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Introduction

In this paper we investigate numerically Newhouse sinks of Hénon map. For
nearly classical parameter values of Hénon map, we search numerically for a se-
quence of Newhouse sinks and investigate their basins and average rambling time.

Firstly, we obtain the first few Newhouse sinks by using an algorithm based on
the proof of existences of Newhouse sinks and investigate the basin of attraction of
the sink. In the case that we observed, when the sink exists, most orbits converge
to it, and the orbit that seems to be Hénon attractor is not an attractor but just a
long chaotic transient. The appearances of Newhouse sinks in our cases cause the
changes from Hénon attractor to a long chaotic transient.

Secondly, we show how to find successively the Newhouse sinks of higher pe-
riod. In general, simple iterations of some initial points converge to an attractor.
However, it is difficult for simple iterations of some initial points to find Newhouse
sinks because the parameter ranges in which these sinks exist are too short. It
is known that properties of Newhouse sinks satisfy power laws. We estimate the
parameter values and coordinates of the succeeding Newhouse sinks from the power
laws and search in a neighborhood of the estimation values by simple iterations.
From our estimation, we obtained numerically a sequence of sinks of period from 8
to 60. We also show numerical data of power laws of the sequence of the sinks.

Thirdly, we verify our obtained sinks by applying Brouwer fixed point theorem
with interval arithmetic. Fourthly, we discuss the rambling time of the chaotic
transients of these sinks.

The sequence of sinks are constructed to prove coexistence of infinitely many
sinks. Newhouse showed coexistence of infinitely many sinks when a one-parameter
family of two dimensional dissipative diffeomorphism creates a homoclinic tan-
gency nondegenerately [New74, New79]. For a homoclinic tangency, there exists
a horseshoe in a neighborhood of the coordinate of the tangency and in a neighbor-
hood of the parameter that the tangency occurs. When we perturb the parameter
of the horseshoe, a periodic point in the horseshoe becomes stable. Such sinks at
different parameters compose a sequence converging to the homoclinic tangency,
which is our object in this paper. In addition, when we fix a homoclinic tangency,
because of abundance of diffeomorphisms having a different homoclinic tangency in
a neighborhood of the parameter of the fixed homoclinic tangency, infinitely many
sinks coexist at a parameter.

The convergence of the aforementioned sequence to the homoclinic tangency
means the following. If a one parameter family {F;} of two-dimensional dissipative
diffeomorphisms has a homoclinic tangency qo at a parameter ¢y, there is a sequence
of parameters {t;} accumulating to ¢o such that the diffeomorphism F}, has a sink
g; of period n; and, as j varies to infinity, the sequence of sinks {g;} accumulates
to go and the sequence n; goes to infinity [GS72, New74, Rob83]. We refer
to the sequence of sinks as an infinite cascade of sinks. This phenomenon gives
the existence of a diffeomorphism with a sink of arbitrarily high period near a
diffeomorphism having a homoclinic tangency.
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Each sink in an infinite cascade of sinks is obtained as below. Perturbing a
diffeomorphism with a homoclinic tangency, we can construct a horseshoe near the
homoclinic tangency. To be more precise, we can take a rectangle region near the
homoclinic tangency in an appropriate coordinate such that some iterations of the
diffeomorphism map the rectangle back to its neighborhood and the image of the
rectangle is bent and has two components of intersections with the rectangle. As
the parameter varies to the homoclinic tangency the horseshoe are destroyed. Full
horseshoe, that is, a situation so that the intersection of the rectangle and its image
consists of two components, has two saddle periodic points. As the parameter varies
slightly so as to break the full horseshoe of the dissipative diffeomorphism, one of
the two saddle periodic points becomes stable. As the parameter varies further
to the tangency, the subsequent horseshoes appear and destroy in turn. One sink
appears in each horseshoe and these sinks in the horseshoes constitute the cascade.

We deal with only such sinks that appear in the horseshoes in a neighborhood of
a homoclinic tangency. Tedeschini-Lalli and Yorke called them “simple” Newhouse
sinks and investigated measure of parameters where such sinks exist [TLY86]. The
“simple” Newhouse sinks are defined as the sinks having their orbits consisting of
the following two parts: one part near the saddle fixed point mapped by almost
linear map and the other part mapped by a nonlinear map. They proved that the
parameters of coexistence of only infinite “simple” Newhouse sinks has zero mea-
sure. Therefore, it is not easy that we find parameter values of “simple” Newhouse
sinks and we need the estimation described in the following sections.

We consider Hénon map [Hén76]:

(1) Top(z,y) = (1 +y — az®, —ba).
It is shown in [FG92, AMOG6] that the stable and unstable manifolds of the saddle
fixed point (0.631---,—0.189---) have a homoclinic tangency for the parameter

a near 1.3924198079 when we fix b = —0.3. We deal with the same homoclinic
tangency in the following sections.

An infinite cascade of sinks is governed by power laws [CJ82, Rob83, TS94].
We translate the power laws to estimations of parameter values and coordinates of
a sequence of sinks by using calculation of stable and unstable manifolds of a fixed
point. In the result, our numerical search obtained a sequence of sinks of period from
8 to 60. The sinks of period from 8 to 60 converge only in numerical experiments
and and their existences of the sinks are not rigorous mathematically. We also
consider the verification of the sinks. We construct numerically an inclusions in a
neighborhood the sinks and apply Brouwer fixed point theorem. The verification is
performed by using interval arithmetic. We proved mathematically the existences
of the sinks of period from 8 to 14.

We also concerned with the basins of the sinks. In particular, for the obtained
sinks, our numerical investigation shows that the basins of the sinks have intersec-
tions with the unstable manifold of the saddle fixed point. Therefore, when the
sink exists, the Hénon attractor loses its stability and orbits of most initial points
in phase space converge to the sink near the homoclinic tangency. Buszko and
Stefanski investigated transients of sinks of lower period and showed the relation
of sizes of periodic windows and average rambling times [BS06]. We apply the
same analysis of [BS06] to the transients of the obtained sinks. It is shown that
our sinks have the same properties as the sinks of lower period in point of average
rambling time.

Our numerical investigation presents an example such that Hénon attractor
appeared in numerical experiments is not an attractor but just a long chaotic tran-
sient. In addition, our numerical investigation indicates that because the width of
main band of the basin of the sink of high period is very narrow rounding errors
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of computation hide the existences of the sinks. It is known that the parameter
range of simple Newhouse sink is short and actually our numerical search for simple
Newhouse sinks needs the parameter estimation. Accordingly, it is unlikely that
all Hénon attractors that we observe in numerical experiments are long chaotic
transients.

Acknowledgments. The author would like to thank Professor Kenji Mat-
sumoto for all of his guidance and advice.






CHAPTER 1

Preliminaries

1. Hénon map

Hénon introduced the two-dimensional quadratic map for numerical experi-
ments and revealed that orbits of the map show a chaotic attractor in Fig. 1
[Hén76]. In this paper we use the form of Hénon map (1) and the parameters in
his paper correspond to a = 1.4 and b = —0.3. The map is a diffeomorphism and
its inverse is

2) T @ y) = (Z,a(?;)QJrzl).

If (14 b)? + 4a > 0 then T, has two fixed points;

(14b)£+/(14+0b)2+4a
2a ’

(3) r=— y = —bx.

The Jacobian matrix of T is

—2azx 1
(4) DTa,b(xvy) - < -b 0 ) .
The determinant of DT(x,y) equals b and is constant.

2. Infinite cascade of sinks

In this section, we recall the construction of Newhouse sink according to [Rob83].
We consider a discrete dynamical system of a diffeomorphism F on R2. Let DF(p)
denote the derivative of F' at p. A point p is called a periodic point of period n
if F*(p) = p and Fi(p) # p for 0 < i < n. In particular, a periodic point p of
period 1 is called a fixed point. A periodic point p is called a sink if the absolute
values of all eigenvalues of DF(p) are less than one. A periodic point p is called a
saddle periodic point if the two eigenvalues A and p of DF(p) satisfy |A| < 1 and
|| > 1. In addition, the periodic point p is called a dissipative periodic point if

FIGURE 1. The orbits of Hénon map (1) whose initial point is (0,
0) and parameters 1.4 and —0.3.

9
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FIGURE 2. The stable and unstable manifolds of the saddle
fixed point (6.32536---,0.18976---) of Hénon map with a =
1.3927060035 and b = —0.3 near which a homoclinic tangency oc-
curs. The stable manifolds are the vertically long curves, which are
u-shaped and reach to the top of the figure. The unstable manifolds
are the horizontally long curves in the rectangle [—1.5,1.5] x [—1, 1],
which are bow-shaped and twine Hénon attractor.

|det DF(p)| = |Au| < 1. We define the stable manifold W#(p, F') and the unstable
manifold W*(p, F) of a saddle fixed point p of F;

(5) W*(p, F) :={z € R* | [f*(p) — p| = 0 as n — oo}
(6) W¥(p,F):={x € R*| |f"(p) — p| = 0 as n — —occ}.

It is known that if F' is a C" diffeomorphism then these invariant manifolds are
C" curves and tangent to the eigendirections of DF(p) at p. We call a point ¢ a
homoclinic point if ¢ is in both W*(p, F') and W*(p, F'). The homoclinic point ¢ is
called a homoclinic tangency if W%(q, F') and W#(q, F') are tangent at g. Otherwise,
we call ¢ a transverse homoclinic point.

The existence of an infinite cascade of sinks is formulated by the following
theorem.

THEOREM 1.1 ([Rob83)). Let {F; : R? — R?} be a one parameter family of C*
diffeomorphisms depending continuously on t. Assume {F} creates a homoclinic
intersection at to for the dissipative fixed point p,. That is, there is some € > 0
such that for tg — e < t < tog + € the subarcs vi C W*(py, Fy) and v* C W¥(py, Fy)
depending continuously on t satisfy the following condition:

(1) v A =0 fortog—e <t <ty (respectively, to <t < to+¢€),

(2) forto <t <tg+e (respectively, to — e <t < ty), there are two transverse
intersections of v; and ~ and the directions at the two intersections are
different from each other.

Then there is a sequence of parameters t; converging to to such that Fy, has a sink
of period n; and n; diverges for j — oco. Moreover, {n;} satisfies nj41 —n; =1
for all j if Fy preserves the orientations on W*(py, Fy) and W(py, Fy). Otherwise,
njt1 —nj =2 for all j.
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F Y(B)

B

. 3 Yo )
D+ W*(py, Fy) N\

Y

F1GURE 3. The situation of simple Newhouse sink. Perturbing the
diffeomorphism F;, of a homoclinic tangency, we obtain the box B
and the horseshoe region F;" " (B) near the point of the tangency
ug. The diffeomorphism F; is linear in the neighborhood of the
saddle fixed point p;; F;" makes the box B shrink horizontally
and stretch vertically. We obtain the rectangle F{™(B) near vy.
F} maps a neighborhood of vy to a neighborhood of wug; this map
is nonlinear and pulls the rectangle F{™(B) across B. The B N
F™N(B) includes two saddle periodic points of period m + N.
One of these two saddles becomes stable when the parameter varies
to the homoclinic tangency.

Let us describe the situation of the theorem (Fig. 3). Let A; and p; be the two
eigenvalues of DF;(p;). We assume that 0 < A\; < 1 and p; < —1. This settings
are similar to the case of Hénon map (1) for the parameters a =~ 1.3924198079
and b = —0.3, which is numerically investigated in the following sections. We
consider the case such that v N~ = 0 for ¢ty — e < t < to and there are transverse
intersections of 77 and ~;* for to <t < tg + €. Let up be the point of the tangency;
W*#(pe,) is tangent to W*(py,) at ug. We also let vg be Ft;N(uo) for some integer
N > 0. We consider sufficiently small neighborhood U of p; and assume that F; is
linear in U. Transforming coordinate, we assume Fi(z,y) = (Az, pry) in U. We
replace ug and vg by F;'"* (uo) and F; "™ (vg) respectively for some integers my, mo,
if necessary, and we let ug and vg be in U, because uy and vy are a homoclinic point
of Fy,. Also we assume p; = (0,0), us = (20,0), and v, = (0,yo) for simplicity.

We take a box B = {(z,y) | |z — x| < 0%,6} <y < 6%} near ug for 6°,0%, 6% >
0. Because Fj is linear in U, the box B shrinks horizontally and stretches vertically
by some iterations of F;. We obtain a box F;™(B) near vy for some integer m. Let
N be an integer such that a neighborhood of vy is mapped to a neighborhood of
ug by N iterations of F;. Then F/"™V(B) is a thin region having horseshoe shape
parallel to W*(p;, F}). For suitable 6%, 0%, 6% and m, F{:H'N(B) N B consists of two
components for some parameter t;. Two saddle periodic points of period m + N
exist in Fg”'N(B) NB (Fig. 4). When the parameter ¢ approaches to to, W*(ps, Fy)
moves to the tangency point ug. Eventually for the parameter t; smaller than ¢,
BN F™N(B) is the empty set. There is a parameter ¢ between t; and ¢, such that
one saddle periodic point of period m + N becomes stable.
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F”(7 F"(B)
B B

FIGURE 4. The left case is the situation such that each of two
components of F™(B)N B includes one saddle periodic point. The
right case is the situation such that no periodic point exists in
F™(B)U B. If F™ is dissipative, in the process of destruction of
the horseshoe, that is, in the transformation from the left case to
the right case, one of the two saddle periodic points obtains sta-
bility.
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logarithm of increase of width

FIGURE 5. Distribution of increase ratios of widths of interval vec-
tors after 10 iterations. The scale of x-axis is common logarithm.
We calculate increases of width for 3312544 points except points
that seem to diverge. Much of the increases of widths are less than
103 and the maximum increase of width is 10%-766122352727922

To obtain a sink of period m’ + N higher than m+ N, we take a suitable box B’
closer to W#(py, F;) than the box B, in which case F™ (B') is also closer to vy than
F/™(B’). Similarly to the case of the box B, we obtain a sink of period m’+ N from
the box B’. We remark that the above-mentioned two sinks that are constructed
from B and B’ do not coexist because the sink of period m’ + N exists at the
parameter closer to the tangency than that of the sink of period m + N Taking
boxes closer to W*(p;, F;) in turn, we obtain a sequence of sinks approaching to the
point of the tangency. If the eigenvalue u; is negative then there are two cascades of
sinks for ty > t and for ty < t respectively. The periods of all sinks in the sequence
for tg > t are even and the periods for tg < t are odd, or vice versa.

3. Computer program and precision
A feature of our numerical investigation is to use multiple precision library,
in particular, MPFR! based on GMP? (The GNU Multiple Precision Arithmetic

Ihttp:/ /www.mpfr.org/
2http://gmplib.org/
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Library). For interval arithmetic with multiple precision, we use MPFI3. Our com-
putation can show finer structure of the system than computations with double
precision.

To set suitable precision, we estimate errors when iterating points by Hénon
map (1) whose parameters are ¢ = 1.4 and b = —0.3 with interval arithmetic.
We consider uniformly distributed points that seem to diverge. In particular, we
collect points at a lattice of size 1073 in [—1, 1] x [~1, 1] except points whose 10 times
iteration goes out of [—10,10] x [—10,10]. We take an interval vector with width
27250 around each point and iterate it 10 times. Then, we calculate the ratio of the
width of first interval vector and the width of iterated interval vector. Fig. 5 shows
the distribution of the increase ratios of the widths for 3312544 points. Although
the maximum increase of width is 10°-766122352727922 yyich of the increases of widths
are less than 103. Roughly speaking, errors increases to about 1000 times when we
carry out 10 iterations of points. The calculation in the following sections were
usually carried out with precision from 256 bits to 1024 bits and we increased up
to 12000 bits if needed.

The source code that we used to search for the cascade of sinks is available at
the repository®.

3http://lrnpﬁ.gforge.inria.fr/
4https://gitorious.org/math—numerical—experiment/math—henon—tangency/






CHAPTER 2

Basin of attraction of Newhouse sink

1. Settings and first sink in a sequence

We show locally and globally basins of attraction of the first few Newhouse
sinks in this chapter. We deal with the Hénon map (1) of which parameter b is
—0.3 and parameter a is varied in the neighborhood of 1.4. Then, the determinant
of DT (z,y) is —0.3 and the system is dissipative.

We sketch our procedure to obtain the first few sinks. Firstly, our investigation
searches a parameter range including the parameter of a homoclinic tangency. We
fix the value of the parameter a and calculate the stable and unstable manifolds
of the fixed point (Fig. 2). We repeat the calculations with subtle changes of
the parameter a and specify the parameter range that includes an occurrence of
a homoclinic tangency (Fig. 1). Furthermore, we bisect the range of parameter a
including the homoclinic tangency and obtain the narrower parameter range

(7)  [1.39241980792391250304093437105, 1.39241980792391250304093437106].

Next, we seek coordinates of sinks and their parameters, by using the algorithm
in Appendix 2, which is based on the proof of existences of Newhouse sinks. We
obtained sinks of periods 13, 15, and 17 as a consequence of our computation. To
obtain sinks of higher period we use the estimation in section 2.

Fig. 2 shows the orbit of the sink of period 13 and the stable and unstable
manifolds of the saddle fixed point. The orbit starting from the point 0 in the
figure goes to the saddle fixed point along the stable manifold and returns to the
point 0 along the unstable manifold. The figure ensures that the situation of the
sink is the same as that of the sink in Section . In the following sections, we focus
on the basins of the sinks.

a=1.3923 a = 1.3926

x1.0e-3 + 0.38
x1.0e-3 + 0.38

we# w*
L L L L L L L L
5.0 -4.0 3.0 20 5.0 -4.0 3.0 2.0
x1.0e-3 + -1.27 x1.0e-3 + -1.27

FI1GURE 1. The segments of the stable and unstable manifolds for
the saddle fixed point of Hénon map (1). The parameter b is con-
stant and —0.3. The left image is the case that the parameter a
is 1.3923 and the homoclinic tangency has not yet occurred. The
right image is the case that the parameter a is 1.3926 and the two
homoclinic points exist after the homoclinic tangency.

15
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05F b N I

-0.5

15 I R I AL L
-1.5 -1 -0.5 0 0.5 1 15

FIGURE 2. The orbit of the sink of period 13 and the stable and
unstable manifolds for the saddle fixed point. The orbit starting
from the point denoted by 0 moves along the stable manifold at
first. After passing through the saddle fixed point the orbit moves
along the unstable manifold with reversal because the eigenvalue
of unstable direction for the saddle fixed point is negative.

2. Basin of attraction of a sink near a homoclinic tangency

Fig. 3, Fig. 4, and Fig. 5 show a neighborhood of the sink of period 13, which
is displayed by 0 in Fig. 2. The scale of the main band of the basin of attractor
as 1077. The basin of attraction of the sink of period 13 is parallel to the stable
manifold of the saddle fixed point and the sink is nearly at the peak of the unstable
manifold of the saddle fixed point. Similarly to [GOY87] the boundary of basin
of the sink of period 13 consists of the stable manifold of the saddle fixed point of
period 13, where both of the sink and the saddle are simultaneously born at the
saddle-node bifurcation.

It is remarkable that the intersections of the basin of the sink of period 13
and the unstable manifold of the saddle fixed point in Fig. 4. The closure of the
unstable manifold of the saddle fixed point includes Hénon attractor. Because there
are the intersections of the basin of the sink of period 13 and the unstable manifold,
Hénon attractor does not exist. Most points in the phase space get through the
orbit like Hénon attractor and eventually converge to the sink. In other words,
there are the chaotic transients like the Hénon attractor (Fig. 6). We discuss the
transients in section 1. We note that the basin of attraction is large and covers
most of phase space except points to diverge (Fig. 8) and a basin of attraction
in this chapter is not correct. Because orbits with short transient are practically
important, in this chapter, we regard a set of initial points of short transient orbits
as a basin of attraction.

The basin of attractor that causes long chaotic transients is complicated. The
outline of initial points of short transient orbits is shown in Fig. 9, which is calcu-
lated by iterating points backward in a small neighborhood. If we take points in a
lattice and plot points that converges to the sink by iteration of fixed number, then
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0.3835 |-

0.383 |

0.3825 |-

0.382 -

0.3815 |-

0.381 |-

0.3805 |-

038

-1.277 -1.2765 -1.276 -12755 -1.275 -1.2745 -1.274 -1.2735

FI1GURE 3. A neighborhood of the sink denoted by 0 in Fig. 2.
There are the two vertical lines parallel to each other. The left thick
one is the basin of attraction of the sink of period 13 denoted by
the square. The right one is the stable manifold of the saddle fixed
point. The curved line is the unstable manifold of the saddle fixed
point. We observe that the position of the sink is near the peak of
the curve of the unstable manifold and the basin of attraction is
narrow and parallel to the stable manifold.

T T
20 | B
15 b
~
o
@
o
3
w 1.0 F —
Y
<
*
0.5 i
0.0 - B
L : L L L
55 6.0 6.5 7.0
x1.0e-5-1.2756

FIGURE 4. Magnification near the sink of period 13, where the
sink is denoted by the diamond at the center. The thick line is
the basin of attraction and the thin and curved line is unstable
manifold of the saddle fixed point. There are two intersections of
the basin and the unstable manifold.
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35

3.0 |

x1.0e-6 + 0.38171

25

20

1.0 1.5 2.0 25 3.0
x1.0e-6 + -1.27554

FI1GURE 5. The points denoted by the diamonds are the periodic
points of period 13. The upper one is a saddle and the lower one is
a sink. The stable manifold of the saddle periodic point composes
the boundary of basin of the sink.

-25 -2 -1.5 -1 -0.5 0 0.5 1 15 2 25

FIGURE 6. A chaotic transient and a stable manifold of a saddle
of period 13 at a = 1.3927060035 and b = —0.3. [ is the sink of
period 13. The orbit like Hénon attractor is a long transient orbit.
After sufficiently large iterations (about 1500000 iterations on the
average), most orbits converge to the sink of period 13.

scattered points appear (Fig. 10). The procedure to calculate the points in Fig. 10
is the following. We iterate the points 1000 x 13 times with 12000 bit precision and
we regard iterated points whose distance from the sink is less than 1072° as points
in the basin. The scattered points are not isolated points, but this means sensitive
dependence on initial points of orbits. Actually, if we take points in a smaller lattice
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5.0 T T T T

4.0

3.0 | /

x1.0e-6 + -1.27554
N\

2 20

L L L L
-0.0 0.3 0.5 0.8 1.0 1.2 1.5
x1.0e-7 + 1.392706

FIGURE 7. The vertical axis is x-coordinate of points in R2. The
horizontal axis is the parameter a of (1). The lowest curve denotes
the saddle fixed point of period 13. The upper curve and the
following countless points denote the sink of period 13 denoted
by 0 in Fig. 2 and the attractor arising from the sink by period-
doubling bifurcation. The attractor collides with the saddle fixed
point and then the attractor disappears, that is, the crisis occurs.

15 El 05 0 05 1 15

FIGURE 8. We plot points whose iterations approach to the sink
of period 13. We test every point at a lattice of size 6 x 1073 in
the region [—3, 3] x [-3, 3].

in a neighborhood of a scattered point and plot points that converges by iteration
of fixed number, we obtain a thick line of the basin of attraction (Fig. 11).

Let us mention the bifurcation of the sink of period 13. This sink is cre-
ated through saddle-node bifurcation and proceeds to period-doubling bifurcation
[YAS85]. The period-doubling bifurcation is terminated by the crisis; the attractor
arising from period-doubling bifurcation collides with the saddle periodic point of
period 13. Fig. 7 shows the bifurcation diagram of the sink of period 13.

We show the movements of the stable and unstable manifolds, the sinks of
period 13, 15, and 17, and their basins of attraction. Fig. 12 shows the region near
the sink denoted by 0 in Fig. 2. When the parameter a decreases from about 1.3927
to the parameter value of the homoclinic tangency, the stable manifold moves to
right and the unstable manifold moves to left; then these manifolds approaches to
the tangency. In the next section, we estimate the position of the sink from the
move of the stable and unstable manifolds.
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FIGURE 9. The main band of basin of attraction for the orbit of
sink of period 13 denoted by [J.

3.0
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x1.06-5 +0.3817
b
:
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I I I I I LI I I
4.5 5.0 55 6.0 6.5 7.0 75 8.0
x1.0e-5 -1.2756

FIGURE 10. The basin of attraction near the sink of period 13
denoted by the square at the center. All scattered points apart
from the central basin of attraction are also in the basin. There
are scattered points around the basin that are in the basin of at-
traction. Because the basin bands around the scattered points are
very narrow, the basins around these points are not displayed as

lines. Actually, the scales of the basin bands are from 1073 to
10—2201.
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FIGURE 11. The basin of attraction around the scattered point X
in Fig. 10. The scattered point is not displayed and its position is
the center of the figure.
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FIGURE 12. The movements of sinks, their basins of attraction,
and the stable and unstable manifolds of the fixed points when the
parameter a changes. The lines W7 and W7 are the stable and
unstable manifolds of the fixed point for a = 1.39270603828125.
Similarly, W3 and W3' are the stable and unstable manifolds for
a = 1.392497593643890380859375, and W3 and W' are the sta-
ble and unstable manifolds for a = 1.3924409549236297607421875.
When the parameter a increases, the stable manifold moves from
left to right and the unstable manifold moves from right to left.
The sinks exist near the peaks of the unstable manifolds and these
basins are lines parallel to each stable manifold. Starting from the
left of figure, the periods of the sinks are 13, 15, and 17, respec-
tively.






CHAPTER 3

Estimation of sinks and power laws

1. Power laws of Newhouse sinks

In this chapter, we show an algorithm to obtain the succeeding sinks of a
cascade from the first few sinks, the stable and unstable manifolds of the fixed
point. The algorithm is derived from power laws of Newhouse sinks. We also shows
numerical data of power laws of our obtained sinks. In this section, we recall the
known results on the asymptotic behavior and the power laws of the parameter
values of a cascade of sinks.

We consider the situation of Theorem 1.1 and for simplicity assume that the
two eigenvalues A\; and p, are positive. For the two-dimensional map

(8) (m7y>'_>((M;1>7(1_b>ﬁ(tu_l)>’

Curry and Johson observed numerically that a sequence of parameter values at
saddle-node bifurcations approaches a parameter of a homoclinic tangency at a rate
of an unstable eigenvalue at a fixed point [CJ82]. This phenomenon is formulated
according to [Rob83, 5.3. Remark] by

(9) lim

where t, is the parameter value that the sink of period n exists and ¢y is the
parameter of homoclinic tangency. This fact enables us to estimate the parameter
value t, 11 from the last two parameter values ¢,,_; and ¢,.

The relations of bifurcation parameters are described in [TS94] as

tn, — 1t tn, — 1t
(10) lim —— = lim —— =y,
n—o0 tp41 — to n—o0 tn+1 —to

where the saddle-node bifurcation creates the two periodic points of period n at
tn, one of the periodic points changes its stability at #,,1 through period-doubling
bifurcation, and ¢( is the parameter of the homoclinic tangency.

We also are interested in the range of parameter such that a sink exists. The
evaluation in [TLY86] gives

(11) lim —

This means that it becomes increasingly difficult to find sinks of higher period.

23
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Fn+2(Bn+2) F[Z (Bn)

trni2

N\ /.
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| ——— |Bn

FIGURE 1. The situation that B,, and B, include the sinks of
period n and n + 2 respectively. Then the relation (15) for I, o
and np42,0 is satisfied. Note that the parameter ¢,, such that B,
includes a sink is different from the parameter ¢, o such that B, ;2
includes a sink.

To apply these relations to our case such that the unstable eigenvalue is nega-
tive, we replace the diffeomorphism F; by F?;

. tn - tn—Q 2
12 lim — =
( ) n— 0o tn+2 _ tn :LLt(p
by, —t bty —t
(13) lim —— = lim ——% = 1,
n—00 4o — to n—oo tn+2 —to
th—1
(14) lim —" = g
n—00 tn+2 - tn+2

2. Estimation of positions of sinks

To find sinks numerically we want to estimate the positions of the sinks. In
our case, because the unstable eigenvalue u; is negative, an infinite cascade of sinks
is split into two sequences by the stable manifold: a sequence of even period on
one side and a sequence of odd period on the other side. The estimation in such a
situation is to obtain the approximate position of the sink of period n + 2 from the
position of the sink of period n for Hénon map F; =T} _¢.3.

The position of the box B in Fig. 3 relates to the position of stable manifold of
the fixed point as below. Let B,, be the box including the sink of period n and I, ;
be the distance between the stable manifold and the center point of F}(B,,) for an
integer ¢ > 0. The boxes B,, and B, 2 are mapped to a neighborhood of vy and F}
is approximately linear in the neighborhood of the saddle fixed point. We obtain
lni = |1e| 0. Let k be an integer such that FF(B,) is in a neighborhood of
vg. Then Ftk+2(Bn+2) must be in a neighborhood of vy and ,, = 42, k42 holds.
Therefore, we obtain the relation on the positions of two boxes including the sinks,

(15) oy
Int2,0

The relation (15) does not take into account the condition that one of the
two periodic points in the box is stable. We remember Fig. 4 and consider the
intersection of the box and the horseshoe when the periodic point is stable. If the
intersection of B,, and I}’ (B,,) is composed of two components, both of two periodic
points of period n are saddle. If the intersection is empty then there is no periodic
point. Therefore, at some parameter that the intersection is composed of one
component, one of the two periodic points is stable. The horseshoe region created
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by n iterations of the box B, is narrow and is close to the unstable manifold of the
fixed point. Consequently, the unstable manifold approximates to the horseshoe
region and the sink is near the peak of the unstable manifold (Fig. 12). Let [ be
the distance between the stable manifold and the peak of the unstable manifold.
We can regard [ as I 0 for the parameters such that the sinks exist. We search for
the parameter satisfying

(16) Oy

and the obtained parameter is the estimation of parameter such that a sink exists.
We can also regard the peak of the unstable manifold from the stable manifold as
the estimation of position of the sink.

From the first three sinks of period 13, 15, and 17 mentioned in section 2.
we obtained eventually the sinks of period 8 to 60. For example, the procedure to
obtain the sink of period 19 from the two sinks of period of 15 and 17 is as below. We
calculate the distance [17,y between the sink of period 17 and the stable manifold.
Applying (12) to the two sinks of period 15 and 17, we obtain the first estimation of
the parameter for the sink of period 19. To refine the estimation further, we search
for the parameter such that the condition (16) holds from the calculations of the
stable and unstable manifolds near the first estimation of parameter. We obtain
the final estimation of the parameter in this way and also obtain the position of
the peak of the unstable manifold at the parameter. The final estimation enables
simple search to find the next sink. Fixing both a parameter in a neighborhood of
the estimation of the parameter and an initial point in a neighborhood of the peak
point of unstable manifold, we test convergences of iterations. If the convergent
point is found then it is a sink of period 19. For the sinks of higher period, we
repeat the above procedure.

3. Numerical data of power laws of obtained sinks

By using the estimation described in the last section, our computer program
searched for sinks of odd period and sinks of even period, respectively. As a result,
we obtained a sequence of sinks of period from 8 to 60. The numerical data of the
sinks is listed in the tables in Appendix B: parameters values of sinks, coordinates
of sinks, eigenvalues at sinks, parameter intervals where sinks persist, parameter
intervals where attractors exist, lengths of these two types of parameter intervals,
ratios of lengths of these two types of parameter intervals, distances between stable
manifolds and peaks of unstable manifolds.

We make sure the known power laws of the cascade of sinks (12) and (15).
We calculate the sizes of parameter intervals of periodic windows and the distances
between stable manifolds and peaks of unstable manifolds. Fig. 2 shows that these
values are governed by the power law. The shrinking ratio of the sizes of periodic
windows is square of eigenvalue at the fixed point for unstable direction. The
distances between the stable manifolds and the peaks of the unstable manifolds get
smaller by absolute value of unstable eigenvalue at the fixed point. Because the
sinks were obtained by the estimation derived from the power law of the distances,
although it is trivial that the obtained sinks satisfy the power law, this data is for
confirmation that the obtained sinks are a sequence of Newhouse sinks.

Our numerical data shows that the eigenvalues of Jacobian matrix of n-times
composite at the sinks of period n exhibits the power laws shown in Fig. 3. The
absolute values of one of the two eigenvalues are approximately constant. The
absolute values of the other shrink at a rate of 0.3, which is the absolute value
of the determinant of Jacobian matrix. Because the map (1) has the constant
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FIGURE 2. Logarithm of distance between peak of unstable man-
ifold and stable manifold of a fixed point, logarithm of width of
main band of basin, and logarithm of size of parameter interval
that a sink exists. The slopes are about -0.650612, -1.30444, and
-1.30478, which agree with log |p¢,| ~ 0.65130925 and log |u7 | ~
1.3026185.

determinant b at all of the domain, the determinant of n-times composite is equal
to b".

We state other numerical data of the obtained sinks. In about 43% of the
parameter intervals of periodic windows, the stable periodic point of minimum
period, that is, the sink appeared by saddle-node bifurcation, exist (Appendix B
Table 14). The lengths of the parameter intervals of the stable periodic points of
minimum period in the periodic windows also satisfy the same power law as that
of the lengths of the periodic windows (Appendix B Table 12).

We are interested in the properties of basins. As stated previously, the basins
of the obtained sinks are most of phase space except points that go to infinity.
However, in practice, there are points with long transients and points with short
transients, of course, which is not rigorous distinction. The basins composing points
with short transients are bands parallel to the stable manifolds shown in Fig. 12.
For some parameter values we calculated such basins, but we could not observe
radical change in neighborhoods of the sinks. As a sort of size of the basin, we
consider width in a neighborhood of the sink. We calculate two basin boundaries
in a neighborhood of the sink and we regard minimum distance between the two
boundaries as the width of the basin. The calculated result is shown in Fig. 2; the
shrinking ratio of the widths of basins is the square of eigenvalue.

We describe the difficulty of finding sinks of high period in the cascade of
sinks. For example, for the sink of period 27, the size of parameter interval is about
6.6 x 10~!® and the width of the basin of attraction is about 7.9 x 1074, It seems
to be difficult for the calculation with double precision (53 bit) to find the sink of
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F1GURE 3. Logarithm of absolute value of eigenvalue. The slope of
logarithm of the absolute value of one eigenvalue are approximately
one, that is, the value are approximately constant. The other slope
is approximately 0.3, which is the absolute value of the determi-
nant.

period larger than 27. Even if the precision is sufficient large, it is difficult that
numerical investigation finds the sinks of higher period. There are two reasons;
the basin of attraction is narrow and the parameter interval that a sink exists is
short. The width of the basin of the sink of period n + 2 is about 7% of that of
the sink of period n. The size of the parameter interval of the sink of period n
is about 7.4% of that of the sink of period n. If we search for the sink of period
n+2 in the same region to the region of period n with finer step, we must calculate
about 200 (= 1/(0.07 x 0.074)) times as much as the case of period n. Therefore, to
obtain a sequence of sinks, we need the above mentioned estimations of positions
and parameter values of sinks.






CHAPTER 4

Verification of sinks

1. Interval arithmetic

Interval arithmetic is a method that defines operations on a set of intervals and
deals with rounding errors on computers nicely. We consider an interval enclosing a
number instead of the number itself. When some arithmetic operations produce a
resultant number, we calculate intervals enclosing the number instead of calculating
the approximation of the number. In implementations of interval arithmetic on
computers, endpoint numbers of intervals are numbers that is represented rigorously
by floating point numbers and rounding errors of digital computation are brought
into extra expansions of resultant intervals. It is mathematically rigorous that the
interval calculated by interval arithmetic on computers is an interval enclosing true
value. In this section, we recall definitions of interval arithmetic and fundamental
theorems according to [Moo79].

For a closed interval X in R, we will denote the endpoints of X by X and X, that
is, X = [X, X]. Identifying x € R with [z, z], we regard z as an interval. Replacing
elements of usual vector and matrix by intervals, we define an n-dimensional-interval
vector and a matrix. We call two intersections X and Y equalif X =Y and X =Y.
We also call two interval vector or two interval matrices are equal if all elements
are equal. The intersection and union of two intervals are the usual intersection
and union of two sets in R. If X N'Y = () then we have

(17) XNY :={max(X,Y),min(X,Y)}
(18) X UY :={min(X,Y),max(X,Y)}.

The intersection of two interval is an interval except an empty set, but the union
is not always an interval. The intersection and union of two interval vectors or two
interval matrices are these of two sets in R™ for some integer n.

We define the width of an interval X by

(19) w(X):=X - X.

and the absolute value of X by

(20) | X | := max(|X], | X]).

For an n-dimensional interval vector V = (V1,Va,...,V,,), we define the width of
V by

(21) w(V) = max(w(V1),w(Va),...,w(Vy,))

For an interval matrix M, we define the width of M by

(22) w(M) := II}?}X(MU).

For two intervals X and Y, we define arithmetic operations by
(23) XoV:={zoylzeX,yeY},

where o is the addition +, the subtraction —, or the product -. We will sometimes
omit the dot to express the product of two intervals. Before defining the quotient

29
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of two intervals, we need to define the reciprocal of an interval. For an interval X
with 0 ¢ X,

(24) /X ={1/z |z e X}.
We define the quotient of two intervals X and Y with 0 ¢ Y by
(25) XY =X-(1/Y).

From these definitions, we have
(26) X+Y =[X+Y,X+Y],
(27) X-V=[X-V,X -]
(28) X Y =[minX Y, XV, X VY, X -V)max(X- Y. X -V, X-Y. X -Y).

We remark that addition and multiplication are associative and commutative, how-
ever, the distributive law does not always hold. Alternatively, we have

(29) X(Y+2Z)C XY +XZ.

We deal with extension of a real valued function f of n real variables to an
interval valued function of n interval variables. Of course, for a real vector valued
function, we consider each element of the function as a real valued function. If an
interval valued function F' of n interval variables satisfies

(30) F(Y1,Ya,...,Ya) C F(X1, Xa,.., Xy)

for Y; C X; where i =1,2,...,n, then F' is called inclusion monotonic. Arithmetic
operations +, —, -, and / are inclusion monotonic. We define an interval extension
of f as an interval valued function F' of n interval variables so that

(31) F(x1,...,zn) = f(z1,...,24).

From the following theorem, calculating the functions by interval arithmetic, we
can obtain bounds of values of functions.

THEOREM 4.1 ([Moo79, Theorem 3.1]). If F' is an inclusion monotonic inter-
val extension of f, then f(Xy,...,X,) C F(X1,...,Xn).

If we replace real variables of a rational function, then we obtain the interval
extension of the rational function. Because rational interval functions are inclusion
monotonic, we have the following corollary.

COROLLARY 4.2 ([Mo079, Corollary 3.1]). If F is a rational interval function
and an interval extension of f, then f(X1,...,X,) C F(X1,...,Xn).

We remark that if we have two different expressions of a real rational func-
tion then two different interval extensions obtained by replacing real variables by
intervals does not always coincide.

We calculate bounds of eigenvalues in section 3. To do so, we need to ex-
tend square root function to an interval valued function. Because square root is
monotonic increasing function, we simply define

(32) VX = [VX, VX].

Simple iterations of interval extension of Hénon mapping produce interval vec-
tors with too large widths. We need to refine the bounds. We introduce some
definitions and state theorem that subdividing interval vectors at each iteration
step produces refined bounds. For an interval extension F(X), if there is a con-
stant L such that w(F (X)) < Lw(X) for any X C X, then F(X) is said to be
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Lipschitz in X,. For an inclusion monotonic interval extension F(X) of a real
valued function f(x), we define the excess width of F(X) by
(33) w(E(X)) = w(F(X)) —w(f(X)),
where E(X) := F(X) — f(X). A uniform subdivision of an interval vector X =

(X1,X2,...,X,) means that X is expressed by the union of interval vectors (X1 j,, ...

for a positive integer N;

(34) X = U (X1jys- s Xnjn)s

1<ir<N,1<k<n

where
- w(X;) w(X;)
35 X=X, -1 — X, _
( ) 1,] |:7, + (j ) N P + j N )
for 1 <i<mn,1<j<N. Obviously,
N
(36) X =J X,
j:
w(X)
7 X )= ———=.
(37) w(Xp5) =

The following theorem guarantees that we can obtain arbitrarily refined bounds of
a function by using a uniform subdivision of the argument of the function.

THEOREM 4.3 ([Moo79, Theorem 4.1]). We suppose that F(X) is an inclusion
monotonic interval extension of a real valued function f and Lipschitz in Xy. For
a positive integer N we take a uniform subdivision {X; ;} of X C Xo. We consider

(38) Fivy(X) = U F(X1j s Xnj)
1<ip, <N,1<k<n

and define En by
(39) En = Finy(X) = f(X1,..., Xp).
Then, there is a constant K such that

(40) w(BEy) < K%.

2. Application of Brouwer fixed point theorem with interval arithmetic

In this section we show how to verify the existences of the obtained sinks. The
way is a direct application of Brouwer fixed point theorem. To construct numerically
an inclusion required by the theorem, we use interval arithmetic. We also check
that the periodic points are sinks by calculating enclosures of eigenvalues at the
periodic points.

Before applying fixed point theorem, we extend the map (1) to an interval val-
ued map. Just replacing real numbers by intervals, we obtain the interval extension
T of Hénon map;

(41) Tap(X,Y)=(1+Y — AX? —BX),

where A, B, X, and Y are intervals. Practically, we take very small intervals A
and B that include the specified parameters a and b in (1).

From Brouwer fixed point theorem, if we construct a rectangle that is mapped
back into itself by n iterations and has no intersections with its images of m iter-
ations for 0 < m < n, an existence of a periodic point of period n is guaranteed.
Taking a rectangle is convenient to test numerically that the rectangle includes its
image. However, our sinks do not have such rectangle neighborhoods because parts

7Xn,jn)
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of the rectangle are away from the sinks transiently. In general, points sufficiently
close to a sink approach monotonically to the sink in two directions of eigenvec-
tors at the sink, but points in a rectangle neighborhood do not always approach
monotonically to the sink in the distance of the orthogonal coordinate.

To construct an inclusion on a rectangle including the obtained sink of period
n, we consider coordinate change from the orthogonal coordinate to the coordinate
of the eigenvectors at the sink. We take a small rectangle R around the origin and
map R to a neighborhood of the sink by a linear transform g, which maps the origin
to the sink and x-axis and y-axis to the eigendirections of the sink. After iterating
R by T, 4, we restore the coordinate by g~1 and we check

(42) g ' oT},og(R) CR.

Because the linear transform ¢ is a homeomorphism, if g=' o 0 g has a periodic

point in R then Ty, has a periodic point of period n in g(R).

We extend the linear transform g and its inverse g—! to interval extensions g
and ! by replacing real variables by intervals. From Corollary 4.2 we obtain the
following relation;

(43) g ol og(R) Cg ' oTh pog(R),

where A and B are intervals satisfying a € A and b € B. Therefore, if we find a
rectangle R such that

(44) g 'oThpog(R)CR,

then Hénon map 7, ; has periodic points in g(R).

However, in our case, size of a rectangle increases approximately twofold at
each iteration of Ty p and §g=! o T p o g(R) become too large rectangle so that
R can not include it. From Theorem 4.3, the following procedure produces finer
enclosure of g~ o T}, ;, o g(R). We take appropriate threshold value L of maximum
width and subdivide R into interval vectors whose width are less than L. We let
the set of the subdivided interval vectors Sg. We map each interval vector in Sg
by g and let Sy be the set of obtained interval vectors. If there are interval vectors
in Sy whose widths are larger than L, we subdivide them and replace them in Sy
by the subdivided interval vectors. Thus, the widths of all interval vectors in Sy
are less than L. We map each interval vector in Sy and obtain the set of interval
vectors S1. Similarly, we repeat mapping with subdivision n times and obtain S,.
We let S be the set obtained by mapping all interval vectors in S,, by g—!. If all
interval vectors in S are included in R, we obtain an existence of a periodic point
of period n. This procedure causes increase of amount of computation. For that
reason, the verification for sinks of high period are very hard and we constructed
only inclusions for the sinks of period 8 to 14.

In implementations of interval arithmetic on computers, because there are
rounding errors on computations we can not always obtain exact endpoints of inter-
vals. We extend intervals a bit so that they are expressed by floating point numbers
on computers at each calculation. Although the sets Sy, ..., 5, and S are expanded
a bit by rounding errors, if we take the parameters A and B and the rectangle R
and so on whose endpoints are exact floating point number on computers, then A,
B, and R have no errors. Therefore, the above-mentioned algorithm is valid even
if there are extra expansions of intervals at each mapping step.

3. Result of verification of sinks

By using the way stated in the last section, we could verify the existences of
the sinks of period from 8 to 14, whose data is shown in Table 1. Fig 1 shows a
neighborhood of the sink of period 13. The left figure is the region enclosing the
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FIGURE 1. Regions such that the iteration of 13 times maps the
region in the left figure to the region in the right figure. The regions
are composed small rectangle regions. The iteration for each small
rectangle region are calculated by interval arithmetic. From this
data of the two regions, we obtained that the iteration of 13 times
of Hénon map is an inclusion on the region in the left figure and a
periodic point of period 13 exists.

sink of period 13, the right figure is the region mapped by 13 iterations of the map.
The former covers the latter, which is tested through transformation by coordinate
change as stated in the last section. Both regions are stretched thin regions. The
two directions of the eigenvectors are close to each other and the region is stretching
in the directions of eigenvectors at the sink of period 13.

Table 1 shows the numerical data obtained from the verification. We state the
verification of the sinks of period 8 to 14 as a proposition.

PROPOSITION 4.4. Hénon map (1) has the periodic points of period 8 to 14 in
the ranges of parameter a, x-coordinate and y-coordinate listed in Table 1, when
b= —0.3. The absolute values of the eigenvalues at the periodic points are less than
one. Therefore, the periodic points are stable.

We note the difference of the values in Table 1 and the values shown in Appendix
B; the former are rigorous bounds obtained by interval arithmetic and the latter
are approximate values obtained by usual computation.
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[—1.2641480315599056, —1.2641480315599057]
[0.3815883095535991, 0.3815883095535990]

[1.3866414978735625, 1.3866414978735626]

[—0.0001317565296413, —0.0001317565296411]
[—0.4979639352876563, —0.4979639352876542]
[—1.2797615433863033, —1.2797615433863034]
[0.3815001609062766, 0.3815001609062765

[1.3968296778150859, 1.3968296778150860]

[0.0000393390430422, 0.0000393390430427]

[—0.5003426234527945, —0.5003426234527932]
[—1.2725951827993173, —1.2725951827993174]
[0.3817739305802194, 0.3817739305802193]

[1.3904445108073844, 1.3904445108073845]

[—0.0000118133309073, —0.0000118133309067]
[—0.4998505541313075, —0.4998505541313065]
[—1.2764873308253127, —1.2764873308253128]
[0.3816834340024865, 0.3816834340024864]

[1.3934818331832507, 1.3934818331832508]
[
-
-
[
[
-
[~
-
[
[
[
-
-
[
[
[-

10

11

0.0000035426394508, 0.0000035426394519]
0.5000424187451586, —0.5000424187451572]
1.2744909451906007, —1.2744909451906008]

0.3817369729481438, 0.3817369729481437]

1.3918712413591354,1.3918712413591355]
0.0000010629383349, —0.0000010629383331]
0.4999735008295995, —0.4999735008295976]
1.2755371627643452, —1.2755371627643453]

0.3817101619053220,0.3817101619053219]
1.3927060351470881,1.3927060351470882]

0.0000003188573829, 0.0000003188573864]
0.5000113143693783, —0.5000113143693747]
1.2749930656059051, —1.2749930656059052]

0.3817242881938740, 0.3817242881938739]

1.3922705183540199, 1.3922705183540200]
0.0000000956602776, —0.0000000956602712]

[—0.4999953250901844, —0.4999953250901780]
TABLE 1. The data of verified periodic points: the ranges of x-
coordinate, y-coordinate, parameter a, and two eigenvalues, where
«a and B are two eigenvalues at the periodic points. The ranges
of z-coordinate and y-coordinate are coordinates of four corners
of minimum rectangles that include images of inclusions obtained
by our numerical construction. When the parameter b is —0.3 and
the parameter « is in the specified range, a periodic point exists
in the ranges of z-coordinate and y-coordinate and the periodic
points are sinks because the absolute values of the eigenvalues are
less than one.
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CHAPTER 5

Chaotic transients

1. Chaotic transients

The appearances of simple Newhouse sinks found by our computer program
cause chaotic transients, which are chaotic behaviors before the orbits converge
to a periodic attractor. In our case, chaotic transients are orbits like the Hénon
attractor before they converge to simple Newhouse sinks, which is shown in Fig. 6.
In this section, we investigate these chaotic transients. At the beginning, we review
known results related to chaotic transients. Subsequently, we show the analy