<table>
<thead>
<tr>
<th>項目</th>
<th>内容</th>
</tr>
</thead>
<tbody>
<tr>
<td>タイトル</td>
<td>An Evaluation of a Displacement Estimation Method by an Iteration Method for a Four Degrees of Freedom Capacitive Force Sensor</td>
</tr>
<tr>
<td>著者</td>
<td>村上 知里</td>
</tr>
<tr>
<td>発行日</td>
<td>2014-03-25</td>
</tr>
<tr>
<td>DOI</td>
<td>10.14943/doctoral.k11302</td>
</tr>
<tr>
<td>URL</td>
<td>http://hdl.handle.net/2115/55554</td>
</tr>
<tr>
<td>タイプ</td>
<td>theses (doctoral)</td>
</tr>
<tr>
<td>ファイル情報</td>
<td>Chisato_Murakami.pdf</td>
</tr>
</tbody>
</table>

HOKKAIDO UNIVERSITY

情報提供元：北海道大学学術情報提供センター

博士論文

静電型 4 自由度力センサのための
反復法による変位推定の評価

An Evaluation of a Displacement Estimation Method by an Iteration Method
for a Four Degrees of Freedom Capacitive Force Sensor

北海道大学大学院 情報科学研究科 生命人間情報科学専攻

村上 知里

2014年3月
目次

第1章 序論...1
 1.1 本研究の位置づけ..1
 1.1.1 センサ出力の推定...1
 1.1.2 ターブル補間法...2
 1.1.3 関数近似法...2
 1.1.4 多入力化・多出力化...2
 1.1.5 本研究における非単調性へのアプローチ..3
 1.1.6 提案手法の特徴...3
 1.2 本研究の目的..4
 1.3 本論文の構成..5

第2章 最適化工題と反復法..6
 2.1 最適化工題..6
 2.1.1 最適化工題..6
 2.1.2 最適解..6
 2.2 最適化工題の解法..8
 2.2.1 勾配情報を利用した最適化工題...8
 2.2.1.1 最急降下法...9
 2.2.1.2 ニュートン法..9
 2.2.1.3 制約付き最適化工題...9
 2.2.2 シンプレックス法..11
 2.3 提案手法の相違点...15

第3章 静電型自由度力センサ..16
 3.1 センサ開発に関する背景...16
 3.1.1 膨瘍の発症要因...16
 3.1.2 社会的背景...18
 3.1.3 パセンサの利用...18
 3.2 静電型自由度力センサ..20
 3.2.1 静電型センサ..20
 3.2.2 構造..20
 3.2.3 理論静電容量値...22
第4章 静電容量の計測

4.1 目的

4.2 方法

4.2.1 計測システムおよび計測条件

4.2.2 センサ

4.2.3 評価指標

4.3 結果

4.3.1 変位－静電容量特性

4.3.2 再現性

4.4 考察

4.4.1 変位－静電容量特性

4.4.2 再現性

4.4.3 実計測への課題

第5章 推定法とその適用

5.1 取扱手数の概要

5.2 センサの変位推定への適用

5.2.1 推定の流れ

5.2.2 目的関数

5.2.3 変位－静電容量特性モデル関数

5.2.4 解の決定

5.2.4.1 実行可能解の選択

5.2.4.2 実行可能領域

5.2.5 探索変位と探索方向の決定
5.2.5.1 不足度数..........................64
5.2.5.2 推定回数の点数化..........................67
5.2.6 収束判定..........................68
5.2.7 校正..........................68
5.3 方法...69
5.3.1 入力ベクトルとしての静電容量..........................69
5.3.2 変位推定のためのパラメータ..........................70
5.3.3 評価指標..........................70
5.4 推定結果...72
5.4.1 収束性...72
5.4.2 反復回数および計算時間..........................72
5.4.3 理論静電容量における推定結果..........................73
5.4.3.1 校正点における推定結果..........................73
5.4.3.2 非校正点における推定結果..........................73
5.4.4 計測静電容量における推定結果..........................74
5.4.4.1 校正点における推定結果..........................74
5.4.4.2 非校正点における推定結果..........................74
5.5 考察...75
5.5.1 校正点と非校正点..........................75
5.5.2 変位推定のためのパラメータ推定の課題..........................75
5.5.3 推定能力...77
5.5.4 実現への課題...77
第6章 結論...79
6.1 結論...79
6.2 今後の課題および展望...80
6.2.1 センサ構造...80
6.2.2 推定法...80
6.2.3 計測回路の開発...80
6.2.4 自由度力センサへの拡張...80
参考文献...82
謝辞...84
図目次

図 1.1 デジタル式センサの出力値の取得の流れ ... 1
図 2.1 停留点・局所的最適解・大域的最適解の関係 .. 7
図 3.1 皮膚表面にかかる 6 自由度の力 ... 16
図 3.2 仰臥位・側臥位・腹臥位における褥瘡好発部位 .. 17
図 3.3 生体用 1 点計測力センサ (a) Palm Q (Cape, Japan) (b) Predia (Molten, Japan) ...
.. 19
図 3.4 10 mm 角センサの構造 (a) センサの構造 (b) 下電極基板 (c) 側面図 21
図 3.5 20 mm 角センサの構造 (a) 下電極基板 (b) 側面図 .. 21
図 3.6 10 mm 角センサにおける X, Y, Z, θ_z に対する理論静電容量の変化特性 25
図 3.7 シリコンゲル .. 29
図 3.8 万能試験機による試験時の様子 ... 29
図 3.9 10 mm 角センサの電極パターン (単位: mm) ... 31
図 3.10 20 mm 角センサの電極パターン (単位: mm) ... 31
図 3.11 組み立て後の 10 mm 角センサ .. 32
図 3.12 組み立て後の 20 mm 角センサ (a) コンデンサ部分拡大図 (b) 全体図 ... 32
図 3.13 比誘電率推定に使用された電極 ... 33
図 4.1 計測システムの概略図 .. 35
図 4.2 静電容量計測時の様子 .. 36
図 4.3 10 mm 角センサ (センサ A) のせん断方向の変位 X の静電容量特性 38
図 4.4 10 mm 角センサ (センサ A) のせん断方向の変位 Y の静電容量特性 39
図 4.5 10 mm 角センサ (センサ A) の垂直方向の変位 Z の静電容量特性 40
図 4.6 10 mm 角センサ (センサ A) の回転方向の変位 θ_z の静電容量特性 41
図 4.7 20 mm 角センサのせん断方向の変位 X の静電容量特性 .. 43
図 4.8 20 mm 角センサのせん断方向の変位 Y の静電容量特性 .. 44
図 4.9 20 mm 角センサの垂直方向の変位 Z の静電容量特性 .. 45
図 4.10 20 mm 角センサの回転方向の変位 θ_z の静電容量特性 .. 46
図 4.11 10 mm 角センサ (センサ A, センサ B) のせん断方向の変位 X の静電容量特性 48
図 4.12 10 mm 角センサ (センサ A, センサ B) のせん断方向の変位 Y の静電容量特性 49
図 4.13 10 mm 角センサ (センサ A, センサ B) の垂直方向の変位 Z の静電容量特性 50
図 4.14 10 mm 角センサ (センサ A, センサ B) の回転方向の変位 θ_z の静電容量特性
図 4.15 変位 θz を印加した場合の 10 mm 角センサの上下電極および電極ラインの変化

図 5.1 変位推定法の流れ
図 5.2 反復回数に対する平均残差の推移
図 5.3 平均計算時間および平均反復回数
図 5.4 反復回数に対する変位 θz の推移
図 5.5 0 変位課題へのエラー修正の例
図 5.6 探索方向の誤りへのエラー修正の例
表目次

表 3.1 センサ材料の寸法 ... 20
表 3.2 力推定に関するパラメータ ... 27
表 3.3 10 mm 角センサにおける動作範囲 .. 28
表 3.4 20 mm 角センサにおける動作範囲 .. 28
表 3.5 シリコングルの材料特性 ... 29
表 4.1 変位条件 ... 36
表 4.2 10 mm 角センサ（センサ A）の計測における平均変動係数 (%) 42
表 4.3 20 mm 角センサの計測における平均変動係数 (%) ... 47
表 5.1 \(x_1, \ldots, x_q \) および \(x'_1, \ldots, x'_q \) の関係 .. 56
表 5.2 \(x'_1, x'_2, x'_3, x'_4 \) に対応する変位 ... 60
表 5.3 20 mm 角センサにおける初期制約条件のパラメータ ... 63
表 5.4 変位状態の組み合わせ ... 64
表 5.5 有効コンデンサ \(i' \) に相当するコンデンサ \(i \) ... 66
表 5.6 クラス \(l \) に対する状態 \(j' \) に対応する状態 \(j \) ... 67
表 5.7 20 mm 角センサにおける校正のための計測変位条件 ... 68
表 5.8 理論静電容量における非校正点の変位条件 ... 69
表 5.9 計測静電容量における非校正点の変位条件 ... 69
表 5.10 理論静電容量校正点におけるフルスケール誤差 \(FSE \) (%) 73
表 5.11 理論静電容量非校正点におけるフルスケール誤差 \(FSE \) (%) 74
表 5.12 計測静電容量校正点におけるフルスケール誤差 \(FSE \) (%) 74
表 5.13 計測静電容量非校正点におけるフルスケール誤差 \(FSE \) (%) 74
表 5.14 検討[26] における 20% \(FSE \) 以上の入力条件 ... 75
我々が開発している4自由度力センサはノイズや構造上の影響により非線形入出力特性を持つ。線形的なノイズあるいは非線形的なノイズであれば、校正時に特性変化の要因である成分について線形補正を行うことで検出精度の改善が可能である。しかし、非線形的なノイズは要因の解析が難しく、除去や補正が困難である。さらに、出力値が相互に干渉する多変数である場合、補正量を指定することができないため、この困難性を高めている。また、非線形性に対する有効な改善方法が一意に定まっていないため、様々な手法が存在している。本論文では、非線形入出力特性を持つセンサにおける多変数の入力値から多変数の出力値を推定する手法を提案し、提案手法の推定精度について論じる。第1章では、本研究の位置づけおよび目的を述べ、本論文の構成を示す。

1.1 本研究の位置づけ

本研究では、デジタル式の多入出力の非線形センサにおいて、測定値から尤もらしい出力値を得るための推定法の開発について中心的に論じる。まず、一般的なセンサの出力の推定に関して述べ、非線形性の問題について明確にする。次に、この非線形性への対応と多入出力化について紹介する。また、この項では、本研究に関する推定法の背景を示し、提案する推定法の特徴を述べる。

1.1.1 センサ出力の推定[1]

入出力特性が直線であるセンサを線形センサ、直線ではないセンサを非線形センサと呼ぶ。一般に、センサの入出力特性は直線ではない。線形として許容可能な入出力特性の確保のため、センサ素子の配置や材質、動作範囲の選択が行われる。デジタル式センサにおいて線形センサが求められる理由としては、分解能による制限、出力推定精度の向上、計算に関するメモリ使用量の制限などが挙げられる。デジタル式センサの出力値の取得の流れ図1.1に示す。

図1.1 デジタル式センサの出力値の取得の流れ

アナログ量である物理量をセンサにより計測し、AD変換器において計測値に対応するデジタル量を出力値に変換する。この時点でAD変換器の性能により、所定の分解能が得られない入出力値を含む場合がある。
性の範囲では精度が著しく低下する。さらにこのディジタル化は線形化処理により、物理量と出力値との間で線形関係が成立される。伝達関数の逆関数を使用することで、線形化を行うことが可能であるが、実際には逆関数を取得することが困難な場合も多い。そこで、入出力関係の近似関数を利用する手法などの線形化処理が提案されてきた。従来、使用されている線形化処理の手法として、テーブル補間法および関数近似法が挙げられる。

1.1.2 テーブル補間法[2]
テーブル補間法は、入力値に対する出力値を保存し、計測値の取得後、これを入力値として即時、出力値が決定される。回路への実装が容易であり、応答性が高いことから、スマートセンサの組み込みシステムに利用されている。しかし、組み込みシステムにおけるメモリ制限により、テーブルの容量が制限される。線形性が高い入出力特性の場合、テーブル値の削減が可能であるが、非線形性を含む場合、大規模なテーブル値を必要とするため、線形センサに有効であることが知られている。

1.1.3 関数近似法[3]
関数近似法は、入出力特性の近似関数の係数を保存する方法である。したがって、取得された入力値と係数により出力値が計算される。校正時に係数を計算する必要があるため、同種のセンサ間が等しい入出力特性を持つ場合、それらのセンサに同一の係数を再利用できるため有効である。非線形入出力特性を小区域に分割し小区域ごとに線形的な近似関数を設定する方法や高次関数を用いる方法により、関数近似法は非線形センサに対し精度の向上を図ることが可能である。小区域ごとに近似関数を割り当てる方法の拡張として、テーブル補間法とともに使用することで、テーブルの小容量化を図る手法も提案されている[1]。

1.1.4 多入力化・多出力化

多入力多出力化も行われており、人工ニューラルネットワークにより実現されている[6]。この提案手法では、複数のセンサ素子からの計測値を入力値として、相互に干渉する多変数の出力値を推定される。人工ニューラルネットワークによる推定法は、非線形性に強く、高い出力推定精度を持つことが知られている[7]。その一方で、計算過程は複雑であり、入出力特性のモデル関数が決定されない。また、入出力数の変更や入出力特性の変化に対し、推定のためのパラメータの再計算が必要となる。
第1章 序論

1.1.5 本研究における非単調性へのアプローチ

以上より、入出力特性の非線形性に対応させることは、除去困難なセンサ固有の非線形性成分を補償し、出力推定精度の向上につながることがわかる。また、多入力・多出力化により、複数のセンサ素子の測定量を使用することで、補償すべき環境変数の取得や複数の要因と相互に干渉する出力値を推定することが可能になる。しかし、これらの研究では、単調な入出力特性が問題として設定されている。従来手法である伝達関数の逆関数を使用する方法においても、単調特性が前提である。

そこで、本研究では、非線形性、多入力・多出力化に加え、非単調性について焦点を当てた。非単調特性は2次以上の関数を指しており、この特性は局所的に範囲を限定しなければ、解を一意に定めることができない。本研究では、劣る解を決定するため、非単調性を含む複数のセンサ素子における入出力特性を使用した。これらの特性曲線の接点に劣る解が存在すると考え、この解の探索手法を提案する。非単調性を考慮することで、このような特性形状を持つ環境変数への対応が可能になり、より実際のシステムに近い入出力モデルを構成することが可能になると考えている。

1.1.6 提案手法の特徴

本研究では1.1.5に示す問題の解決のため、関数近似法の拡張を行った。関数近似法は非線形補償に強く、入出力特性のモデル関数を明確に表現することが可能である。また、複数の入出力特性の近似関数を使用し、ある計測状態における多変数の劣ある解を探索するために、反復法を使用した。反復法は初期値のパラメータを与え、反復計算ごとにパラメータの更新を行い、近似解と収束させる手法である。提案手法のように、複数の入出力特性の近似関数を計算する際、厳密解として連立方程式を解くことは、解が得られない可能性がある。このような場合、近似解は厳密解を求める解析的手法に比べて制限が少ないため、厳密解を計算することが困難な場合に適した手法である。
1.2 本研究の目的

本研究では、提案する推定法を実際のセンサに適用した際の推定精度の評価を到達点として、以下を目的としている。

1. 開発センサにおける静電容量の計測
 推定法を適用するセンサの妥当性および再現性の確認、推定を行うための計測データの取得を行う。

2. 推定法の開発および適用
 開発した推定法を変位推定に適用し、理論値および計測値を使用した際の変位の推定精度を確認する。また、本研究における提案手法の推定能力および適用限界を確認する。
1.3 本論文の構成

第1章では、本研究の位置づけおよび目的、本論文の構成について述べる。

第2章では、本研究で提案する推定法に関する基礎を述べるとともに、提案手法の特徴を記述する。

第3章では、推定法の適用のために使用したセンサについて紹介する。初めに、センサを開発するに至る社会的背景、その好発疾患である褥瘡、褥瘡研究における力センサの利用を紹介する。次に、開発している力センサの構造および原理、特徴について述べる。力センサは静電型であり、センサに力が加わるとセンサに配置された電極が変位し、静電容量が変化する。電極はセンサの上下面に4個ずつ配置されており、電極の組み合わせは16組である。この組み合わせをコンデンサとして使用している。

第4章では、第3章で紹介したセンサの16組のコンデンサにおける変位－静電容量特性について述べる。この特性は非線形かつ非単調な形状を含み、第5章で論じる推定法で使用する入出力特性に相当する。4自由度の変位をセンサに印加した際の各コンデンサにおける静電容量変化の計測結果を紹介する。

第5章では、提案する推定法の概要およびその適用結果を紹介する。まず、推定の流れを紹介し、非線形入出力特性を持つセンサにおける推定へのアプローチ、多出力の推定を行うための手法を述べる。次に、この推定法を変位推定に適用した際の計算値シミュレーションおよび計測データにおける評価を述べる。

第6章では、本研究のまとめおよび課題について述べる。
第2章

最適化問題と反復法[8]

第2章では、本研究の提案手法に関する基礎を紹介する。提案手法は多変数の非線形最適化問題として解釈することができる。この最適化問題の定義およびその解法について代表的な方法を紹介する。また、これらの方法に対する提案手法の相違点について記述する。

2.1 最適化問題

2.1.1 最適化問題

最適化問題とは、与えられた条件において、目的とする関数を最小化あるいは最大化する問題を指す。関数 \(f: \mathbb{R}^n \rightarrow \mathbb{R} \) において、任意の実数 \(x \in \mathbb{R}^n \) に対し (2.1) を満たす \(x^* \in \mathbb{R}^n \) を求めるものを \(n \) 变数の最小化問題と呼ぶ。

\[
\begin{align*}
\text{(2.1)}
\end{align*}
\]

この \(f(x) \) を目的関数と呼ぶ。 \(f(x) \) の最小化問題は(2.2)のよう表記される。

\[
\begin{align*}
\text{(2.2)}
\end{align*}
\]

一方、最大化問題である場合、最小化問題とは(2.3)の関係を持つ。

\[
\begin{align*}
\text{(2.3)}
\end{align*}
\]

2.1.2 最適解

(2.1)および(2.2)に示す問題において、最適解は局所的最小解であり、(2.4)を満たす。

\[
\begin{align*}
\text{(2.4)}
\end{align*}
\]

\(f \) が凸関数である場合、凸関数の性質から、大域的最小解を求めることが可能である。このとき、\(\alpha \in [0,1] \) を満たす任意の \(x, y \in \mathbb{R}^n \) に対し、(2.5)が成立するならば、大域的最小解である。

\[
\begin{align*}
\text{(2.5)}
\end{align*}
\]
関数 f の停留点、局所的最適解、大域的最適解は図 2.1のような関係を持つ。

図 2.1 停留点・局所的最適解・大域的最適解の関係

関数 f の微分可能であるとき、関数 f の勾配ベクトルは(2.6)のように表される。

$$
\nabla f(x) = \begin{pmatrix}
\frac{\partial f(x)}{\partial x_1} & \frac{\partial f(x)}{\partial x_2} & \cdots & \frac{\partial f(x)}{\partial x_{n-1}} & \frac{\partial f(x)}{\partial x_n}
\end{pmatrix}^T
$$

(2.6)

関数 f の極値は(2.7)を満たす点であり、この点を停留点と呼ぶ。

$$
\nabla f(x) = 0
$$

(2.7)

(2.7)は x^* が関数 f の局所的最適解であるための必要条件であり、1次の必要条件と呼ばれる。もし、f が凸関数であるならば、必要十分条件である。さらに、f が2回連続微分可能であるとき、(2.8)のようなヘッセ行列で表記することができる。

$$
\nabla^2 f(x) =
\begin{pmatrix}
\frac{\partial^2 f(x)}{\partial x_1 \partial x_1} & \frac{\partial^2 f(x)}{\partial x_1 \partial x_2} & \cdots & \frac{\partial^2 f(x)}{\partial x_1 \partial x_{n-1}} & \frac{\partial^2 f(x)}{\partial x_1 \partial x_n} \\
\frac{\partial^2 f(x)}{\partial x_2 \partial x_1} & \frac{\partial^2 f(x)}{\partial x_2 \partial x_2} & \cdots & \frac{\partial^2 f(x)}{\partial x_2 \partial x_{n-1}} & \frac{\partial^2 f(x)}{\partial x_2 \partial x_n} \\
\vdots & \vdots & \ddots & \vdots & \vdots \\
\frac{\partial^2 f(x)}{\partial x_{n-1} \partial x_1} & \frac{\partial^2 f(x)}{\partial x_{n-1} \partial x_2} & \cdots & \frac{\partial^2 f(x)}{\partial x_{n-1} \partial x_{n-1}} & \frac{\partial^2 f(x)}{\partial x_{n-1} \partial x_n} \\
\frac{\partial^2 f(x)}{\partial x_n \partial x_1} & \frac{\partial^2 f(x)}{\partial x_n \partial x_2} & \cdots & \frac{\partial^2 f(x)}{\partial x_n \partial x_{n-1}} & \frac{\partial^2 f(x)}{\partial x_n \partial x_n}
\end{pmatrix}
$$

(2.8)

(2.7)を満たし、ヘッセ行列が半正定値行列であることは、x^* が関数 f の局所的最適解であるための必要条件であり、2次の必要条件と呼ばれる。また、(2.7)を満たし、ヘッセ行列が正定値行列であることは、x^* が関数 f の局所的最適解であるための十分条件であり、2次の十分条件と呼ばれる。
2.2 最適化問題の解法

直接法とは、有限回で真の解を得るための数値解析法である。一方、反復法は、関数が複雑である場合などの真の解を得ることが困難な場合に、真の解に近い近似解を得るための数値解析法である。反復法による関数 f の最適解を求める方法として、(2.6) に示す関数 f の勾配情報の利用の有無により、大きく 2 種類の手法に分けられる。

2.2.1 勾配情報を利用した最適化問題

ある適当な初期値 x_0 を解として投入し、新たな解を得る反復式 (2.9) により、最適解 x^* へ収束させる。

$$x^{(k+1)} = x^{(k)} + \alpha^{(k)}d^{(k)}$$ \hspace{1cm} (2.9)

ここで、k は反復回数を表している。x^k は反復回数 k における解の近似解 x^*、d^k は k における探索方向を表す。d^k は $f(x)$ の値を最小にする方向であり、降下方向と呼ばれる。a_k は探索方向へのステップ幅であり、$a_k > 0$ である。このとき、(2.10) に示す条件を満たすことで最小化を行う。

$$f(x^{(k+1)}) < f(x^{(k)})$$ \hspace{1cm} (2.10)

探索方向 d^k およびステップ幅 a_k の選択により、複数の手法が知られている。$f(x^{k+1})$ のテイラー展開を考える場合、1 次近似を (2.11)，2 次近似を (2.12) として表記できる。

$$f(x^{(k+1)}) = f(x^{(k)} + d) \approx f(x^{(k)}) + \nabla f(x^{(k)})^T d$$ \hspace{1cm} (2.11)

$$f(x^{(k+1)}) = f(x^{(k)} + d) \approx f(x^{(k)}) + \nabla f(x^{(k)})^T d + \frac{1}{2} d^T \nabla^2 f(x^{(k)}) d$$ \hspace{1cm} (2.12)

(2.11)あるいは(2.12) のようにモデル関数を定義し、最適解を探索する。(2.11) に示す 1 次モデルを使用した方法は最急降下法、(2.12) に示す 2 次モデルを使用した方法はニュートン法、共役勾配法、準ニュートン法などが知られている。これらの方法は (2.11) あるいは (2.12) の通り、1 回あるいは 2 回の微分が可能である必要がある。ステップ幅 a_k の選択方法は直線探索法として知られている。この基準として、Armijo の条件と Wolf の条件と呼ばれる 2 つの条件がしばしば利用される。Armijo の条件は $0 < \xi < 1$ である定数 ξ に対し、(2.13) を満たす α を選択するものである。
第２章 最適化問題と反復法

\[f(x^{(k)} + \alpha d^{(k)}) \leq f(x^{(k)}) + \xi\alpha \nabla f(x^{(k)})^T d^{(k)} \] \hspace{1cm} (2.13)

また、Wolf の条件は \(0 < \xi_1 < \xi_2 < 1 \) である定数 \(\xi_1, \xi_2 \) に対し、(2.14)および(2.15)を満たす \(\alpha \) を選択するものである。

\[f(x^{(k)} + \alpha d^{(k)}) \leq f(x^{(k)}) + \xi_1\alpha \nabla f(x^{(k)})^T d^{(k)} \] \hspace{1cm} (2.14)

\[\xi_2 \nabla f(x^{(k)})^T d^{(k)} \leq f(x^{(k)} + \alpha d^{(k)})^T d^{(k)} \] \hspace{1cm} (2.15)

2.2.1.1 最急降下法

最急降下法は、反復回数 \(k \) における探索方向 \(d^k \) として、(2.11)に示す 1 次モデルが最小となる方向が使用される方法である。したがって、探索方向 \(d^k \) は(2.16)に示すような \(f \) の勾配となる。

\[d^{(k)} = -\nabla f(x^{(k)}) \] \hspace{1cm} (2.16)

ステップ幅 \(\alpha^k \) は、Armijo の条件あるいはWolf の条件により決定する。適当な初期値 \(x_0 \) を設定し、(2.9)を反復することにより、最適解を得る。

2.2.1.2 ニュートン法

ニュートン法は、反復回数 \(k \) における探索方向 \(d^k \) として、(2.12)に示す 2 次モデルが最小となる方向が使用される方法である。したがって、探索方向 \(d^k \) は(2.17)に示すような \(f \) の勾配となる。

\[\nabla^2 f(x^{(k)})d = -\nabla f(x^{(k)}) \] \hspace{1cm} (2.17)

ステップ幅 \(\alpha^k \) は、Armijo の条件あるいはWolf の条件により決定する。また、ニュートン法では \(\alpha^k \) を 1 として固定しても収束性を持つことが知られている。適当な初期値 \(x_0 \) を設定し、(2.9)を反復することにより、最適解を得る。

2.2.1.3 制約付き最適化問題

これまでに示した手法は解に対し、条件が定められていない無制約問題として知られている。しかし、実際の問題では解に対する制約が存在することが多い。制約条件は(2.18)および(2.19)のように表記できる。

\[g_i(x) = 0, i = 0, \ldots, m \] \hspace{1cm} (2.18)
\[h_j(x) \leq 0, j = 0, \ldots, l \] (2.19)

(2.18) は等式制約, (2.19) は不等式制約と呼ばれる. このような制約条件を満たす領域を実行可能領域と呼ぶ。この領域内の点は実行可能解である.

一般の制約付き問題に対する最適性条件を示す. (2.2), (2.18), (2.19) の最小化問題において, (2.20) を定義する。

\[
L(x, y, z) = f(x) + y^T g(x) + z^T h(x)
\]

\[
= f(x) + \sum_{i=1}^{m} y_i g_i(x) + \sum_{j=1}^{l} z_j h_j(x) \tag{2.20}
\]

ここで, \(L \) はラグランジ関数であり, \(y, z \) は(2.21)および(2.22)に示すラグランジュ係数ベクトルである。

\[
y = (y_1, \ldots, y_m)^T \tag{2.21}
\]

\[
z = (z_1, \ldots, z_l)^T \tag{2.22}
\]

この制約付き問題は(2.23)~(2.27)の条件を満足する点 \((x', y', z') \) を見つけることに帰着する。

\[
\nabla_x L(x, y, z) = \nabla f(x) + y^T \nabla g(x) + z^T \nabla h(x) = 0 \tag{2.23}
\]

\[
\nabla_y L(x, y, z) = g(x) = 0 \tag{2.24}
\]

\[
\nabla_z L(x, y, z) = h(x) \leq 0 \tag{2.25}
\]

\[
z_i \geq 0 \ (i = 1, \ldots, l) \tag{2.26}
\]

\[
z_i h_i(x) \geq 0 \ (i = 1, \ldots, l) \tag{2.27}
\]

これらの 5 条件を Karush-Kuhn-Tucker 条件と呼ぶ。
2.2.2 シンプレックス法

関数 f の最適化に使用しない方法として、シンプレックス法（単体法）がある。この方法は線形制約式における線形目的関数の最適化である線形計画問題に加え、目的関数あるいは制約式が非線形である非線形計画問題に対する有効であることが知られている。

線形計画問題におけるシンプレックス法を紹介する。線形計画問題の標準形として(2.28), (2.29)を定義する。

$$w = c^T x \quad (2.28)$$

$$Ax = b \ (x \geq 0) \quad (2.29)$$

ここで、(2.28)は目的関数、(2.29)は制約条件である。それぞれのベクトルが持つ要素を(2.30)とする。

$$c = (c_1 \cdots c_n)^T, x = (x_1 \cdots x_n)^T, A = \begin{pmatrix} a_{11} & \cdots & a_{1n} \\ \vdots & \ddots & \vdots \\ a_{m1} & \cdots & a_{mn} \end{pmatrix}, b = (b_1 \cdots b_m)^T \quad (2.30)$$

ただし、A,b,c は実定数であり、$m < n$ である。 (2.28)の最小化を考える。

係数行列 A において、線形独立な列ベクトルによる正則行列を基底行列、それに対応する変数を基底変数と呼ぶ。基底変数ではない残りの変数を非基底変数と呼ぶ。基底行列を B、非基底行列を N、基底変数ベクトルを x_B、非基底変数ベクトルを x_N とすると、(2.30)における A,x は(2.31)のように分割される。

$$A = (B \ N), x = (x_B \ x_N)^T \quad (2.31)$$

このとき、非基底変数を零とすると、基底変数は(2.32)のように決定される。

$$x = (x_B \ x_N)^T = (B^{-1}b \ 0)^T \quad (2.32)$$

これを基底解と呼ぶ。基底行列、基底変数ベクトル、非基底行列、非基底変数ベクトルの要素は(2.33)である。

$$B = (a_1 \cdots a_m), x_B = (x_1 \cdots x_m)^T, N = (a_{m+1} \cdots a_n), x_N = (x_{m+1} \cdots x_n)^T \quad (2.33)$$

目的関数の係数ベクトル c も(2.34)のように分割できる。
\[c = (c_B \ c_N)^T, c_B = (c_1 \ \cdots \ c_m)^T, c_N = (c_{m+1} \ \cdots \ c_n)^T \] \hspace{1cm} (2.34)

このとき、(2.29)は(2.35)および(2.36)として表記できる。

\[Bx_B + Nx_N = b \] \hspace{1cm} (2.35)

\[x_B + B^{-1}Nx_N = B^{-1}b \] \hspace{1cm} (2.36)

(2.28)に(2.36)を代入すると、(2.37)が得られる。

\[w = c_B^T x_B + c_N^T x_N = c_B^T B^{-1}b + (c_N - (B^{-1}N)^T c_B)^T x_N \] \hspace{1cm} (2.37)

また、(2.38)を単体乗数 \(y \) と呼び、(2.28)に(2.38)を代入すると、(2.39)が得られる。

\[y = (B^{-1})^T c_B \] \hspace{1cm} (2.38)

\[w = c_B^T B^{-1}b + (c_N - N^T y)^T x_N \] \hspace{1cm} (2.39)

ここで、(2.37)および(2.39)より、(2.40)のようにまとめられる。

\[\bar{a}_i = B^{-1}a_i \hspace{0.5cm} (i = m + 1, ..., n) \] \hspace{1cm} (2.40.1)

\[\bar{N} = B^{-1}N = (B^{-1}a_{m+1} \ \cdots \ B^{-1}a_n) = (\bar{a}_{m+1} \ \cdots \ \bar{a}_n) \] \hspace{1cm} (2.40.2)

\[\bar{b} = B^{-1}b \] \hspace{1cm} (2.40.3)

\[\bar{c}_N = c_N - (B^{-1}N)^T c_B = c_N - N^T y \] \hspace{1cm} (2.40.4)

\[\bar{w} = c_B^T B^{-1}b = c_B^T \bar{b} \] \hspace{1cm} (2.40.5)

(2.36)および(2.39)は(2.41)および(2.42)として表記できる。

\[x_B + \bar{N}x_N = \bar{b} \] \hspace{1cm} (2.41)

\[-w + \bar{c}_N^T x_N = -\bar{w} \] \hspace{1cm} (2.42)
(2.41)および(2.42)は基底形式と呼ばれ、特に \(\vec{b} \geq 0 \) である場合、実行可能基底形式と呼ばれる。このとき、(2.32)と同様に非基底変数を 0 とすると、実行可能基底変数 \(x_B = \vec{b} \) と目的関数値 \(w = \vec{w} \) が決定する。すなわち、1 つの実行可能基底形式は 1 組の実行可能基底解 (2.43) を決定する。

\[
\begin{align*}
 x &= (x_B \ x_N)^T = (\vec{b} \ 0)^T \geq 0
\end{align*}
\]

このとき、基底変数および非基底変数は \(x_B \geq 0, x_N = 0 \) である場合、非退化実行可能基底と呼ぶ。(2.41)および(2.42)は(2.40.2)より、(2.44)および(2.45)として表記できる。

\[
\begin{align*}
 x_B + \sum_{i=m+1}^{n} x_i \bar{a}_i &= \vec{b} \quad (2.44) \\
 -w + \sum_{i=m+1}^{n} \bar{c}_i x_i &= -\vec{w} \quad (2.45)
\end{align*}
\]

シンプレックス法は、目的関数値 \(w \) が最小となる新たな実行可能基底形式を反復により求め、最適解を導く手法である。

最適解の判別には目的関数の係数ベクトル \(\bar{c}_N \) を使用する。\(\bar{c}_N \geq 0 \) の場合、\(x_N \geq 0 \) において目的関数値に減少の余地はない。したがって、実行可能基底解は最適解であり、\(\bar{c}_N \geq 0 \) を最適性基準と呼ぶ。一方、\(\bar{c}_q < 0 (m+1 \leq q \leq n) \) なる \(q \) が存在する場合、\(x_q > 0 \) において \(\bar{c}_q x_q \) だけ目的関数値は減少する。したがって、目的関数値に減少の余地がある。このような \(\bar{c}_q \) が複数存在する場合、最も目的関数値が減少する \(q \) を選択する。さらに、この \(\bar{c}_q \) が複数存在する場合には最小の \(i \) を持つ \(\bar{c}_i \) を選択する。\(x_q \) 以外の非基底変数を零とすると、新たな実行可能基底形式(2.46)および(2.47)が得られる。

\[
\begin{align*}
 x_B &= \vec{b} + x_q (-\bar{a}_q) \quad (2.46) \\
 w &= \vec{w} + \bar{c}_q x_q \quad (2.47)
\end{align*}
\]

ただし、\(\bar{c}_q < 0 \) において、\(\bar{a}_i \) の成分に注意しなければならない。\(\bar{c}_q < 0 \) かつ \(\bar{a}_q \leq 0 \) の場合、非退化実行可能基底解の非負制約 \(x_B > 0 \) を満たしなければも、目的関数値は \(w \to -\infty \) となるため、解は非有界になる。一方、\(\bar{c}_q < 0 \) かつ \(\bar{a}_{iq} > 0 \) となる成分が存在する場合、(2.45)より、\(x_{B_i} = \vec{b}_l - x_q \bar{a}_{iq} \) となり、負の値をとる。そのため、非退化実行可能基底解の非負制約 \(x_B > 0 \) を満たす \(x_q = \vec{b}_l/\bar{a}_{iq} \) を(2.48)のように選択する。
第 2 章 最適化問題と反復法

\[x_q = \min_{a_{iq} > 0} \frac{\bar{b}_l}{a_{iq}} = \frac{\bar{b}_p}{a_{pq}} \] \hspace{1cm} (2.48)

線形計画問題の拡張により、非線形計画問題に適用することが可能である。
2.3 提案手法の相違点

2.2.1 で紹介した最小化問題では、モデル関数として(2.11)に示す1次モデルあるいは(2.12)に示す2次モデルを使用している。この方法は関数の極値を探求する場合に有効な手段である。これに対し、第5章で紹介する推定法では、目的関数の一部である非線形入出力特性を高次多項式でモデル化している。高次の非線形特性の使用により、実際のシステムに近い入出力モデルを再現している。通常、高次多項式では解候補が多く、極値を検出することが困難である。本推定法では、複数の入出力特性の近似関数の使用により、高次であっても調和を持った尤もらしい多変数の出力値を推定することが可能であると考えている。また、多次元の情報は情報の独立性の観点から、除去されるべき情報となることも考えられる。本研究においてこの問題は議論していないが、この情報の操作も推定法の改善につながることが予想される。また、提案する推定法は勾配情報を使用しない手法であるが、探索変数および探索方向を決定する際に使用する基準テーブルにおいて、変化傾向の情報を使用している。
第3章
静電型4自由度力センサ

第3章では、我々が開発している生体用静電型4自由度力センサについて紹介する。開発センサは、垂直力F_Zおよびせん断力F_X, F_Yの3自由度の力に加え、1自由度の回転力T_Zの検出能力を持つ。また、本センサは力の検出過程から、4自由度の変位センサとしての利用も可能である。この4自由度の変位をX, Y, Z, θ_Zとして定義する。本章では、まず、開発センサの必要性を明確にするために、その背景となる褥瘡について論じる。そして、褥瘡の発症と生体にかかる力の関係性を示し、それに関連する研究を紹介する。次に、開発センサの構造および原理を紹介し、センサ材料とその特性について述べる。

3.1 センサ開発に関する背景

3.1.1 褥瘡の発症要因

褥瘡とは、生体に力がかかり、組織の壊死である[9]。力が組織に加えられると、その組織周辺の血流が減少し、壊死につながることが原因であると考えられている。機械的な要因は外力であることが知られている。皮膚表面にかかる力は図3.1に示すように6自由度の力であり、皮膚表面に対し垂直方向の力を垂直力F_Z、水平方向の力をせん断力F_X, F_Y、垂直方向および水平方向を軸とした回転方向の力を回転力T_Z, T_X, T_Yである。

特に、褥瘡発症の要因として、垂直力およびせん断力が研究の対象となっている。せん断力は摩擦やずれと呼ばれ、患者の姿勢の調整時や創傷部の保護時において、垂直力に相当する圧に加え、摩擦やずれの発生を軽減することが重要であるとされている。また、垂直
力が単独で皮膚表面にかかるよりも、垂直力およびせん断力の複合された力がかかる場合、血流量の減少や血管の変形などの生体への影響が強くなることが知られている[10]。皮膚表面に外力がかかかった際、生体内に存在する異なる物性を持った組織は複雑な反応を示す。このような外力によるひずみや応力の発生などの内部的反応が主な要因とされている[11]。特に、骨突出部周辺では応力が集中することが知られている[12], [13]。コンピュータシミュレーションでは、簡易な2DモデルからMRIを使用して作成された3Dモデルまで、様々な部分モデルにより解析が行われてきた。シミュレーションにおいても、骨突出部周辺で高い応力を持つことが知られている[14], [15]。褥瘡発症部位の統計データにおいても、褥瘡好発部位として仙骨、踵骨下の組織が挙げられている。また、頭部も褥瘡好発部位として知られている。図3.2は褥瘡好発部位を示している。

組織の健康状態、すなわち湿度や温度などの皮膚環境も重要な要因の一つであり、様々な要因と密接に関係があることが知られている[11]。しかし、応力への関心が高い一方で、ヒトにおける応力の実測は困難である。現在、褥瘡の発症メカニズムにおいて不明な点が多い。動物実験やシミュレーションなどの研究と臨床との間には差異があり、今後も更なる改良が必要である。

機械的要因としての力に関し、生体にかかる圧が多く取り上げられてきた。そして、褥瘡予防や緩和のために、圧と印加時間との関係が研究されてきた。高い圧の場合、短時間の印加時間においても褥瘡発症の危険率が高くなる。一方、低い圧の場合、長時間でも組
織損傷は少なく、褥瘡発症の危険率は低いことが知られている。このことは、クッションやマットレスにより力の分散を行うことで褥瘡発症の危険率を小さくするという、褥瘡予防具のコンセプトになっている[16]。また、この圧と印加時間との関係から、寝返りや体位変換の重要性が感じられる。自発運動が可能である場合、寝返りを行うことで、生体の一部に力が集中することを防いでいる。しかし、十分な自発運動が不可能な場合、体位変換やクッションやマットレスにより、除圧や力の分散を行わなければ、褥瘡発症リスクが高まる。そのため、車いす用クッション、手術時の固定具など、除圧や力の分散が困難かつ長時間の使用が想定される状態において、効果的な褥瘡予防具を使用することが重要であり、本研究の根本的な研究の動機となっている。

3.1.2 社会的背景
2010年の厚生白書において、日本人口128,057,000人に対し、65歳以上の人口は29,484,000人とされている。65歳以上の人口は約23%であり、日本は高齢化社会に直面し、今後も進行していくことが予想される[17]。3.1.1に示した通り、褥瘡発症リスクは自発運動が不可能な場合に高まる。また、加齢による皮膚機能の低下や生体防御機能の低下はリスクを高める。褥瘡は高齢者における皮膚疾患の一つである。一方で、近年、緩和ケアへの取り組みが盛んに行われている。二次障害としての褥瘡の予防も患者の生活の質を高める要素の一つであり、体位変換や褥瘡予防具の使用が行われている[18]。

褥瘡の治療のために、創傷被覆材の使用や外科的治療が行われるが、治療期間は長期にわたり、経済的な負担が大きくなることが問題として挙げられている[19]。したがって、褥瘡の予防の重要性が唱えられている。

3.1.3 カセンサの利用
医療機関ではリスクアセスメントとして、ブレーデンスケールやOHスケールと呼ばれる褥瘡発症予測スケールが使用されている。ブレーデンスケールは、知覚の認知、湿潤、活動性、可動性、栄養状態の5項目に対し、評定が設定されている。また、OHスケールは、自力体位変換、病的骨突出、浮腫、間接拘縮の4項目に対し、評定が設定されている。これらの評価基準とともに、褥瘡と力に関する研究分野ではカセンサが利用されている[12]、[13]、[16]、[20]、[21]。現在、利用されている1点計測用力センサは、圧の計測が可能なKikuhime (TT MediTrade, Soro, Denmark)やCello (Cape, Japan), Palm Q (Cape, Japan), 圧とせん断力の計測が可能なPredia (Molten, Japan)がある（図3.3）。いずれのセンサも、生体計測を考慮し、薄く柔軟性のある構造を持っている。
第3章 静電型4自由度力センサ

図3.3 生体用1点計測力センサ (a) Palm Q (Cape, Japan) (b) Predia (Molten, Japan)

3.1.1 に示すように、褥瘡発症の要因として垂直力およびせん断力が研究の対象となって
いるが、回転力についても以前から褥瘡発症との関係が指摘されていた[22]。近年、除圧およ
び減圧のために開発されたマットレスやクッションでは、図3.1の\(T_Z\)に相当するねじれ
の軽減も視野に入れている。しかし、ねじれの計測が可能な生体計測用の力センサは開発
されておらず、褥瘡発症との関係についての定量的評価は行われていない。そこで、本研
究の最終目的として、垂直力\(F_Z\)、せん断力\(F_X, F_Y\)、回転力\(T_Z\)が同時計測可能な力センサ
の開発を行ってきた[23, 24]。本センサの開発により、皮膚表面にかかる外力の成分およ
びその大きさと褥瘡発症リスクとの関係がさらに深まることを期待する。
3.2 静電型 4 自由度力センサ[23], [24]

3.2.1 静電型センサ

本センサは静電型であり、コンデンサの静電容量の大きさにより、センサにかかる力を推定する。ここに、2 枚の電極による 1 組の平行平板コンデンサがあるとする。このコンデンサの静電容量 C は (3.1) のように示される。

$$ C = \frac{S}{\epsilon_D} $$

ここで、ϵ_0 は真空の誘電率、ϵ_r は電極間媒質の比誘電率、S は電極面積、D は電極間距離である。$\epsilon_0, \epsilon_r, S$ を構造パラメータとして固定すると、静電容量 C は電極間距離 D の変化により変化する。本センサは、この平行平板コンデンサ 16 組を有する構造を持つ。

3.2.2 構造

センサは表 3.1 に示す 2 種類の寸法で実現された。10 mm 角センサは踵骨上の皮膚を、20 mm 角センサは踵骨以上の大きさを持つ骨突出部上の皮膚を計測対象としている。踵骨は最小面積の褥瘡好発部位として知られている。褥瘡好発部位については図 3.2 で紹介している。

<table>
<thead>
<tr>
<th>種類</th>
<th>誘電体</th>
<th>電極</th>
</tr>
</thead>
<tbody>
<tr>
<td>10 mm 角センサ</td>
<td>10 mm × 10 mm × 5.0 mm</td>
<td>3.5 mm × 3.5 mm</td>
</tr>
<tr>
<td>20 mm 角センサ</td>
<td>20 mm × 20 mm × 5.0 mm</td>
<td>7.0 mm × 7.0 mm</td>
</tr>
</tbody>
</table>

本センサは 1 個の誘電体としてのシリコンゲル（Taica）と 2 枚の電極基板で構成されている。今後、2 枚の電極基板を上電極基板および下電極基板と呼ぶ。上下電極基板にはそれぞれ 4 個の電極（銅）が配置されている。センサ構造を図 3.4 および図 3.5 に示す。
第3章 静電型 4自由度力センサ

図3.4 10mm角センサの構造
(a) センサの構造 (b) 下電極基板 (c) 側面図

図3.5 20mm角センサの構造
(a) 下電極基板 (b) 側面図
第3章 静電型4自由度力センサ

上電極をA,B,C,D，下電極をA’,B’,C’,D’と定義し，各電極の中心点をP_A,P_B,P_C,P_D,P_A’,P_B’,P_C’,P_D’と定義した。上下電極の電極組み合わせ16組がそれぞれ平行平板コンデンサとして機能する。コンデンサAA’,AB’,...,DC’,DD’をi=1,2,...,15,16と定義した。したがって，(3.1)は(3.2)のように表記できる。

\[C_i = \varepsilon_0 \varepsilon_r \frac{S}{D_i} \] (3.2)

ここで，C_iとD_iはコンデンサiにおける静電容量および電極間距離である。下面の中心をOとすると，Oと各電極の中心点との距離rは10mm角センサにおいて約3.89mm，20mm角センサにおいて約7.07mmである（図3.4(b)，図3.5(a)）。円柱座標系(r,\varphi,z)において，無負荷時の各電極中心の初期座標は以下の通りである。

\[
\begin{align*}
P_A(r,\frac{5}{4}\pi, 5) & \quad P_B(r,\frac{7}{4}\pi, 5) & \quad P_C(r,\frac{\pi}{4}, 5) & \quad P_D(r,\frac{3}{4}\pi, 5) \\
P_A'(r,\frac{5}{4}\pi, 0) & \quad P_B'(r,\frac{7}{4}\pi, 0) & \quad P_C'(r,\frac{\pi}{4}, 0) & \quad P_D'(r,\frac{3}{4}\pi, 0)
\end{align*}
\] (3.3)

計測において，センサの上電極基板面あるいは下電極基板面に力がかかることになり，片面は平面に設置されることを想定している。また，シリコーンゲルは柔軟であるため，本研究で取り扱っている4自由度の力だけでなく，軸回りの回転力を含む6自由度の力検出することが可能である。

本センサは，電極面積Sに対し電極間距離D_iが大きい。また，4自由度の力や変位の印加に対し，コンデンサを構成する2枚の電極の重なり面積が変化する。静電型センサにおいて，これらの構造は線形性を保証しない。しかし，センサの構造と踵骨や仙骨下の皮膚表面という適用箇所を考慮した上で回転力を得るために，シリコーンゲルの5mmの厚さが必要である。これは本研究の主題である非線形性および非単調性を持つ入出力特性に対応した推定法の必要性に関係する。

3.2.3 理論静電容量値

平行平板コンデンサの静電容量は(3.2)により定義される。本センサに4自由度の力が加えられることにより，静電容量が変化する。この静電容量の変化量から力の推定が行われる。コンデンサを構成する材料および構造は3.2.2の通りに定めたため，静電容量を変化させるパラメータは(3.1)において，電極間距離Dである。

X,Y,Z軸方向成分を持つ3次元ベクトルにおいて，電極間距離Dは(3.4)で定義される。
第3章 静電型4自由度力センサ

\[D = \sqrt{D_x^2 + D_y^2 + D_z^2} \] \hspace{1cm} (3.4)

ここで、各軸方向の距離成分 \(D_x, D_y, D_z \) は各軸方向の変位 \(X, Y, Z \) を用いて(3.5)で示される。

\[
\begin{align*}
D_x &= r \cos \varphi - (X - r \cos \varphi') \\
D_y &= r \sin \varphi - (Y - r \sin \varphi') \\
D_z &= l - Z
\end{align*}
\] \hspace{1cm} (3.5)

ここで、\(l \) は \(Z \) 軸方向のセンサ長を示しており、10 mm 角センサ、20 mm 角センサともに5 mm である。\(r \) は電極基板の中心点 \(O \) と各電極の中心点と距離である。\(\varphi \) は無負荷時における基準側（固定状態と仮定した電極基板側）の電極中心の位置を示す角度であり、各電極の中心点の \(\varphi \) は(3.3)に示す \(\varphi \) 座標に等しい。\(\varphi' \) は負荷時における可動側の電極の中心点の位置を示す角度である。\(\varphi' \) は(3.6)に示す通り、電極中心の位置に対し初期座標に回転方向の変位 \(\Theta_z \) を加えた角度である。

\[\varphi' = \varphi + \Theta_z \] \hspace{1cm} (3.6)

(3.4)を(3.2)に代入することで、任意の変位条件に対する理論静電容量を求めることができる。ただし、この計算は2枚の電極が常に平行であり、1組のコンデンサを構成する2枚の電極の対向面積が電極の断面積に等しい場合を仮定したものである。この近似における誤差は十分に小さいと考えている[25]。

4自由度の変位である垂直方向の変位 \(Z \)，せん断方向の変位 \(X, Y \)，回転方向の変位 \(\Theta_z \) を独立に印加した場合、理論静電容量特性は、16組のコンデンサにおいていくつかの組で同様の変化傾向が見られる。\(X \) 特性について、

(1) \(AA', BB', CC', DD' \)
(2) \(AC', DB' \)
(3) \(BD', CA' \)
(4) \(AB', DC \)
(5) \(BA', CD' \)
(6) \(AD', BC', CB', DA' \)

の6タイプに分けられる。\(Y \) 特性について、
第3章 静電型4自由度力センサ

の6タイプに分けられる。Z特性について、

(1) AA', BB', CC', DD'
(2) AC', BD'
(3) CA', DB'
(4) AB', BA', CD', DC'
(5) AD', BC'
(6) CB', DA'

の3タイプに分けられる。θz特性について、

(1) AA', BB', CC', DD'
(2) AC', BD', CA', DB'
(3) AB', BA', AD', BC', CB', CD', DA', DC'

の4タイプに分けられる。複数の変位成分が同時に印加される場合、傾向は変化する。図3.6に10mm角センサにおけるX, Y, Z, θzに対する理論静電容量の変化特性を示す。20mm角センサにおける理論静電容量の変化特性も形状は10mm角センサに等しい。
3.2.4 検出原理

3.2.4.1 幾何学手法による変位の推定

センサの上電極側に4自由度の力である垂直力 F_Z, せん断力 F_X, F_Y, 回転力 T_Z がかかる場合を考える。F_X, F_Y, F_Z に対する電極位置の変化は次のように計算できる。ある1組のコンデンサにおいて、上電極中心点の位置を (x, y, z), 下電極中心点の位置を (α, β, γ) とする。点 (α, β, γ) を中心とした球は(3.7)のように示される。

\[(x - \alpha)^2 + (y - \beta)^2 + (z - \gamma)^2 = D^2 \]

ここで, D は球の半径であり、コンデンサの電極間距離である。D は計測された静電容量 C を(3.1)に代入することで求めることができる。未知の点 (x, y, z) は、3組以上のコンデンサを使用し、3元以上の連立方程式を解くことで求めることが可能である。一方、T_Z に対する電極位置の変化は次のように計算できる。回転前の上電極中心点の位置を (x, y, z) とするとき、回転後の上電極中心点の位置 (x', y', z') は(3.8)により計算される。

\[
\begin{pmatrix} x' \\ y' \\ z' \end{pmatrix} = \begin{pmatrix} \cos \theta_Z & -\sin \theta_Z & 0 \\ \sin \theta_Z & \cos \theta_Z & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} x \\ y \\ z \end{pmatrix}
\]

ここで、θ_Z は Z 軸を中心とする回転角度である。(3.2)に示した電極の初期座標と(3.4)に
第3章 静電型4自由度力センサ

示した \((x', y', z')\) を比較することで、各力方向に対する変位 \(X, Y, Z, \theta_z\) を求めることができる。

以上の計算は、計測静電容量値が線形補正のみによる修正が可能な場合には有効である。しかし、実際には多くのセンサにおいて非線形誤差を含むものが多い。そこで本研究では、非線形センサにおける多変数成分の変位を反復法により推定することを試みた。この変位推定法は第5章で論じる。

3.2.4.2 力の推定

垂直力 \(F_z\) およびせん断力 \(F_X, F_Y\) の計算を考える。垂直ひずみ \(\varepsilon\) およびせん断ひずみ \(\gamma_x, \gamma_y\) は、(3.9)より計算される。

\[
\varepsilon = \frac{Z}{l}
\]
\[
\gamma_x = \frac{X}{l}
\]
\[
\gamma_y = \frac{Y}{l}
\]

ここで、\(l\) は \(Z\) 軸方向のセンサ長である。垂直応力 \(\sigma\) およびせん断応力 \(\tau_x, \tau_y\) は、垂直ひずみ \(\varepsilon\) およびせん断ひずみ \(\gamma_x, \gamma_y\) より、(3.10)のように示される。

\[
\sigma = E\varepsilon
\]
\[
\tau_x = G\gamma_x
\]
\[
\tau_y = G\gamma_y
\]

ここで、\(E\) は縦弾性率を、\(G\) は横弾性率を示している。縦弾性率 \(E\) および横弾性率 \(G\) は (3.11)に示す関係を持つ。

\[
G = \frac{E}{2(1 + \nu)}
\]

ここで、\(\nu\) はボアソン比であり、0~0.5 の値を持つ。本研究では、シリコーンゲルを非圧縮弾性体として 0.5 とした。垂直力 \(F_z\) およびせん断力 \(F_X, F_Y\) は、垂直応力 \(\sigma\) およびせん断応力 \(\tau_x, \tau_y\) より、(3.12)で計算される。
第3章 静電型4自由度力センサ

\[F_z = \sigma A \]
\[F_x = \tau_x A \]
\[F_y = \tau_y A \]

ここで、\(A \) は \(Z \) 軸方向に関するセンサの断面積であり、10 mm 角センサにおいて10 mm \(\times \) 10 mm、20 mm 角センサにおいて20 mm \(\times \) 20 mmである。一方、\(Z \) 軸方向に関する回転力 \(T_z \) は、\((3.13) \)で計算される。

\[T_z = \frac{G I_p \theta_z}{l} \]

ここで、\(I_p \) は断面二次極モーメントを示しており、断面の幅を \(W \)、奥行きを \(D \) とするとき、\(WD(W^2 + D^2)/12 \)で計算される。\(W \) と \(D \) はともに、10 mm 角センサにおいて10 mm、20 mm 角センサにおいて20 mmである。

力推定に使用するパラメータを表3.2に示す。これらの値はセンサの誘電体として使用したシリコーンゲルに由来する。この計測については3.3.1に記述する。

表 3.2 力推定に関するパラメータ

<table>
<thead>
<tr>
<th>種類</th>
<th>(E) (kPa)</th>
<th>(G) (kPa)</th>
<th>(I_p) (m(^4))</th>
</tr>
</thead>
<tbody>
<tr>
<td>10 mm 角センサ</td>
<td>25.6</td>
<td>8.57</td>
<td>(0.167 \times 10^{-8})</td>
</tr>
<tr>
<td>20 mm 角センサ</td>
<td>54.1</td>
<td>18.0</td>
<td>(2.67 \times 10^{-8})</td>
</tr>
</tbody>
</table>

3.2.5 動作範囲

本センサは表3.3および表3.4のように変位および力の動作範囲を定めた。10 mm 角センサと20 mm 角センサにおいて、動作範囲は異なる。これは、誘電体として機能しているシリコーンゲルの材料特性に由来する。ゲルの断面積に対し高さが小さい場合、変位を大きくとることができない。しかし、\((3.2) \)に示すように、電極面積を大きくすることは静電容量を大きくすることにつながり、計測において扱いやすいレベルの静電容量になる。
表 3.3 10 mm 角センサにおける動作範囲

<table>
<thead>
<tr>
<th>方向</th>
<th>変位</th>
<th>力</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>最小値</td>
<td>最大値</td>
</tr>
<tr>
<td>X</td>
<td>−3.0</td>
<td>+3.0</td>
</tr>
<tr>
<td>Y</td>
<td>−3.0</td>
<td>+3.0</td>
</tr>
<tr>
<td>Z</td>
<td>0</td>
<td>+3.0</td>
</tr>
<tr>
<td>θZ</td>
<td>−30</td>
<td>+30</td>
</tr>
</tbody>
</table>

表 3.4 20 mm 角センサにおける動作範囲

<table>
<thead>
<tr>
<th>方向</th>
<th>変位</th>
<th>力</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>最小値</td>
<td>最大値</td>
</tr>
<tr>
<td>X</td>
<td>−2.0</td>
<td>+2.0</td>
</tr>
<tr>
<td>Y</td>
<td>−2.0</td>
<td>+2.0</td>
</tr>
<tr>
<td>Z</td>
<td>0</td>
<td>+2.0</td>
</tr>
<tr>
<td>θZ</td>
<td>−10</td>
<td>+10</td>
</tr>
</tbody>
</table>
3.3 センサ材料と組み立て

3.3.1 シリコーンゲル

シリコーンゲルの縦弾性率 E, クリープ率 RC, 永久ひずみ率 CS は JIS6254, JIS6273, JIS6262 に基づき計測された。試験片として $10 \text{ mm} \times 10 \text{ mm} \times 10 \text{ mm}$ のシリコーンゲルを使用した。これらのパラメータは、室温 23°C に保たれた環境下において、万能試験装置（オリエンテック、TENSILON RTE-1210）により計測された。図 3.7 はシリコーンゲルであり、図 3.8 は万能試験機を使用した試験時の様子である。表 3.5 に 10 mm 角のゲルにおける試験結果に基づく材料特性を示す。

<table>
<thead>
<tr>
<th>縦弾性率 E (kPa)</th>
<th>クリープ率 RC (%)</th>
<th>永久ひずみ率 CS (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>25.6</td>
<td>1.0</td>
<td>0.7</td>
</tr>
</tbody>
</table>

図 3.7 シリコーンゲル

図 3.8 万能試験機による試験時の様子

表 3.5 シリコーンゲルの材料特性
第3章 静電型4自由度力センサ

3.3.1.1 縦弾性率

縦弾性率 E は材料の剛性を示す数値である。縦弾性率 E は(3.14)で定義される。

$$ E = \frac{F}{A\varepsilon} \quad (3.14) $$

ここで，F は任意のひずみ時の垂直力を，A は負荷前の試験片の断面積，ε は負荷前の試験片の厚さに対するひずみである。

試験片に一定速度で荷重を加えた際の試験片のひずみを計測することで求めることができる。試験片に試験速度 10 mm/min で試験片の厚さ 10 mm の 25%に相当するひずみを4回連続で与えた。4 回目の圧縮において，20%ひずみにおける垂直力を記録した。

本センサはヒトの仰臥位あるいは座位における皮膚あるいは衣服とマットレス間の力の計測を対象としているため，この環境下に耐えるゲルでなければならない。座位時において，標準的な圧力値は 200 mmHg であるとされており，この値は約 0.0266 MPa に相当する。ゲルの 50%ひずみ時において，この標準圧力値に到達する縦弾性率を有するゲルが本センサのために適当であると考えた。

3.3.1.2 クリープ率および永久ひずみ率

クリープ率は時間経過に対する材料の変形率である。クリープ率 RC は(3.15)で定義される。

$$ RC = \frac{l_2 - l_1}{l_1 - l_0} \times 100 \quad (3.15) $$

ここで，l_0 は負荷前の試料片の厚さ，l_1 は負荷開始から 30 秒後の試料片の厚さ，l_2 は負荷開始から 24 時間後の試料片の厚さである。

また，永久ひずみ率は負荷除去後の材料に与えた外力の影響を永久ひずみとして数値化したものである。永久ひずみ率 CS は(3.16)により計算される。

$$ CS = \frac{t_0 - t_2}{t_0 - t_1} \times 100 \quad (3.16) $$

ここで，t_0 は負荷前の試験片の厚さ，t_1 は圧縮時の試験片の厚さ，t_2 は負荷除去後 30 分静置後の試験片の厚さである。

試験片に対し 200 mmHg の負荷で 24 時間圧縮を行い，その際の時間に対する試験片のひずみを記録し，クリープ率を求めた。クリープ試験後，負荷を取り除き 30 分静置後の試験
第3章 静電型4自由度力センサ

片の厚さを記録し，永久ひずみ率 CS を求めた。

3.3.2 電極

電極部の作成のためにフレキシブル基板（サンハヤト，1k（10 mm 角センサ），NZ-M4K（20 mm 角センサ））が使用された。図3.9および図3.10は10 mm 角センサおよび20 mm角センサの電極パターンである。1枚の基板は4個の電極とグラウンド部から構成され，これらに5本のラインが接続されている。インクジェットフィルム（サンハヤト，PF-10R-A4）に電極パターンを印刷し，フレキシブル基板に露光した。現像後，エッチングを行い，電極を作成した。

![図3.9 10 mm角センサの電極パターン(単位:mm)](image1)

![図3.10 20 mm角センサの電極パターン(単位:mm)](image2)

3.3.3 センサの組み立て

2枚の基板とシリコンゲルは両面接着テープ（共和工業）で接着された。この両面接着テープはシリコーン系粘着材とアクリル系粘着材が各面に塗布されたものであり，厚さは0.085 mmである。また，基板の5本のラインは4芯シールドケーブル（モガミ電線，2769）に接続された。この4芯シールドケーブルは10 mm角センサに対し約400 mm，20 mm角センサに対し約300 mmのものが使用された。各基板のライン部および4芯シールドケーブルとのはんだ付け部はカプトンテープで覆われた。図3.11および図3.12は組み立てられた10 mm角センサおよび20 mm角センサである。
第3章 静電型4自由度力センサ

図3.11 組み立て後の10mm角センサ

図3.12 組み立て後の20mm角センサ (a) コンデンサ部分拡大図 (b) 全体図
第3章 静電型4自由度カセンサ

3.4 シリコーンゲルの比誘電率

3.4.1 試験コンデンサ
シリコーンゲルの比誘電率は、シリコーンゲルを誘電体として使用した平行平板コンデンサの静電容量の計測により推定された。
3.2.2 と同様の方法で10 mm × 10 mm の電極を作製した。この電極を図3.13に示す。10 mm × 10 mm × 5 mm のシリコーンゲルの上下面に電極基板を両面接着テープで接着を行い、試験コンデンサを組み立てた。

図3.13 比誘電率推定に使用された電極

3.4.2 シリコーンゲルの比誘電率の推定
計測システムは LCR メータ（國洋電機工業，KC-557），XYZαβ 軸ステージ（シグマ光機，TSD-40EC），万能試験装置（オリエンテック，TENSILON RTE-1210）で構成された。詳細な計測方法は第4章に記述する。計測静電容量の変化量は比誘電率 ε_r を4.8とした理論静電容量にほぼ等しい傾向が見られた。シリコーン樹脂の一般的な比誘電率は3.5～5.0であり、この推定比誘電率は妥当であると考えた。したがって、シリコーンゲルの比誘電率 ε_r を4.8とした。
第 4 章では、変位に対する静電容量の変化特性について紹介する。この特性は、第 3 章において作成された 10 mm 角センサおよび 20 mm 角センサを使用して計測された。また、16 組のコンデンサおよび 4 自由度の変位に対する変位－静電容量特性を考察し、電極パターンや 1 組のコンデンサを構成する上下電極の重なり面積の変化などが及ぼす影響および再現性を述べる。後述する変位推定法では、変位－静電容量特性の近似モデル関数を反復式において使用している。あらかじめ計測された変位－静電容量特性をもとに、モデル関数のパラメータを決定している。したがって、第 4 章で紹介する変位－静電容量特性は、モデル関数を決定する材料になっている。

4.1 目的

組み立てたセンサにおいて、4 自由度の力に相当する 4 自由度の変位に対し、16 組のコンデンサの静電容量の変化が計測可能であるのかを確認した。また、センサの再現性を確認するため、同様の方法で作製された異なるセンサを使用し、静電容量の計測結果を比較した。
第4章 静電容量の計測

4.2 方法

10 mm 角センサおよび 20 mm 角センサにおいて、せん断方向の変位 \(X, Y \)，垂直方向の変位 \(Z \)，回転方向の変位 \(\theta_z \) に対する静電容量の変化の計測を行った。計測システムおよび計測条件を以下に示す。

4.2.1 計測システムおよび計測条件

計測システムを図 4.1 に示す。計測システムは LCR メータ（國洋電機工業, KC-557），XYZαβ 軸ステージ（シグマ光機, TSD-40EC），万能試験装置（オリエンテック, TENSILON RTE-1210）で構成された。試験コンデンサの下面は XYZαβ 軸ステージ上に固定され、上面は万能試験装置の圧子で固定された。力に相当する変位はセンサ下面に XYZαβ 軸ステージで与えられた。せん断方向および回転方向の変位を与える際、センサと万能試験装置の圧子間にずれが発生するため、これらの接触面にサンドペーパーを取り付け、摩擦によりずれの発生を抑制した。試験コンデンサに接続されたシールドケーブルは LCR メータに接続され、印加された変位に対する静電容量が計測された。20 mm 角センサを使用した計測では、電極ライン間の干渉を軽減させるため、上下電極ライン間に絶縁板を配置した。図 4.2 は計測時の様子である。
印加電圧は AC1V，計測周波数は 100 kHz であった．1 回の静電容量の計測は 896 ms であり，各変位条件に対し 3 回の計測が行われた．計測の際に与えた変位条件を表 4.1 に示す．ただし，せん断方向および回転方向の変位 \(X, Y, \theta_Z\) に対する静電容量を計測する際，垂直方向の変位 \(Z\) を 1 mm 与えた後，\(X, Y, \theta_Z\) を与え計測を行った．

<table>
<thead>
<tr>
<th>方向</th>
<th>最小値</th>
<th>最大値</th>
<th>刻み幅</th>
<th>単位</th>
</tr>
</thead>
<tbody>
<tr>
<td>(X)</td>
<td>-3.0</td>
<td>+3.0</td>
<td>0.4</td>
<td>mm</td>
</tr>
<tr>
<td>(Y)</td>
<td>-3.0</td>
<td>+3.0</td>
<td>0.4</td>
<td>mm</td>
</tr>
<tr>
<td>(Z)</td>
<td>0</td>
<td>+3.0</td>
<td>0.2</td>
<td>mm</td>
</tr>
<tr>
<td>(\theta_Z)</td>
<td>-30</td>
<td>+30</td>
<td>3.0</td>
<td>degree</td>
</tr>
</tbody>
</table>

4.2.2 センサ

第 3 章に示した方法で作製された 2 個の 10 mm 角センサ（センサ A，センサ B）と 20 mm 角センサを用意した．4.3.1 に 10 mm 角センサ（センサ A）および 20 mm 角センサを使用した計測結果を示す．4.3.2 に 2 個の 10 mm 角センサ（センサ A およびセンサ B）を比較し，センサの再現性を示す．4.3.2 の静電容量値は回転変換および規格化の処理が行われている．この処理は，センサの組み立て時における基板とシリコーンゲル間の位置ずれ補正のために使用された．回転変換は(4.1)で定義される．

\[
\begin{pmatrix} x' \\ y' \end{pmatrix} = \begin{pmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} \tag{4.1}
\]
ここで、\((x',y')\)は回転変換後の座標、\((x,y)\)は回転変換前の座標を示し、\(\theta\)は回転角を表している。また、規格化は(4.2)のように行った。

\[
x' = \frac{x}{|x_{\text{max}} - x_{\text{min}}|}
\]

(4.2)

ここで、\(x'\)は規格化後の計測値、\(x\)は規格化前の計測値、\(x_{\text{max}}\)は計測値における最大値、\(x_{\text{min}}\)は計測値における最小値を表している。

4.2.3 評価指標

3回の計測から標準偏差を求め、変位—静電容量特性グラフにエラーバーとして表した。平均値 \(m\)は(4.3)で定義される。

\[
m = \frac{1}{N} \sum_{\alpha=1}^{N} x_{\alpha}
\]

(4.3)

ここで、\(N\)はデータ数、\(x_{\alpha}\)は\(\alpha\)番目のデータにおける計測値を表している。標準偏差 \(s\)は(4.4)で定義される。

\[
s = \sqrt{\frac{1}{N} \sum_{\alpha=1}^{N} (x_{\alpha} - m)^2}
\]

(4.4)

また、再現性を示すために、(4.5)で定義される変動係数 \(CV\)を使用した。

\[
CV = \frac{s}{m} \times 100
\]

(4.5)
4.3 結果

4.3.1 変位－静電容量特性

10 mm 角センサ（センサ A）におけるせん断方向の変位 X, Y, 垂直方向の変位 Z, 回転方向の変位 θ_Z に対する静電容量の変化特性をそれぞれ図 4.3, 図 4.4, 図 4.5, 図 4.6 に示し、変動係数を表 4.2 に示す。また、20 mm 角センサにおける X, Y, Z, θ_Z に対する静電容量の変化特性をそれぞれ図 4.7, 図 4.8, 図 4.9, 図 4.10 に示し、変動係数を表 4.3 に示す。

図 4.3 10 mm 角センサ（センサ A）のせん断方向の変位 X の静電容量特性
図 4.4 10 mm 角センサ（センサ A）のせん断方向の変位 Y の静電容量特性
図 4.5 10 mm 角センサ（センサ A）の垂直方向の変位 Z の静電容量特性
第4章 静電容量の計測

図 4.6 10 mm 角センサ（センサ A）の回転方向の変位 θ_Z の静電容量特性
表 4.2 10 mm 角センサ（センサ A）の計測における平均変動係数（%）

<table>
<thead>
<tr>
<th>コンデンサ</th>
<th>变位</th>
<th>平均</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>X</td>
<td>Y</td>
</tr>
<tr>
<td>1</td>
<td>3.60</td>
<td>4.18</td>
</tr>
<tr>
<td>2</td>
<td>2.85</td>
<td>3.77</td>
</tr>
<tr>
<td>3</td>
<td>4.88</td>
<td>3.92</td>
</tr>
<tr>
<td>4</td>
<td>5.63</td>
<td>3.32</td>
</tr>
<tr>
<td>5</td>
<td>2.77</td>
<td>4.38</td>
</tr>
<tr>
<td>6</td>
<td>10.21</td>
<td>1.90</td>
</tr>
<tr>
<td>7</td>
<td>5.82</td>
<td>4.27</td>
</tr>
<tr>
<td>8</td>
<td>1.69</td>
<td>4.17</td>
</tr>
<tr>
<td>9</td>
<td>0.06</td>
<td>2.24</td>
</tr>
<tr>
<td>10</td>
<td>1.28</td>
<td>0.33</td>
</tr>
<tr>
<td>11</td>
<td>10.02</td>
<td>0.52</td>
</tr>
<tr>
<td>12</td>
<td>1.19</td>
<td>1.65</td>
</tr>
<tr>
<td>13</td>
<td>1.61</td>
<td>2.17</td>
</tr>
<tr>
<td>14</td>
<td>1.97</td>
<td>3.15</td>
</tr>
<tr>
<td>15</td>
<td>1.61</td>
<td>1.43</td>
</tr>
<tr>
<td>16</td>
<td>2.53</td>
<td>2.12</td>
</tr>
<tr>
<td>平均</td>
<td>3.61</td>
<td>2.72</td>
</tr>
</tbody>
</table>
図 4.7 20 mm 角センサのせん断方向の変位 X の静電容量特性
図 4.8 20 mm 角センサのせん断方向の変位 Y の静電容量特性
第4章 静電容量の計測

図4.9 20 mm 角センサの垂直方向の変位 \(Z \) の静電容量特性
図 4.10 20 mm 角センサの回転方向の変位 θ_z の静電容量特性
表 4.3 20 mm 角センサの計測における平均変動係数 (%)

<table>
<thead>
<tr>
<th>コンデンサ</th>
<th>変位</th>
<th>平均</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>X</td>
<td>Y</td>
</tr>
<tr>
<td>1</td>
<td>0.04</td>
<td>0.03</td>
</tr>
<tr>
<td>2</td>
<td>0.10</td>
<td>0.02</td>
</tr>
<tr>
<td>3</td>
<td>0.03</td>
<td>0.04</td>
</tr>
<tr>
<td>4</td>
<td>0.23</td>
<td>0.02</td>
</tr>
<tr>
<td>5</td>
<td>0.02</td>
<td>0.05</td>
</tr>
<tr>
<td>6</td>
<td>0.05</td>
<td>0.04</td>
</tr>
<tr>
<td>7</td>
<td>0.04</td>
<td>0.05</td>
</tr>
<tr>
<td>8</td>
<td>0.01</td>
<td>0.02</td>
</tr>
<tr>
<td>9</td>
<td>0.01</td>
<td>0.01</td>
</tr>
<tr>
<td>10</td>
<td>0.03</td>
<td>0.02</td>
</tr>
<tr>
<td>11</td>
<td>0.01</td>
<td>0.02</td>
</tr>
<tr>
<td>12</td>
<td>0.02</td>
<td>0.04</td>
</tr>
<tr>
<td>13</td>
<td>0.03</td>
<td>0.02</td>
</tr>
<tr>
<td>14</td>
<td>0.02</td>
<td>0.08</td>
</tr>
<tr>
<td>15</td>
<td>0.02</td>
<td>0.05</td>
</tr>
<tr>
<td>16</td>
<td>0.03</td>
<td>0.03</td>
</tr>
<tr>
<td>平均</td>
<td>0.04</td>
<td>0.03</td>
</tr>
</tbody>
</table>
4.3.2 再現性

10 mm 角センサ（センサAおよびセンサB）を使用した際のコンデンサ AA', AB', AC', AD' におけるせん断方向の変位 X, Y 垂直方向の変位 Z, 回転方向の変位 θz に対する静電容量の変化特性をそれぞれ図 4.11、図 4.12、図 4.13、図 4.14 に示す。ただし、垂直方向の変位 Z の静電容量特性のみ、回転変換は行わず規格化のみ行った。

図 4.11 10 mm 角センサ（センサA、センサB）のせん断方向の変位 X の静電容量特性
第4章 静電容量の計測

図 4.12 10 mm 角センサ（センサ A, センサ B）のせん断方向の変位 Y の静電容量特性
第4章 静電容量の計測

図 4.13 10 mm 角センサ（センサ A, センサ B）の垂直方向の変位 Z の静電容量特性
図 4.14 10 mm 角センサ（センサ A, センサ B）の回転方向の変位 \(\theta_2 \) の静電容量特性
4.4 考察

4.4.1 変位－静電容量特性

3.2.3 に記述した通り、4 自由度の変位を独立に印加した場合、変位－静電容量特性の曲線形状が等しくなるコンデンサが存在する。しかし、10 mm 角センサにおける図 4.3～図 4.6 における曲線形状は一致しない場合が多い。これには 2 つの大きな要因がある。第一に、センサの組み立て時の位置ずれが大きく影響している。完全な対称性を持つように組み立てなければ、一致性は得られない。第二に、上下電極の重なり面積と各電極から引き出されているラインが関係している。電極は正方形であり、せん断方向の変位 X, Y および回転方向の変位 θz がセンサに印加された場合、上下電極の重なり面積は増加あるいは減少する。この作用を打ち消すため、電極面積を十分に大きくし電極間距離を小さくする方法があるが、センサの使用上、困難である。また、印加方向に可動電極側の電極ラインは移動する。上下電極の重なり面積と電極ラインの関係は次に示す 4 タイプに分けられる。

(i) 重なり面積の増加、電極ラインの接近
(ii) 重なり面積の増加、電極ラインの離脱
(iii) 重なり面積の減少、電極ラインの接近
(iv) 重なり面積の減少、電極ラインの離脱

図 4.15 は正と負の変位 θz を印加した場合のコンデンサ AA, AB, AC, AD の動きを表した概略図である。図 4.15 にこれらの 4 タイプを当てはめると、

AA'の+θz 変位 : (iv)
AA'の−θz 変位 : (iv)
AB'の+θz 変位 : (iii)
AB'の−θz 変位 : (ii)
AC'の+θz 変位 : (ii)
AC'の−θz 変位 : (i)
AD'の+θz 変位 : (ii)
AD'の−θz 変位 : (iii)

となる。上下電極の重なり面積の変化による静電容量の変化、上下電極ライン間に発生する静電容量が対称性を損なわせている。この影響は図 4.6 および図 4.14 において、単純な 2 次曲線で表すことができない特性の存在から確認できる。
第4章 静電容量の計測

図4.15 変位 θ_z を印加した場合の10 mm角センサの上下電極および電極ラインの変化

図3.10に示した20 mm角センサの電極パターンでは、図3.9に示した10 mm角センサの電極パターンに比べ電極ラインが長いため、上下電極ライン間に発生する静電容量の影響が大きくなることが予想された。そこで、グラウンド用の電極ラインを5本の電極ラインの中央に配置した。また、計測時は上下電極ラインの間に絶縁板を配置した。しかし、図4.10に示した回転方向の変位 θ_z の静電容量特性では、上下電極ライン間に発生する静電容量の影響が表れている（AB', AC', BA', CA'など）。静電容量の変化量は電極面積の増加により増加し、ばらつきが少なく安定した静電容量を計測できている。

4.4.2 再現性

表4.2および表4.3より、10 mm角センサ（センサA）および20 mm角センサにおける全計測の変動係数は約3.23%および約0.06%であった。この変動率は十分に小さいと考え
4.4.3 実計測への課題

第3章における理論では下面それぞれに配置された電極が同じ平面上に存在することを前提とした。本計測においても電極基板の両面が平面となる計測システムを採用しているが、皮膚表面にかかる力を計測するような実計測において、この仮定が成立しない状況が考えられる。特に、計測対象は骨突出部下の皮膚であるため、皮膚側の電極基板は骨突出の曲率に合わせ変化するであろうことが予想される。2枚の電極基板の平行性が崩れる場合、校正時とは異なる静電容量変化が各コンデンサで発生する。そのため、電極基板とセンサ外面のパッケージングとの間、平行性を保つための鋼板を追加する必要がある。計測対象がヒトであるため、パッケージングには柔軟な素材を採用する必要がある。このパッケージング材料としてはポリウレタンフィルムの採用を考えている。鋼板およびパッケージングの影響により、現時点において2点の問題が挙げられる。一つは、これらの追加によりセンサの厚みが増えることである。褥瘡発症リスクが高い患者は自発的な運動が困難であるため、センサの設置が難しくなることである。また、厚みにより、正確に皮膚表面にかかる力を計測できているのかが問題である。しかし、回転方向の変位および力を計測するためには、回転部であるシリコンゲルを薄くすることは困難である。もう一点は、鋼板およびパッケージングの追加により、本研究で計測された静電容量変化と異なる結果になるであろうことが考えられる。今後はこれらを考慮しなければならない。
第 5 章 推定法とその適用

第 5 章では、多入出力の非線形センサの非線形性および非単調性に対応した反復法による推定法の原理、アルゴリズム、適用結果を紹介する。提案する推定法は関数近似法ベースの推定法であり、入出力特性の近似関数を高次多項式で定義した。本推定法は、目的関数の一部であるセンサの非線形入出力特性を高次多項式でモデル化することで、再現性のある非線形誤差を含む入出力特性からの出力値の推定を可能にしている。しかし、高次多項式は解候補が多く、最適値を検出することが困難である。多次元の高次多項式を解く際のアプローチとして、連立方程式ではなく独立した方程式として解を求めている。これらの解から有効な実行可能解を選択する。また、推定すべき多変数の出力値を各反復計算において1変数に限定している。そして、校正データから作成された基準テーブルを使用し、最も不足している変数およびその方向を選択し、探索する。これらの操作により、高次であっても調和を持った尤もらしい多変数の出力値を推定することが可能であると考えている。推定法の適用では、第 3 章および第 4 章で紹介したセンサを使用し、16成分の静電容量値から4成分の変位を推定するための反復アルゴリズムとして述べる。そして、開発された推定法と20 mm角センサの計測静電容量値を用いて、提案手法の推定精度について論じる。

5.1 提案手法の概要

提案手法における問題の定義および解決方法を紹介する。

校正時に取得された i 番目のセンサ素子における入出力特性の近似関数 f について、q 個の説明変数により n 次多項式として定義すると(5.1)が得られる。

\[f_i(x_1, \ldots, x_q) = \sum_{k_1=0}^{n} d_{k_1} x_1^{k_1} \cdots \sum_{k_q=0}^{n} d_{k_q} x_q^{k_q} \]

ここで、\(x_1, \ldots, x_q \) は説明変数を表している。\(d \) は近似係数であり、定数である。各説明変数に対し、n 次多項式を持続している。(5.1)の \(d \) を得るために必要な校正点数は最小で \((n + 1)^q \) である。全センサ素子数を \(p \) 個とすると、このように定義された \(f = (f_1, \ldots, f_p)^T \) から、最適な q 個の変数 \(x_1, \ldots, x_q \) を反復計算により探索する。

反復回数 t につき、q 個の変数から 1 個の探索する変数を選択する。この探索変数を \(x_1' \) とし、残りの \(q - 1 \) 個の変数を \(x_2', \ldots, x_q' \) とするとき、(5.1)は(5.2)のように書き換えられる。
ここで、\(\alpha \) は(5.2)における近似係数であり、\(x_2', \ldots, x_q' \) により定まる値である。この\(x_2', \ldots, x_q' \)には、初期値あるいは反復回数 \(t - 1 \) までに計算された値が代入される。

\[f_i(x_1') = \sum_{k_1=0}^{n} a_{ki}(x_2', \ldots, x_q') x_1'^{k_1} \quad (5.2) \]

したがって、反復回数 \(t \) において \(x_2', \ldots, x_q' \) に最適な値が代入された場合、\(x_1' \) は最適解に近い値を得ることができる。\(x_1', \ldots, x_q' \) の相互のバランスを調整しながら、反復計算は進行する。

実際の反復回数 \(t \) における計算は(5.3)に示す目的関数の \(R \) の最小化を目指す。

\[R = f - y \quad (5.3) \]

ここで、\(y \) は \(p \) 個のセンサ素子における計測値を表す。\(f \) は算出された \(x_1' \) を使用した \(x_1', \ldots, x_q' \) により定まる入出力特性の近似値を示す。したがって、\(R \) は残差である。これらはそれぞれ(5.4)に示す要素を持つ。

\[R = (R_1 \ldots R_i \ldots R_p)^T \]

\[f = (f_1(x_1') \ldots f_i(x_1') \ldots f_p(x_1'))^T \]

\[y = (y_1 \ldots y_i \ldots y_p)^T \quad (5.4) \]

(5.3)を \(x_1' \) について解く際、残差 \(R \) を \(0 \) とすると、(5.3)は(5.5)のように示される。

\[0 = f - y \quad (5.5) \]

(5.5)より、\(p \) 元 \(n \) 次連立方程式の問題に帰着するが、連立方程式として解く場合、制限が
多い。そこで、(5.5)を p 個の独立な方程式として解釈し、反復回数 t において算出される $p \times n$ 個の解のいずれかに最適解あるいは最適方向の解が存在すると考える。この方法により、入力数の変更を行った場合であっても、相当するセンサ素子の方程式を除外する操作のみであり、係数値の再計算を行う必要はない。$p \times n$ 個の解から実行可能解の選定を行う。実行可能解の条件は次の通りである。

・実数解
・制約条件の範囲内の解

制約条件は初期値あるいは反復回数 $t - 1$ までに計算された値により更新される。これら
の基準で選ばれた解の平均値を反復回数 t における推定値 x_1' とする。

探索変数および探索方向の種類は、変数の数（q 個）および増加あるいは減少方向の 2
方向で決定される。したがって、合計で $q \times 2$ 種類となる。各反復計算において、$q \times 2$ 種類
のいずれかの探索が実行される。この探索変数および探索方向が反復回数 t において最
も不適した成分である場合、この計算における残差 R の減少率は高くなる方向へ誘導でき
る。$q \times 2$ 種類について、センサが同時にとりうる状態数は 2^q 通りである。あらかじめ、それらの状態に対する R の傾向を校正時計測データより基準テーブルとして取得してお
く。今後、このテーブルを探索表と表記する。探索表は R の増加あるいは減少を示す
2 値のテーブル値を持っており、$p \times 2^q$ 個の要素を持つ。この探索表および反復回数 t に
おいて算出された残差 R の要素の一致度を計算し、探索変数および探索方向の種類 $q \times 2$
のそれぞれについての一致度の総和を取得する。$q \times 2$ 個の総和が一致度に基づいて、最
多成分が反復回数 t において最も不足した成分であり、反復回数 $t + 1$ における探索変数
および探索方向である。
5.2 センサの変位推定への適用

5.2.1 推定の流れ
変位推定の流れを図5.1に示す。推定処理は次のように分けられる。

1. 静電容量の入力
2. パラメータの更新
3. 解の計算
4. 解の決定
5. 変位の保存
6. 残差の計算
7. 探索変位および方向の選択
8. 収束判定

プロセス2からプロセス8を繰り返す。
図 5.1 変位推定法の流れ

5.2.2 目的関数

目的関数を(5.3)より(5.6)のように定めた。

\[R = f - y \] (5.6)

ここで, \(f \) は推定静電容量ベクトルである. \(y \) は入力ベクトル, すなわち計測静電容量を示している. したがって, \(R \) は静電容量の残差ベクトルを表している. これらのベクトルは, 入力ベクトルの要素数を \(p = 16 \) とすると, (5.7)に示す要素を有する.
第5章 推定法とその適用

\[
R = (R_1 \ldots R_i \ldots R_{16})^T
\]
\[
f = (f_1(x_1') \ldots f_i(x_i') \ldots f_{16}(x_1'))^T
\]
\[
y = (y_1 \ldots y_i \ldots y_{16})^T
\]

式 (5.7) に示す 16 個の方程式を表している。\(p = 16 \) はコンデンサの数に相当する。

\[
R_i = f_i(x_i') - y_i
\]

変数 \(x_1, x_2, x_3, x_4 \) および \(x_1', x_2', x_3', x_4' \) には 4 自由度の変位 \(X, Y, Z, \theta_Z \) が対応する。本研究では、表 5.2 のように変位を対応させた。この対応は、静電容量の計測の際に変位を \(X, Z, Y, \theta_Z \) の順に印加したことによる。

<table>
<thead>
<tr>
<th>(x_1')</th>
<th>(x_2')</th>
<th>(x_3')</th>
<th>(x_4')</th>
</tr>
</thead>
<tbody>
<tr>
<td>(X)</td>
<td>(Z)</td>
<td>(Y)</td>
<td>(\theta_Z)</td>
</tr>
<tr>
<td>(Y)</td>
<td>(Z)</td>
<td>(X)</td>
<td>(\theta_Z)</td>
</tr>
<tr>
<td>(Z)</td>
<td>(X)</td>
<td>(Y)</td>
<td>(\theta_Z)</td>
</tr>
<tr>
<td>(\theta_Z)</td>
<td>(Z)</td>
<td>(X)</td>
<td>(Y)</td>
</tr>
</tbody>
</table>

5.2.3 変位 - 静電容量特性モデル関数

\(f \) はコンデンサ \(i \) における推定静電容量値に相当する。この要素は \(f_i(x_1, x_2, x_3, x_4) \) である。このとき、\(f_i \) は変位 - 静電容量特性モデル関数であり、(5.1) より (5.9) のように 4 次多項式 \((n = 4) \) として定義された。次数 \(n \) の選択は、第 4 章に示した変位 - 静電容量特性の形状により決定された。理論静電容量において、変位 - 静電容量特性は単調増加関数型、単調減少関数型、2 次関数型の 3 タイプに分けられる。しかし、10 mm 角センサの計測値において、図 4.6 のように偶関数の対称性を持ったりながら 2 次関数型では表現不可能な曲線形状を持つ場合が存在する。また、20 mm 角センサにおいても、図 4.10 および図 4.14 の \(AB', AC', AD', BA', CD', DA', DC' \) のような 3 次関数型に近い曲線形状が見られた。以上から、4 次多項式によるフィッティングを採用した。したがって、校正点数は
反復回数

\[f_i(x_1', x_2', x_3', x_4') = \sum_{k_1=0}^{4} a_{k_1}(x_2', x_3', x_4') x_{1,t}^{k_1} \]

(5.10)
ここで，n_{EF} は t における実行可能解の数である。

5.2.4.2 実行可能領域

実行可能領域としての各変位成分に対する制約条件を述べる。ここで，各変位について推定された回数を $t_x, t_y, t_z, t_{\theta_z}$ とする。反復回数 t と推定回数 $t_x, t_y, t_z, t_{\theta_z}$ との関係は (5.13) である。

$$t = t_x + t_y + t_z + t_{\theta_z}$$
(5.13)

x_1' が Z 成分の場合，探索は必ず計測変位範囲の正領域で実行される。したがって，$t_z = 1$ における初期制約条件を (5.14) とする。

$$x_{1MIN}^{r(t_z)} \leq x_{1EF}^{r(t_z)} \leq x_{1MAX}^{r(t_z)}$$
(5.14)

ここで，$x_{1MIN}^{r(t_z)}$, $x_{1MAX}^{r(t_z)}$ はセンサの計測変位範囲の下限値および上限値を考慮して設定される定数である。変位推定前，変位 Z が必ず0以上の正値をとることは事前に既知であるが，X, Y, θ_z は定められない。したがって，反復回数 $t = 1$ における x_1' の変位成分を Z とした。一方，x_1 が X, Y, θ_z 成分の場合，変位正領域あるいは負領域の探索のために，初期制約条件を2種類用意した。x_1' が X 成分の場合の正領域探索初期制約条件を (5.15.1)，負領域探索初期制約条件を (5.15.2) に示す。

$$0 \leq x_{1EF}^{r(t_x)} \leq x_{1MAX}^{r(t_x)}$$
(5.15.1)

$$x_{1MIN}^{r(t_x)} \leq x_{1EF}^{r(t_x)} \leq 0$$
(5.15.2)

x_1' が Y 成分の場合の正領域探索初期制約条件を (5.16.1)，負領域探索初期制約条件を (5.16.2) に示す。

$$0 \leq x_{1EF}^{r(t_y)} \leq x_{1MAX}^{r(t_y)}$$
(5.16.1)

$$x_{1MIN}^{r(t_y)} \leq x_{1EF}^{r(t_y)} \leq 0$$
(5.16.2)

x_1' が θ_z 成分の場合の正領域探索初期制約条件を (5.17.1)，負領域探索初期制約条件を (5.17.2) に示す。
推定回数 $t_X > 1, t_Y > 1, t_Z > 1, t_{\theta Z} > 1$ において、相当する x_1' の制約条件の $x_{1'MIN}, x_{1'MAX}$ は更新される。探索変位およびその探索方向は $q \times 2 = 4 \times 2 = 8$ 種類であり、$X+, X-, Y+, Y-, Z+, Z-, \theta Z+, \theta Z-$ と表記する。増加方向に変位を探索する場合、推定回数 $t_X, t_Y, t_Z, t_{\theta Z}$ において、$x_{1'MIN}, x_{1'MAX}$ は(5.18.1), (5.19.1), (5.20.1), (5.21.1)のように更新される。また、減少方向に変位を探索する場合、$x_{1'MIN}, x_{1'MAX}$ は(5.18.2), (5.19.2), (5.20.2), (5.21.2)のように更新される。

<table>
<thead>
<tr>
<th>(t_X)</th>
<th>$x_{1'MIN}$</th>
<th>$x_{1'MAX}$</th>
<th>$x_{1'MIN}$</th>
<th>$x_{1'MAX}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>(t_Y)</td>
<td>$x_{1'MIN}$</td>
<td>$x_{1'MAX}$</td>
<td>$x_{1'MIN}$</td>
<td>$x_{1'MAX}$</td>
</tr>
<tr>
<td>(t_Z)</td>
<td>$x_{1'MIN}$</td>
<td>$x_{1'MAX}$</td>
<td>$x_{1'MIN}$</td>
<td>$x_{1'MAX}$</td>
</tr>
</tbody>
</table>

変位 $X, Y, Z, \theta Z$ における $x_{1'MIN}, x_{1'MAX}$ を表 5.3 に示す。

<table>
<thead>
<tr>
<th>x_1'</th>
<th>$x_{1'MIN}$</th>
<th>$x_{1'MAX}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>-2.1</td>
<td>+2.1</td>
</tr>
<tr>
<td>Y</td>
<td>-2.1</td>
<td>+2.1</td>
</tr>
<tr>
<td>Z</td>
<td>0</td>
<td>+2.1</td>
</tr>
<tr>
<td>θZ</td>
<td>-12</td>
<td>+12</td>
</tr>
</tbody>
</table>
第5章 推定法とその適用

5.2.5 探索変位と探索方向の決定

ある反復回数 t において、$t + 1$ における x_1' の探索変位とその探索方向は $X+, X-, Y+, Y-, Z+, Z-, \theta_Z+, \theta_Z-$ から選択される。この選択は、残差 R と探索表との比較によりなされる。残差 R は反復回数 t において推定された変位 x_1' を用いた (5.6) で示される。一方、探索表は校正において作成される各コンデンサの変位に対する静電容量の変化傾向の規則である。この方法を 5.2.5.1 にて述べる。しかし、この方法による検出では、同様の変位成分がループして、判定される危険がある。そこで、反復回数 t 以前の各変位成分の推定回数 $t_x, t_y, t_z, t_{\theta_Z}$ を考慮し、多推定成分を制限する。この制限については 5.2.5.2 に記述する。

5.2.5.1 不足度数

計測静電容量ベクトル y の要素は、4成分の変位それぞれの増加あるいは減少により変化する。この変位状態は $X+, X-, Y+, Y-, Z+, Z-, \theta_Z+, \theta_Z-$ と表記できる。これらの8成分の変位状態の組み合わせは、1 变位成分に対し 2 状態を持つため、$2^4 = 2^4 = 16$ 通りである。これを表 5.4 に示す。

<table>
<thead>
<tr>
<th>状態 j</th>
<th>X</th>
<th>Y</th>
<th>Z</th>
<th>θ_Z</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>2</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>-</td>
</tr>
<tr>
<td>3</td>
<td>+</td>
<td>-</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>4</td>
<td>+</td>
<td>-</td>
<td>+</td>
<td>-</td>
</tr>
<tr>
<td>5</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>6</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>-</td>
</tr>
<tr>
<td>7</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>8</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>-</td>
</tr>
<tr>
<td>9</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>+</td>
</tr>
<tr>
<td>10</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>11</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>+</td>
</tr>
<tr>
<td>12</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>13</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>+</td>
</tr>
<tr>
<td>14</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>15</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>+</td>
</tr>
<tr>
<td>16</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

表 5.4 変位状態の組み合わせ
第5章 推定法とその適用

表5.4に示す16通りの変位状態における静電容量の変化傾向を校正にて取得する。pに相当するコンデンサにおいて、無負荷状態あるいは最大静電容量状態における静電容量に対する静電容量変化の増加(1)あるいは減少(0)をテーブルとして記憶する。このテーブルを探索表とした。ここで、無負荷状態は \(X = 0\,\text{mm}, Y = 0\,\text{mm}, Z = 0\,\text{mm}, \theta_z = 0\,\degree\)の変位条件であり、最大静電容量状態 \(X = 0\,\text{mm}, Y = 0\,\text{mm}, Z = Z_{\text{MAX}}, \theta_z = 0\,\degree\)である。\(Z_{\text{MAX}}\)はZ方向におけるセンサの計測変位範囲（表3.4）の上限値である。

探索表の作成方法は以下の通りである。校正において計測された静電容量 \(C\)について、状態 \(j = 1 \sim 8 (Z+)\) では(5.22)を、\(j = 9 \sim 16 (Z-)\)では(5.23)を使用する。

\[
C'_{ki\,j} = C_{ki\,j} - C_{0\,i} \quad (5.22)
\]
\[
C'_{kl\,j} = C_{kl\,j} - C_{\text{MAX}\,i} \quad (5.23)
\]

ここで、\(C_{ki\,j}\)は状態 \(j\)のコンデンサ \(i\)における計測点 \(k\)の計測静電容量である。計測点数は任意の数であるが、2値テーブルに非単調関数を適用の場合、増加あるいは減少方向が一意に定まらない。厳密的には、単調関数や一部の2次関数には適用が可能であるが、変曲点が0から移動した2次関数や3次以上の関数には対応できない。そのため、本研究では、確率的に発生が多い増加あるいは減少方向を探索表に使用した。\(C_{0\,i}, C_{\text{MAX}\,i}\)はコンデンサ \(i\)における無負荷状態および最大静電容量状態の計測静電容量である。この差を \(C'_{ki\,j}\)と表記する。\(C'_{ki\,j}\)は(5.24)のように、その静電容量値の正值あるいは負值により、2値化される。

\[
C'_{B\,ki\,j} \begin{cases} 1 & (C'_{ki\,j} \geq 0) \\ 0 & (C'_{ki\,j} < 0) \end{cases} \quad (5.24)
\]

\(C'_{B\,ki\,j}\)は(5.25)のように計測点 \(k\)について総和をとる。

\[
C'_{B\,ij} = \sum_k C'_{B\,ki\,j} \quad (5.25)
\]

最後に、\(n_k/2\)を閾値とし、\(C'_{B\,ij}\)の要素を(5.26)のように2値化する。ここで、\(n_k\)は計測点数である。

\[
V_{B\,ij} \begin{cases} 1 & (C'_{B\,ij} \geq n_k/2) \\ 0 & (C'_{B\,ij} < n_k/2) \end{cases} \quad (5.26)
\]

65
第5章 推定法とその適用

探索表 \(V_B \) はコンデンサ \(p \)、状態 \(j \) より、\(p \times 2^q = 16 \times 2^4 = 256 \) 個の要素を持つ。

検出すべき探索変位とその探索方向は \(X+,X-,Y+,Y-,Z+,Z-,\theta_2+,\theta_2- \) の8成分である。これをクラス \(l \) とし、\(l = 1\sim8 \) \((X+,X-,Y+,Y-,Z+,Z-,\theta_2+,\theta_2-)\) として表す。この探索変位と探索方向を探索表 \(V_B \) と既に決定された反復回数 \(t \) における解 \(x_{1t} \) を(5.6)に代入することで計算される残差 \(R \) を使用して検出する。ただし、先に述べたように、使用している探索表は単調関数や一部の2次関数には適用が可能であるが、変曲点が0から移動した2次関数や3次以上の関数には対応できない。そこで、各変位において変位−静電容量特性が単調性を持ち静電容量の変化量が大きいコンデンサを選定し、これを有効コンデンサ \(i' \) とした。有効コンデンサ \(i' \) に相当するコンデンサ \(i \) を表5.5に示す。

表 5.5 有効コンデンサ \(i' \) に相当するコンデンサ \(i \)

<table>
<thead>
<tr>
<th>変位</th>
<th>コンデンサ (i)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(X)</td>
<td>2, 3, 5, 8, 9, 12, 14, 15</td>
</tr>
<tr>
<td>(Y)</td>
<td>3, 4, 7, 8, 9, 10, 13, 14</td>
</tr>
<tr>
<td>(Z)</td>
<td>1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16</td>
</tr>
<tr>
<td>(\theta_Z)</td>
<td>2, 4, 5, 7, 10, 12, 13, 15</td>
</tr>
</tbody>
</table>

有効コンデンサ \(i' \) における2値化された残差 \(R \) の要素 \(R_{Bi'} \) と探索表 \(V_B \) の要素 \(V_{Bi'j} \) を(5.27)のように比較する。

\[
p_{Si'i} = \begin{cases}
1 & (R_{Bi'} = V_{Bi'j}) \\
0 & (R_{Bi'} \neq V_{Bi'j})
\end{cases} \tag{5.27}
\]

ここで、\(p_{Si'i} \) は状態 \(j' \)、有効コンデンサ \(i' \) における一致度数である。\(i' \) について総和をとると、状態 \(j \) における一致度数 \(p_{Sj} \) が得られる。

\[
p_{Sj} = \sum_{i'} p_{Si'i} \tag{5.28}
\]

状態 \(j \) は表5.3に示すように、4自由度の複合変位である。クラス \(l \) の要因を持つ状態 \(j' \) について総和をとった値をクラス \(l \) に対する一致度数の総数、すなわち不足度数 \(p_{Si} \) とする。

\[
p_{Si} = \sum_{j'} p_{Sj'} \tag{5.29}
\]
ここで、状態 j' は表 5.6 の通りである。

表 5.6 クラス l に対する状態 j' に相当する状態 j

<table>
<thead>
<tr>
<th>クラス l</th>
<th>状態 j</th>
</tr>
</thead>
<tbody>
<tr>
<td>$X+$</td>
<td>1, 2, 3, 4, 9, 10, 11, 12</td>
</tr>
<tr>
<td>$X-$</td>
<td>5, 6, 7, 8, 13, 14, 15, 16</td>
</tr>
<tr>
<td>$Y+$</td>
<td>1, 2, 5, 6, 9, 10, 13, 14</td>
</tr>
<tr>
<td>$Y-$</td>
<td>3, 4, 7, 8, 11, 12, 15, 16</td>
</tr>
<tr>
<td>$Z+$</td>
<td>1, 2, 3, 4, 5, 6, 7, 8</td>
</tr>
<tr>
<td>$Z-$</td>
<td>9, 10, 11, 12, 13, 14, 15, 16</td>
</tr>
<tr>
<td>$\theta z+$</td>
<td>1, 3, 5, 7, 9, 11, 13, 15</td>
</tr>
<tr>
<td>$\theta z-$</td>
<td>2, 4, 6, 8, 10, 12, 14, 16</td>
</tr>
</tbody>
</table>

5.2.5.2 推定回数の点数化

反復回数 t における不足している可能性が高い変位は(5.29)により探索変位とその探索方向として決定されるが、この基準のみにより反復回数 t における推定成分を決定すると、同様の変位成分が探索変位 x'_1 として採用される可能性がある。このような場合、最優先に推定すべき変位があったとしても推定されず、残差 R の最小化が進行しない。そこで、各変位に対する推定回数 $t_X, t_Y, t_Z, t_{\theta z}$ の増加に対し、探索変位 x'_1 として採用されることを制限するペナルティ用の点数を設けた。

$t_X, t_Y, t_Z, t_{\theta z}$ の点数化のために、2 自由度の χ^2 乗分布の確率密度関数を使用した。この値は4 自由度の変位 $X, Y, Z, \theta z$ に対して設定した。これを(5.30)～(5.33)に示す。したがって、クラス $l = 1, 2$ において(5.30)，$l = 3, 4$ において(5.31)，$l = 5, 6$ において(5.32)，$l = 7, 8$ において(5.33)が適用される。$w_X, w_Y, w_Z, w_{\theta z}$ は χ^2 乗分布の重み係数である。

(5.30)～(5.33)において n は自由度を示し、この n は前述の次数 n とは異なる。

\[
p_{p_X}(t_X) = w_X \frac{1}{2\pi}\left(\frac{n}{2}\right)^\frac{n}{2} t_X^{n-1} e^{-\frac{t_X^2}{2}} \tag{5.30}
\]

\[
p_{p_Y}(t_Y) = w_Y \frac{1}{2\pi}\left(\frac{n}{2}\right)^\frac{n}{2} t_Y^{n-1} e^{-\frac{t_Y^2}{2}} \tag{5.31}
\]

\[
p_{p_Z}(t_Z) = w_Z \frac{1}{2\pi}\left(\frac{n}{2}\right)^\frac{n}{2} t_Z^{n-1} e^{-\frac{t_Z^2}{2}} \tag{5.32}
\]
推定法とその適用

\[p_{P\theta z}(t_{\theta z}) = w_{\theta z} \frac{1}{2\pi \Gamma(n/2)} t_{\theta z}^{n/2-1} e^{-t_{\theta z}/2} \] (5.33)

重み係数 \(w_X, w_Y, w_Z, w_{\theta z} \) は、(5.29)に多不足数 \(p_{S_l} \) の大きさにより調整される任意の定数である。以上より、\(x_1^{(t+1)} \) の変位成分は、不足度数 \(p_{S_l} \) とペナルティ用の点数 \(p_{P_X}, p_{P_Y}, p_{P_Z}, p_{P_{\theta z}} \) の和が最大のクラス \(l \) が採用される。

5.2.6 収束判定

プロセス 2 からプロセス 8 までの繰り返しは設定する最大反復回数 \(t_{\text{MAX}} \) で終了する。反復回数 \(t \) が設定する最大反復回数 \(t_{\text{MAX}} \) 以下 \((t \leq t_{\text{MAX}}) \) である場合、(5.34)のように絶対残差静電容量のコンデンサ \(i \) についての総和を指標として打ち切り判定を行う。

\[\sum_{i=1}^{16} |R_i| < w_C \sum_{i=1}^{16} |C_{\text{MAX},i}| \] (5.34)

ここで、\(w_C \) は打ち切り判定の閾値のための重み係数である。また、\(C_{\text{MAX},i} \) はコンデンサ \(i \)における最大静電容量状態の計測静電容量である。打ち切り判定に通過した場合、打ち切りが発生した反復回数 \(t \) における 4 自由度の推定変位が最終出力となる。\(t_{\text{MAX}} \) に至るまでに打ち切られなかった場合、絶対残差静電容量のコンデンサ \(i \)についての総和が最小である \(t \) における 4 自由度の推定変位が最終出力となる。

5.2.7 校正

20 mm 角センサにおいて、変位フルスケールは表 3.4 の変位の動作範囲の通りである。この変位フルスケールから校正変位を設定した。また、変位 \(X, Y, \theta_z \) をセンサに印加するためには変位 \(Z \) が必要である。したがって、変位 \(Z \) の最小値は 0 にすることができない。表 5.7 に校正に使用した変位条件を示す。入出力特性である変位－静電容量特性の近似関数を 4 次多項式に設定したため、各変位に対し 5 点の変位状態を選択した。これらの全組み合わせ数が校正点であり、\((n+1)^9 = (4+1)^4 = 5^4 \)点である。

<table>
<thead>
<tr>
<th>方向</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>(X) (mm)</td>
<td>-2.0</td>
<td>-1.0</td>
<td>0</td>
<td>1.0</td>
<td>2.0</td>
</tr>
<tr>
<td>(Y) (mm)</td>
<td>-2.0</td>
<td>-1.0</td>
<td>0</td>
<td>1.0</td>
<td>2.0</td>
</tr>
<tr>
<td>(Z) (mm)</td>
<td>0.5</td>
<td>0.8</td>
<td>1.2</td>
<td>1.6</td>
<td>2.0</td>
</tr>
<tr>
<td>(\theta_z) (degree)</td>
<td>-10</td>
<td>-5.0</td>
<td>0</td>
<td>5.0</td>
<td>10</td>
</tr>
</tbody>
</table>
5.3 方法

20 mm 角センサを使用し、理論静電容量および計測静電容量を入力値として、MATLAB により校正点および非校正点について変位推定を行った。入力値の変位条件および変位推定のためのパラメータは以下の通りである。

5.3.1 入力ベクトルとしての静電容量

3.2.2 に示したように、条件として設定した変位値を(3.4), (3.5)に代入することで電極間距離 \(D_i \) を算出し、\(D_i \)を(3.2)に代入することで理論静電容量を作成した。また、計測静電容量は4.2に示す計測方法と同様に取得した。校正点の変位条件は表5.7の通りである。理論静電容量における非校正点の変位条件は625点であり、これを表5.8に示す。各変位に対し5点の変位状態を選び、これらの全組み合わせ数が変位条件の5^4点である。ただし、\(X = 0 \text{ mm}, Y = 0 \text{ mm}, Z = 1.2 \text{ mm}, \theta_z = 0 \text{ degree} \) の1条件のみ、校正点の変位条件と重複している。

<table>
<thead>
<tr>
<th>表 5.8 理論静電容量における非校正点の変位条件</th>
</tr>
</thead>
<tbody>
<tr>
<td>方向</td>
</tr>
<tr>
<td>(X) (mm)</td>
</tr>
<tr>
<td>(Y) (mm)</td>
</tr>
<tr>
<td>(Z) (mm)</td>
</tr>
<tr>
<td>(\theta_z) (degree)</td>
</tr>
</tbody>
</table>

計測静電容量における非校正点の変位条件は10点であり、これを表5.9に示す。

<table>
<thead>
<tr>
<th>表 5.9 計測静電容量における非校正点の変位条件</th>
</tr>
</thead>
<tbody>
<tr>
<td>方向</td>
</tr>
<tr>
<td>(X) (mm)</td>
</tr>
<tr>
<td>(Y) (mm)</td>
</tr>
<tr>
<td>(Z) (mm)</td>
</tr>
<tr>
<td>(\theta_z) (degree)</td>
</tr>
</tbody>
</table>
したがって、推定の入力値である静電容量の条件は以下の4条件になる。

- 理論値校正点（625点）
- 理論値非校正点（625点）
- 計測値校正点（625点）
- 計測値非校正点（10点）

理論値条件において、入出力特性の近似関数は単調増加関数、単調減少関数、1次関数、2次関数が推定時に使用される。2次関数型のみ、非単調特性である。また、4自由度の変位状態が一致するならば、入力値、校正値、近似関数値の静電容量も一致する。一方、計測値条件では、入出力特性の近似関数として、上述の関数以外に3次関数型が存在する。この3次関数型は単調特性および非単調特性の両方を持つ。加えて、理論値条件との最大の相違点は4自由度の変位状態が一致したとしても、ばらつきを持つため、入力値、校正値、近似関数値の静電容量は一致しない。さらに、校正点条件は入力値が近似関数の曲線周辺に存在することが保証されているが、非校正点条件はこのような保証は存在しない。

5.3.2 変位推定のためのパラメータ
変位推定のためのパラメータとして、\(\chi^2 \)乗分布の重み係数 \(w_X = 80, w_Y = 80, w_Z = 80, w_{\theta Z} = 80 \)、打ち切り判定の閾値のための重み係数 \(w_c = 0.005 \)、最大反復回数 \(t_{MAX} = 60 \)を使用した。

5.3.3 評価指標
推定のための評価指標としてフルスケール誤差 \(FSE \)を使用した。これを(5.35)に示す。

\[
FSE = \frac{|X^* - \hat{X}|}{X_{FS}} \times 100
\]

(5.35.1)

\[
FSE = \frac{|Y^* - \hat{Y}|}{Y_{FS}} \times 100
\]

(5.35.2)

\[
FSE = \frac{|Z^* - \hat{Z}|}{Z_{FS}} \times 100
\]

(5.35.3)

\[
FSE = \frac{|\theta_{Z}^* - \hat{\theta_{Z}}|}{\theta_{ZFS}} \times 100
\]

(5.35.4)

ここで、\(X^*, Y^*, Z^*, \theta_{Z}^* \)は各変位の最終出力値を示しており、\(\hat{X}, \hat{Y}, \hat{Z}, \hat{\theta_{Z}} \)は入力値の変位条件を示している。\(X_{FS}, Y_{FS}, Z_{FS}, \theta_{ZFS} \)は各変位のフルスケールであり、20 mm角センサのフルスケールは表3.4の通りである。各変位に対し1%の\(FSE \)に相当する絶対誤差は、
第 5 章 推定法とその適用

$X = 0.04 \text{ mm}, Y = 0.04 \text{ mm}, Z = 0.02 \text{ mm}, \theta_Z = 0.2 \text{ degree}$ である。計測静電容量を入力値とした場合を含め、20% FSE を目標として設定した。
5.4 推定結果

5.4.1 収束性

図5.2に反復回数に対する平均残差の推移を示す。この平均残差は全センサ素子、すなわち16個のコンデンサにおける残差静電容量の平均値である。

全体的に残差は減少傾向を持った。この減少傾向は実行された全推定において確認された。また、残差の局所的な増加が見られた。これらの挙動は、各反復回数において探索変数を1変位に限定したためである。計算開始時からある反復回数まで、4変位は最適方向への推定が実行され、残差が減少する（図5.2のA1、A2）。しかし、16個の残差あるいは入力値の静電容量と4変位との間には、保つべきバランスが存在しているため、このバランスを崩さなければならない次段階の最適方向への推定が実行できない。そのため、バランスの崩壊時に残差が局所的に増加する（図5.2のB1、B2）。その後、再び残差の減少および局所的な増加を繰り返し、最適解へ近づいていく。このような機能により、局所最適解への停止を防止することが可能であると考える。

5.4.2 反復回数および計算時間

図5.3に入力値の全条件に対する平均計算時間および平均反復回数を示す。これらは推定課題の難易度に比例する。ばらつきが存在する入力値や高次関数の形状を持つ入出力特性を使用する推定課題は最適解への到達が困難である。したがって、計算時間の条件では反復回数とともに、計算時間は増加する。また、非校正点は入出力特性の近似曲線周辺に計測値が存在することが保証されないため、最適解への到達難易度が高い入力値の条件である。
第 5 章 推定法とその適用

5.4.3 理論静電容量における推定結果
5.4.3.1 校正点における推定結果

理論静電容量を入力値とした校正点における推定点は 625 点であり、625 点の FSE の最大値および平均値を表 5.10 に示す。

| 表 5.10 理論静電容量校正点におけるフルスケール誤差 FSE(%) |
|-----------------|-----|-----|
| 变位 | 最大値 | 平均値 |
| X | 1.3 | 0.17 |
| Y | 1.9 | 0.17 |
| Z | 4.9 | 0.24 |
| θ_z | 1.8 | 0.17 |

5.4.3.2 非校正点における推定結果

理論静電容量を入力値とした非校正点における推定点は 625 点であり、625 点の FSE の最大値および平均値を表 5.11 に示す。
表 5.11 理論静電容量非校正点におけるフルスケール誤差 FSE(%)

<table>
<thead>
<tr>
<th>変位</th>
<th>最大値</th>
<th>平均値</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>4.8</td>
<td>0.3</td>
</tr>
<tr>
<td>Y</td>
<td>2.1</td>
<td>0.3</td>
</tr>
<tr>
<td>Z</td>
<td>2.7</td>
<td>0.4</td>
</tr>
<tr>
<td>θZ</td>
<td>3.9</td>
<td>0.4</td>
</tr>
</tbody>
</table>

5.4.4 計測静電容量における推定結果

5.4.4.1 校正点における推定結果
計測静電容量を入力値とした校正点における推定点は 625 点であり、625 点の FSE の最大値および平均値を表 5.12 に示す。

表 5.12 計測静電容量校正点におけるフルスケール誤差 FSE(%)

<table>
<thead>
<tr>
<th>変位</th>
<th>最大値</th>
<th>平均値</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>19</td>
<td>2.8</td>
</tr>
<tr>
<td>Y</td>
<td>11</td>
<td>1.0</td>
</tr>
<tr>
<td>Z</td>
<td>9.7</td>
<td>1.2</td>
</tr>
<tr>
<td>θZ</td>
<td>22</td>
<td>3.1</td>
</tr>
</tbody>
</table>

5.4.4.2 非校正点における推定結果
計測静電容量を入力値とした非校正点における推定点は 10 点であり、10 点の FSE の最大値および平均値を表 5.13 に示す。

表 5.13 計測静電容量非校正点におけるフルスケール誤差 FSE(%)

<table>
<thead>
<tr>
<th>変位</th>
<th>最大値</th>
<th>平均値</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>4.7</td>
<td>2.6</td>
</tr>
<tr>
<td>Y</td>
<td>1.9</td>
<td>1.1</td>
</tr>
<tr>
<td>Z</td>
<td>3.4</td>
<td>2.0</td>
</tr>
<tr>
<td>θZ</td>
<td>5.7</td>
<td>3.1</td>
</tr>
</tbody>
</table>
5.5 考察

5.5.1 校正点と非校正点

理論静電容量では校正点における推定精度は非校正点より良好であるが、計測静電容量では非校正点における推定精度は校正点より良好であった。本推定法は変位－静電容量特性を \(n \) 次多項式で近似しており、この曲線は校正点を必ずしも通らない。したがって、校正点と非校正点における推定精度に大きな差異を発生させる要因は有していないと考えられる。ただし、計測静電容量非校正点における推定は 10 点であるため、評価対象の推定点を増やす必要がある。

5.5.2 0 変位における推定の課題

理論静電容量間、あるいは計測静電容量間の平均フルスケール誤差はほぼ同程度であり、十分に小さい値になっている。計算静電容量校正点における推定では、最大フルスケール誤差は 22%であったが、平均フルスケール誤差が十分に小さい値であることから、20%に近いフルスケール誤差を持つ推定点は少数であることがわかる。このとき、20%以上の推定点の変位条件は \(X = -2.0 \text{ mm}, Y = -2.0 \text{ mm}, Z = 2.0 \text{ mm}, \theta_z = 0 \text{ degree} \) の 1 条件であった。このような 0 変位課題への脆弱性は、以前に実行された検討においても確認された[26]。その際、20% FSE 以上の入力条件は表 5.14 に示す 6 条件であり、いずれかの変位に 0 を含む課題であった。

<table>
<thead>
<tr>
<th>方向</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>(X) (mm)</td>
<td>0</td>
<td>-1.0</td>
<td>0</td>
<td>-1.0</td>
<td>2.0</td>
<td>2.0</td>
</tr>
<tr>
<td>(Y) (mm)</td>
<td>0</td>
<td>-2.0</td>
<td>-2.0</td>
<td>-1.0</td>
<td>-1.0</td>
<td>0</td>
</tr>
<tr>
<td>(Z) (mm)</td>
<td>2.0</td>
<td>2.0</td>
<td>1.6</td>
<td>2.0</td>
<td>2.0</td>
<td>0.8</td>
</tr>
<tr>
<td>(\theta_z) (degree)</td>
<td>-5.0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

5.1.5 で紹介した不足変位の検出で使用する探索表は、各変位が正値あるいは負値となる変位状態における静電容量変化の規則を示した表であった。したがって、探索表には各変位の値が 0 となる場合の静電容量変化の情報は記述されていない。このことが、先の変位条件においてフルスケール誤差が大きくなった要因であると考えられる。したがって、探索表により多くの情報を記載するなどの対処が必要である。一方で、現在の探索表を採用した状態での推定精度の向上を試みた。0 変位の検出は、反復回数 \(t \) における探索変位および探索方向の推移や残差量の推移から推測することが可能である。図 5.4 は \(X = -2.0 \text{ mm}, Y = -2.0 \text{ mm}, Z = 2.0 \text{ mm}, \theta_z = 0 \text{ degree} \) の入力条件における変位 \(\theta_z \) の推移である。
第5章 推定法とその適用

図5.4 反復回数に対する変位θzの推移

0 mmに収束せず、振動していることが確認された。このとき、残差Rの減少率は低下し、変位θzの探索方向は+と−を繰り返す。このパターンの検出に対し、解の探索領域の変更処理を実行する。図5.5はこのようなθz=0 degreeを入力条件とする課題におけるエラー修正の適用例である。

図5.5 0変位課題へのエラー修正の例

入力条件はX=1.0 mm,Y=−1.0 mm,Z=0.5 mm,θz=0 degreeである。また、この方法は0変位の対応だけでなく、パターンの分類が可能な他のエラー要因への対処も可能である。
第5章 推定法とその適用

図5.6は\(X = -2.0\) mm,\(Y = 0\) mm,\(Z = 0.8\) mm,\(\theta_z = -10\) degree を入力条件とする課題における探索方向の誤りに対するエラー修正の適用例である。

図5.6 探索方向の誤りへのエラー修正の例

推定開始時、探索領域は正であるが修正を行うことで探索領域を負領域の探索を実行し、課題値である\(\theta_z = -10\) degree へ収束している。

5.5.3 推定能力

収束性の確認は実行していないが、入力値である4条件に対し、全ての推定において発散は確認されていない。理論値条件は入出力特性として単調増加関数、単調減少関数、2次関数を持っており、ばらつきを持たない。この条件に対し、\(FSE\)は4.9%であり、良好な推定精度であることが確認された。一方で、3次関数の入出力特性およびばらつきを含む計測値条件において、\(FSE\)は22%であった。ただし平均フルスケール誤差は小さく、大きな\(FSE\)を持つ課題はきわめて少ない。このような\(FSE\)増大の課題に対し、より多くの情報を記載した探索表の採用や探索変位および探索方向の推移を利用したエラー修正により、精度の向上が可能である。

5.5.4 実現への課題

本推定法では、目的関数の一部である非線形入出力特性を高次多項式でモデル化し、入出力特性が持つ非線形性および非単調性の影響に対処している。シリコーンゲルなどのセンサ材料の経年変化による影響は、再度、校正を行い、モデル関数のパラメータを変更することで対応可能である。ただし、突発的なノイズの混入に対処できる方法ではない。また、本推定法では勾配情報を使用していないが、探索変数および探索方向の決定の際、有
第5章 推定法とその適用

効コンデンサとして単調特性を持つセンサ素子を選択しているように、現在、良好な反復を進行させるためには、入出力特性に単調な変化が必要である。

また、4.4.3に記述したように、計測対象は骨突出部下の皮膚であるため、皮膚側の電極基板は骨突出の曲率に合わせ変化するであろうことが予想される。2枚の電極基板の平行性が崩れる場合、校正時とは異なる静電容量変化が各コンデンサで発生するため、良好な推定は期待できない。したがって、電極基板とセンサ外面のパッケージングとの間の鋼板の追加は推定法の精度を保つためにも必要である。
第6章

結論

第6章では、本研究の結論と今後の課題および展望を述べる。

6.1 結論

本研究では、ディジタル式の多入出力の非線形センサにおいて、測定量から尤もらしい出力値を得るための反復法による推定法の開発を行った。この推定法は関数近似法の一つであり、センサにおいて高い再現性が保証された場合に有効な手法であり、入出力関係が関数として定義される利点を持つ。多出力を推定するために、複数のセンサ素子における非線形かつ非単調な入出力特性の近似関数を利用し、それらの曲線の接点に尤もらしい解が存在すると考えた。反復計算では、入出力特性の近似関数である高次多項式を目的関数の多変数推定量を1変数問題に変換し、順次、推定することで、最も適解への停止を防止している。また、複数のセンサ素子に対する入出力特性の近似関数を連立方程式として解かず、独立した方程式として解くことで、最適解あるいは最適方向の解の未検出を防止している。また、この方法により、入力数の変更を行った場合であっても、相当するセンサ素子の方程式を除外する操作のみであり、係数値の再計算を行う必要はない。

開発した推定方法は我々の研究グループが開発した生体用4自由度静電型力センサに対し適用した。この検討のために、開発した力センサの妥当性および再現性の確認を行った。静電容量の計測では、10 mm 角および20 mm 角の2種類の大きさのセンサについて、非線形かつ非単調な入出力特性であるものの、十分に小さいと考えられる変動係数3.23%および0.06%であることが確認された。このとき得られた入出力特性から推定パラメータを定義し、16入力4出力の4次多項式における変位推定を実行した。入出力特性として単調増加関数、単調減少関数、2次関数を持ち、ばらつきを持たない理論値条件下では、FSE は4.9%であり、良好な推定精度であることが確認された。一方で、3次関数の入出力特性およびばらつきを含む計測値条件下において、FSE は22%であったが、平均フルスケール誤差は小さく大きなFSEを持つ課題はきわめて少ない。このようなFSE増大の課題に対し、より多くの情報を記載した探索表の採用や探索変位および探索方向の推移を利用したエラー修正による推定精度向上の可能性を示唆した。以上の結果から、現段階において、3次関数以下の入出力特性を持つセンサ素子や環境変数などへの適用が可能であると考えられる。
6.2 今後の課題および展望

6.2.1 センサ構造

第4章における静電容量の計測結果において、センサの上下電極基板の位置ずれが確認された。この位置ずれは回転変換による補正により、改善できた。今後のセンサの組立てでは、2枚の電極基板の位置ずれ防止のために、レーザ光による位置の確認を考えている。組み立て時に位置ずれの発生を防止することは、推定処理における負荷を減少させ、また、変位および力の推定精度を高めることにつながる。また、計測結果の入出力特性の形状から、上下電極ラインの干渉が確認された。20 mm角センサでは上下電極ライン間に絶縁板を配置することでばらつきの軽減を図ったが、将来的には電極ラインのシールドを行い、この干渉を防止する必要がある。

6.2.2 推定法

第5章における変位推定結果において、20%に近いフルスケール誤差を持つ推定点は少数であることが確認できた。このような大きな誤差を持つ推定点は、0変位を含む条件であった。本推定法では、次反復回の推定成分をコンデンサにおける静電容量変化情報と一致した探索表との一致度判定により決定しており、この探索表には各変位の値が0となる場合の静電容量変化の情報は記述されていない。そのため、0変位を含む条件の推定は脆弱である。また、本研究で使用した探索表は非単調特性に対応しておらず、したがって、探索表の改良やエラー処理を行うべきである。0変位の検出は、各反復回における推定成分の推移や残差静電容量の推移から推測することが可能であると考えている。

6.2.3 計測回路の開発

本研究において、センサ信号の計測回路は未開発である。センサの実現のためには、今後は計測回路の開発を行わなければならぬ。静電容量の計測のために、24ビット容量デジタル・コンバータ（Analog Devices, AD7746）の利用を考えている。計測回路の開発により、第4章における静電容量特性とは異なる変化量と非線形誤差が計測される可能性がある。この影響はセンサのパッケージングにおいても同様のことが言える。また、回転方向の変位および力をセンサに加える際、電極ラインは変位とともに移動するため、動作範囲が構造的な制限を受ける可能性がある。

6.2.4 6自由度力センサへの拡張

3.1.2 で言及した通り、本センサは構造的に、6自由度の変位および力の検出が可能である。3軸回りの回転変位および力に関する基礎研究は[25]において、猪口らにより妥当性の検討が行われている。本研究で紹介した変位推定法の6自由度への拡張は、高次多項式で示された入出力特性、すなわち変位－静電容量特性の近似関数の拡張であるため、理論的
第6章 結論

には可能である。しかし、拡張とともに、校正点数が増大することも考慮しなければならない。
参考文献

[23] Y. Ishikuro, Basic study of a force sensor that enables simultaneous measurement of normal/shear forces and torque. MD thesis. Graduate School of Information Science and Technology, Hokkaido University, 2009. (In Japanese.)

謝辞

本研究は筆者が北海道大学大学院 情報科学研究科 生命人間情報科学専攻 博士課程在学中に、生体システム工学講座 生体計測工学研究室において 2010 年 4 月から 2014 年 3 月までの 4 年間でなされたものである。

本研究の遂行にあたり、御指導、御助言、御討論頂いた
北海道大学大学院 情報科学研究科 生命人間情報科学専攻 生体システム工学講座 高橋誠 特任准教授
に心より感謝致します。

本研究の遂行にあたり、御指導、御助言、御討論頂いた
北海道大学大学院 情報科学研究科 生命人間情報科学専攻 生体システム工学講座
清水孝一 教授
遠藤俊徳 教授
北海道大学大学院 情報科学研究科 システム情報科学専攻 システム創成情報学講座
金子俊一 教授
に心より感謝致します。

本研究の遂行にあたり、御指導、御助言頂いた
北海道大学大学院 情報科学研究科 生命人間情報科学専攻 生体システム工学講座
工藤信樹 准教授
北海道大学大学院 情報科学研究科 情報エレクトロニクス専攻 集積システム講座
浅井哲也 准教授
に心より感謝致します。

本研究の基盤となる研究に携わり、御指導、御助言、御討論頂いた
北海道電力株式会社 石黒佑介氏
タカノ株式会社 赤羽良輔氏
Y's DATA LINK OFFICE 熊川良幸氏
トヨタ自動車株式会社 猪口郁也氏
に心より感謝致します。

基盤研究の遂行にあたり、多大なる御協力、御助言を頂いた
タカノ株式会社 木村義雄氏
柏原岳志氏
に心より感謝致します。

また、北海道大学大学院での学術活動にあたり、御指導、御助言、御討論頂いた
北海道大学 高等教育推進機構 佐多正至氏
に心より感謝致します。

最後に、家族に心より感謝致します。