basin of attraction is about 7.9× 10−14. It seems
to be difficult for the calculation with double precision (53 bit) to find the sink of
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logarithm of the absolute value of one eigenvalue are approximately
one, that is, the value are approximately constant. The other slope
is approximately 0.3, which is the absolute value of the determi-
nant.

period larger than 27. Even if the precision is sufficient large, it is difficult that
numerical investigation finds the sinks of higher period. There are two reasons;
the basin of attraction is narrow and the parameter interval that a sink exists is
short. The width of the basin of the sink of period n + 2 is about 7% of that of
the sink of period n. The size of the parameter interval of the sink of period n
is about 7.4% of that of the sink of period n. If we search for the sink of period
n+2 in the same region to the region of period n with finer step, we must calculate
about 200 (≈ 1/(0.07×0.074)) times as much as the case of period n. Therefore, to
obtain a sequence of sinks, we need the above mentioned estimations of positions
and parameter values of sinks.





CHAPTER 4

Verification of sinks

1. Interval arithmetic

Interval arithmetic is a method that defines operations on a set of intervals and
deals with rounding errors on computers nicely. We consider an interval enclosing a
number instead of the number itself. When some arithmetic operations produce a
resultant number, we calculate intervals enclosing the number instead of calculating
the approximation of the number. In implementations of interval arithmetic on
computers, endpoint numbers of intervals are numbers that is represented rigorously
by floating point numbers and rounding errors of digital computation are brought
into extra expansions of resultant intervals. It is mathematically rigorous that the
interval calculated by interval arithmetic on computers is an interval enclosing true
value. In this section, we recall definitions of interval arithmetic and fundamental
theorems according to [Moo79].

For a closed intervalX in R, we will denote the endpoints ofX byX andX, that
is, X = [X,X]. Identifying x ∈ R with [x, x], we regard x as an interval. Replacing
elements of usual vector and matrix by intervals, we define an n-dimensional-interval
vector and a matrix. We call two intersections X and Y equal if X = Y and X = Y .
We also call two interval vector or two interval matrices are equal if all elements
are equal. The intersection and union of two intervals are the usual intersection
and union of two sets in R. If X ∩ Y 6= ∅ then we have

X ∩ Y := {max(X,Y ),min(X,Y )}(17)

X ∪ Y := {min(X,Y ),max(X,Y )}.(18)

The intersection of two interval is an interval except an empty set, but the union
is not always an interval. The intersection and union of two interval vectors or two
interval matrices are these of two sets in Rn for some integer n.

We define the width of an interval X by

w(X) := X −X.(19)

and the absolute value of X by

|X| := max(|X|, |X|).(20)

For an n-dimensional interval vector V = (V1, V2, . . . , Vn), we define the width of
V by

w(V ) := max(w(V1), w(V2), . . . , w(Vn))(21)

For an interval matrix M , we define the width of M by

w(M) := max
i,j

(Mij).(22)

For two intervals X and Y , we define arithmetic operations by

X ◦ Y := {x ◦ y | x ∈ X, y ∈ Y },(23)

where ◦ is the addition +, the subtraction −, or the product ·. We will sometimes
omit the dot to express the product of two intervals. Before defining the quotient

29
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of two intervals, we need to define the reciprocal of an interval. For an interval X
with 0 /∈ X,

1/X := {1/x | x ∈ X}.(24)

We define the quotient of two intervals X and Y with 0 /∈ Y by

X/Y := X · (1/Y ).(25)

From these definitions, we have

X + Y = [X + Y ,X + Y ],(26)

X − Y = [X − Y ,X − Y ],(27)

X · Y = [min(X · Y ,X · Y ,X · Y ,X · Y ),max(X · Y ,X · Y ,X · Y ,X · Y )].(28)

We remark that addition and multiplication are associative and commutative, how-
ever, the distributive law does not always hold. Alternatively, we have

X(Y + Z) ⊂ XY +XZ.(29)

We deal with extension of a real valued function f of n real variables to an
interval valued function of n interval variables. Of course, for a real vector valued
function, we consider each element of the function as a real valued function. If an
interval valued function F of n interval variables satisfies

F (Y1, Y2, . . . , Yn) ⊂ F (X1, X2, . . . , Xn)(30)

for Yi ⊂ Xi where i = 1, 2, . . . , n, then F is called inclusion monotonic. Arithmetic
operations +, −, ·, and / are inclusion monotonic. We define an interval extension
of f as an interval valued function F of n interval variables so that

F (x1, . . . , xn) = f(x1, . . . , xn).(31)

From the following theorem, calculating the functions by interval arithmetic, we
can obtain bounds of values of functions.

Theorem 4.1 ([Moo79, Theorem 3.1]). If F is an inclusion monotonic inter-
val extension of f , then f(X1, . . . , Xn) ⊂ F (X1, . . . , Xn).

If we replace real variables of a rational function, then we obtain the interval
extension of the rational function. Because rational interval functions are inclusion
monotonic, we have the following corollary.

Corollary 4.2 ([Moo79, Corollary 3.1]). If F is a rational interval function
and an interval extension of f , then f(X1, . . . , Xn) ⊂ F (X1, . . . , Xn).

We remark that if we have two different expressions of a real rational func-
tion then two different interval extensions obtained by replacing real variables by
intervals does not always coincide.

We calculate bounds of eigenvalues in section 3. To do so, we need to ex-
tend square root function to an interval valued function. Because square root is
monotonic increasing function, we simply define

√
X := [

√
X,
√
X].(32)

Simple iterations of interval extension of Hénon mapping produce interval vec-
tors with too large widths. We need to refine the bounds. We introduce some
definitions and state theorem that subdividing interval vectors at each iteration
step produces refined bounds. For an interval extension F (X), if there is a con-
stant L such that w(F (X)) ≤ Lw(X) for any X ⊂ X0 then F (X) is said to be
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Lipschitz in X0. For an inclusion monotonic interval extension F (X) of a real
valued function f(x), we define the excess width of F (X) by

w(E(X)) = w(F (X))− w(f(X)),(33)

where E(X) := F (X) − f(X). A uniform subdivision of an interval vector X =
(X1, X2, . . . , Xn) means thatX is expressed by the union of interval vectors (X1,j1 , . . . , Xn,jn)
for a positive integer N ;

X =
⋃

1≤ik≤N,1≤k≤n

(X1,j1 , . . . , Xn,jn),(34)

where

Xi,j :=

[
Xi + (j − 1)

w(Xi)

N
,Xi + j

w(Xi)

N

]
,(35)

for 1 ≤ i ≤ n, 1 ≤ j ≤ N . Obviously,

Xi =

N⋃
j=1

Xi,j(36)

w(Xi,j) =
w(X)

N
.(37)

The following theorem guarantees that we can obtain arbitrarily refined bounds of
a function by using a uniform subdivision of the argument of the function.

Theorem 4.3 ([Moo79, Theorem 4.1]). We suppose that F (X) is an inclusion
monotonic interval extension of a real valued function f and Lipschitz in X0. For
a positive integer N we take a uniform subdivision {Xi,j} of X ⊂ X0. We consider

F(N)(X) :=
⋃

1≤ik≤N,1≤k≤n

F (X1,j1 , . . . , Xn,jn)(38)

and define EN by

EN = F(N)(X)− f(X1, . . . , Xn).(39)

Then, there is a constant K such that

w(EN ) ≤ Kw(X)

N
.(40)

2. Application of Brouwer fixed point theorem with interval arithmetic

In this section we show how to verify the existences of the obtained sinks. The
way is a direct application of Brouwer fixed point theorem. To construct numerically
an inclusion required by the theorem, we use interval arithmetic. We also check
that the periodic points are sinks by calculating enclosures of eigenvalues at the
periodic points.

Before applying fixed point theorem, we extend the map (1) to an interval val-
ued map. Just replacing real numbers by intervals, we obtain the interval extension
T̄ of Hénon map;

T̄A,B(X,Y ) = (1 + Y −AX2,−BX),(41)

where A, B, X, and Y are intervals. Practically, we take very small intervals A
and B that include the specified parameters a and b in (1).

From Brouwer fixed point theorem, if we construct a rectangle that is mapped
back into itself by n iterations and has no intersections with its images of m iter-
ations for 0 < m < n, an existence of a periodic point of period n is guaranteed.
Taking a rectangle is convenient to test numerically that the rectangle includes its
image. However, our sinks do not have such rectangle neighborhoods because parts
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of the rectangle are away from the sinks transiently. In general, points sufficiently
close to a sink approach monotonically to the sink in two directions of eigenvec-
tors at the sink, but points in a rectangle neighborhood do not always approach
monotonically to the sink in the distance of the orthogonal coordinate.

To construct an inclusion on a rectangle including the obtained sink of period
n, we consider coordinate change from the orthogonal coordinate to the coordinate
of the eigenvectors at the sink. We take a small rectangle R around the origin and
map R to a neighborhood of the sink by a linear transform g, which maps the origin
to the sink and x-axis and y-axis to the eigendirections of the sink. After iterating
R by Ta,b, we restore the coordinate by g−1 and we check

g−1 ◦ Tna,b ◦ g(R) ⊂ R.(42)

Because the linear transform g is a homeomorphism, if g−1 ◦ Tna,b ◦ g has a periodic

point in R then Ta,b has a periodic point of period n in g(R).
We extend the linear transform g and its inverse g−1 to interval extensions ḡ

and ḡ−1 by replacing real variables by intervals. From Corollary 4.2 we obtain the
following relation;

g−1 ◦ Tna,b ◦ g(R) ⊂ ḡ−1 ◦ T̄nA,B ◦ ḡ(R),(43)

where A and B are intervals satisfying a ∈ A and b ∈ B. Therefore, if we find a
rectangle R such that

ḡ−1 ◦ T̄nA,B ◦ ḡ(R) ⊂ R,(44)

then Hénon map Ta,b has periodic points in g(R).
However, in our case, size of a rectangle increases approximately twofold at

each iteration of T̄A,B and ḡ−1 ◦ T̄A,B ◦ ḡ(R) become too large rectangle so that
R can not include it. From Theorem 4.3, the following procedure produces finer
enclosure of g−1 ◦ Ta,b ◦ g(R). We take appropriate threshold value L of maximum
width and subdivide R into interval vectors whose width are less than L. We let
the set of the subdivided interval vectors SR. We map each interval vector in SR
by ḡ and let S0 be the set of obtained interval vectors. If there are interval vectors
in S0 whose widths are larger than L, we subdivide them and replace them in S0

by the subdivided interval vectors. Thus, the widths of all interval vectors in S0

are less than L. We map each interval vector in S0 and obtain the set of interval
vectors S1. Similarly, we repeat mapping with subdivision n times and obtain Sn.
We let S be the set obtained by mapping all interval vectors in Sn by ḡ−1. If all
interval vectors in S are included in R, we obtain an existence of a periodic point
of period n. This procedure causes increase of amount of computation. For that
reason, the verification for sinks of high period are very hard and we constructed
only inclusions for the sinks of period 8 to 14.

In implementations of interval arithmetic on computers, because there are
rounding errors on computations we can not always obtain exact endpoints of inter-
vals. We extend intervals a bit so that they are expressed by floating point numbers
on computers at each calculation. Although the sets S0, . . . , Sn and S are expanded
a bit by rounding errors, if we take the parameters A and B and the rectangle R
and so on whose endpoints are exact floating point number on computers, then A,
B, and R have no errors. Therefore, the above-mentioned algorithm is valid even
if there are extra expansions of intervals at each mapping step.

3. Result of verification of sinks

By using the way stated in the last section, we could verify the existences of
the sinks of period from 8 to 14, whose data is shown in Table 1. Fig 1 shows a
neighborhood of the sink of period 13. The left figure is the region enclosing the
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Figure 1. Regions such that the iteration of 13 times maps the
region in the left figure to the region in the right figure. The regions
are composed small rectangle regions. The iteration for each small
rectangle region are calculated by interval arithmetic. From this
data of the two regions, we obtained that the iteration of 13 times
of Hénon map is an inclusion on the region in the left figure and a
periodic point of period 13 exists.

sink of period 13, the right figure is the region mapped by 13 iterations of the map.
The former covers the latter, which is tested through transformation by coordinate
change as stated in the last section. Both regions are stretched thin regions. The
two directions of the eigenvectors are close to each other and the region is stretching
in the directions of eigenvectors at the sink of period 13.

Table 1 shows the numerical data obtained from the verification. We state the
verification of the sinks of period 8 to 14 as a proposition.

Proposition 4.4. Hénon map (1) has the periodic points of period 8 to 14 in
the ranges of parameter a, x-coordinate and y-coordinate listed in Table 1, when
b = −0.3. The absolute values of the eigenvalues at the periodic points are less than
one. Therefore, the periodic points are stable.

We note the difference of the values in Table 1 and the values shown in Appendix
B; the former are rigorous bounds obtained by interval arithmetic and the latter
are approximate values obtained by usual computation.
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8 x [−1.2641480315599056,−1.2641480315599057]
y [0.3815883095535991, 0.3815883095535990]
a [1.3866414978735625, 1.3866414978735626]
α [−0.0001317565296413,−0.0001317565296411]
β [−0.4979639352876563,−0.4979639352876542]

9 x [−1.2797615433863033,−1.2797615433863034]
y [0.3815001609062766, 0.3815001609062765]
a [1.3968296778150859, 1.3968296778150860]
α [0.0000393390430422, 0.0000393390430427]
β [−0.5003426234527945,−0.5003426234527932]

10 x [−1.2725951827993173,−1.2725951827993174]
y [0.3817739305802194, 0.3817739305802193]
a [1.3904445108073844, 1.3904445108073845]
α [−0.0000118133309073,−0.0000118133309067]
β [−0.4998505541313075,−0.4998505541313065]

11 x [−1.2764873308253127,−1.2764873308253128]
y [0.3816834340024865, 0.3816834340024864]
a [1.3934818331832507, 1.3934818331832508]
α [0.0000035426394508, 0.0000035426394519]
β [−0.5000424187451586,−0.5000424187451572]

12 x [−1.2744909451906007,−1.2744909451906008]
y [0.3817369729481438, 0.3817369729481437]
a [1.3918712413591354, 1.3918712413591355]
α [−0.0000010629383349,−0.0000010629383331]
β [−0.4999735008295995,−0.4999735008295976]

13 x [−1.2755371627643452,−1.2755371627643453]
y [0.3817101619053220, 0.3817101619053219]
a [1.3927060351470881, 1.3927060351470882]
α [0.0000003188573829, 0.0000003188573864]
β [−0.5000113143693783,−0.5000113143693747]

14 x [−1.2749930656059051,−1.2749930656059052]
y [0.3817242881938740, 0.3817242881938739]
a [1.3922705183540199, 1.3922705183540200]
α [−0.0000000956602776,−0.0000000956602712]
β [−0.4999953250901844,−0.4999953250901780]

Table 1. The data of verified periodic points: the ranges of x-
coordinate, y-coordinate, parameter a, and two eigenvalues, where
α and β are two eigenvalues at the periodic points. The ranges
of x-coordinate and y-coordinate are coordinates of four corners
of minimum rectangles that include images of inclusions obtained
by our numerical construction. When the parameter b is −0.3 and
the parameter a is in the specified range, a periodic point exists
in the ranges of x-coordinate and y-coordinate and the periodic
points are sinks because the absolute values of the eigenvalues are
less than one.



CHAPTER 5

Chaotic transients

1. Chaotic transients

The appearances of simple Newhouse sinks found by our computer program
cause chaotic transients, which are chaotic behaviors before the orbits converge
to a periodic attractor. In our case, chaotic transients are orbits like the Hénon
attractor before they converge to simple Newhouse sinks, which is shown in Fig. 6.
In this section, we investigate these chaotic transients. At the beginning, we review
known results related to chaotic transients. Subsequently, we show the analysis for
average rambling times of our cascade of sinks.

Firstly, we review influence of simple Newhouse sinks to a chaotic attractor.
Tatjer and Simó proved under some conditions that when a simple Newhouse sink
exists the closure of the unstable manifold of the saddle fixed point includes the
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Figure 1. Relation of average rambling time and various thresh-
old values for parameters where the sink of period 8 exists. The
horizontal axis means threshold values with log scale and the ver-
tical axis means average rambling time. The numbers 0.0, 0.3, 0.6,
and 1.0 on the horizontal axis are fractions in the parameter in-
terval. The number 0.0 means a parameter just after saddle-node
bifurcation and the number 1.0 means a parameter just before
period-doubling bifurcation.
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Figure 2. Logarithms to base 10 of average rambling time and
size of periodic window. Average rambling time is calculated at
a center of parameter interval from saddle-node bifurcation to
period-doubling bifurcation. The points from left to right cor-
responds to sinks of periods 15, 14, 13, 12, 11, 10, 9, and 8. We
can seem to fit the relation with linear mapping. The slope of the
linear mapping is −0.902897.

sink [TS94]. In that case, a chaotic attractor does not exist in the closure of the
unstable manifold of the saddle fixed point. In particular, the Hénon attractor does
not exist. The numerical investigation in this paper seems to give a specific case
of [TS94, Theorem 5.8], but it is not clear that the condition of the theorem holds
because it is difficult to calculate numerically some of values in the condition.

Secondly, we review studies of rambling time, which is an iteration number
needed for an orbit to enter a neighborhood of a periodic point. To begin with, we
need to define a suitable neighborhood of a periodic point to determine rambling
time. For example, Jacobs et al. considered a quadratic map y = a−x2 and defined
an immediate basin as below. Let xs and xu be two fixed points; xs = (−1 +√

1 + 4a)/2 and xu = (−1−
√

1 + 4a)/2. For a parameter a such that xs is stable,
an immediate basin is defined as an interval [xu,−xu]. Buszko and Stefański also
defined a black subset as a union of intervals whose orbits monotonically approach
a periodic point [BS03].

Because rambling time depends on its initial point, we take a lot of uniformly
distributed initial points in phase space and we consider the average of rambling
time. For one-dimensional quadratic maps, Jacobs et al. showed numerically in
[JOH97] that, for a given parameter where a periodic point is stable, the average
rambling time scales with the size of periodic window including the parameter;

τ ∼ 4a−1/2,

where τ is the average rambling time and 4a is the size of the periodic window
of parameter space. Moreover, for Hénon map with small b, they approximated
Hénon map by a logistic map and conjectured

τ ∼ 4a1/2−d,(45)
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where d is a fractal dimension of Hénon attractor. In [BS06], for Hénon map with
b = −0.3, the average rambling time for windows of low period exhibits the same
type scaling as (45),

τ ∼ 4a−β ,(46)

where β is a constant determined by numerical calculation and β = 0.9± 0.1.
In the rest of this section, we apply the same analysis in [BS06] and investigate

the same type scaling of average rambling time for the obtained sinks. First of all,
we state the definition of rambling time at an initial point and how to determine
a threshold value that is required to calculate rambling time. In our numerical
investigation, the definition of the rambling time of an initial point for a stable
periodic point is simply the minimum number of iterations that the distance from
the sink becomes less than an appropriate threshold value. In other word, we take
an appropriate threshold distance d for a stable periodic point pN of period N , and
define the rambling time for an initial point q as the integer rd(q) such that for all
integers i >= rd(q) and k < rd(q),

max{|T i(q)− T j(pN )| | 0 ≤ j < N} ≤ d

max{|T k(q)− T j(pN )| | 0 ≤ j < N} > d.

If the threshold value is too large, we may obtain a number of iterations that do
not make orbits converge to periodic points. On the contrary, too small threshold
value causes an overestimation of rambling time. When Lyapunov multiplier of the
sink has an absolute value near one, in particular, at parameters near saddle-node
bifurcation and period-doubling bifurcation, the rate of convergence of orbits is
slow and therefore the overestimation of rambling time is large.

How to determine the appropriate threshold value is the following. Let α and
β be eigenvalues of DTN (pN ) and let Lyapunov multiplier |Λ| be max{|α|, |β|},
where DTN (pN ) is the Jacobian matrix of Nth iteration of Hénon map T at the
stable periodic point pN . Obviously, |Λ| is less than one because pN is stable. For
sufficient small threshold values d0 and d1 such that d1 < d0, we denote rambling
times for some initial point q by r0 and r1 respectively. Then, because the distance
from the orbit of the stable periodic point decreases approximately at the rate
|Λ|1/N at every iteration in the neighborhood of the periodic point, we have

d1
d0
≈ |Λ|

(r0−r1)
N .

Therefore,

r0 − r1
log d0 − log d1

≈ − N

log |Λ|
.

We take about 10000 uniformly distributed initial points in [−1.5, 1.5]× [−1.0, 1.0]
and calculate averages of all values of rambling time. For various threshold values,
we calculate values of average rambling time. The result shown as the graph in Fig.
1, which is the relation between logarithms of threshold distance and average ram-
bling time. As stated above, for sufficient small thresholds, the rate of contraction
is constant and the graph has the constant slope whose absolute value is almost
N/ log |Λ|. Therefore, the threshold value at the change of the slope is appropriate.
From the graph we take 10−6 as the appropriate threshold value for the sink of
period 8.

We calculated average rambling time for the sinks of period from 8 to 15. Each
parameter is at the middle value of the parameter interval when each sink persists.
We plot the sizes of parameter intervals of the periodic windows and the logarithms
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of values of average rambling time and obtain Fig. 2. From (46) we consider fitting

log τ = −β log4a+ γ

for some constants β and γ with the graph in 2. Our obtained fitting parameter β
is is −0.902897 and this value agrees with the value for the case of large periodic
window, that is, the case of sinks of lower period, investigated in [BS06]. As for
average rambling time, the sinks that we obtained have the same scaling property
as that of the sinks of lower period.
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APPENDIX A

Algorithm

1. Calculation of stable and unstable manifolds

We show the algorithm to compute a stable manifold of a saddle fixed point of
a two-dimensional diffeomorphism. Let f : R2 → R2 be a diffeomorphism that has
a saddle fixed point p. If we want to obtain manifolds of a saddle periodic point
of period n, we can apply this algorithm by replacing f with fn. To obtain an
unstable manifold, we replace f with f−1. We assume that the two eigenvalues of
f are positive by replacing f by f2 if needed.

The algorithm uses the following facts; on a neighborhood of a saddle fixed
point, the stable and unstable manifolds approximate the eigenvectors of Jacobian
matrix of the diffeomorphism at the saddle fixed point and the diffeomorphism in
the neighborhood approximates a linear map.

Firstly, in advance, we obtain numerically the saddle fixed point p by some
way and calculate the eigenvectors of Jacobian matrix. Let vs, vu ∈ R2 be the
eigenvectors of Jacobian matrix at p with the eigenvalues whose absolute values are
less than 1 and larger than 1, respectively. We take a sufficiently small neighborhood
U of p such that f |U approximates a linear map.

We consider calculation of a first point on the stable manifold near p+c1vs ∈ U
for small c1 ∈ R. We take c2 ∈ R such that q = p+ c1vs + c2vu ∈ U . Because f |U
is nearly a linear map, in the neighborhood U , some iterations of f maps q to the
positive direction of vs or the negative direction vu. Varying the value of c2, we
search for a pair (c−, c+) of c2, so that f l1(c−) is mapped to the negative direction
of vu and f l2(c+) is mapped to the positive direction of vu for suitable iteration
numbers l1 and l2. We apply bisection method to the pair (c−, c+) and then we
obtain small interval [c′−, c

′
+] (or [c′+, c

′
−]) of c2 such that the point on the stable

manifold is p + c1vs + c′2vu for some c′2 in the interval. In practice, we define the
point on the stable manifold as p+ c1vs + ((c′− + c′+)/2)vu.

We let q1 be the first point of the stable manifold in the above-mentioned way
and let q0 be f(q1). Secondly, we calculate the segment of the stable manifold
between between q0 and q1, that is, we calculate sufficiently many points on the
stable manifold between q0 and q1. Finally, to stretch the stable manifold distant
from the fixed point, we iterate the points by f−1 a number of times.

2. Search for a sink near a homoclinic tangency

We show the algorithm to search for a sink near a parameter value that a homo-
clinic tangency occurs. Here, we search for a sink when two transversal homoclinic
points exists after the homoclinic tangency. Let f be the diffeomorphism of surfaces
that satisfies such a condition. Note that sinks may exist before the homoclinic tan-
gency occurs, that is, at parameters such that there is no homoclinic point near the
tangency. In that case, the same algorithm can find sinks by determining suitable
search region at the opposite side.

In advance, we find the search region like the Fig. 1, in which the unstable
manifold stick a little out of the stable manifold. We take a parallelogram so
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Figure 1. The parameters of map (1) are a = 1.3927060035 and
b = −0.3. The points D and C are homoclinic points: the intersec-
tions of the stable and unstable manifolds for the saddle periodic
point. The parallelogram ABCD includes the segment of the un-
stable manifold from D to C. The lines AD, EF , and BE are
parallel to each other. The lines AB, DC, B′C ′, and D′E′ are
parallel to each other. In ABCD there is a periodic saddle point
of period 13.

that its two vertexes are homoclinic points and it includes the curve of unstable
manifold between the two homoclinic points. Here we fix the parameter value
near the tangency and let this parallelogram be ABCD, where C and D are the
homoclinic points. If we find a period m of periodic point and a parallelogram
A′B′C ′D′ satisfying the following conditions:

(1) A′ and D′ are on AD and B′ and C ′ are on BC,
(2) A′B′ is parallel to AB and C ′D′ is parallel to CD,
(3) the intersection of the parallelogramA′B′C ′D′ and the region fm(A′B′C ′D′)

has two components; that is, there is a horseshoe,

we proceed to the next step, where we calculate approximate coordinates of two sad-
dle periodic points of period m in the intersection of A′B′C ′D′ and fm(A′B′C ′D′).
If we can not obtain m and A′B′C ′D′ satisfying the conditions, We repeat perturb-
ing the parameter and trying to find them until they are found.

We want to obtain two periodic points of period m in ABCD. We fix the line
segment EF parallel to AD and map the line m times. fm(EF ) is alike the shape
of the unstable manifold. Then we calculate the point of the intersection of EF and
fm(EF ) and let q be the intersection point. We determine whether fm(q) is on the
AD side from EF or the BC side from EF . To change the position of line EF and
repeat this procedure, we divide AB and CD with sufficiently small size and then
obtain points E1, . . . , Ek and F1, . . . , Fk such that EiFi is parallel to AD for all i.
For EiFi we calculate the intersection qi by the above procedure. Then we pick up
a pair of points (q−, q+) from qi so that q− and q+ are mapped to the different side
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from EF . We shorten the distance of two points q− and q+ by bisection method
and obtain a sufficiently short line segment between q− and q+. Then the midpoint
of q− and q+ approximates point of periodic point. In the case that the condition
(3) is satisfied, we obtain two saddle periodic points.

One of the two saddle periodic points becomes a sink when the intersection of
a suitable parallelogram A′B′C ′D′ and fm(A′B′C ′D′) consists of one component
at a parameter nearer to the tangency. Although there is not necessarily a periodic
point in such a case, if we find a pair of (q−, q+) then we obtain approximate
coordinate of a periodic point. We repeat searching for periodic points until we
take suitable parameter and the obtained periodic point is a sink.

3. Pseudo code of search for periodic points in a horseshoe

The algorithm in Appendix 2 to search for periodic points in the search region
ABCD is expressed by the following pseudo code.

def q_and_direction(EF)

q = (an intersection of EF and f^m(EF))

tmp, distance_q = projection(DA, DC, q - D)

tmp, distance_fq = projection(DA, DC, f^m(q) - D)

return [q, distance_fq - distance_q]

end

def calc_periodic_point

n = (sufficient large number of partition of AB and DC)

error = (maximum distance of coordinates of periodic points)

vector_step = (B - A) / n

q_interval_data = []

last = nil

for i from 0 to n

E = A + vector_step * i

F = E + (D - A)

q, direction = q_and_direction(EF)

current = [E, q, direction]

if last

E_last, q_last, direction_last = last

if direction > 0 && direction_last < 0

q_interval_data.push [current, direction_last]

else if direction < 0 && direction_last > 0

q_interval_data.push [direction_last, current]

end

end

last = current

end

if q_interval_data.empty?

return nil

end

periodic_points = []

for data_plus, data_minus in q_interval_data

E_plus, q_plus, direction_plus = data_plus

E_minus, q_minus, direction_minus = data_minus

while (q_plus - q_minus).abs > error

E = (E_plus + E_minus) / 2

F = E + (D - A)
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q, direction = q_and_direction(EF)

if direction > 0

E_plus, q_plus = E, q

else

E_minus, q_minus = E, q

end

end

periodic_points.push ((q_plus + q_minus) / 2)

end

return periodic_points

end



APPENDIX B

Numerical data of sinks

1. Data tables

Numerical data of the obtained sinks are listed in the following tables. Table
1 shows the list of the values of the parameter a where the sinks exist. Table 2
and 3 show the list of the coordinates of the sinks. Table 4 and 5 show the list of
the eigenvalues of the sinks. Table 8 and 9 show the list of the parameter intervals
where the sinks of specified period exist, that is, the parameter intervals between
saddle-node bifurcation and period-doubling bifurcation. Table 10 and 11 show
the list of the parameter intervals where the attractor arising from the saddle-node
bifurcations exist, that is, the parameter intervals of periodic windows. Table 12
shows the list of ratios of lengths of the parameter intervals where the sinks exist.
Table 13 shows the list of ratios of lengths of the parameter intervals where the
attractors arising from the saddle-node bifurcations exists. Table 14 shows the list
of ratios of lengths of the parameter intervals in Table 12 and 13. Table 15 shows
the list of the distances between the stable manifolds and the peak of the unstable
manifolds and their ratios.
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period parameter a period parameter a
8 1.38664149787356250000

9 1.39682967781508590995 10 1.39044451080738447805
11 1.39348183318325079174 12 1.39187124135913547473
13 1.39270603514708815022 14 1.39227051835401997070
15 1.39249759396078376854 16 1.39237923569364948177
17 1.39244095493338897575 18 1.39240878086818029898
19 1.39242555647987797736 20 1.39241681068117711904
21 1.39242137052683480445 22 1.39241899322602361400
23 1.39242023267157798334 24 1.39241958647359244535
25 1.39241992337792816159 26 1.39241974772878703645
27 1.39241983930576794529 28 1.39241979156096093336
29 1.39241981645332931688 30 1.39241980347537751260
31 1.39241981024159838398 32 1.39241980671394307857
33 1.39241980855313113200 34 1.39241980759424702657
35 1.39241980809417346952 36 1.39241980783353045237
37 1.39241980796942000901 38 1.39241980789857225808
39 1.39241980793550963533 40 1.39241980791625186329
41 1.39241980792629214800 42 1.39241980792105751770
43 1.39241980792378665887 44 1.39241980792236378636
45 1.39241980792310561907 46 1.39241980792271885514
47 1.39241980792292049944 48 1.39241980792281536962
49 1.39241980792287018039 50 1.39241980792284160409
51 1.39241980792285650271 52 1.39241980792284873513
53 1.39241980792285278485 54 1.39241980792285067348
55 1.39241980792285177427 56 1.39241980792285120036
57 1.39241980792285149957 58 1.39241980792285134357
59 1.39241980792285142491 60 1.39241980792285138250

Table 1. The values of parameter a where the sink exists.
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period x coordinate y coordinate
9 -1.27976154338630332676 0.38150016090627654680
11 -1.27648733082531270876 0.38168343400248646793
13 -1.27553716276434521174 0.38171016190532197212
15 -1.27527703273885344572 0.38171694500136863446
17 -1.27520623128411636160 0.38171877870769113704
19 -1.27518697955868689668 0.38171927701715012326
21 -1.27518174604472220710 0.38171941247399922304
23 -1.27518032343168631819 0.38171944929478208728
25 -1.27517993673462261571 0.38171945930346351249
27 -1.27517983162267160731 0.38171946202402293808
29 -1.27517980305121079612 0.38171946276352383767
31 -1.27517979528493993763 0.38171946296453424263
33 -1.27517979317391901322 0.38171946301917274315
35 -1.27517979260010318583 0.38171946303402452279
37 -1.27517979244412908254 0.38171946303806152270
39 -1.27517979240173234159 0.38171946303915885577
41 -1.27517979239020809754 0.38171946303945713191
43 -1.27517979238707558788 0.38171946303953820909
45 -1.27517979238622411191 0.38171946303956024741
47 -1.27517979238599266448 0.38171946303956623785
49 -1.27517979238592975265 0.38171946303956786617
51 -1.27517979238591265201 0.38171946303956830877
53 -1.27517979238590800373 0.38171946303956842908
55 -1.27517979238590674024 0.38171946303956846178
57 -1.27517979238590639680 0.38171946303956847067
59 -1.27517979238590630344 0.38171946303956847309

Table 2. The coordinates of sinks of odd period.
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period x y
8 -1.26414803155990566355 0.38158830955359902274
10 -1.27259518279931735196 0.38177393058021936800
12 -1.27449094519060074464 0.38173697294814371573
14 -1.27499306560590518015 0.38172428819387392387
16 -1.27512906462917220609 0.38172077592692207224
18 -1.27516600565582752278 0.38171981987086304374
20 -1.27517604505617454618 0.38171956002976662202
22 -1.27517877380397668935 0.38171948940301306126
24 -1.27517951551703021723 0.38171947020562793720
26 -1.27517971712775127688 0.38171946498743782459
28 -1.27517977192930977783 0.38171946356903620597
30 -1.27517978682541319353 0.38171946318348788627
32 -1.27517979087445722178 0.38171946307868536363
34 -1.27517979197506578554 0.38171946305020205462
36 -1.27517979227423197757 0.38171946304245888379
38 -1.27517979235555106303 0.38171946304035414230
40 -1.27517979237765514390 0.38171946303978203373
42 -1.27517979238366345528 0.38171946303962652358
44 -1.27517979238529662910 0.38171946303958425299
46 -1.27517979238574055693 0.38171946303957276302
48 -1.27517979238586122500 0.38171946303956963983
50 -1.27517979238589402489 0.38171946303956879089
52 -1.27517979238590294052 0.38171946303956856013
54 -1.27517979238590536396 0.38171946303956849741
56 -1.27517979238590602270 0.38171946303956848036
58 -1.27517979238590620176 0.38171946303956847572
60 -1.27517979238590625043 0.38171946303956847446

Table 3. The coordinates of sinks of even period.
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period two eigenvalues
9 3.93390430424863572693e-05 -5.00342623452793819690e-01
11 3.54263945135985294617e-06 -5.00042418745157891713e-01
13 3.18857384659543061078e-07 -5.00011314369376520844e-01
15 2.86978455992962120235e-08 -4.99999449448285191163e-01
17 2.58280782017907830145e-09 -4.99999117205112460657e-01
19 2.32453372758525399328e-10 -4.99997678333266171675e-01
21 2.09207534187041027181e-11 -4.99998876409870098498e-01
23 1.88287341702849328254e-12 -4.99997386842789247998e-01
25 1.69458272154285856180e-13 -4.99998376397685221343e-01
27 1.52512261305216089434e-14 -4.99998978424838033738e-01
29 1.37261512953728858791e-15 -4.99997238031453454875e-01
31 1.23535011654083814097e-16 -4.99998654643368048328e-01
33 1.11181883091214677720e-17 -4.99996979003748000016e-01
35 1.00063350481841684327e-18 -4.99998699404722023775e-01
37 9.00573388519507224953e-20 -4.99996903785086484289e-01
39 8.10514641651424309589e-21 -4.99997772373598520888e-01
41 7.29461280737077233910e-22 -4.99999072470535969690e-01
43 6.56516993188628512944e-23 -4.99997670738468243304e-01
45 5.90862837774424798774e-24 -4.99999749125990749627e-01
47 5.31778336629985726135e-25 -4.99998073021506810272e-01
49 4.78601644841757988752e-26 -4.99996880097932052687e-01
51 4.30739540375381064480e-27 -4.99999132004147030989e-01
53 3.87667156874804492837e-28 -4.99997106382157594747e-01
55 3.48898847864605526430e-29 -4.99999389728043278690e-01
57 3.14009843056555073580e-30 -4.99997988534170688869e-01
59 2.82608159221948370039e-31 -4.99999226159685406967e-01

Table 4. The eigenvalues of Jacobian matrix at sinks of odd period.



50 B. NUMERICAL DATA OF SINKS

period two eigenvalues
8 -1.31756529641247091095e-04 -4.97963935287655270780e-01
10 -1.18133309069991084047e-05 -4.99850554131307012274e-01
12 -1.06293833396807615975e-06 -4.99973500829598525112e-01
14 -9.56602744063121882799e-08 -4.99995325090181168966e-01
16 -8.60239206305607819397e-09 -5.00404081614332513694e-01
18 -7.74841687665481002823e-10 -4.99999542057756894204e-01
20 -6.97359635462816038970e-11 -4.99998024503659284505e-01
22 -6.27623420560484567082e-12 -4.99998224747187910007e-01
24 -5.64859702331267123535e-13 -4.99999442897710240236e-01
26 -5.08373713413655108715e-14 -4.99999461274412252093e-01
28 -4.57537721971967473237e-15 -4.99997953313292507077e-01
30 -4.11784366413982750698e-16 -4.99997447420475116763e-01
32 -3.70901172093154857698e-17 -4.99599442728760061741e-01
34 -3.33543642932484048777e-18 -4.99999986599725615837e-01
36 -3.00189822904642170476e-19 -4.99999080064342980871e-01
38 -2.70171822400185678205e-20 -4.99997263101728888163e-01
40 -2.43153696864478972700e-21 -4.99999202801879231238e-01
42 -2.18839219844543512559e-22 -4.99997163256385952844e-01
44 -1.96954266299893654582e-23 -4.99999782022565387678e-01
46 -1.77259597084709034774e-24 -4.99997645567087084226e-01
48 -1.59533016931113382843e-25 -4.99999590124442955948e-01
50 -1.43580256269141808060e-26 -4.99997706053783413257e-01
52 -1.29222256964477301264e-27 -4.99997604205504607867e-01
54 -1.16299516649381451037e-28 -4.99999816666042300859e-01
56 -1.04669993898611976437e-29 -4.99997767778890282377e-01
58 -9.42030605056904756496e-31 -4.99997417489607197743e-01
60 -8.47823597101255199667e-32 -4.99999745467728878269e-01

Table 5. The eigenvalues of Jacobian matrix at sinks of even period.



1. DATA TABLES 51

period ratios of eigenvalues of period n− 2 and n
11 9.00540322634128430089e-02 9.99400001731684864935e-01
13 8.99854436431157749413e-02 1.00016176346189896986e+00
15 9.00222944446810347935e-02 9.99752345296034030820e-01
17 9.00000598038766806043e-02 9.99999335512922869988e-01
19 9.00002589981349467249e-02 9.99997122251226498226e-01
21 8.99997843457266791459e-02 1.00000239616433404369e+00
23 9.00002681234758506786e-02 9.99997020859143632477e-01
25 8.99998218795403312166e-02 1.00000197912013545080e+00
27 8.99998916348910875614e-02 1.00000120405821544820e+00
29 9.00003132725397219978e-02 9.99996519206119057128e-01
31 8.99997450091692659680e-02 1.00000283323947982356e+00
33 9.00003016169539760713e-02 9.99996648711742547609e-01
35 8.99996903270191572901e-02 1.00000344082273747271e+00
37 9.00003232135358742475e-02 9.99996408751387399054e-01
39 8.99998436533712696564e-02 1.00000173718778148663e+00
41 8.99997659821171422527e-02 1.00000260020545947027e+00
43 9.00002523129475964350e-02 9.99997196530663946407e-01
45 8.99996258900582399400e-02 1.00000415679440953527e+00
47 9.00003016999698477904e-02 9.99996647789350156240e-01
49 9.00002147275833144278e-02 9.99997614143655497102e-01
51 8.99995946561776303920e-02 1.00000450384053303939e+00
53 9.00003646140682060703e-02 9.99995948748988189360e-01
55 8.99995889972389299717e-02 1.00000456671820004242e+00
57 9.00002522159117135438e-02 9.99997197608834378878e-01
59 8.99997772270625693810e-02 1.00000247526098724198e+00
Table 6. The ratios of absolute values of eigenvalues of at sinks
of odd periods n − 2 and n. The absolute value of one eigenvalue
shrinks at a rate of square of the determinant at the saddle fixed
point, that is, 0.09. The absolute value of the other eigenvalue are
approximately constant.



52 B. NUMERICAL DATA OF SINKS

period ratios of eigenvalues of period n− 2 and n
10 7.49206914806086154546e-02 1.20127027956348072327e+00
12 8.99778684213705809799e-02 1.00024596691406130893e+00
14 8.99960715963652586576e-02 1.00004365083458709549e+00
16 8.99264832391955306833e-02 1.00081752069197370947e+00
18 9.00728171868757432974e-02 9.99191574226831740700e-01
20 9.00002731608168261340e-02 9.99996964889024969546e-01
22 8.99999639560368731158e-02 1.00000040048863957869e+00
24 8.99997807326616718862e-02 1.00000243630969479173e+00
26 8.99999966921900738620e-02 1.00000003675344497457e+00
28 9.00002714341126352835e-02 9.99996984074510997505e-01
30 9.00000910611720120230e-02 9.99998988210223585999e-01
32 9.00716982830459288359e-02 9.99203986552794636220e-01
34 8.99279021012939370124e-02 1.00080173001950887943e+00
36 9.00001631766690983664e-02 9.99998186929186138776e-01
38 9.00003270550607695483e-02 9.99996366068085847497e-01
40 8.99996508534162602456e-02 1.00000387942153585034e+00
42 9.00003671202716422832e-02 9.99995920902509745505e-01
44 8.99995286218822021443e-02 1.00000523756207411120e+00
46 9.00003845637969539426e-02 9.99995727087180595947e-01
48 8.99996499793890133042e-02 1.00000388913302514904e+00
50 9.00003391342746292568e-02 9.99996231855591974041e-01
52 9.00000183327780281075e-02 9.99999796302507847038e-01
54 8.99996017569571923151e-02 1.00000442494227789069e+00
56 9.00003688013338555721e-02 9.99995902224193440124e-01
58 9.00000630523966221735e-02 9.99999299418306124239e-01
60 8.99995809637247810024e-02 1.00000465598029159604e+00
Table 7. The ratios of absolute values of eigenvalues of at sinks
of even periods n− 2 and n. The absolute value of one eigenvalue
shrinks at a rate of square of the determinant at the saddle fixed
point, that is, 0.09. The absolute value of the other eigenvalue are
approximately constant.



1. DATA TABLES 53

period parameters at saddle-node and

period-doubling bifurcations

9 1.3968233489977030974500000000000000000000
1.3968345987500859099500000000000000000000

11 1.3934814033585920161703076171875000000000

1.3934821674769293329915966796875000000000

13 1.3927060033907990877176504658789062500000
1.3927060598461127595926504658789062500000

15 1.3924975916102853082129492045595297082118

1.3924975957889620773495764018251547082118

17 1.3924409547595970907162926627654496057239
1.3924409550685610077582598531140747888294

19 1.3924255564670342362919272183792474599801
1.3924255564898676304460081461127433512680

21 1.3924213705258857640361478743510716334863

1.3924213705275729495745331210998578409123

23 1.3924202326715078614033818373402620991773

1.3924202326716325230348642628494487551308

25 1.3924199233779229805475791529833319211205
1.3924199233779321913146081892009110634698

27 1.3924198393057675624874615984039427609140
1.3924198393057682430321434709276059681053

29 1.3924198164533292885924061461208154283204

1.3924198164533293388749066755548266733108

31 1.3924198102415983818904458058059739853184

1.3924198102415983856056005794709084594730

33 1.3924198085531311318467143293844744895717

1.3924198085531311321212108966380177168874

35 1.3924198080941734695060031588558768691861
1.3924198080941734695262845103777038213962

37 1.3924198079694200090076905741665406453504
1.3924198079694200090091890743252826662156

39 1.3924198079355096353303997704166508400297
1.3924198079355096353305104880280764674629

41 1.3924198079262921480018356108329882157974
1.3924198079262921480018437912731663998231

43 1.3924198079237866588725607040184013057408

1.3924198079237866588725613084353430369478

45 1.3924198079231056190671970667612411855520
1.3924198079231056190671971114189552419361

47 1.3924198079229204994388359115639426542337
1.3924198079229204994388359148635064731155

49 1.3924198079228701803876815565029861453483

1.3924198079228701803876815567467764674448

51 1.3924198079228565027083804295458118884747

1.3924198079228565027083804295638244883347

53 1.3924198079228527848538745792375525219619
1.3924198079228527848538745792388833941745

55 1.3924198079228517742700012221913783310748
1.3924198079228517742700012221914766633938

57 1.3924198079228514995740002134887019719025

1.3924198079228514995740002134887092372474

59 1.3924198079228514249063798807901536743561

1.3924198079228514249063798807901542111607

Table 8. The parameter intervals of a where the sinks of odd
period persist, that is, parameter intervals of a between saddle-
node bifurcation and period-doubling bifurcation.



54 B. NUMERICAL DATA OF SINKS

period parameters at saddle-node and

period-doubling bifurcations

8 1.3866122437593437500000000000000000000000
1.3866643209868437500000000000000000000000

10 1.3904428614521230299989257812500000000000

1.3904457939229598777000976562500000000000

12 1.3918711233062019825999114781265258789062
1.3918713331813069815168545359878540039063

14 1.3922705096797230957031250000000000000000

1.3922705251006996582031250000000000000000

16 1.3923792350533143929023284912109375000000
1.3923792361910733328729400634765625000000

18 1.3924087808209148059946772449871487163346
1.3924087809049423747552139919434971355241

20 1.3924168106776853573611404686318758713126

1.3924168106838929491464171199155163008839

22 1.3924189932257656336604340193732396783523

1.3924189932262242664484842081414939476177

24 1.3924195864735733845258839152093644013036
1.3924195864736072704589401198275386784048

26 1.3924197477287856281293264649387149433218
1.3924197477287881318031386121049990872828

28 1.3924197915609608293052042360987822120610

1.3924197915609610142905052192275181377045

30 1.3924198034753775049149109664125348911657

1.3924198034753775185826601981327594569268

32 1.3924198067139430780055409670132871702647

1.3924198067139430790153911613422057874463

34 1.3924198075942470265243662669763962234759
1.3924198075942470265989796639618505446911

36 1.3924198078335304523662086019245138199408
1.3924198078335304523717214596856158103472

38 1.3924198078985722580797579861119617889795
1.3924198078985722580801653071048599517398

40 1.3924198079162518632863818902450798327298
1.3924198079162518632864119854076357643826

42 1.3924198079210575176969034374274488760551

1.3924198079210575176969056610272732621255

44 1.3924198079223637863634514168415853957301
1.3924198079223637863634515811336481703852

46 1.3924198079227188551394281601653526213869
1.3924198079227188551394281723041748754442

48 1.3924198079228153696152817705665995919791

1.3924198079228153696152817714634840609840

50 1.3924198079228416040934436995693888108093

1.3924198079228416040934436996356556782525

52 1.3924198079228487351257405919303303991026
1.3924198079228487351257405919352265682792

54 1.3924198079228506734765362688201094035938
1.3924198079228506734765362688204711601135

56 1.3924198079228512003573090201973238692444

1.3924198079228512003573090201973505978481

58 1.3924198079228513435735675603116173795808

1.3924198079228513435735675603116193544403

60 1.3924198079228513825024823565774325920798
1.3924198079228513825024823565774327379936

Table 9. The parameter intervals of a where the sinks of even
period persist, that is, parameter intervals of a between saddle-
node bifurcation and period-doubling bifurcation.



1. DATA TABLES 55

period parameters at saddle-node and

crisis parameter

9 1.3968233489969218474500000000000000000000
1.3968486642695780974500000000000000000000

11 1.3934814033585243800844921875000000000000

1.3934831226574300267122998046875000000000

13 1.3927060033907893220926504658789062500000
1.3927061304159846345926504658789062500000

15 1.3924975916102850673956167460634359582118

1.3924976010122798719798147441103109582118

17 1.3924409547595970682585739672221604211536
1.3924409554547646982432968313636246545520

19 1.3924255564670342367330777926096608706213
1.3924255565184091992298445479270127496518

21 1.3924213705258857640013400059054101406556

1.3924213705296819258043968004382145213542

23 1.3924202326715078614238712199162343272868

1.3924202326717883490834789871942662048892

25 1.3924199233779229805460127700997015311442
1.3924199233779437047304202982717079685642

27 1.3924198393057675624873899361237395088878
1.3924198393057690937109171015552124719594

29 1.3924198164533292885924066663516748654708

1.3924198164533294017275986573655500012170

31 1.3924198102415983818904458712627400581057

1.3924198102415983902495279183875432021003

33 1.3924198085531311318467143128598303346922

1.3924198085531311324643291388420129910627

35 1.3924198080941734695060031606909518414681
1.3924198080941734695516361146202282056142

37 1.3924198079694200090076905740899432085272
1.3924198079694200090110621855684400418954

39 1.3924198079355096353303997704213084602485
1.3924198079355096353306488842533800902485

41 1.3924198079262921480018356108318619109139
1.3924198079262921480018540168019647046024

43 1.3924198079237866588725607040183368607435

1.3924198079237866588725620639523532974237

45 1.3924198079231056190671970667612337385589
1.3924198079231056190671971672410847383403

47 1.3924198079229204994388359115639433251172
1.3924198079229204994388359189879395061732

49 1.3924198079228701803876815565029861114284

1.3924198079228701803876815570515121292636

51 1.3924198079228565027083804295458118859091

1.3924198079228565027083804295863401935557

53 1.3924198079228527848538745792375525218413
1.3924198079228527848538745792405469729497

55 1.3924198079228517742700012221913783310836
1.3924198079228517742700012221915995786303

57 1.3924198079228514995740002134887019719036

1.3924198079228514995740002134887183188788

59 1.3924198079228514249063798807901536743561

1.3924198079228514249063798807901548821651

Table 10. The parameter intervals of a where the attractor aris-
ing from the first sinks exist. In other words, the parameter in-
tervals are the parameter intervals of periodic windows, which are
between saddle-node bifurcations and crisis parameter.



56 B. NUMERICAL DATA OF SINKS

period parameters at saddle-node and

crisis parameter

8 1.3866122437368437500000000000000000000000
1.3867292602837187500000000000000000000000

10 1.3904428614527569325184570312500000000000

1.3904494588712671146473632812500000000000

12 1.3918711233061837093207334500198364257813
1.3918715955179907709692003300552368164062

14 1.3922705096797426269531250000000000000000

1.3922705443768520019531250000000000000000

16 1.3923792350533143214777221679687500000000
1.3923792376146549626473388671875000000000

18 1.3924087808209147895559510626028961681168
1.3924087810099768272452423024090714000504

20 1.3924168106776853563809038088253776802769

1.3924168106916524070260577235298146243422

22 1.3924189932257656337335618860834071286377

1.3924189932267975547893228028476175256713

24 1.3924195864735733845200912389652242166740
1.3924195864736496278299347028414403330102

26 1.3924197477287856281296264995340251751716
1.3924197477287912613915916199049059873105

28 1.3924197915609608293051775044431033943572

1.3924197915609612455210263100350360738325

30 1.3924198034753775049149135436904660351061

1.3924198034753775356672296406160287770955

32 1.3924198067139430780055412143262046029533

1.3924198067139430802764897224531230996701

34 1.3924198075942470265243662563694973777608
1.3924198075942470266922464459590923049527

36 1.3924198078335304523662086028895695761278
1.3924198078335304523786125120143636297835

38 1.3924198078985722580797579861630760180436
1.3924198078985722580806744548030938289452

40 1.3924198079162518632863818902533912001784
1.3924198079162518632864496042548500411508

42 1.3924198079210575176969034374270030928721

1.3924198079210575176969084405087998487940

44 1.3924198079223637863634514168416233587057
1.3924198079223637863634517864985432622830

46 1.3924198079227188551394281601653536614376
1.3924198079227188551394281874776111375265

48 1.3924198079228153696152817705665996308947

1.3924198079228153696152817725845883924787

50 1.3924198079228416040934436995693888180639

1.3924198079228416040934436997184887690525

52 1.3924198079228487351257405919303304001336
1.3924198079228487351257405919413467408702

54 1.3924198079228506734765362688201094036903
1.3924198079228506734765362688209233553206

56 1.3924198079228512003573090201973238692444

1.3924198079228512003573090201973840084168

58 1.3924198079228513435735675603116173795805

1.3924198079228513435735675603116218229999

60 1.3924198079228513825024823565774325920799
1.3924198079228513825024823565774329203855

Table 11. The parameter intervals of a where the attractor aris-
ing from the first sinks exist. In other words, the parameter in-
tervals are the parameter intervals of periodic windows, which are
between saddle-node bifurcations and crisis parameter.



1. DATA TABLES 57

period length of parameter interval ratio of period n− 1 and n

8 5.20772275000000000000e-05

9 1.12497523828125000000e-05 2.16020570273494302284e-01
10 2.93247083684770117188e-06 2.60669811837633294297e-01
11 7.64118337316821289062e-07 2.60571504314846157774e-01

12 2.09875104998916943058e-07 2.74663091761267114138e-01
13 5.64553136718750000000e-08 2.68994808470334471993e-01
14 1.54209765625000000000e-08 2.73153677829664547395e-01

15 4.17867676913662719727e-09 2.70973550358550919253e-01
16 1.13775893997061157227e-09 2.72277326730320041233e-01
17 3.08963917041967190349e-10 2.71554813755141980575e-01
18 8.40275687605367469563e-11 2.71965637816286208159e-01

19 2.28333941540809277335e-11 2.71736936946872027524e-01
20 6.20759178527665128364e-12 2.71864609500782057799e-01
21 1.68718553838524674879e-12 2.71793893146608482948e-01

22 4.58632788050188768254e-13 2.71833048361196876357e-01
23 1.24661631482425509187e-13 2.71811424587427509847e-01
24 3.38859330562046181743e-14 2.71823275961070458480e-01

25 9.21076702903621757914e-15 2.71816833662477471988e-01
26 2.50367381214716628414e-15 2.71820338551016629944e-01
27 6.80544681872523663207e-16 2.71818428810773995138e-01
28 1.84985300983128735926e-16 2.71819479176797516140e-01
29 5.02825005294340112450e-17 2.71818897297250334726e-01
30 1.36677492317202245658e-17 2.71819203257791347916e-01

31 3.71515477366493447415e-18 2.71819061842514112803e-01
32 1.00985019432891861718e-18 2.71819145056161216597e-01
33 2.74496567253543227316e-19 2.71819096332358446848e-01

34 7.46133969854543212152e-20 2.71819053083226506256e-01
35 2.02813515218269522102e-20 2.71819168423342881997e-01
36 5.51285776110199040637e-21 2.71819052846108846843e-01

37 1.49850015874202086519e-21 2.71819122436868169804e-01
38 4.07320992898162760250e-22 2.71819118951649321367e-01
39 1.10717611425627433250e-22 2.71819064953788759266e-01

40 3.00951625559316527488e-23 2.71819109610647061531e-01
41 8.18044017818402570165e-24 2.71819105910484246742e-01
42 2.22359982438607038016e-24 2.71819092365722411003e-01
43 6.04416941731206993188e-25 2.71819117407101253304e-01

44 1.64292062774655051332e-25 2.71819089491568424145e-01
45 4.46577140563840961460e-26 2.71819059924015612681e-01
46 1.21388222540573187979e-26 2.71819158471278696270e-01

47 3.29956381888177413612e-27 2.71819106485303165696e-01
48 8.96884469004933785206e-28 2.71819100413365828937e-01
49 2.43790322096545515649e-28 2.71819092114532332964e-01

50 6.62668674431496865732e-29 2.71819106161674337530e-01

51 1.80125998599477218337e-29 2.71819093839024796423e-01
52 4.89616917668421751082e-30 2.71819127430415684390e-01

53 1.33087221259949353559e-30 2.71819082342409272926e-01
54 3.61756519725048838423e-31 2.71819124556261326765e-01

55 9.83323189845829580004e-32 2.71819065097485805336e-01

56 2.67286037314872512305e-32 2.71819113059643166890e-01
57 7.26534489965076416090e-33 2.71819095850933956591e-01

58 1.97485957119654607147e-33 2.71819108173581001749e-01

59 5.36804640419477842818e-34 2.71819145142676505625e-01
60 1.45913733705088804332e-34 2.71819061755998850289e-01

Table 12. Lengths of parameter intervals of a where the sink
persists of minimum period and ratios of lengths of these of period
n− 1 and n. In other words, the parameter interval is the param-
eter interval between saddle-node bifurcation and period-doubling
bifurcation. The ratios are about the unstable eigenvalue of the
saddle fixed point.



58 B. NUMERICAL DATA OF SINKS

period length of periodic window ratio of period n− 1 and n

8 1.17016546875000000000e-04

9 2.53152726562500000000e-05 2.16339255706224239921e-01
10 6.59741851018212890625e-06 2.60610209487643622000e-01
11 1.71929890564662780762e-06 2.60601764613408569902e-01

12 4.72211807061648466880e-07 2.74653700709505044753e-01
13 1.27025195312500000000e-07 2.69000464225826809516e-01
14 3.46971093750000000000e-08 2.73151395592348343786e-01

15 9.40199480458419799805e-09 2.70973431906651387960e-01
16 2.56134064116961669922e-09 2.72425234687511790982e-01
17 6.95167629984722864141e-10 2.71407722507100757828e-01
18 1.89062037689291239806e-10 2.71966112250431026329e-01

19 5.13749624967667553174e-11 2.71736003296428614620e-01
20 1.39670506451539147044e-11 2.71864931211052865443e-01
21 3.79616180305679453280e-12 2.71794088780936143442e-01

22 1.03192105576091676421e-12 2.71832737722080217367e-01
23 2.80487659607767278032e-13 2.71811160400193219610e-01
24 7.62433098434638762161e-14 2.71824115007705468191e-01

25 2.07241844075281720064e-14 2.71816431501691919914e-01
26 5.63326196512037088081e-15 2.71820683233935035944e-01
27 1.53122352716543147296e-15 2.71818270949647282783e-01
28 4.16215848805591932679e-16 2.71819131185948982240e-01
29 1.13135191991013875136e-16 2.71818558365031399199e-01
30 3.07523160969255627420e-17 2.71819188669146943348e-01

31 8.35908204712480314399e-18 2.71819593060195405196e-01
32 2.27094850812691849672e-18 2.71674389044672177366e-01
33 6.17614825982182656371e-19 2.71963377316552292942e-01

34 1.67880189589594927192e-19 2.71820206586876917391e-01
35 4.56329539292763641461e-20 2.71818575144762978104e-01
36 1.24039091247940536556e-20 2.71819114406183078154e-01

37 3.37161147849683336829e-21 2.71818460178602234519e-01
38 9.16468640017810901558e-22 2.71819171889401803378e-01
39 2.49113832071629999989e-22 2.71819264941557251560e-01

40 6.77140014588409723764e-23 2.71819516787693026985e-01
41 1.84059701027936885101e-23 2.71819264941557251560e-01
42 5.00308179675592187012e-24 2.71818424609770818896e-01
43 1.35993401643668021626e-24 2.71819264941557251560e-01

44 3.69656919903577300183e-25 2.71819746719887176056e-01
45 1.00479850999781479404e-25 2.71819207458610598307e-01
46 2.73122574760888931457e-26 2.71818252160309145284e-01

47 7.42399618105599513861e-27 2.71819207458610598307e-01
48 2.01798876158405025618e-27 2.71819746719887176056e-01
49 5.48526017835233715813e-28 2.71818172765570839755e-01

50 1.49099950988646346449e-28 2.71819286853651124922e-01

51 4.05283076465837915713e-29 2.71819724807756231624e-01
52 1.10163407365787690138e-29 2.71818424609381818266e-01

53 2.99445110834763184278e-30 2.71819035009041264277e-01
54 8.13951630359618836920e-31 2.71819976653005201623e-01

55 2.21247546708387447019e-31 2.71819035009041264277e-01

56 6.01391723129587200991e-32 2.71818482092478980613e-01
57 1.63469752413438087610e-32 2.71819092492255355231e-01

58 4.44341939365108324374e-33 2.71819056923329041124e-01

59 1.20780903678109461016e-33 2.71819724806273163335e-01
60 3.28305642329379756494e-34 2.71819163734972481828e-01

Table 13. Lengths of parameter intervals of a where periodic win-
dow exists and ratio of lengths of these of period n− 1 and n. In
other words, the period window is the parameter interval between
saddle-node bifurcation and crisis parameter. The ratios are about
the unstable eigenvalue of the saddle fixed point.



1. DATA TABLES 59

period ratio of parameter intervals

8 4.45041567972691896272e-01

9 4.44385985312905077157e-01
10 4.44487617743496331297e-01
11 4.44436005168884004736e-01

12 4.44451201474335875477e-01
13 4.44441856853570819027e-01
14 4.44445570258689597251e-01

15 4.44445764541286473932e-01
16 4.44204461399192344969e-01
17 4.44445201006780249630e-01
18 4.44444425689675065480e-01

19 4.44445952744353443507e-01
20 4.44445426811026258517e-01
21 4.44445106904207659397e-01

22 4.44445614797541512684e-01
23 4.44446046777073158520e-01
24 4.44444674893787596820e-01

25 4.44445332463378229201e-01
26 4.44444768883328165237e-01
27 4.44445026998986587371e-01
28 4.44445595990585512930e-01
29 4.44446150172510953496e-01
30 4.44446174026113319067e-01

31 4.44445305443891679354e-01
32 4.44682118821727256505e-01
33 4.44446207742853112992e-01

34 4.44444321678790841332e-01
35 4.44445291734997896033e-01
36 4.44445191079511578472e-01

37 4.44446273925398330221e-01
38 4.44446187367902488141e-01
39 4.44445860371943442613e-01

40 4.44445194606090215932e-01
41 4.44444934578177164078e-01
42 4.44446026412737847772e-01
43 4.44445785182217481644e-01

44 4.44444710564351426842e-01
45 4.44444469334266990664e-01
46 4.44445951224812281760e-01

47 4.44445786125450504555e-01
48 4.44444729365544631574e-01
49 4.44446232575562659839e-01

50 4.44445937129756479701e-01

51 4.44444905447860176459e-01
52 4.44446054616568634258e-01

53 4.44446132010444535767e-01
54 4.44444738768098711704e-01

55 4.44444787964987640194e-01

56 4.44445819646370528024e-01
57 4.44445825138076979633e-01

58 4.44445908936324162866e-01

59 4.44444961142287959466e-01
60 4.44444794398926857851e-01

Table 14. Ratios of lengths of two parameter intervals; parame-
ter intervals where sinks of minimum period exist and parameter
intervals of periodic windows.



60 B. NUMERICAL DATA OF SINKS

period distances rations of distances

8 1.00265689934063630709e-02

9 7.63804257510769375853e-03 7.61780283976562308685e-01
10 3.42523074180080060459e-03 4.48443525696438794179e-01
11 1.84059006697033517336e-03 5.37362357667808596973e-01

12 9.50991571858483297600e-04 5.16677552989212370686e-01
13 4.96129343751499879330e-04 5.21696888208940617827e-01
14 2.58789124828134140657e-04 5.21616244004619570004e-01

15 1.34834871282587099553e-04 5.21022169583567402474e-01
16 7.03294224007326907429e-05 5.21596688836793527308e-01
17 3.66567591759124233024e-05 5.21215131940718651489e-01
18 1.91146095686383711264e-05 5.21448431295006575734e-01

19 9.96472126492080776836e-06 5.21314402428081847079e-01
20 5.19549639289471390821e-06 5.21389033849307963493e-01
21 2.70866671815139245114e-06 5.21348974826683754598e-01

22 1.41221604762196417510e-06 5.21369439126040451375e-01
23 7.36272908283439778207e-07 5.21359964378858639347e-01
24 3.83865695360948747939e-07 5.21363330148735611600e-01

25 2.00133501636164705889e-07 5.21363341540533494505e-01
26 1.04341896742847390725e-07 5.21361470667400277355e-01
27 5.44001463877057553405e-08 5.21364361640616533161e-01
28 2.83621099544736256100e-08 5.21360912383194693437e-01
29 1.47870019928749739427e-08 5.21364666331624020070e-01
30 7.70936239570110056550e-09 5.21360746378191432496e-01

31 4.01938984875060753059e-09 5.21364756570777135574e-01
32 2.09555189463007091829e-09 5.21360697390788068856e-01
33 1.09254695904562983128e-09 5.21364783112898202282e-01

34 5.69611028805340866995e-10 5.21360683025388629534e-01
35 2.96975134913090637081e-10 5.21364790874825310401e-01
36 1.54831157935538807415e-10 5.21360678835451768927e-01

37 8.07235146276517358918e-11 5.21364793133301581515e-01
38 4.20860662860625746208e-11 5.21360677619034774520e-01
39 2.19421932705646912003e-11 5.21364793787609798759e-01

40 1.14397967442720389830e-11 5.21360677267320013737e-01
41 5.96430727270983581163e-12 5.21364793976448316458e-01
42 3.10955527852604156421e-12 5.21360677165990432020e-01
43 1.62121264731600450594e-12 5.21364794030763956134e-01

44 8.45236523587562883911e-13 5.21360677136890457969e-01
45 4.40676566040673764131e-13 5.21364794046339573724e-01
46 2.29751432865653118547e-13 5.21360677128557404023e-01

47 1.19784308478876044731e-13 5.21364794050793924365e-01
48 6.24508281776377156643e-14 5.21360677126177301321e-01
49 3.25596631712149649003e-14 5.21364794052064671698e-01

50 1.69753280379228088503e-14 5.21360677125499081974e-01

51 8.85033840646400448077e-15 5.21364794052426383433e-01
52 4.61421842438217710034e-15 5.21360677125306230924e-01

53 2.40569103854139924030e-15 5.21364794052529134258e-01
54 1.25423270880809341295e-15 5.21360677125251500574e-01

55 6.53912777921713906685e-16 5.21364794052558268054e-01

56 3.40924408678108833270e-16 5.21360677125235995756e-01
57 1.77745984117955232114e-16 5.21364794052566514717e-01

58 9.26697666360278035434e-17 5.21360677125231610623e-01

59 4.83147537970922513950e-17 5.21364794052568845257e-01
60 2.51894127547908114229e-17 5.21360677125230372270e-01

Table 15. Distances between stable manifolds and peaks of un-
stable manifolds. We estimate the positions of the sinks by the
distances.


