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Abstract

We propose a heat pump model utilizing the Dufour effect and study

this system by numerical and theoretical analysis. Numerically, we perform

molecular dynamics (MD) simulations of this system and measure the cooling

power and the coefficient of performance (COP) as figures of merit. In these

simulations, we confirm that this system is surely useful as a heat pump.

Theoretically, we derive the phenomelogical equations describing this sys-

tem by using the linear irreversible thermodynamics and compare the theoret-

ical results with the data obtained numerically. We also apply the transport

coefficients derived microscopically from the Chapman-Enskog theory to our

phenomelogical equations and verify the validity of our theory in more detail.
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Chapter 1

Introduction

1.1 History of Dufour Effect

In 1873, L. Dufour discovered Dufour effect, or the diffusion thermoeffect

by experiment.1), 3) In his experiments, a porous vessel was contained within

another airtight vessel, and two different types of gasses were infused into

the porous vessel and the space between the two vessels. When hydrogen was

circulated in the space between the vessels, while the inner vessel was filled

with air, he observed a temperature falls inside the porous vessel. A similar

temperature fall was observed, when air was circulated in the space between

the two vessels, while the inner vessel was filled with carbon dioxide. Moreover

he found that these temperature falls occur near the surface of the porous

partition during the diffusion process of the circulated gas into the porous

vessel. These results implied that a diffusive mixing of different gasses induces

a flow of heat in the gas mixture. By considering the molecular weights of the

gases used in the experiment, it was presumed that the heat current of this
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phenomenon is transformed from the higher-molecular-weight gas toward the

lower-molecular-weight gas. Later, it was found that the porous diaphragm

of his experiment was not essential for Duffour effect. For example, Miller

(1949) used an iris diaphragm in his experiment2) of Dufour effect.

In the 1910’s, Chapman and Enskog succeeded in the first theoretical de-

scription of Duffour effect. Using the kinetic theory,4),5) they microscopically

analyzed the non-uniform gas mixture, in which the temperature T and the

number densities of molecules of the two gasses nA, nB are non-uniform in

space. From Chapman-Enskog theory of non-uniform gases, mainly, the two

results concerned with Dufour effect were derived. The first result is that the

heat current q is proportional to the mole fraction gradient ∇xA not only to

the temperature gradient ∇T , where the the mole fraction of the component

A is defined as

xA ≡ nA∑
i ni

. (1.1)

Therefore,

q = −κ∇T − nkBT
2D′′∇xA, (1.2)

where D′′ is the coefficient of Dufour effect, kB is Boltzmann constant, and n

is the total number density of all the components, i.e. n =
∑

i ni. The deriva-

tion of The second term of Eq.(1.2) means that, when the two chemically dif-

ferent gases mix, the heat is transferred from the side of the component B to

the side of A if D′′ < 0, conversely the heat flows from A to B if D′′ > 0. The

second main result of the Chapman-Enskog theory concerned with Dufour

effect is that, for such special cases of the intermolecular potential, as the
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rigid sphere, inverse power repulsion potentials, and the Lennard-Jones po-

tential, the coefficient of Dufour effect D′′ is positive if the molecular weight

of the component A is higher than that of the component B. This second

result is consistent with the experiment by Dufour.

In the 1940’s, L. Waldmann constructed the phenomenology of Dufour

effect, by introducing the phenomenological equation of the mole fraction

xA and the temperature T . His phenomenology explained the result of Du-

four’s experiment that the temperature changes occur near the surface of the

porous partition. Although the first derivation of the his phenomenological

equation was very complicated, his equation was later derived by using the

liner irreversible thermodynamics11)–13) in a comprehensible way. Thus, after

reviewing the liner irreversible thermodynamics in next chapter, we will come

back to the Waldmann’s Phenomenology in the section 2.2.

1.2 Aim of this thesis

Although the Dufour effect was discovered and studied long before, as

seen in the previous section, industrial applications of this phenomena have

not been devised, compared with Soret effect which is the contrary effect of

Dufour effect1. For this reason, our purpose in this thesis is to investigate

a possibility of application of Dufour effect from the fundamental physical

point of view, considering a heat pump model utilizing this effect. Therefore,

we will not go deeply into the industrial field this time. The purpose of this

1Soret effect is the phenomena that the diffusion flow occurs when the temperature

gradient is present in the gas mixture. This effect is well described by the linear non-

reversible thermodynamics. Soret effect is utilized for the Isotope separation.6)
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study is also inspired by the studies of the thermoelectric by H.Callen9) and

other physicist.10)

1.3 Organization of this thesis

The organization of the present thesis is as follows. In chapter 2, we review

the microscopical studies concerned with the Dufour effect. After reviewing

the liner irreversible thermodynamics,8),11)–13) we review the Waldmann’s

phenomenology.7) In chapter 3, the heat pump model is proposed, and us-

ing the molecular dynamics (MD) simulation,16)–18) the usefulness as a heat

pump of this mode is confirmed numerically. In chapter 4, we analytically

calculate the cooling power and the coefficient of power (COP) in the simple

case, and this result is compared with the data obtained numerically by the

MD simulation. In this comparison, we use the transport coefficient micro-

scopically calculated by the Chapman-Enskog theory.4) We summarize the

results of this thesis, and discuss the remaining works in chapter 5.

4



Chapter 2

Review

2.1 Linear Irreversible Thermodynamics

2.1.1 Onsager Theory and Linear Relation

In 1931, L. Onsager discovered a general and powerful set of reciprocal

relations describing a system in which two or more irreversible processes

occur simultaneously.8) These relations are so called “Onsager’s reciprocal

relations”, and became a genesis of the development of the liner irreversible

thermodynamics. Consider a set of irreversible processes described by a set of

measurable parameters {αi} of the system. If these parameters are changed

by {δαi} in an infinitesimal time δt, we assume that the rates of change of

these {αi} can be written as

δαi

δt
=

∑
j

Lij
δS

δαj

, (2.1)

where the sum
∑

j is taken for all the irreversible processes, and S(α) is

the entropy of the system, and the coefficients Lij’s are called the Onsager
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coefficients. Since the entropy S(α) should be maximized in equilibrium,

the more the system is apart from equilibrium the more the differentials

δS
δαi

change from zero. Therefore, Eq.(2.1) means that if the system is in

the irreversible process, the rates of change of measurable parameters αi are

proportional to the differentials δS
δαi

as a degree of nonequilibrium. These

relations will be called simply “linear relations” in this thesis. From the

assumption of these relations, Onsager derived the following simple symmetry

relations,

Lij = Lji, (2.2)

using the property of time reversal invariance of the microscopic dynamics

of the molecules. This symmetry relation is called “Onsager’s reciprocal re-

lation”, and he won the Nobel prize for chemistry in 1968. In the following,

we call the term δS
δαi

as ”force”, and δαi

δt
as “current” of the process.

In this section, the linear relations of the system of the non-uniform gas

mixture will be derived. But, in generally, it is very difficult to calculate the

forces δS
δαi

directly. By calculating the rate of entropy change in the irreversible

process δS
δt
, the forces δS

δαi
and the corresponding currents δαi

δt
can be identified

from the following equation,

δS

δt
=

∑
j

δS

δαj

δαj

δt
. (2.3)

Thus, for deriving the linear relations, we may calculate the rate of entropy

change δS
δt

of the irreversible process in the nonuniform gas system.
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2.1.2 Entropy Production of Non-uniform Gas Mix-

ture

To calculate the rate of change of the entropy in the irreversible process,

the variation of the entropy dS is divided into the two terms,

dS = deS + diS, (2.4)

where deS is the entropy supplied to the system by its surroundings, and diS

is the entropy produced inside the system. And the second law of thermody-

namics states

diS ≥ 0. (2.5)

By using the expressions

S =

∫
V

ρsdV, (2.6)

deS

dt
= −

∫
Ω=∂V

Js,tot · dΩ, (2.7)

diS

dt
=

∫
V

σdV, (2.8)

where ρ is the density, s is the entropy per unit mass, Js,tot is the total

entropy flux, and σ is the entropy production rate per unit volume, we can

rewrite eqs.(2.4) and (2.5) in a local form as

∂(ρs)

∂t
= −∇ · Js,tot + σ, (2.9)

σ ≥ 0. (2.10)

Using Langrange derivative

d

dt
≡ ∂

∂t
+ vG ·∇, (2.11)
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eq. (2.9) can be rewritten in a different form,

ρ
ds

dt
= −∇ · Js + σ, (2.12)

where vG is the velocity of the local center of mass and Js is the entropy flux

defined as

Js ≡ Js,tot − ρsvG. (2.13)

The entropy production rate σ can be given by calculating ds
dt

using eq.(2.12).

To obtain ds
dt
, we assume the “local equilibrium” which implies that “Al-

though the total system is in nonequilibrium, there exists a local system of

small mass (or volume) elements, where the local thermodynamics variables

fulfill the following equilibrium thermodynamic relation”,

Tds = du+ pdv −
∑
k

µkdck, (2.14)

where u is the internal energy per unit mass, p is the equilibrium pressure, v is

the specific volume per unit mass, µk is the chemical potential of component

k (defined as partial specific Gibbs function µk ≡ (∂G/∂Mk)T,p,M ′
k
), and ck

is the mass fraction defined as

ck ≡
ρk
ρ
, (2.15)

using ρk denoting the density of the component k. In particular we assume

that eq. (2.14) remains valid for mass (or volume) elements moving with the

local center of mass, therefore using Langrange derivative eq.(2.11) we can

write

T
ds

dt
=
du

dt
+ p

dv

dt
−
∑
k

µk
dck
dt
. (2.16)
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Thus, for calculating ds
dt
, we need to calculate du

dt
, dv
dt

and dck
dt
.

The time differentials du
dt
, dv
dt

and dck
dt

come from each conservation law.

First we use the conservation of mass of each component k,

∂ρk
∂t

= −∇ · (ρkvk), (2.17)

or, summing up eq.(2.17) for all the components,

∂ρ

∂t
= −∇ · (ρvG). (2.18)

Using Lagrange differential eq.(2.17) can be rewritten as d
dt
,

dρk
dt

= −∇ · (ρkvk) + vG ·∇ρk, (2.19)

= −ρk∇ · vG −∇ · Jk, (2.20)

where Jk ≡ ρk(vk − vG) is the mass diffusion flow of the component k.

Similarly, summing up eq.(2.20) for all the components, we obtain

dρ

dt
= −ρ∇ · vG, (2.21)

where we used ∑
k

Jk = 0. (2.22)

Thus, using eqs.(2.20) and (2.21), we can calculate dck
dt

and dv
dt

as

dck
dt

=
d(ρk/ρ)

dt
=

1

ρ

dρk
dt

− ρk
ρ2
dρ

dt
(2.23)

= −1

ρ
∇ · Jk, (2.24)

dv

dt
=
d(ρ−1)

dt
= − 1

ρ2
dρ

dt
(2.25)

=
1

ρ
∇ · vG. (2.26)
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Next, we use the conservation of energy for calculating du
dt
. The conserva-

tion law is expressed as

∂(ρe)

∂t
= −∇ · Je, (2.27)

where e is the energy per unit mass and Je is the energy flux. The total

energy density ρe including not only the internal energy density ρu but also

the kinetic energy and the potential energy of the elements of the fluid is

written as

ρe =
1

2
ρv2G +

∑
k

ρkΨk + ρu, (2.28)

where Ψk is the external potential energy per unit mass of the component k.

By substituting eq.(2.28) into eq.(2.27),

∂ 1
2
ρv2G
∂t

+
∑
k

∂ρkΨk

∂t
+
∂ρu

∂t
= −∇ · Je. (2.29)

With the conservation of mass eq.(2.17), the second term of eq.(2.29) can be

written as

∂ρΨk

∂t
= ρk

∂Ψk

∂t
+ Ψk

∂ρk
∂t︸ ︷︷ ︸

−Ψk∇·ρkvk

(2.30)

= ρk
∂Ψk

∂t
− ρkFk · vk −∇ · ρkΨkvk (2.31)

= ρk
∂Ψk

∂t
− ρkFk · vG − Fk · Jk −∇ · (ρkΨkvG +ΨkJk), (2.32)

where Fk ≡ −∇Ψk is the force exerted on the component k per unit mass.

With the relation derived from eq.(2.18)

ρ
da

dt
=
∂(aρ)

∂t
+∇ · aρvG, (2.33)
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using a denoting an arbitrary function as a scalar or a component of a vector

or tensor, the first and third terms of eq.(2.29) can be written as

∂ρu

∂t
= ρ

du

dt
−∇ · uρvG, (2.34)

∂ 1
2
ρv2G
∂t

= ρ
d1
2
v2G
dt

−∇ · ρ
2
v2GvG. (2.35)

Using the equation of the motion of the mass elements

ρ
dvGα

dt
= −

∑
β

∂

∂xβ
Pβα +

∑
k

ρkFkα (α, β = x, y, z), (2.36)

the second term of eq.(2.35) can be calculated as

ρ
d1
2
v2G
dt

= ρvG · dvG

dt
(2.37)

= −
∑
α,β

vGα
∂

∂xβ
Pβα +

∑
k

ρkFk · vG, (2.38)

= −
∑
α,β

∂

∂xβ
(PβαvGα)︸ ︷︷ ︸

∇·(P ·vG)

+
∑
α,β

Pβα
∂

∂xβ
vGα +

∑
k

ρkFk · vG. (2.39)

where Pβα is the stress tensor, and we write (P · vG)α ≡ PαβvGβ.

Substituting eqs.(2.34),(2.35),(2.32) and (2.39) into (2.29), we obtain∑
α,β

Pβα
∂

∂xβ
vGα +

∑
k

ρkFk · vG +
∑
k

ρk
∂Ψk

∂t
−

∑
k

ρkFk · vG −
∑
k

Fk · Jk + ρ
du

dt

(2.40)

= −∇ ·
[
Je − P · vG − ρ

2
v2GvG −

∑
k

ρkΨkvG −
∑
k

ΨkJk − uρvG

]
(2.41)

= −∇ ·
[
Je − (ρevG + P · vG +

∑
k

ΨkJk)︸ ︷︷ ︸
≡J ′

e

]
. (2.42)
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Thus, the du
dt

can be written as

ρ
du

dt
= −∇ · J ′

e −
∑
α,β

Pβα
∂

∂xβ
vGα +

∑
k

Fk · Jk −
∑
k

ρk
∂Ψk

∂t
. (2.43)

Using the results of du
dt
, dv
dt

and dck
dt

in eqs. (2.24),(2.26) and (2.43), ds
dt

is given

by

ρ
ds

dt
= − 1

T
∇ · J ′

e −
1

T

∑
α,β

Pβα
∂

∂xβ
vGα +

1

T

∑
k

Fk · Jk

− 1

T

∑
k

ρk
∂Ψk

∂t
+
p

T
∇ · vG − 1

T

∑
k

µk∇ · Jk, (2.44)

= −∇ ·
(
J ′
e −

∑
k µkJk

T

)
− J ′

e ·
∇T

T 2
−

∑
k

Jk ·∇
µk

T

+
1

T

∑
k

Fk · Jk −
1

T

∑
α,β

Πβα
∂vGα

∂xβ
− 1

T

∑
k

ρk
∂Ψk

∂t
,

(2.45)

where Πβαis the viscous stress tensor defined as

Πβα ≡ Pβα − pδβα. (2.46)

Comparing eq.(2.45) with eq.(2.12), it follows that the expressions for the

entropy flux and the entropy production are given by

Js =
1

T
(J ′

e −
∑
k

µkJk), (2.47)

σ = − 1

T 2
J ′
e ·∇T − 1

T

∑
k

Jk ·
[
T∇µk

T
− Fk

]
− 1

T
Πβα

∂vα
∂xβ

− 1

T

∑
k

ρk
∂Ψk

∂t
.

(2.48)

It is convenient to define the force corresponding to the current Jk in the

form without the factor ∇T . For this purpose, we use

∇µk

T
= −hk

T 2
∇T +

1

T
[∇µk]T , (2.49)
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where hk is the partial specific enthalpy of component k then, by introducing

a “heat flux” JQ defined as

JQ ≡ J ′
e −

∑
k

hkJk, (2.50)

eqs.(2.47) and (2.48) can be written as

Js =
1

T
JQ +

∑
k

skJk, (2.51)

σ = − 1

T 2
JQ ·∇T − 1

T

∑
k

Jk ·
[
(∇µk)T − Fk

]
− 1

T
Πβα

∂vα
∂xβ

− 1

T

∑
k

ρk
∂Ψk

∂t
.

(2.52)

2.1.3 Linear Relation of Non-uniform Gas Mixture

To rewrite eq.(2.52) more simply, we introduce the assumption of the

mechanical equilibrium state where the acceleration dv
dt

vanishes, and the

velocity gradients and therefore the viscous stress tensor Π may be neglected.

In this state, the equation of motion eq.(2.36) can be written as

0 = −∇p+
∑
k

ρkFk. (2.53)

We assume that our non-uniform system quickly reaches the mechanical equi-

librium state, and therefore we can use eq.(2.53). Indeed in the some cases

such as oscillating systems this assumption may not hold, but for instance,

in the case of diffusion or thermal diffusion phenomena in closed vessels it is

known that one can safely assume this state.

First, we consider the simple case that there are no external forces Fk = 0.

In this case, the assumption of the mechanical equilibrium state eq.(2.53) can

13



be written as

∇p = 0, (2.54)

and the entropy production eq.(2.52) can be written more simply as

σ = −JQ · ∇T

T 2
−
∑
k

Jk ·
(∇µk)T,p

T
. (2.55)

If the mixture is consist of the two components A and B, using
∑

k Jk = 0,∑
k

ck(∇µk)T,p = 0, (2.56)

coming from the Gibbs-Duhem relation
∑

k ckδµk = −sδT + ρ−1δp and the

second term of the rhs in eq.(2.55) can be calculated

−
∑
k

Jk ·
(∇µk)T,p

T
= −

[
JA · (∇µA)T,p

T
+ JB · (∇µB)T,p

T

]
, (2.57)

= −JA · (∇µA)T,p − (∇µB)T,p
T

, (2.58)

= −JA · 1

cBT
(∇µA)T,p (2.59)

= −JA · 1

cBT

(∂µA

∂cA

)
T,p

∇cA, (2.60)

where we use the state variables (T, p, cA). Thus, the entropy production can

be written as

σ = −JQ · ∇T

T 2
− JA · µ

c
AA

cBT
∇cA, (2.61)

where we use µc
AA ≡

(
∂µA

∂cA

)
T,p

.

From eq.(2.61), we can identify the forces corresponding to the currents

JQ and JA, thus the linear relation of the present system can be written as

JQ = −Lqq
∇T

T 2
− LqA

µc
AA

cBT
∇cA, (2.62)

JA = −LAq
∇T

T 2
− LAA

µc
AA

cBT
∇cA, (2.63)
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where Lqq, LqA, LAq and LAA are the Onsager coefficients, and the reciprocal

relation is

LqA = LAq. (2.64)

Let us introduce the coefficient of thermal conduction κ, the Dufour co-

efficient D′′, the thermal diffusion coefficient D′, and the diffusion coefficient

D as following

κ ≡ Lqq

T 2
, (2.65)

D′′ ≡ LqA

ρcAcBT 2
, (2.66)

D′ ≡ LAq

ρcAcBT 2
(2.67)

D ≡ LAAµ
c
AA

ρcBT
. (2.68)

Using these coefficients, the linear relations eq.(2.62),(2.63) can be written

JQ = −κ∇T − ρAµ
c
AATD

′′∇cA, (2.69)

JA = −ρcAcBD′∇T − ρD∇cA, (2.70)

and the reciprocal relation becomes

D′ = D′′. (2.71)

We note that the linear relations eqs.(2.69) and (2.70) can be generalized

in the case of the Fk 6= 0. In this case, the assumption of the mechanical

equilibrium states

∇p =
∑
k

ρkFk (2.72)
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leads to non-vanishing ∇p in general unlike eq.(2.54). Using the relation

(∇µk)T = (∇µk)T,p +
(∂µk

∂p

)
T,ci

∇p, (2.73)

the entropy production eq.(2.52) can be written as

σ = − 1

T 2
JQ ·∇T − 1

T

∑
k

Jk ·
[
(∇µk)T − Fk

]
, (2.74)

= −JQ · ∇T

T 2
−
∑
k

Jk ·
(∇µk)T,p

T
− 1

T

∑
k

Jk ·
[(∂µk

∂p

)
T,ci

∇p− Fk

]
.

(2.75)

Since ∇p 6= 0, the Gibbs-Duhem relation eq.(2.56) is changed to∑
k

ck

(∂µk

∂p

)
T,ci

= ρ−1, (2.76)

and the third term of eq.(2.75) can be calculated as

− 1

T

∑
k

Jk ·
[(∂µk

∂p

)
T,ci

∇p− Fk

]
= −JA

T
·
[(∂µA

∂p

)
T,ci

∇p− FA −
(∂µB

∂p

)
T,ci

∇p+ FB

]
, (2.77)

= −JA

T
·
[
1

cB

((∂µA

∂p

)
T,ci

− ρ−1

)
∇p︸︷︷︸

ρAFA+ρBFB

+FB − FA

]
, (2.78)

= − JA

TcB
·
[
(ρAµ

p
A − 1)FA + ρBµ

p
AFB

]
, (2.79)

where we used the relation JA + JB = 0, and µp
A ≡

(
∂µA

∂p

)
T,ci

. Then, the

entropy production σ eq.(2.75) becomes

σ = −JQ · ∇T

T 2
− JA · 1

cBT

[
µc
AA∇cA + (ρAµ

p
A − 1)FA + ρBµ

p
AFB

]
. (2.80)
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Therefore the linear relation in the case of Fk 6= 0 can be written as

JQ = −Lqq
∇T

T 2
− LqA

1

cBT

[
µc
AA∇cA + (ρAµ

p
A − 1)FA + ρBµ

p
AFB

]
, (2.81)

JA = −LAq
∇T

T 2
− LAA

1

cBT

[
µc
AA∇cA + (ρAµ

p
A − 1)FA + ρBµ

p
AFB

]
. (2.82)

It is convenient to convert the “per unit mass” expression to the “per unit

volume” expression when we compare the theoretical results with MD (molec-

ular dynamics) simulations. Specifically, we use the mole fraction xA instead

of the mass fraction cA, the force applied to one particle F̃k instead of the

force per unit mass Fk, the partial chemical potential µ̃k ≡ (∂G/∂Nk)T,p,N ′
k

instead of µk ≡ (∂G/∂Mk)T,p,M ′
k
, and the diffusion flows

J̃M
k ≡ nk(vk − vM), (2.83)

instead of Jk ≡ ρk(vk − vG), where vM ≡ 1
n

∑
k nkvk is the mean velocity.

Noting that the relations(∂µA

∂cA

)
T,p

∇cA = (∇µk)T,p =
(∂µA

∂xA

)
T,p

∇xA =
1

mA

(∂µ̃A

∂xA

)
T,p

∇xA, (2.84)

J̃A = mA
cB
xB

J̃M
A , J̃B = mB

cA
xA

J̃M
B , (2.85)

are satisfied, the linear relations eqs.(2.81) and (2.82) can be rewritten as

JQ = −κ∇T − nATD
′′[µ̃x

AA∇xA + (nAµ̃
p
A − 1)F̃A + nBµ̃

p
AF̃B

]
, (2.86)

J̃M
A = −nxAxBD′∇T − n

µ̃x
AA

D
[
µ̃x
AA∇xA + (nAµ̃

p
A − 1)F̃A + nBµ̃

p
AF̃B

]
,

(2.87)

and in the case of Fk = 0, more simply

JQ = −κ∇T − nATD
′′µ̃x

AA∇xA, (2.88)

J̃M
A = −nxAxBD′∇T − nD∇xA, (2.89)

where µ̃x
AA ≡ (∂µ̃A/∂xA)T,p.
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2.1.4 Time Evolution Equation of xA and T

From the linear relations, eqs.(2.81) and (2.82)(or eqs.(2.69) and (2.70)),

we can derive the time evolution equation of xA and T . Using the conservation

of particle number

∂nk

∂t
= −∇ · nkvk,

∂n

∂t
= −∇ · nvM , (2.90)

the time derivation of the mole fraction ∂xA

∂t
can be calculated as

n
∂xA
∂t

=
∂nA

∂t
− nA

n

∂n

∂t
, (∵ xA ≡ nA

n
), (2.91)

= −∇ · nAvA +
nA

n
∇ · nvM︸ ︷︷ ︸

∇·
(

nA
n

nvM

)
−nvM ·∇nA

n

, (2.92)

= −∇ · nA(vA − vM)− nvM ·∇xA, (2.93)

∴ n
(∂xA
∂t

+ vM ·∇xA

)
= −∇ · J̃M

A . (2.94)

From eq.(2.87) and (2.94), the general expression of the time evolution equa-

tion of xA can be written as

n
(∂xA
∂t

+ vM ·∇xA

)
= ∇ ·

{
nxAxBD

′∇T

+
n

µ̃x
AA

D
[
µ̃x
AA∇xA + (nAµ̃

p
A − 1)F̃A + nBµ̃

p
AF̃B

]}
.

(2.95)

Thus, in the case of vM = 0 and F̃k = 0, eq.(2.95) becomes

n
∂xA
∂t

= ∇ ·
{
nxAxBD

′∇T + nD∇xA
}
. (2.96)

Similarly, the time evolution equation of the temperature can be derived.
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Using the following relation

dH︸︷︷︸
d
(∑

k Mkhk

) =
(∂H
∂T

)
p,Mk︸ ︷︷ ︸

Cp

dT +
(∂H
∂p

)
T,Mk

dp+
∑
k

( ∂H

∂Mk

)
T,p,M ′

k︸ ︷︷ ︸
≡hk

dMk

(2.97)

⇔
∑
k

Mkdhk = CpdT +
(∂H
∂p

)
T,Mk

dp, (2.98)

the time derivation of the temperature ∂T
∂t

can be calculated as

cp
∂T

∂t
=

∑
k

ρk
∂hk
∂t

− 1

V

(∂H
∂p

)
T,Mk

∂p

∂t
(2.99)

=
∑
k

∂

∂t
(ρkhk)−

∑
k

hk
∂ρk
∂t

− 1

V

(∂H
∂p

)
T,Mk

∂p

∂t
(2.100)

=
∂

∂t

∑
k

ρkhk︸ ︷︷ ︸
ρu+p

+
∑
k

hk∇ · ρkvk −
1

V

(∂H
∂p

)
T,Mk︸ ︷︷ ︸

V−T
(

∂V
∂T

)
p,Mk

∂p

∂t
(2.101)

=
∂ρu

∂t
+
∑
k

hk∇ · ρkvk +
T

V

(∂V
∂T

)
p,Mk

∂p

∂t
, (2.102)

where cp ≡ Cp/V is the specific heat at constant pressure per unit volume. By

substituting eqs.(2.43) and (2.50) into eq.(2.34), the first term of eq.(2.102)
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can be calculated as

∂ρu

∂t
= ρ

du

dt
−∇ · ρuvG, (2.103)

= −∇ ·
(
JQ +

∑
k

hkJk︸ ︷︷ ︸∑
k hkρk(vk−vG)

)
− Pβα

∂

∂xβ
vGα︸ ︷︷ ︸

p∇·vG+Πβα
∂

∂xβ
vGα

+
∑
k

Fk · Jk −
∑
k

ρk
∂Ψk

∂t
−∇ · ρu︸︷︷︸∑

k ρkhk−p

vG, (2.104)

= −∇ · JQ −
∑
k

∇ · hkρkvk︸ ︷︷ ︸
hk∇·ρkvk+ρkvk·∇hk

+vG ·∇p+Πβα
∂

∂xβ
vGα

+
∑
k

Fk · Jk −
∑
k

ρk
∂Ψk

∂t
. (2.105)

Using the viscous stress tensor Π, eq.(2.102) can be written as

cp
∂T

∂t
= −∇ · JQ +

∑
k

ρkvk ·∇hk + vG ·∇p+Πβα
∂

∂xβ
vGα

+
∑
k

Fk · Jk −
∑
k

ρk
∂Ψk

∂t
+
T

V

(∂V
∂T

)
p,Mk

∂p

∂t
. (2.106)

We assume the mechanical equilibrium state as

dvG

dt
= 0, Π ∼= 0, 0 = −∇p+

∑
k

ρkFk, (2.107)

and constant external forces

∂Ψk

∂t
= 0, (2.108)

and the pressure

∂p

∂t
= 0, (2.109)
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coming from eq.(2.107) and Fk = −∇Ψk. Then, the time derivation of the

temperature can be calculated as

cp
∂T

∂t
= −∇ · JQ +

∑
k

ρkvk ·∇hk + vG ·
∑
k

ρkFk +
∑
k

Fk · Jk︸︷︷︸
ρk(vk−vG)

(2.110)

= −∇ · JQ +
∑
k

F̃k · J̃M
k +

∑
k

F̃k · nkv
M , (2.111)

Substituting the linear relations eqs.(2.86) and (2.87), the general expression

of the time evolution equation of T can be written as

cVp
∂T

∂t
=∇ ·

{
κ∇T + nATD

′′[µ̃x
AA∇xA + (nAµ̃

p
A − 1)F̃A + nBµ̃

p
AF̃B

]}
−

∑
k

F̃k ·
{
nxAxBD

′∇T +
n

µ̃x
AA

D
[
µ̃x
AA∇xA + (nAµ̃

p
A − 1)F̃A

+ nBµ̃
p
AF̃B

]}
+ vM ·

∑
k

nkF̃k.

(2.112)

Especially, in the case of no external field F̃k = 0, eq.(2.112) becomes

cp
∂T

∂t
= ∇ ·

{
κ∇T + nATD

′′µ̃x
AA∇xA

}
. (2.113)

2.2 Phenomenology of Dufour Effect

Waldmann’s phenomenological equations7) for the Dufour effect are the

followings

∂xA
∂t

= D∇2xA, (2.114)

∂T

∂t
= K∇2T + β

∂xA
∂t

, (2.115)
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where K ≡ λ
cp

and β ≡ kBnTkT
cpxAxB

= kBnT 2D′′

cpD
with kT = TxAxB

D′

D
denoting the

thermal diffusion ratio.

Now we can derive these equations from the time evolution equations of

xA,T eqs. (2.96) and (2.113)

n
∂xA
∂t

= ∇ ·
{
nxAxBD

′∇T + nD∇xA
}
, (2.116)

cp
∂T

∂t
= ∇ ·

{
κ∇T + nATD

′′µ̃x
AA∇xA

}
, (2.117)

under the following three assumptions. First, the system can be regarded as

the ideal gas. Second, the temperature gradient due to the diffusion is so

small that the thermal diffusion term in eq.(2.116) is negligible and therefore

the relation

n
∂xA
∂t

' ∇ · (nD∇xA), (2.118)

holds approximately. Third, ∇T and ∇xA are so small that the coefficients

of ∇T and ∇xA in eqs.(2.116) and (2.117) are approximately independent

of the position and the time. From the first assumption, we can obtain

µ̃x
AA ≡

(∂µ̃A

∂xA

)
T,p

=
kBT

xA
, (2.119)

thus using the third assumption, eq.(2.117) can be written as

cp
∂T

∂t
= κ∇2T + nT 2kBD

′′∇2xA. (2.120)

Similarly, eq.(2.118) can be written as

∂xA
∂t

= D∇2xA, (2.121)
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by the third assumption, and substituting eq.(2.121) into eq.(2.120),

∂T

∂t
=

κ

cp︸︷︷︸
=K

∇2T +
nT 2kBD

′′

cpD︸ ︷︷ ︸
=β

∂xA
∂t

. (2.122)

Eq.(2.121),(2.122) are the Waldmann’s phenomenological equations.

Waldmann considered the following ideal situation to find the solutions to

eqs.(2.121) and (2.122). Let the two insulating parallel plates of infinite extent

be in the the xy-plane at x = ± l, and a diaphragm at x = 0. Between these

plates, the gas mixture of two components is contained. We initially prepare

the profile of the higher-molecular-weight gas A as xA(x) = x0A± δx0A(x ≶ 0)

and the diaphragm closed. The initial temperature is set to T0 in the whole

system, and the pressure is assumed uniform and constant. The boundary

conditions are (∂xA
∂x

)
x=±l

=
(∂T
∂x

)
x=±l

= 0. (2.123)

The solution of the phenomenological eqs. (2.121) and (2.122) under these

conditions is shown in fig. 2.1 where the non-dimensional parameters are used

ξ =
x

l
, τ =

πD2

4l2
t, θ =

T0 − T

βδx0A
, (2.124)

instead of the position x, the time t, and the temperature T , respectively.

From fig.2.1, we can observe that the temperature displacement occurs near

the x = 0 where the diffusive mixing occurs at the beginning, and propagates

toward the boundary of the system. This result can explain why Dufour

observed the temperature fall near the the surface of the porous partition,

not in the bulk of the vessel. Because the porous partition retains the flow
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of the gasses, the diffusive mixing occurred mainly near or in the porous

partition.

Fig. 2.1: Non-dimensional time τ and position ξ dependence of the non-

dimensional local temperature θ in the special case when a relation

D = K holds.3)

24



In this way, Waldmann constructed the phenomenology of Dufour effect,

by starting from the phenomenological time evolution equations of the mole

fraction xA and the temperature T . From his phenomenology, how the tem-

perature difference appears, in the process of the diffusive mixing of the heavy

gas and the light gas, was understood.
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Chapter 3

Model

3.1 Construction of Heat Pump Model

In sections 1.1 and 2.2 we saw that, when the gasses with different molec-

ular weights mix diffusively, heat flows from the higher-molecular-weight gas

toward the lower-molecular-weight gas. In this section, we construct a heat

pump model utilizing this property of the Dufour effect.

The main concept of the model is the following. Because the Dufour effect

occurs only when a diffusive mixing occurs, we need to make a diffusive mix-

ing happen constantly or intermittently. But, since a diffusive mixing process

is transitional, it is difficult to keep the process constant like the steady state

of the Peltier effect.9), 10) For this reason, we separate the chemical compo-

nents of the mixture after the previous mixing process is finished, and then

the next diffusive mixing is resumed after the separation of the components.

By repeating this procedure, diffusive mixing processes where a heat flow is

induced by the Dufour effect are performed on and off. We use an external
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electric field for the separation of gasses.

Let us define the model in detail. We consider a gas mixture of the two

components A and B, and the molecular weight of the component B assumed

to be higher than A, so that

mA < mB, (3.1)

where mA and mB are the molecular weight of the gasses A and B, respec-

tively. To separate the mixed components into A and B by an electrical field,

electrical charges qA and qB are given to the molecules A and B, respectively,

and we assume

qA = −q, qB = q (q > 0), (3.2)

for simplicity. we also assumed that the particle numbers of the components

in the system are NA and NB, and other properties of the components A and

B such as a particle interaction or a shape of the molecules are supposed to

identical.

This gas mixture is contained in the system as schematically depicted in

Fig. 3.1. The boundary at x = 0 is attached to the heat bath with a high

temperature Th at all times, and the boundary at x = Lx is attached to

the heat bath with a low temperature Tc in the separating process or the

insulated wall in mixing process. An area of cross section perpendicular to

the x-direction of the system is S.
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Fig. 3.1: A Schematic figure of the system and the procedures of the heat

pump model.

To pump a heat from the bath Tc to the bath Th, two procedures we call

the separating process and the mixing process are repeated. As schematically

depicted in Fig. 3.1, the definition of these processes are following.

1. separating process During this process, the heat bath with Tc is re-

moved from the system and is replaced with the insulated wall. Fur-

thermore, a static external electric filed Ex = E(> 0) is applied in the

x-direction. After continuing this process for a time ∆tsep, the system

is switched to the mixing process.

2. mixing process During this process, the heat bath with Tc is attached

to the boundary at x = Lx, and the electric filed is turned off (Ex = 0).

After continuing this process for a time ∆tmix, the system is switched

to the separating process.
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In the separating process, the components of the gas mixture are sepa-

rated so that the component A is gathered around the boundary x = 0, and

B is gathered around the boundary x = Lx. In other words, a negative gra-

dient of the mole fraction ∂xA

∂x
(< 0) is built. The heat energy due to the work

done by the external field is leaked to the heat bath with Th, and the system

approaches the steady state at the temperature Th if the time ∆tsep is taken

sufficiently long. Especially, in the case of Th = Tc, the system approaches

the equilibrium state at temperature Th (or Tc) if ∆tsep is taken longer than

the relaxation time of the system to the equilibrium state.

In the mixing process, a diffusive mixing of the components A and B

occurs. Since the gradient of the mole fraction ∂xA

∂x
at the beginning of this

process is negative and we assumed mA < mB, a heat flow toward the B-rich

region, that is, in the negative x-direction is expected to occur by the Dufour

effect, which means that the heat flows from the heat bath with Tc to the heat

bath with Th. In the case of Th 6= Tc, after a relaxation time of the diffusive

mixing process, the heat begins to flow to the opposite direction due to the

temperature difference of the heat baths. Thus, to improve the efficiency of

the heat pump, we should switch the mixing process to the separating process

and remove the heat bath Tc before the opposite heat flow begins.

3.2 MD Simulation of the Model

In this section, we confirm a performance of this heat pump model nu-

merically by using MD simulations.
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3.2.1 The Simulation Model

In our simulation model, the time evolution of the system is governed by

a Hamiltonian

H =
N∑
i=1

p2
i

2mi

+
∑
i<j

U int(|ri − rj|)−
N∑
i=1

qiEx(t)xi +
N∑
i=1

2∑
α=1

Uwall
x (|xi − x(α)|),

(3.3)

where pi, ri,mi, qi, and xi denote the momentum, the position, the mass, the

electrical charge, and the x-coordinate of the i-th particle , respectively. U int

denoting the interaction potential for the center-to-center distance r of the

particles, is taken to be a hard Herzian potential,

U int(r) =

Y |σ − r| 52 (r ≤ σ)

0 (σ < r)

, (3.4)

where σ is the diameter of the particle, and a constant Y is taken to be

Y = 105εσ− 5
2 with an energy unit ε. Herzian potential is known to be able to

produce the properties similar to hard-sphere system.14), 15) Uwall
x (r) denotes

the wall potential at the boundaries of x-direction which is defined as

Uwall
x (r) =

ε
(
σ
r

)2
+ U0 (r ≤ σ)

0 (r > σ)

, (3.5)

where U0 is taken so that the potential is continuous at r = σ. x(1) = 0 and

x(2) = Lx denote the positions of the walls. The external electric filed Ex(t)

is defined

Ex(t) =

E (for the separating process)

0 (for the mixing process)

. (3.6)
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where E is independent of time t.

Fig. 3.2: A schematic figure of the system used in the simulation.

(Th, γh), (Tc, γc) are the bath temperature and the viscous friction

coefficient of the heat bath h, c respectively. The boundaries in the

y- and z-directions are connected by periodic boundary conditions,

and the potential walls eq.(3.5) are placed at the boundaries in the

x-direction at x = 0 and x = Lx.

The geometry of the system is shown in Fig. 3.2. The particles are confined

in a cuboid box, whose size is denoted by Lx × Ly × Lz. In the y− and

z−directions, periodic boundary conditions are imposed. Heat bath regions

are attached to both sides of the x-direction with a width Lx/5. The kinetic

temperatures in these regions are controlled by the Langevin thermostat20)

with different temperatures Th and Tc. The time evolution of the particles
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are governed by the equation of motion

ṙi =
∂H
∂pi

, ṗi = −∂H
∂ri

, (3.7)

if the i-th particle is in the bulk Lx/5 ≤ xi ≤ 4Lx/5, and governed by

Langevin equation19)

ṙi =
∂H
∂pi

, ṗi = −∂H
∂ri

− γa
pi

mi

+ ξa(t) (a = h, c), (3.8)

if the i-th particle is in the bath region a, where a = h corresponds to the

region 0 < xi < Lx/5 and a = c to 4Lx/5 < xi < Lx. ξa(t) is the Gaussian

white noise whose time correlation functions satisfy

〈ξaα(t)ξaβ(t′)〉 = 2γakBTaδαβδ(t− t′) (α, β = x, y, z), (3.9)

where kB is the Boltzmann constant, δ(t) is the delta function, and γa is the

viscous friction coefficient.

The time evolution of the system is performed by integrating eq.(3.7) or

eq.(3.8). If the i-th particle is localed in the bulk Lx/5 ≤ x ≤ 4Lx/5, we use

the velocity-Verlet scheme17), 18)

ri(t+ δt) = ri(t) + vi(t)δt+
fi(t)

2mi

, (3.10)

vi(t+ δt) = vi(t) +
fi(t+ δt) + fi(t)

2mi

δt, (3.11)

where vi denotes the velocity of the i-th particle fi is the potential force

applied to the i-th particle, that is fi ≡ − ∂H
∂ri

. If the i-th particle is located
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in the bath region a(= h, c), the velocity-Verlet scheme is replaced with

ri(t+ δt) = ri(t) +
(
1− γa

2mi

δt
)
vi(t)δt+

Fi(t)

2mi

δt2 +
∆W2

mi

(3.12)

vi(t+ δt) =
1

1 + γaδt
2mi

[(
1− γaδt

2mi

)
vi(t) +

Fi(t+ δt) + Fi(t)

2mi

δt+
∆W1

mi

]
,

(3.13)

where {∆W1j}, {∆W2j}(j=x,y,z) are the normal random numbers which obey

〈∆W1j〉 = 〈∆W2j〉 = 0, (3.14)

〈∆W 2
1j〉 = 2γakBTaδt, 〈∆W 2

2j〉 = 2γakBTa
δt3

3
, (3.15)

〈∆W1j∆W2j〉 = 2γakBTa
δt2

2
, (3.16)

for j = x, y, z. Eqs.(3.12)-(3.16) will be derived in Appendix B.1. We use

these schemes with a time resolution δt = 0.001, and the viscous friction

coefficients of the bath γh = γc = 1.

In the following simulation in this section, we use the scale unit as mA ≡

1,σ ≡ 1,ε ≡ 1, and kB ≡ 1, which define the unit of the mass, the length,

the energy, and the temperature, respectively. In this unit, the unit of time

is
√
mAσ2/ε.

3.2.2 Results of the Simulations

Fig. 3.3 shows an example of the snapshots of the system. We can confirm

that the components A and B are separated by applying the external field

E in the separating process and the components are diffusively mixed if the

33



external field is turned off in the mixing process. In the simulation, the system

size are Lx = 40, Ly = Lx = 10, the number of the particles are N = 1000,

where NA = NB = 500, the external field E = 0.1, and the temperature of

the baths are Th = 1.01, Tc = 0.99. Each particles of the component A,B

has the mass mA = 1,mB = 10, and the electric charge qA = −1, qB = 1,

respectively. This result can quantitatively be verified in fig.3.4 which shows

Fig. 3.3: The example of the snapshots of the system when, (a) just after the

process switch from the previous mixing process, (b) just before

the process switch to the next mixing process, (c) just after the

process switch from the previous separating process, (d) just before

the process switch to the next separating process.

an example of the time evolution of the local mole fraction xA(x, t) in the

mixing process and the separating process.
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Fig. 3.4: The profile of the mole fraction xA(x, t) in the mixing process

(5000 ≤ t ≤ 10000), and in the separating process (10000 ≤ t ≤

15000), with ∆tsep = ∆tsep = 5000. A curve of t = [t1 : t2] state a

profile averaged in the time between t1 ≤ t ≤ t2.

Fig.3.5 depicts typical results of the time evolution of the global tem-
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perature T (t) defined as the temperature averaged over the whole system.

Although the global temperature instantly falls to a constant in the mixing

process (5000 ≤ t ≤ 10000 in fig.3.5), a peak of the global temperature is

observed in the separating process (10000 ≤ t ≤ 15000 in fig.3.5). This peak

is due to the heat produced from the work done by the external field Ex

turned on at t = 10000. The temperature fall to Th in the separating process

implies that the heat produced by Ex leaks to the heat bath with Th, and the

system reaches to the equilibrium state at the temperature Th. The same re-

sult can also be confirmed in fig.3.6, which shows that the local temperature

T (x, t) of the system becomes spatially homogeneous at the temperature Th

after a rapid temperature increase. Furthermore, from fig.3.6, we can see that

the system reaches the nonequilibrium steady state with the heat conduction

with a spatially linear temperature profile.
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Fig. 3.5: A time dependence of the temperature averaged over the whole

system. The system is in the mixing process when 5000 ≤ t ≤

10000, and in the separating process when 10000 ≤ t ≤ 15000 and

t ≤ 5000, with ∆tsep = ∆tsep = 5000. The temperature of the hot

bath Th = 1.01, and the average temperature T ≡ (Th+Tc)/2 = 1.0

are also plotted.
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Fig. 3.6: The profile of the local temperature T (x, t) in the separating process

(5000 ≤ t ≤ 10000), and in the mixing process (10000 ≤ t ≤

15000). A curve of t = [t1 : t2] is drawn following the same rule

with fig.3.4.

Fig.3.7 shows the time evolution of the number-density distribution of
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the particles n(x, t) with the same parameters as in figs.3.4 and 3.6. We can

find from fig.3.7 that the distribution n(x, t) in the mixing process instantly

reaches the steady profile, and this relaxation time of n(x, t) is small than

xA(x, t) and T (x, t) as we can see in figs.3.4 and 3.6. This result is assumed

to hold in general for the phenomenological analysis in the next section.
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Fig. 3.7: The profile of the number-density n(x, t) of the particles in the

separating process (5000 ≤ t ≤ 10000), and in the mixing process

(10000 ≤ t ≤ 15000). A curve of t = [t1 : t2] is drawn following the

same rule with fig.3.4. In this simulation, we use N = 1000,Lx = 40

and Ly = Lz = 10, thus the averaged number-density n = 0.1.
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We measured the heat current Q̇hot(t) which flows from the system into

the heat bath with Th, and Q̇
cold(t) which flows from the bath with Tc into

the system, defined as

Q̇hot(t) ≡ −
∑

i∈HotBath

δW hot
i (t)

δt
, Q̇cold(t) ≡

∑
i∈ColdBath

δW cold
i (t)

δt
, (3.17)

where the notations
∑

i∈HotBath and
∑

i∈ColdBath imply the summations for all

the particles in the bath regions Th and Tc, respectively. δW
a
i (t)(a = h, c) in

eq.(3.17) denotes the work done by the Langevin bath a to the i-th particle

in the time δt, and becomes approximately

δW a
i (t) '

mi

2
v2
i (t+ δt)− mi

2
v2
i (t)−

Fi(t+ δt) + Fi(t)

2
·
(
ri(t+ δt)− ri(t)

)
,

(3.18)

as derived in the Appendix B.2 using the stochastic energetics.20) Fig.3.8

shows a examples of the time evolutions of Q̇hot(t) and Q̇cold(t). We can see

that Q̇hot(t) has a peak corresponding to the heat leak due to the external

field in the separating process, and the equilibrium state is realized at last.

The heat current Q̇cold(t) is zero in the separating process, simply because

the heat bath Tc is removed during this process. The peaks of Q̇hot(t) and

Q̇cold(t) in the mixing process which have a similar profile imply that the

heat flows from the cold bath Tc toward the hot bath Th. Therefore the heat

pumped by the Dufour effect is observed.
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Fig. 3.8: The time dependence of the heat currents Q̇cold(t) transferred from

the bath Tc, and Q̇
hot(t) transferred into the bath Th. The system

is in mixing process when 5000 ≤ t ≤ 10000, and in the separating

process when t ≤ 5000 and 10000 ≤ t ≤ 15000.

In simulating the heat pump, our measurement is started when the system

exhibits a steady cyclic behavior with the period ∆tmix+∆tsep after transient

repetition of the mixing and separating process. To confirm that our model

is surely useful as a heat pump, we measured the cooling power Q̇c and the

coefficient of performance (COP) ε defined as

Q̇c ≡
1

τ1 − τ0

∫ τ1

τ0

Q̇cold(t) dt, (3.19)
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ε ≡ Q̇c

Ẇ
, (3.20)

where τ0 is the relaxation time of the system to become cyclic with a period of

time (∆tmix+∆tsep), and τ1 is chosen so that τ1−τ0 is the integral multiple of

(∆tmix+∆tsep). Ẇ in eq.(3.20) denotes the average work done by the external

field E per unit time. Since the system becomes cyclic after the relaxation

time t = τ0, Ẇ satisfies the first law of thermodynamics written as

Ẇ = Q̇h − Q̇c, (3.21)

where Q̇h is defined as

Q̇h ≡ 1

τ1 − τ0

∫ τ1

τ0

Q̇hot(t) dt. (3.22)

Since Q̇c and Q̇h can be calculated from the data obtained in Fig.3.8 using

eqs.(3.19) and (3.22), we can measure the COP ε using the relation

ε =
Q̇c

Q̇h − Q̇c

, (3.23)

coming from eqs.(3.20) and (3.21). We can confirm that this system is surely

useful as a heat pump by choosing the parameter region where the COP and

the cooling power are positive, as follows.

As we saw in Fig.3.8 that the heat flows oppositely (from the hot bath

Th to the cold bath Tc) after the relaxation of the diffusive mixing. Since this

opposite heat flow may decrease the COP and the cooling power because of

eqs.(3.23) and (3.19), we need to choose an appropriate value of ∆tmix to

obtain the positive COP and cooling power. Fig.3.9 shows the ∆tmix, and

∆tsep dependence of the COP ε and the cooling power Q̇c. We can see that ε
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and Q̇c have the maximum positive values, and these results imply that this

system is useful as a heat pump. We also measured the temperature difference

∆T between the baths dependence of Q̇h and ε, as shown in fig.3.10. But the

result of fig.3.10 implies that, this heat pump is useful only when ∆T is very

small.

44



-0.06

-0.04

-0.02

 0

 0.02

 0.04

 0.06

 0.08

 0  1000  2000  3000  4000  5000

co
ol

in
g 

po
w

er

∆tmix

cooling power

∆tsep=0
∆tsep=1000
∆tsep=3000
∆tsep=5000
∆tsep=7000

-0.2

-0.15

-0.1

-0.05

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0  1000  2000  3000  4000  5000

C
O

P

∆tmix

COP

∆tsep=1000
∆tsep=3000
∆tsep=5000
∆tsep=7000

Fig. 3.9: ∆tsep and ∆tmix dependence of the cooling power and the COP with

the temperatures Th = 1.01 and Tc = 0.99.

45



-0.05

-0.04

-0.03

-0.02

-0.01

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0  0.01  0.02  0.03  0.04  0.05  0.06

co
ol

in
g 

po
w

er

∆ T

Cooling Power (mA=1,mB=10)

-0.25

-0.2

-0.15

-0.1

-0.05

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0  0.01  0.02  0.03  0.04  0.05  0.06

C
O

P

∆ T

COP (mA=1,mB=10)
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Chapter 4

Theoretical Analysis

4.1 Expression of the Cooling Power and the

COP

We consider a simple case that the heat baths have the same tempera-

ture T0(= Th = Tc), and a process is switched to another process after the

equilibrium state is realized, which means

∆tsep > τsep, ∆tmix > τmix, (4.1)

where τsep and τmix are the relaxation times to the equilibrium state of the

system in the separating process and the mixing process, respectively. We

assume that the mechanical equilibrium state is realized quickly in the mixing

process. From this assumption and eq.(2.53), since the external field does not

exist (E = 0) in the mixing process, ∇p vanishes. Furthermore, we assume

that the number-density of the particles n(x, t) in the mixing process reaches

the steady distribution quickly compared with the relaxation times of the
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mole fraction xA(x, t) and the temperature T (x, t). From this assumption

n(x, t) becomes n ≡ N
V
, where N is the total number of particles in the system

and V is the volume of the system. The latter assumption is confirmed to hold

in our system by the numerical result of fig.3.7. Although we can develop the

analysis without the latter assumption, the result becomes too complicated

and the essential physical result becomes very similar to the result from the

analysis in this section.

The goal of our analysis is to calculate the cooling power Q̇c and the COP

ε defined as eqs.(3.19) and (3.20), respectively. In this section, we calculate

these quantities, in the case of Tc = Th under eq.(4.1).

4.1.1 Time Evolution of xA and T in the Mixing Pro-

cess

Since the external field does not exist, the linear relations eqs.(2.88) and

(2.89) hold and we write them simply as

JQ(x, t) = −l11
∂T

∂x
(x, t)− l12

∂xA
∂x

(x, t), (4.2)

J̃M
A (x, t) = −l21

∂T

∂x
(x, t)− l22

∂xA
∂x

(x, t), (4.3)

where l11, l12, l21 and l22 are expressed as

l11 ≡ κ, l12 ≡ nAµ̃
x
AATD

′′, l21 ≡ nxAxBD
′, l22 ≡ nD, (4.4)

and they depend on the position x and the time t thorough p, T, xA and n as

lij(x, t) = lij(p(x, t), T (x, t), xA(x, t), n(x, t)) (i, j = 1, 2). (4.5)
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Using lij, the time evolution equations eqs.(2.96) and (2.113) become

cp
∂T

∂t
(x, t) =

∂

∂x

[
l11(x, t)

∂T

∂x
(x, t) + l12(x, t)

∂xA
∂x

(x, t)

]
, (4.6)

n
∂xA
∂t

(x, t) =
∂

∂x

[
l21(x, t)

∂T

∂x
(x, t) + l22(x, t)

∂xA
∂x

(x, t)

]
. (4.7)

If we neglect the second-order of ∂T
∂x

and ∂xA

∂x
, eqs.(4.6) and (4.7) become

cp
∂T

∂t
(x, t) = l11(x, t)

∂2T

∂x2
(x, t) + l12(x, t)

∂2xA
∂x2

(x, t), (4.8)

n
∂xA
∂t

(x, t) = l21(x, t)
∂2T

∂x2
(x, t) + l22(x, t)

∂2xA
∂x2

(x, t), (4.9)

using ∂p
∂x

= ∂n
∂x

= 0 which comes from the assumptions. These time evolution

equations are solved with the boundary conditions

J̃M
A (0, t) = J̃M

A (Lx, t) = 0, (4.10)

T (0, t) = T (Lx, t) = T0, (4.11)

since the both boundaries of x-direction are the heat walls of the same tem-

perature T0. The initial condition of the mixing process are

T (x, 0) = T0, xA(x, 0) = xEA(x), (4.12)

where xEA(x) denotes the mole fraction distribution of the equilibrium state

in the separating process with the external field E. The distributions of the

mole fraction xA and the temperature T in the final state of the mixing

process are written as

T (x,∆tmix) = T0, xA(x,∆tmix) = xA. (4.13)

where xA ≡ NA

N
is the mean mole fraction and the NA is the number of

particles of the component A in the system.
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4.1.2 Expression of the Cooling Power

The cooling power eq.(3.19) can be expressed as

Q̇c ≡
−Qmix(Lx)

∆tsep +∆tmix

, (4.14)

where Qmix(x) is defined as

Qmix(x) ≡
∫ ∆tmix

0

SJQ(x, t)dt. (4.15)

S is the area of cross section of the system. By eliminating ∂xA

∂x
from eqs.

(4.2) and (4.3), and substituting JQ into eq.(4.15), we obtain

Qmix(x) = S

∫ ∆tmix

0

(
− l11 + l12

l21
l22

)
∂T

∂x
(x, t)dt+ S

∫ ∆tmix

0

l12
l22
J̃M
A (x, t)dt.

(4.16)

Using the boundary condition eq.(4.10), the cooling power eq.(4.14) becomes

Q̇c =
−S

∆tsep +∆tmix

∫ ∆tmix

0

(
− l11 + l12

l21
l22

)
∂T

∂x
(Lx, t)dt. (4.17)

4.1.3 Expression of the COP

We can write Ẇ introduced in eq.(3.20) as

Ẇ ≡ WE

∆tsep +∆tmix

, (4.18)

where WE denotes the total work done by the external field Ex = E to

the system in the separating process. WE can be calculated from the initial

distributions of the mole fraction xA and the the number-density n of the

particles in the separating process

xE=0
A (x) = xA, nE=0(x) = n.

(
n ≡ N

V

)
(4.19)
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and from the final distributions xEA(x), n
E(x) in the separating process. By

defining δxEA(x) and δn
E(x) as

δxEA(x) ≡ xEA(x)− xA, δnE(x) ≡ nE(x)− n, (4.20)

WE can be expressed as

WE = ψE[x
E=0
A (x), nE=0(x)]− ψE[x

E
A(x), n

E(x)], (4.21)

= ψE[xA, n]− ψE[xA + δxEA(x), n+ δnE(x)], (4.22)

where ψE[xA(x), n(x)] is the potential energy of the system due to the electric

field Ex = E. Eq.(4.21) can be derived only from the fact that the present

external field Ex = E is conservative. Remembering that the electric charges

of the particles are given by qA = −q (q > 0) and qB = q, we can write the

potential energy ψE[xA(x), n(x)] as

ψE[xA(x), n(x)] =

∫ Lx

0

{
qExxA(x)n(x)︸ ︷︷ ︸

nA

+(−qE)x (1− xA(x))n(x)︸ ︷︷ ︸
nB

}
S dx,

(4.23)

= qES

∫ Lx

0

n(x)
(
2xA(x)− 1

)
x dx, (4.24)

where nA and nB denote the number-density of particles of each components

A and B, respectively. By substituting eq.(4.24) into eq.(4.22), WE becomes

WE = qES

∫ Lx

0

n(2xA − 1)x dx

− qELx

∫ Lx

0

(
n+ δnE(x)

){
2
(
xA + δxEA(x)

)
− 1︸ ︷︷ ︸(

2xA−1
)
+2δxE

A(x)

}
x dx, (4.25)

= −qES
∫ Lx

0

{
δnE(x)

(
2xA − 1

)
+ 2n δxEA(x) + 2δnE(x)δxEA(x)

}
x dx.

(4.26)
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Therefore, by substituting eqs.(4.26) and (4.17), the COP can be expressed

as

ε =
Q̇c

WE/(∆tsep +∆tmix)
, (4.27)

=

∫ ∆tmix

0

(
− l11 + l12

l21
l22

)
∂T
∂x
(Lx, t)dt

qE
∫ Lx

0

{(
2xA − 1

)
δnE(x) + 2n δxEA(x) + 2δnE(x)δxEA(x)

}
x dx

. (4.28)

4.2 Approximate Calculation

4.2.1 Assumptions for Approximation

We make two assumptions to solve the time evolution equations eqs.(4.8)

and (4.9) approximately. The first assumption is that ∂T
∂x
, ∂xA

∂x
and E are very

small so that the coefficients l11, l12, l21, l22, cp and n which appear in the time

evolution equations and the linear relations, approximately depend only on

the average values p, T , xA and n, which do not depend on the time and the

position. From this assumption, we can linearize the time evolution equations

eqs.(4.8) and (4.9) with the constant l11, l12, l21, l22, cp and n as

cp
∂T

∂t
(x, t) = l11

∂2T

∂x2
(x, t) + l12

∂2xA
∂x2

(x, t), (4.29)

n
∂xA
∂t

(x, t) = l21
∂2T

∂x2
(x, t) + l22

∂2xA
∂x2

(x, t). (4.30)

The second assumption is that the mixture can be regarded as the ideal gas

when the system is in the equilibrium state. Under the second assumption,

the number-densities nE
A(x) and n

E
B(x) of the particles of the components A

and B in the presence of the external field E can be written as

nE
A(x) =

1

S

NAβEq

1− e−βEqLx
e−βEqx, nE

B(x) =
1

S

NBβEq

eβEqLx − 1
eβEqx, (4.31)
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respectively, using the equilibrium statistical mechanics, where β ≡ 1/kBT .

Using these expression, δnE(x) and δxEA(x) become

δnE(x) =
βEq

S

NAe
βEq(Lx

2
−x) +NBe

−βEq(Lx
2
−x)

eβEqLx
2 − e−βEqLx

2

− n, (4.32)

' (2nA − n)βEq
(Lx

2
− x

)
, (4.33)

δxEA(x) =
NANB

NA +NB

eβEq(Lx
2
−x) − e−βEq(Lx

2
−x)

NAe
βEq(Lx

2
−x) +NBe

−βEq(Lx
2
−x)

, (4.34)

' 2xA(1− xA)βEq
(Lx

2
− x

)
, (4.35)

where we expanded the equations up to the first order of E. Since the mixture

is the ideal gas mixture, we can write l12 as

l12 ≡ nAµ̃
x
AATD

′′ = nA
kBT

xA
TD′′ = kBT

2nD′′. (4.36)

4.2.2 Cooling Power

Now, we can calculate approximately the cooling power Q̇c expressed as

eq.(4.17). Eliminating ∂2xA

∂x2 from eqs.(4.29) and (4.30), the time evolution

equations become

cp
∂T

∂t
=

(
l11 − l12

l21

l22︸ ︷︷ ︸
≡l

′
1

)∂2T
∂x2

+ l12
n

l22︸ ︷︷ ︸
≡l

′
2

∂xA
∂t

, (4.37)

where we introduce l
′
1 and l

′
2 for simplicity. By integrating eq.(4.37) with

respect to the time t on [0,∆tmix] and using the initial condition eq.(4.12)

and the final state eq.(4.13) of the mixing process, eq.(4.37) can be written

as

0 = l
′
1

∫ ∆tmix

0

∂2T

∂x2
dt+ l

′
2

(
− δxEA(x)

)
. (4.38)
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By substituting eq.(4.35) into eq.(4.38), this equation becomes

0 = l
′
1

∂2

∂x2

∫ ∆tmix

0

T (x, t)dt− 2l
′
2xA(1− xA)βEq

(Lx

2
− x

)
. (4.39)

By integrating eq.(4.38) with respect to x, we obtain

φ(x) ≡
∫ ∆tmix

0

T (x, t)dt =
2l

′
2xA(1− xA)βEq

l
′
1

(
− x3

6
+
Lx

4
x2
)
+ C1x+ C2,

(4.40)

where C1 and C2 are integral constants. Under the boundary condition T (0, t) =

T0, thus φ(0) = T0∆tmix, we can write

C2 = T0∆tmix. (4.41)

Similarly using the boundary condition T (Lx, t) = T0, therefore φ(Lx) =

T0∆tmix, the integral constant C1 is given by

C1 = −2l
′
2xA(1− xA)βEq

l
′
1

L2
x

12
. (4.42)

Therefore we can write eq.(4.40) and its x-derivative as

φ(x) =
2l

′
2xA(1− xA)βEq

l
′
1

(
− x3

6
+
Lx

4
x2 − L2

x

12
x
)
+ T0∆tmix, (4.43)

∴ ∂φ

∂x
(x) =

l
′
2xA(1− xA)βEq

l
′
1

(
− x2 + Lxx−

L2
x

6

)
. (4.44)
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By substituting eq.(4.44) into eq.(4.17), the cooling power can be calculated

as

Q̇c =
−S

∆tsep +∆tmix

(
− l11 + l12

l21

l22

) ∫ ∆tmix

0

∂T

∂x
(Lx, t)dt︸ ︷︷ ︸

∂φ
∂x

(Lx)

, (4.45)

=
−S

∆tsep +∆tmix

(
l11 − l12

l21

l22

)
︸ ︷︷ ︸

l
′
1

l
′
2xA(1− xA)βEq

l
′
1

L2
x

6
, (4.46)

=
−l′2xA(1− xA)βEqSL

2
x

6(∆tsep +∆tmix)
, (4.47)

=
−kBT

2
nD′′xA(1− xA)βEqSL

2
x

6D(∆tsep +∆tmix)
, , (4.48)

where we used l
′
2 ≡ l12

n
l22

= kBT
2
nD′′

D
from eq.(4.36). Since the Dufour

coefficient D′′ is negative when mA < mB as stated in Section 1.1, eq.(4.48)

is positive in our model in the case of Th = Tc.
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4.2.3 COP

Substituting eqs.(4.33) and (4.35) into δxEA(x), δn
E(x) in eq.(4.26), WE

can be written as

WE = −qES
∫ Lx

0

{
(2xA − 1)

δnE(x)︷ ︸︸ ︷
(2nA − n︸ ︷︷ ︸
n(2xA−1)

)βEq
(Lx

2
− x

)

+ 2n ·

δxE
A(x)︷ ︸︸ ︷

2xA(1− xA)βEq
(Lx

2
− x

)
+O(E2)

}
x dx (4.49)

∼= −Sβ(qE)2n
{
(2xA − 1)2 + 4xA(1− xA)

}∫ Lx

0

(Lx

2
x− x2

)
dx︸ ︷︷ ︸

−L3
x

12

, (4.50)

=
SL3

xβ(qE)2n

12
. (4.51)

Therefore, using eqs.(4.48) and (4.51), the COP eq.(4.27) becomes

ε =
−2kBT

2
D′′xA(1− xA)

LxqED
. (4.52)

Again we note that since D′′ < 0, ε > 0 in our model in the case of Th = Tc.

4.3 Numerical Confirmation

4.3.1 Simulation Model for Confirmation

To confirm the validity of the theoretical results, we compare them with

the numerical data obtained by the MD simulations. Before the confirmation,

we note that the MD simulations in this section are performed in the 2-

dimensional system, with the more accurate simulation model of the heat
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bath, for saving the computation time and for improving the accuracy of the

numerical data.

We use the thermalizing wall model23) as the heat bath in this section.

If a particle of the mass m collides with the thermalizing wall with the tem-

perature T , its velocity is stochastically changed to the value v according to

distribution functions

Pn(vn) =
m

kBT
|vn| exp

(
− mv2n

2kBT

)
, Pt(vt) =

√
m

2πkBT
exp

(
− mv2t

2kBT

)
,

(4.53)

where vn and vt are the perpendicular and parallel to the heat wall, respec-

tively, and the sign of vn is determined so that the direction of v is opposite

from the thermalizing wall. When the thermalizing wall is the boundary of

the x-direction, these components become vn = vx and vt = vy in the 2D

system. If the velocity of the particle before the collision with the thermaliz-

ing wall is v0, the energy gain of this particle collision from the thermalizing

wall can be expressed as m
2
(v2 − v2

0) with no approximation. This is because

we use the thermalizing wall instead of the Langevin bath for the accurate

measurement of the hear currents Q̇hot(t), Q̇hot(t).

The geometry of the system is changed as schematically depicted in Fig.

4.1. The system is the two-dimensional rectangle with the size Lx ×Ly. The

periodic boundary condition is imposed in the y-direction. The boundary

of the x-direction at x = Lx is the thermalizing wall with the temperature

Tc in the mixing process, and the elastically reflecting wall in the separat-

ing process. In this model, the wall potential term Uwall
x is removed from

the Hamiltonian eq.(3.3). The boundary at x = 0 is the thermalizing wall

with the temperature Th in the both processes. The velocity-Verlet scheme
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eqs.(3.10) and (3.11) is used for all the particles in the system with the time

resolution δt = 0.0005.

Fig. 4.1: A schematic illustration of the system in this section. Although

the system in fig.3.2 used the Langevin heat baths and was three-

dimensional, but the present system uses the thermalizing walls and

is two-dimensional.

As results of these changes in the simulation model, snapshots of the

system become as shown in fig.4.2. In the simulations, the system size are

Lx = 40, Ly = 25, the number of the particles are N = 100, where NA =

NB = 50, and the temperatures of the heat baths are Th = Tc = 1. Other

parameters such as the masses and the electric charges of the particles are

identical with §3.2.2.
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Fig. 4.2: The example of the snapshots of the system in this section. In this

simulation, the number of the particles are N = 100, NA = NB =

50, the system size are Lx = 40, Ly = 25, the temperatures of

the heat baths are Th = Tc = 1, and each particle has mA ≡ 1,

mB = 10, qA ≡ −1, qB = 1.

4.3.2 Numerical Calculation of kT

To compare eq.(4.48) and (4.52) with the numerical data, the transport

coefficients in these equations should be determined. It is convenient to use

the thermal diffusion ratio kT defined as

kT = TxAxB
D′

D
, (4.54)
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which can approximately be calculated by the Chapman-Enskog theory,4), 5)

and the results in eqs.(4.48) and (4.51) can be rewritten with the thermal

diffusion ratio as

Q̇c =
−kBTkTnβEqSL2

x

6(∆tsep +∆tmix)
, (4.55)

ε =
−2kBTkT
LxqE

, (4.56)

where kT is approximated with the mean values as kT ' (TxAxBD/D
′), and

we used the Onsager reciprocal relation eq.(2.71).

We numerically calculated kT of the two-dimensional system in the first

order approximation (Appendix A). Using the parameters mA = 1,mB =

10, T = 1, xA = xB = 0.5, and Y = 105 of the Herzian potential eq.(3.4)

used in fig.4.2, the approximate value of kT becomes

kT ' −0.142339, (4.57)

where we used the extended midpoint method24) with the accuracy ε = 10−6.

Using eq.(4.57), and the same values of n(= NL−1
x L−1

y ), T , q, S(= Ly), Lx

with fig.4.2, eqs.(4.55) and (4.56) become

Q̇c =
100 · 40 · 0.142339
6(∆tsep +∆tmix)

E, (4.58)

ε =
−2 · 0.142339

40

1

E
. (4.59)

Since eqs.(4.55) and (4.56) are derived under the assumption that ∆tsep and

∆tmix are larger than τsep and τmix, respectively, so that the system reaches the

equilibrium state before the process is switched to another, the parameters

∆tsep and ∆tmix are not essential for the confirmation of our theory. For this

reason, when the comparison of eq. (4.58) with the numerical data, we plot
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(∆tsep +∆tmix)Q̇c, which implies the heat pumped from the cold bath Tc in

a cycle, not in unit time.

4.3.3 Comparison with Theory

Fig.4.3 shows the numerical results measuring the work done by the exter-

nal filed Ex = E as varying E, together with the theoretical result eq.(4.51)

in the case of S = Ly = 25, Lx = 40, q = 1 and n = 0.1. From fig.4.3,

we can see that the numerical data deviate from the theoretical curve when

0.07 . E. This result implies that the assumption of small E in the theory is

not satisfied when 0.07 . E and the approximations in eqs.(4.33) and (4.35)

may not be accurate. A possible reason why the numerical data are smaller

than the theory is that the repulsive intermolecular potential disturbs the

compression of gasses done by the external field E, therefore decreases the

work done by E.
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Fig. 4.3: Comparison between the theoretical result eq.(4.51) and the nu-

merical data using MD simulation with the same parameters in

fig.4.2

The cooling power and the COP of the theoretical results in eqs.(4.58)

and (4.59) are compared with the numerical results by the MD simulations

in fig.4.4. We can confirm a good agreement between the theory and the

numerical data in the region E . 0.05, and the mismatching in the region

0.07 . E where the assumption of small E is not satisfied. Therefore, the

validity of our theory of the heat pump model is verified.
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numerical data by the MD simulations.
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4.4 The Case of Th 6= Tc

Finally, we show that a similar analysis can be executed in the case of

Th 6= Tc, but the temperature difference δT ≡ Th − Tc is very small, and

∆tsep and ∆tmix satisfy eq.(4.1). In this case, the time evolution equations

eqs.(4.8) and (4.9) hold, and we assume that the linearized version eqs.(4.29)

and (4.30) are also valid. Now, the boundary condition of the temperature

eq.(4.11) is changed to

T (0, t) = Th, T (Lx, t) = Tc. (4.60)

but the boundary condition of J̃M
A written as eq.(4.10) does not change. The

initial condition and final state of T (x, t) and xA(x, t) in the mixing process

(eqs.(4.12) and (4.13)) become

T (x, 0) = Th, xA(x, 0) = xEA(x), (4.61)

T (x,∆tmix) = T δT (x), xA(x,∆tmix) = xδTA (x), (4.62)

where T δT (x) and xδTA (x) denote the steady state distribution of the temper-

ature and the mole fraction, respectively, when the temperature difference

δT between the heat baths exists.

In the steady state of the mixing process, by eliminating (∂2xA/∂x
2) from

eqs.(4.29) and (4.30), we can write

∂2T δT (x)

∂x2
= 0. (4.63)

By integrating eq.(4.63) and using the boundary conditions eqs. (4.60) and

(4.12), we can write T δT (x) as

T (δT )(x) = −δT
Lx

x+ Th, (4.64)
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where δT ≡ Th−Tc. When the temperature is not homogeneous in the system

like the case of eq.(4.64), the steady state distribution of the number-density

of particles and the mole fraction in the mixing process, which are denoted

as xδTA (x) and nδT (x) respectively, are generally not homogeneous. We can

determine xδTA (x) and nδT (x) with the additional assumption that the mixture

can be regarded as the ideal gas in the local systems when the system is in

the steady state of the mixing process, not only in the equilibrium state of

the separating process. From this assumption, we can write

nδT (x) =
p(x)

kBT δT (x)
=

p(x)

kBTh
(
1− δT

ThLx
x
) ∼=

p(x)

kBTh

(
1 +

δT

ThLx

x
)
, (4.65)

where we use δT � 1 in the last approximation. Since p(x) = const., which

comes from the assumption of the mechanical equilibrium state ∇p = 0, we

can determine the coefficient of r.h.s. in eq.(4.65) by using the relation

N =

∫ Lx

0

SnδT (x)dx, (4.66)

=
pS

kBTh

(
Lx +

δTLx

2Th

)
(4.67)

∼=
pV

kBT
, (T ≡ Th + Tc

2
, V ≡ LxS), (4.68)

where T is the average temperature between the heat baths, V is the volume

of the system. From eq.(4.68), eq.(4.65) becomes

nδT (x) =
nT

Th

(
1 +

δT

ThLx

x
)
, (4.69)

∼= n+
nδT

TLx

(
x− Lx

2

)
, (4.70)

where n ≡ N/V . By denoting δnδT (x) as the displacement from the average
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number-density n, eq.(4.70) can be written as

δnδT (x) ≡ nδT (x)− n (4.71)

=
nδT

TLx

(
x− Lx

2

)
. (4.72)

From the expression for T δT (x) written as eq.(4.64), we can determine δxδTA (x)

defined as the displacement of the mole fraction xδTA (x) from xA. In the steady

state of the mixing process, the linear relation eq.(4.3) becomes

0 = −l21
∂T δT

∂x
(x)− l22

∂xδTA
∂x

(x). (4.73)

By substituting eq.(4.64) into eq.(4.73), xδTA (x) can be written as

∂xδTA (x)

∂x
= − l21

l22

(
− δT

Lx

)
, (4.74)

∼=
xAxBD

′δT

DLx

, (4.75)

∴ xδTA (x) =
xAxBD

′δT

DLx

x+ C. (4.76)

The integral constant C can be determined from that nδT (x) satisfies

NA =

∫ Lx

0

SnδT
A (x)dx, (4.77)

=

∫ Lx

0

SnδT (x)
(xAxBD′δT

DLx

x+ C
)
dx, (4.78)

=

∫ Lx

0

S
(
CnδT (x) +

nT

Th

xAxBD
′δT

DLx

x+ O(δT 2)
)
dx, (4.79)

∼= CN +
SnT

Th

xAxBD
′δT

DLx

L2
x

2
, (4.80)

(4.81)
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thus,

∴ C =
1

N

(
NA − xAxBD

′δT

DLx

SL2
xnT

2Th

)
(4.82)

= xA − xAxBD
′δT

DLx

LxT

2Th
, (4.83)

where nδT
A (x) is the steady state distribution of number-density of the parti-

cles of the component A when the temperature difference δT exists, and can

be written as nδT
A (x) = nδT (x)xδTA (x). From eq.(4.83), we obtain

xδTA (x) =
xAxBD

′δT

DLx

(
x− Lx

2

)
︸ ︷︷ ︸

δxδT
A (x)

+xA. (4.84)

We note that eq.(4.36) is valid in the case of Th 6= Tc, i.e.

l12 ≡ nAµ̃x
AATD

′′ = nA
kBT

xA
TD′′ = kBT

2
nD′′, (4.85)

because of the additional assumption of the ideal gas.

4.4.1 Cooling Power

The expression of the cooling power eq.(4.17), which is derived from the

linear relations and the boundary condition J̃M
A (Lx, t) = 0, holds in the case

of δT 6= 0. A difference in analysis due to δT 6= 0 appears when eq.(4.37) is

integrated with the time t for [0,∆tmix], and eq.(4.38) is changed to

cp
(
T δT (x)− Th

)︸ ︷︷ ︸
=− δT

Lx
x (∵ eq.(4.64))

= l
′
1

∫ ∆tmix

0

∂2T

∂x2
dt+ l

′
2

(
δxδTA (x)− δxEA(x)

)
. (4.86)

By substituting eqs.(4.35) and (4.84), the second term in eq.(4.86) becomes

δxδTA (x)− δxEA(x) = xAxB

(D′δT

DLx

+ 2βhEq
)
x− xAxBLx

( δTD′

2LxD
+ βhEq

)
,

(4.87)
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where βh ≡ 1/kBTh. With φ(x) ≡
∫ ∆tmix

0
T (x, t)dt, we can write eqs.(4.86)

and (4.87) as

∂2φ

∂x2
(x) =

∫ ∆tmix

0

∂2T

∂x2
(x, t)dt (4.88)

=
1

l
′
1

{
− cpδT

Lx

x− l
′
2

(
δxδTA (x)− δxEA(x)

)}
, (4.89)

=
1

l
′
1

{
−

[ cpδT
Lx

+
l
′
2xAxBD

′δT

DLx

+ 2l
′
2xAxBβhEq︸ ︷︷ ︸

φ1

]
x

+
l
′
2xAxBD

′δT

2D
+ l

′
2xAxBβhEqLx︸ ︷︷ ︸

φ0

}
, (4.90)

hence, by integrating eq.(4.90), φ(x) becomes

φ(x) = − φ1

6l
′
1

x3 +
φ0

2l
′
1

x2 + C1x+ C2. (4.91)

where we defined constants φ1, φ0 in eq.(4.90). From the boundary condition

T (0, t) = Th, thus φ(0) = Th∆tmix, the integral constant C2 is written as

C2 = Th∆tmix. (4.92)

Similarly, from the boundary condition T (Ly, t) = Tc, C1 is calculated as

Tc∆tmix = − φ1

6l
′
1

L3
x +

φ0

2l
′
1

L2
x + C1Lx + Th∆tmix. (4.93)

∴ C1 = −δT∆tmix

Lx

+
φ1L

2
x

6l
′
1

− φ0Lx

2l
′
1

. (4.94)
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Substituting eq.(4.94) into eq.(4.91), we obtain

∂φ

∂x
(Lx) = − φ1

2l
′
1

L2
x +

φ0

l
′
1

Lx +
(
− δT∆tmix

Lx

+
φ1L

2
x

6l
′
1

− φ0Lx

2l
′
1

)
, (4.95)

= − 1

6l
′
1

{
2φ1L

2
x − 3φ0Lx

}
− δT∆tmix

Lx

, (4.96)

= − 1

6l
′
1

{
2L2

x

(cpδT
Lx

+
l
′
2xAxBD

′δT

DLx

+ 2l
′
2xAxBβhEq

)
− 3Lx

( l′2xAxBD′δT

2D
+ l

′
2xAxBβhEqLx

)}
− δT∆tmix

Lx

, (4.97)

= − 1

6l
′
1

{
2cpδTLx +

l
′
2xAxBD

′δTLx

2D

+ l
′
2xAxBβhEqL

2
x

}
− δT∆tmix

Lx

. (4.98)

Therefore, by substituting eq.(4.98) into the expression of the cooling power

(eq.(4.17)), Q̇c can be written as

Q̇c =
−S

∆tsep +∆tmix

(
− l11 + l12

l21

l22

)
︸ ︷︷ ︸
=−l

′
1 (c.f. Eq.(4.37))

∫ ∆tmix

0

∂T

∂x
(Lx, t)dt︸ ︷︷ ︸

∂φ
∂x

(Lx)

, (4.99)

=
−S

6(∆tsep +∆tmix)

{
2cpδTLx +

l
′
2xAxBD

′δTLx

2D

+ l
′
2xAxBβhEqL

2
x +

6l
′
1δT∆tmix

Lx

}
, (4.100)

' −S
6(∆tsep +∆tmix)

{
2cpδTLx +

l
′
2xAxBD

′δTLx

2D

+ l
′
2xAxBβ

(
1− δT

2T

)
EqL2

x +
6l

′
1δT∆tmix

Lx

}
,

(4.101)
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where we write Th = T + δT
2
, and use O

(
(δT )2

)
' 0. l

′
2 and l

′
1 in eq.(4.101)

can be written from eqs.(4.4) and (4.85) as

l
′
2 ≡ l12

n

l22
∼= kBT

2
n
D′′

D
, l

′
1 ≡ l11 − l12

l21

l22
∼= κ− kBT

2
nxAxB

D′′2

D
.

(4.102)

We can easily see that eq.(4.101) becomes eq.(4.48) when δT = 0.

4.4.2 COP

The final state of the mixing process in the case of δT 6= 0 differs from

that in the case of δT = 0. In the case of δT 6= 0, eq.(4.22) changes to

WE = ψE[xA + δxδTA (x), n+ δnδT (x)]− ψE[xA + δxEA(x), n+ δnE(x)].

(4.103)

From eq.(4.24), eq.(4.103) becomes

WE = qES

∫ Lx

0

(
n+ δnδT (x)

){
2
(
xA + δxδTA (x)

)
− 1︸ ︷︷ ︸(

2xA−1
)
+2δxδT

A (x)

}
x dx (4.104)

− qES

∫ Lx

0

(
n+ δnE(x)

){
2
(
xA + δxEA(x)

)
− 1︸ ︷︷ ︸(

2xA−1
)
+2δxE

A(x)

}
x dx, (4.105)

= qES

∫ Lx

0

{(
δnδT (x)− δnE(x)

)(
2xA − 1

)
+ 2n

(
δxδTA (x)− δxEA(x)

)
+ 2δnδT (x)δxδTA (x)− 2δnE(x)δxEA(x)

}
x dx.

(4.106)
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Substituting eqs.(4.33), (4.35), (4.72) and (4.84) into eq.(4.106), WE can be

written as

WE = qES

∫ Ly

0

{
(2xA − 1)

[ δnδT (y)︷ ︸︸ ︷
nδT

TLy

(
y − Ly

2

)
−

δnE(x)︷ ︸︸ ︷
(2nA − n︸ ︷︷ ︸
n(2xA−1)

)βhEq
(Lx

2
− x

) ]

+ 2n
[ δxδT

A (x)︷ ︸︸ ︷
xAxBD

′δT

DLx

(
x− Lx

2

)
−

δxE
A(x)︷ ︸︸ ︷

2xAxBβhEq
(Lx

2
− x

) ]
+ O(δT 2) + O(E2)

}
x dx, (4.107)

∼= nqES

∫ Lx

0

{[
(2xA − 1)

δT

TLx

+ (2xA − 1)2βhEq

+
2xAxBD

′δT

DLx

+ 4xAxBβhEq
]
x2

−
[
(2xA − 1)

δT

2T
+ (2xA − 1)2βhEq

Lx

2

+
xAxBD

′δT

D
+ 4xAxBβhEq

Lx

2

]
x
}
dx, (4.108)

∼= nqES

{
δT

[
(2xA − 1)

( 1

3T
− 1

4T︸ ︷︷ ︸
1

12T

)
+
xAxBD

′

6D

]
L2

x

+ βh︸︷︷︸
∼=β(1− δT

2T
)

Eq
(L3

x

3
− L3

x

4

)}
,

(4.109)

∼=
nqESL2

x

12

{
δT

T

[
2xA − 1 +

2xAxBD
′

D

]
+ β

(
1− δT

2T

)
EqLx

}
. (4.110)

Therefore, by substituting eqs. (4.101) and (4.110) into (4.27), the COP
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becomes

ε =
Q̇c

WE/(∆tsep +∆tmix)
, (4.111)

=
−2

nqEL2
x

{
2cpδTLx +

l
′
2xAxBD

′δTLx

2D

+ l
′
2xAxBβ

(
1− δT

2T

)
EqL2

x +
6l

′
1δT∆tmix

Lx

}
/{

(2xA − 1 + 2xAxBD
′/D)δT

T
+ β

(
1− δT

2T

)
EqLx

}
, (4.112)

where, l
′
2 and l

′
1 are

l
′
2 = kBT

2
n
D′′

D
, l

′
1 = κ− kBT

2
nxAxB

D′′2

D
, (4.113)

respectively. We can see that eq.(4.112) becomes identical with eq.(4.52)

when Tc = Th.
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Chapter 5

Summary

This thesis has been devoted to study a heat pump model utilizing the

Dufour effect for investigating a possibility of application of this effect.

In Chapter 2, we reviewed the linear irreversible thermodynamics and

the phenomenology of the Dufour effect proposed by Waldmann. We first

derived the linear relations of the system consisting of the gas mixture with

two chemical components A and B, in which the mole fraction xA and the

temperature T are inhomogeneous. Using the linear relations, the time evo-

lution equations of xA and T were derived. From these results, Waldmann’s

phenomenological equations for the Dufour effect were derived, and their

solution was shown.

In Chapter 3, we proposed a heat pump model utilizing the Dufour effect,

and numerically confirmed its usefulness as a heat pump. In this heat pump

model, the separating process in which the mixture is separated by the exter-

nal electric field, and the mixing process in which the diffusive mixing occurs

and the heat is pumped due to the Dufour effect, are repeated alternatively.
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Next, using the MD simulation, we measure the cooling power Q̇c and the

COP ε of a typical three-dimensional system of the heat pump model. Since

Q̇c and ε are positive in a specific parameter region, we confirmed that this

system is useful as a heat pump.

In Chapter 4, we theoretically analyzed the model using the linear irre-

versible thermodynamics. Using some assumptions and approximations, we

derived the expression for the cooling power Q̇c and the COP ε from the time

evolution equations of xA and T , in the case of ∆tsep > τsep, ∆tmix > τmix

and zero temperature difference between the heat baths δT = Th − Tc. To

confirm this theoretical result, we calculated Q̇c and ε by substituting kT de-

rived from the Chapman-Enskog theory as varying the external field E, and

compared them with the data obtained from the MD simulation of a typical

two-dimensional system in the case of δT = 0. As a result, a good agreement

between the theory and the data was observed when the external field E is

sufficiently small, which is a condition used in our theory as an assumption.

From this agreement, the validity of our theory was verified.

Finally, we discuss some remaining tasks. First, we do not check some

theoretical results derived in Chapter 4 numerically yet, for example Lx and

n dependencies of Q̇c and ε in the case of δT = 0. Second, the theoretical

results of Q̇c and ε in the case of δT 6= 0 are not confirmed in this the-

sis. To confirm these results numerically, we must calculate the values of

the transport coefficients such as κ and D′′ by the Chapman-Enskog theory.

Third, the theoretical calculations of Q̇c and ε in the case of ∆tsep . τsep and

∆tmix . τmix are remaining. To derive these expressions generally, we need

to solve the time evolution equations of xA and T in the separating process.
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Since the time evolution equations become very complex in the presence of

the external field as we showed in eqs.(2.95) and (2.112), and this would make

the theoretical analysis difficult. But it is possible and feasible to solve the

time evolution equations numerically and calculate Q̇c and ε in the case of

∆tsep . τsep, ∆tmix . τmix and δT 6= 0. One of the purposes to study the case

of ∆tsep . τsep and ∆tmix . τmix is to confirm the relation between our model

and the Curzon-Ahlborn theory,25) which derived a universal expression of

the efficiency of nonequilibrium engines. It is an open problem whether our

model can be described within the Curzon-Ahlborn theory or another mod-

ified theory is needed. The final remaining work is to confirm our model by

experiment, but it is not sure whether the electric field is the best scheme to

separate the mixture in an experiment. This is also an open problem.
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Appendix A

Chapman-Enskog theory

A.1 Expression for the thermal-diffusion ra-

tio [kT ]1

The first order approximate expression for the thermal diffusion ratio [kT ]1

of the three-dimensional system is derived by the Chapman-Enskog theory.4)

From the similar derivation, the two-dimensional expression for [kT ]1 can be

written as

[kT ]1 = 2
xAM

− 1
2

A (a−1−1a01 − a0−1a1−1) + xBM
− 1

2
B (a0−1a11 − a01a1−1)

a−1−1a11 − a21−1

,

(A.1)
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where MA ≡ mA/m0,MB ≡ mB/m0,m0 = mA +mB. The matrix elements

a11, a1−1, a−1−1, a01 and a0−1 in eq. (A.1) are defined as

a11 = x2Aa
′′
11 + xAxBa

′
11, (A.2)

a−1−1 = xAxBa
′
−1−1 + x2Ba

′′
−1−1, (A.3)

a1−1 = xAxBa
′
1−1, (A.4)

a01 = xAxBa
′
01, (A.5)

a0−1 = −xAxBa′0−1. (A.6)

where a′′11, a
′
11, a

′
−1−1, a

′′
−1−1, a

′
1−1, a

′
01 and a′0−1 are expressed as

a′1−1 = 2M
3
2
AM

3
2
B

{
− Ω̂

(1)
12 (3) + 4Ω̂

(1)
12 (2)− 10Ω̂

(1)
12 (1) + 2Ω̂

(2)
12 (2)

}
, (A.7)

a′01 = 2M
1
2
A

(
2M2

BΩ̂
(1)
12 (1)−M2

BΩ̂
(1)
12 (2)

)
(A.8)

a′11 = 2
{
(6M2

AMB + 4M3
B)Ω̂

(1)
12 (1)− 4M3

BΩ̂
(1)
12 (2)

+M3
BΩ̂

(1)
12 (3) + 2MAM

2
BΩ̂

(2)
12 (2)

}
, (A.9)

a′0−1 = 2M
1
2
B

(
2M2

AΩ̂
(1)
12 (1)−M2

AΩ̂
(1)
12 (2)

)
, (A.10)

a′−1−1 = 2
{
(6M2

BMA + 4M3
A)Ω̂

(1)
12 (1)− 4M3

AΩ̂
(1)
12 (2)

+M3
AΩ̂

(1)
12 (3) + 2MBM

2
AΩ̂

(2)
12 (2)

}
, (A.11)

a′′11 = Ω̂
(2)
1 (2), (A.12)

a′′−1−1 = Ω̂
(2)
2 (2). (A.13)
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Here, Ω̂
(l)
12(r), Ω̂

(l)
1 (r) and Ω̂

(l)
2 (r) (l, r = 1, 2, · · · ) are defined as

Ω̂
(l)
12(r) =

1

2
σ

(
2kBT

m0MAMB

) 1
2

Ŵ (l)(r), (A.14)

Ω̂
(l)
1 (r) =

1

2
σ

(
kBT

mA

) 1
2

Ŵ (l)(r), (A.15)

Ω̂
(l)
2 (r) =

1

2
σ

(
kBT

mB

) 1
2

Ŵ (l)(r), (A.16)

where σ is the diameter of the particles, and Ŵ (l)(r) are the non-dimensional

values defined as

Ŵ (l)(r) ≡ 2

∫ ∞

0

∫ 1

0

e−g2g2r+1(1− cosl χ) d
( b
σ

)
d(g2). (A.17)

A parameter χ in eq. (A.17) is the scattering angle between the particles of

Herzian potential, which is defined as U int(r) in eq. (3.4), and is the function

of the scattering parameters g, b written as

χ(g, b) = π − 2

∫ ∞

R

{
r4

b2

(
1− U int(r)

kBTg2

)
− r2

}− 1
2

dr, (A.18)

where R is the root of

1− U int(r)

kBTg2
− b2

r2
= 0. (A.19)
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A.2 The Derivation of the two-dimensional

expression

A.2.1 Boltzmann’s equation and Enskog’s method

Boltzmann’s equation

Boltzmann’s equations for a binary gas-mixture are written as

∂fA
∂t

+ cA · ∂fA
∂r

+ FA · ∂fA
∂cA

=
∂efA
∂t

, (A.20)

∂fB
∂t

+ c2 ·
∂fB
∂r

+ FB · ∂fB
∂cB

=
∂efB
∂t

, (A.21)

where cs is the velocity of molecules of the component s(= A,B), Fs is

the external force on molecules of s, fs ≡ fs(cs, r, t) is the distribution of

velocities of molecules of s. (∂efs/∂t) denotes the rate at which the velocity

distribution fs is being altered by collisions with molecules. (∂efs/∂t) may

be divided into the parts due to the collisions with molecules of A and B,

thus

∂efs
∂t

=

(
∂efs
∂t

)
A

+

(
∂efs
∂t

)
B

(s = A,B). (A.22)

If the gas-mixture is very dilute so that collisions between molecules occur

only as a two-body collision, we can derive(
∂efA
∂t

)
B

=

∫ ∫
(f ′

Af
′
B − fAfB)gαAB de

′ dcB, (A.23)(
∂efA
∂t

)
A

=

∫ ∫
(f ′f ′

A − ffA)gαA de
′ dc, (A.24)
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by using the conservation of probability. Here, e′ is defined as

de′ = sinχdχd,

=

(
sinχ

/∣∣∣ ∂b
∂χ

∣∣∣) db, (A.25)

where χ is the scattering angle, b is the scattering diameter, and g denotes

the relative velocity g ≡ cB − cA. If αAB is defined as

αAB ≡ b
∣∣∣ ∂b
∂χ

∣∣∣/ sinχ, (A.26)

we can write simply

b db dε = αAB de
′. (A.27)

We note that αA denotes αAA. Thus, we can write eqs. (A.20) and (A.21) as

DAfA + JA(fAf) + JAB(fAfB) = 0, (A.28)

DBfB + JB(fBf) + JBA(fAfB) = 0, (A.29)

respectively, where we defined

Dsfs ≡
∂fs
∂t

+ cs ·
∂fs
∂r

+ Fs ·
∂fs
∂cs

(s = A,B), (A.30)

JA(fAf) =

∫ ∫
(ffA − f ′f ′

A)gαA de
′ dc, (A.31)

JAB(fAfB) =

∫ ∫
(fAfB − f ′

Af
′
B)gαAB de

′ dcB, (A.32)

with similar definitions for JB(fBf), JBA(fAfB).

Enskog’s method

Enskog’s method is one of successive approximate method to solve Boltz-

mann’s equation. In this method, fs,Dsfs, JA+JAB and JB+JBA are written
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as

fA = f
(0)
A + f

(1)
A + f

(2)
A + · · · , fB = f

(0)
B + f

(1)
B + f

(2)
B + · · · ,

(A.33)

DAfA = D (0)
A + D (1)

A + D (2)
A + · · · , DBfB = D (0)

B + D (1)
B + D (2)

B + · · · ,

(A.34)

JA + JAB = J
(0)
A + J

(1)
A + J

(2)
A + · · · , JB + JBA = J

(0)
B + J

(1)
B + J

(2)
B + · · · ,

(A.35)

and Boltzmann’s equations eqs. (A.29) and (A.30) are subdivided into the

set of equations

D (r)
A + J

(r)
A = 0, D (r)

B + J
(r)
B = 0 (r = 0, 1, 2, 3, · · · ). (A.36)

Furthermore, we assume that D (r)
s (s = A,B) depends only on f

(0)
s , f

(1)
s , · · · , f (r−1)

s

for r ≥ 1, and D (0)
s = 0 for r = 0, and that J

(r)
s (s = A,B) depends only

on f
(0)
s , f

(1)
s , · · · , f (r)

s . By defining a appropriate set of {D (r)
s }, {J (r)

s }(r =

0, 1, 2, · · · ), the functions f
(0)
s , f

(1)
s , f

(2)
s , · · · can be obtained one by one so

that the distribution functions fA and fB are approximately obtained from

Eq. (A.33).
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In this method, {J (r)
A }, {J (r)

B } are defined as

J
(0)
A ≡ JA(f

(0)
A f (0)) + JAB(f

(0)
A f

(0)
B ), (A.37)

J
(r)
A ≡ JA(f

(0)
A f (r)) + JA(f

(1)
A f (r−1)) + · · ·+ JA(f

(r)
A f (0))

+ JAB(f
(0)
A f

(r)
B ) + JAB(f

(1)
A f

(r−1)
B ) + · · ·+ JAB(f

(r)
A f

(0)
B ) (r ≥ 1),

(A.38)

J
(0)
B ≡ JB(f

(0)
B f (0)) + JBA(f

(0)
A f

(0)
B ), (A.39)

J
(r)
B ≡ JB(f

(0)
B f (r)) + JB(f

(1)
B f (r−1)) + · · ·+ JB(f

(r)
B f (0))

+ JBA(f
(0)
A f

(r)
B ) + JBA(f

(1)
A f

(r−1)
B ) + · · ·+ JBA(f

(r)
A f

(0)
B ) (r ≥ 1).

(A.40)

From these definitions, the divided Boltzmann’s equations eq. (A.36) for

r = 0 become

J
(0)
A ≡ JA(f

(0)
A f (0)) + JAB(f

(0)
A f

(0)
B ) = 0, (A.41)

J
(0)
B ≡ JB(f

(0)
B f (0)) + JBA(f

(0)
A f

(0)
B ) = 0. (A.42)

From Eqs. (A.41) and (A.42), the first approximate solutions can be obtain

as

f
(0)
A (cA, r, t) = nA

mA

2πkBT
exp

{
− mA

2kBT
[(uA − u0)

2 + (vA − v0)
2]

}
, (A.43)

f
(0)
B (cBr, t) = nB

mB

2πkBT
exp

{
− mB

2kBT
[(uB − u0)

2 + (vB − v0)
2]

}
, (A.44)

where u and v denote the x− and y− components of c, respectively, and c0

is the mean velocity of the mixture. We note that nA, nB, c0, and T generally

depend on r and t.

To define {D (r)
s }, we divide an mean value of φ which is a function of c, r,
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and t, into {φ(r)} so that

φ ≡ 1

n

∫
fφdc =

1

n

∫ ∞∑
r=0

f (r)φdc =
∞∑
r=0

φ
(r)
, (A.45)

and

φ
(r) ≡ 1

n

∫
f (r)φdc. (A.46)

In particular, we divide P and q defined as

P ≡ PA + PB ≡ ρACACA + ρBCBCB, (A.47)

=

 ρAC2
Ax ρACAxCAy

ρACAyCAx ρAC2
Ay

+

 ρBC2
Bx ρBCBxCBy

ρBCByCBx ρBC2
By

 ,
(A.48)

q ≡ qA + qB ≡ nAEACA + nBEBCB, (A.49)

into {P(r)} and {q(r)}, respectively, so that

P =
∞∑
r=0

P(r), q =
∞∑
r=0

q(r), (A.50)

where

P(r) =mA

∫
CACAf

(r)
A dcA +mB

∫
CBCBf

(r)
B dcB, (A.51)

q(r) =

∫
EACAf

(r)
A dcA +

∫
EBCBf

(r)
B dcB, (A.52)

and ρs is the density of the component s (= A,B), Cs ≡ cs − c0, and Es ≡
1
2
msC

2
s . If r = 0, we can calculate

q(0) = 0, P(0) = Up, (A.53)
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by using eqs. (A.43) and (A.44).

Next, we divide the time derivative ∂
∂t

into {∂r
∂t
}(r = 0, 1, 2, · · · ) so that

∂

∂t
=
∂0
∂t

+
∂1
∂t

+
∂2
∂t

+ · · · , (A.54)

where

D0ns

Dt
≡ ∂0ns

∂t
+ c0 ·

∂ns

∂r
≡ −ns

∂

∂r
· c0, (A.55)

∂rns

∂t
≡ − ∂

∂r
· (nsC

(r)

s ) (r > 0), (A.56)

ρ
D0c0
Dt

≡ ρ

{
∂0c0
∂t

+
(
c0 ·

∂

∂r
c0

)}
≡ ρAFA + ρBFB − ∂

∂r
· P(0), (A.57)

= ρAFA + ρBFB − ∂p

∂r
, (A.58)

ρ
∂rc0
∂t

≡ − ∂

∂r
· P(r) (r > 0), (A.59)

nkB
D0T

Dt
≡ nkB

{∂0T
∂t

+ c0 ·
∂T

∂r

}
≡ −p ∂

∂r
· c0, (A.60)

nkB
∂rT

∂t
≡ nkB

∂

∂r
· (nAC

(r)

A + nBC
(r)

B ) + ρAC
(r)

A · FA

+ ρBC
(r)

B · FB − ∂

∂r
· q(r) − P(r) :

∂

∂r
c0 (r > 0), (A.61)

and

D0

Dt
≡ ∂0
∂t

+ c0 ·
∂

∂r
, (A.62)

C
(r)

A ≡ 1

nA

∫
f
(r)
A CAdcA, C

(r)

B ≡ 1

nB

∫
f
(r)
B CBdcB. (A.63)

CA =
∞∑
r=0

C
(r)

A , CB =
∞∑
r=0

C
(r)

B , (A.64)

are assumed so that the conservation laws of energy, momentum and mass

are satisfied. With these subdivided time derivatives {∂r/∂t}(r = 0, 1, 2, · · · ),
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the subdivision of Dsfs (s = A,B) in eq. (A.34) are defined as

D (r)
s ≡ ∂0f

(r−1)
s

∂t
+
∂1f

(r−2)
s

∂t
+ · · ·+ ∂r−1f

(0)
s

∂t
+

(
cs ·

∂

∂r
+ Fs ·

∂

∂cs

)
f (r−1)
s ,

(A.65)

for r ≥ 1. We note that D (0)
s = 0 for r = 0.

A.2.2 Second approximate solution of Boltzmann’s equa-

tion

Second approximations J (1) and D (1)

The second approximate solutions f
(1)
A , f

(1)
B are obtained by solving the

subdivided Boltzmann’s equation eq. (A.36) for r = 1. If we define the func-

tions Φ
(1)
A ,Φ

(1)
B as f

(1)
A = f

(0)
A Φ

(1)
A , f

(1)
B = f

(0)
B Φ

(1)
B , J

(1)
A can be written as

J
(1)
A ≡ JA(f

(0)
A f (1)) + JA(f

(1)
A f (0)) + JAB(f

(0)
A f

(1)
B ) + JAB(f

(1)
A f

(0)
B ), (A.66)

= JA(f
(0)
A f (0)Φ(1)) + JA(f

(0)
A Φ

(1)
A f (0))

+ JAB(f
(0)
A f

(0)
B Φ

(1)
B ) + JAB(f

(0)
A Φ

(1)
A f

(0)
B ), (A.67)

=

∫∫ (
f
(0)
A f (0)Φ(1) − f

′(0)
A f ′(0)Φ′(1) + f

(0)
A Φ

(1)
A f (0) − f

′(0)
A Φ

′(1)
A f ′(0)

)
gα1 de

′ dc

+

∫∫ (
f
(0)
A f

(0)
B Φ

(1)
B − f

′(0)
A f

′(0)
B Φ

′(1)
B

+ f
(0)
A Φ

(1)
A f

(0)
B − f

′(0)
A Φ

′(1)
A f

′(0)
B

)
gαAB de

′ dcB, (A.68)

=

∫∫
f
(0)
A f (0)

(
Φ(1) − Φ′(1) + Φ

(1)
A − Φ

′(1)
A

)
gα1 de

′ dc

+

∫∫
f
(0)
A f

(0)
B

(
Φ

(1)
B − Φ

′(1)
B + Φ

(1)
A − Φ

′(1)
A

)
gαAB de

′ dcB, (A.69)

= n2
AIA(Φ

(1)) + nAnBIAB(Φ
(1)
A + Φ

(1)
B ), (A.70)
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where IA, IAB are the integrals defined as

n2
AIA(F ) ≡

∫∫
f
(0)
A f (0)(FA + F − F ′

A − F ′)gαAde
′dc, (A.71)

nAnBIAB(K) ≡
∫∫

f
(0)
A f

(0)
B (K −K ′)gαABde

′dcB, (A.72)

F is a function of cA, and K is a function of cA, cB. Similarly, we can write

J
(1)
B = n2

BIB(Φ
(1)) + nAnBIBA(Φ

(1)
A + Φ

(1)
B ), (A.73)

where IB and IBA are

n2
BIB(F ) ≡

∫∫
f
(0)
B f (0)(FB + F − F ′

B − F ′)gαBde
′dc, (A.74)

nAnBIBA(K) ≡
∫∫

f
(0)
A f

(0)
B (K −K ′)gαABde

′dcA. (A.75)

From eq. (A.65), D (1)
A is defined as

D (1)
A ≡ ∂0f

(0)
A

∂t
+

(
cA · ∂

∂r
,+FA · ∂

∂cA

)
f
(0)
A . (A.76)

It is convenient to change the variables as

(cA, r, t) → (cA − c0(r, t), r, t)
(
= (CA, r, t)

)
.

Then, eq. (A.76) is transformed into

D (1)
A → ∂0f

(0)
A

∂t
− ∂0c0

∂t
· ∂f

(0)
A

∂CA

+ (CA + c0) ·
{
∂f

(0)
A

∂r
−
( ∂

∂r
c0

)
· ∂f

(0)
A

∂CA

}
+ FA · ∂f

(0)
A

∂CA

. (A.77)

By using the vector relation,

a · {(∇b) · c} = ai(∂ibj)cj = {(a ·∇)b} · c, (A.78)

= ca : ∇b, (A.79)
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where A : B is defined as A : B ≡
∑

ij AijBji, we can write

D (1)
A =

∂0f
(0)
A

∂t
+ c0 ·

∂f
(0)
A

∂r︸ ︷︷ ︸
D0f

(0)
A

∂t

+CA · ∂f
(0)
A

∂r

− ∂0c0
∂t

· ∂f
(0)
A

∂CA

− c0 ·
{( ∂

∂r
c0

)
· ∂f

(0)
A

∂CA

}
︸ ︷︷ ︸

c0i(∂ic0j)
(

∂f
(0)
A

∂CA

)
j

+ F · ∂f
(0)
A

∂CA

−CA ·
{( ∂

∂r
c0

)
· ∂f

(0)
A

∂CA

}
︸ ︷︷ ︸

Ci(∂ic0j)
(

∂f
(0)
A

∂CA

)
j

, (A.80)

=
D0f

(0)
A

∂t
+CA · ∂f

(0)
A

∂r
−∂0c0

∂t
· ∂f

(0)
A

∂CA

−
(
c0 ·

∂c0
∂r

)
· ∂f

(0)
A

∂CA

+ F · ∂f
(0)
A

∂CA︸ ︷︷ ︸(
F− ∂0c0

∂t
−c0· ∂c0∂r

)
·
∂f

(0)
A

∂CA

− ∂f
(0)
A

∂CA

CA :
c0
∂r
, (A.81)

=
D0f

(0)
A

Dt
+CA · ∂f

(0)
A

∂r
+
(
F − D0c0

Dt

)
· ∂f

(0)
A

∂CA

− ∂f
(0)
A

∂CA

CA :
∂

∂r
c0,

(A.82)

= f
(0)
A

{
D0 ln f

(0)
A

Dt
+CA · ∂ ln f

(0)
A

∂r
+
(
F − D0c0

Dt

)
· ∂ ln f

(0)
A

∂CA

− ∂ ln f
(0)
A

∂CA

CA :
∂

∂r
c0

}
. (A.83)

By substituting the first approximate distribution

ln f
(0)
A = const. + ln

nA

T
2
2

− mAC
2
A

2kBT
, (A.84)
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eq. (A.83) becomes

D (1)
A = f

(0)
A

{(
C 2
A − 2

)
CA ·∇ lnT + x−1

A dAB ·CA + 2C ◦
ACA : ∇c0

}
,

(A.85)

where CA and dAB are defined as

CA ≡
(

mA

2kBT

) 1
2

CA, (A.86)

dAB ≡ xA∇ ln pA − ρAρ2
ρp

(FA − F2)−
ρA
ρp

∇p, (A.87)

respectively, and we denote the product C◦
ACA as

C◦
ACA ≡

U2
A − 1

2
C2

A UAVA

VAUA V 2
A − 1

2
C2

A

 . (A.88)

From the similar calculation for the component B, we can write

D (1)
B = f

(0)
B

{(
C 2

B − 2
)
CB ·∇ lnT + x−1

B dBA ·CB + 2C ◦
BCB : ∇c0

}
.

(A.89)

where CB and dBA are defined as

CB ≡
(
mB

2kBT

) 1
2

CB, (A.90)

dBA ≡ xB∇ ln pB − ρBρ2
ρp

(FB − F2)−
ρB
ρp

∇p, (A.91)

respectively. If the assumption of the mechanical equilibrium state (see Sec. 2.1.3)

and FA = FB = 0 are satisfied, dAB becomes the mole fraction gradient, i.e.

dAB = ∇xA. (A.92)
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Second approximations f
(1)
A and f

(1)
B

From eqs. (A.70) and (A.73), the subdivided Boltzmann’s equation can

be written as

D (1)
A = −n2

AIA(Φ
(1))− nAnBIAB(Φ

(1)
A + Φ

(1)
B ), (A.93)

D (1)
B = −n2

BIB(Φ
(1))− nAnBIBA(Φ

(1)
A + Φ

(1)
B ). (A.94)

Since ∇ lnT,dAB, and ∇c0 occur linearly, Φ
(1)
A ,Φ

(1)
B are expressible in the

forms

Φ
(1)
A = −AA ·∇ lnT −DA · dAB − 2BA : ∇c0, (A.95)

Φ
(1)
B = −AB ·∇ lnT −DB · dAB − 2BB : ∇c0, (A.96)

where, the vectors A,D and tensor B are defined as

As = CsAs(Cs), Ds = CsDs(Cs), Bs = C◦
sCsBs(Cs) (s = 1, 2), (A.97)

and As(Cs), Bs(Cs) and Ds(Cs) are the functions of ns, T and Cs. Hence, the

second approximate solutions fA = f
(0)
A +f

(1)
A and fB = f

(0)
B +f

(1)
B are written

as

fA = f
(0)
A

{
1− AA(CA)CA ·∇ lnT −DA(CA)CA · dAB

− 2BA(CA)C
◦
ACA : ∇c0

}
, (A.98)

fB = f
(0)
B

{
1− AB(CB)CB ·∇ lnT −DB(CB)CB · dAB

− 2BB(CB)C
◦
BCB : ∇c0

}
, (A.99)
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From eqs. (A.85) and (A.89), these functions As,Ds and tensor Bs must

satisfy the integral equations

f
(0)
A

(
C 2
A − 5

2

)
CA = n2

AIA(AA) + nAnBIAB(AA +AB),

f
(0)
B

(
C 2
B − 5

2

)
CB = n2

BIB(AB) + nAnBIBA(AA +AB),
(A.100)

f
(0)
A x−1

A CA = n2
AIA(DA) + nAnBIAB(DA +DB),

−f (0)
B x−1

B CB = n2
BIB(DB) + nAnBIBA(DA +DB),

(A.101)

f
(0)
A C ◦

ACA = n2
AIA(BA) + nAnBIAB(BA + BB),

f
(0)
B C ◦

BCB = n2
BIB(BB) + nAnBIBA(BA + BB),

(A.102)

respectively.

It is convenient to rewrite eq. (A.100), (A.101) and (A.102) with the

bracket {·, ·} defined as

n2{F,G} ≡ n2
A[F,G]A + nAnB[FA + FB, GA +GB]AB + n2

B[F,G]B,

(A.103)

where the brackets [·, ·]A, [·, ·]B and [·, ·]AB are defined as

[F,G]A ≡
∫
GAIA(F )dcA, (A.104)

[F,G]B ≡
∫
GBIB(F )dcB, (A.105)

[FA +GB, HA +KB]AB ≡
∫
FAIAB(HA +KB)dcA

+

∫
GBIBA(HA +KB)dcB, (A.106)

respectively. By using these brackets, eqs. (A.100), (A.101) and (A.102) are
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rewritten as

n2{A,a} = n2
A[A,a]A + nAnB[aA + aB,AA +AB]AB + n2

B[A,a]B,

(A.107)

= n2
A

∫
aA · IA(AA)dcA + nAnB

∫
aA · IAB(AA +AB)dcA

+ nAnB

∫
aB · IBA(AA +AB)dcB + n2

B

∫
aB · IA(AB)dcB,

(A.108)

=

∫
f
(0)
A

(
C 2
A − 5

2

)
CA · aA dcA +

∫
f
(0)
B

(
C 2

B − 5

2

)
CB · aB dcB,

(A.109)

n2{D,a} = n2
A[D,a]A + nAnB[aA + aB,DA +DB]AB + n2

B[D,a]B,

= n2
A

∫
aA · IA(DA)dcA + nAnB

∫
aA · IAB(DA +DB)dcA

+ nAnB

∫
aB · IBA(DA +DB)dcB + n2

B

∫
aB · IA(DB)dcB,

= x−1
A

∫
f
(0)
A CA · aA dcA − x−1

B

∫
f
(0)
B CB · aB dcB, (A.110)

and

n2{B, b} =

∫
f
(0)
A C ◦

ACA : bA dcA +

∫
f
(0)
B C ◦

BCB : bB dcB, (A.111)

respectively.

A.2.3 Expression for the thermal-diffusion ratio kT

Calculation of the the diffusion flow

The expression for kT can be obtained by calculating

CA −CB =
1

nA

∫
fACAdcA − 1

nB

∫
fBCBdcB. (A.112)
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We note that the diffusion flow J̃M
A can be written with eq. (A.112) as

CA −CB =
nB + nA

nB

CA =
1

xBnA

nA(cA − c0)︸ ︷︷ ︸
J̃M
A

. (A.113)

By substituting eqs. (A.98) and (A.99), eq. (A.112) becomes

CA −CB

= − 1

nA

∫
f
(0)
A

{
AA(CA)CA ·∇ lnT +DA(CA)CA · dAB

}
CAdcA,

+
1

nB

∫
f
(0)
B

{
AB(CB)CB ·∇ lnT +DB(CB)CB · dAB

}
CBdcB,

(A.114)

= −
{ 1

nA

∫
f
(0)
A AA(CA)CACAdcA − 1

nB

∫
f
(0)
B AB(CB)CBCBdcB

}
·∇ lnT

−
{ 1

nA

∫
f
(0)
A DA(CA)CACAdcA − 1

nB

∫
f
(0)
B DB(CB)CBCBdcB

}
· dAB,

(A.115)

= −1

2

[{ 1

nA

∫
f
(0)
A AA(CA)CACAdcA − 1

nB

∫
f
(0)
B AB(CB)CBCBdcB

}
∇ lnT

+
{ 1

nA

∫
f
(0)
A DA(CA)CACAdcA − 1

nB

∫
f
(0)
B DB(CB)CBCBdcB

}
dAB

]
,

= −1

2

[
1

n

{ 1

xA

∫
f
(0)
A AA ·CA dcA − 1

xB

∫
f
(0)
B AB ·CB dcB

}
︸ ︷︷ ︸

n2{D,A}

∇ lnT

+
1

n

{ 1

xA

∫
f
(0)
A DA ·CA dcA − 1

xB

∫
f
(0)
B DB ·CB dcB

}
︸ ︷︷ ︸

n2{D,D}

dAB

]
,

= −n
2

[
{D,A}∇ lnT + {D,D}dAB

]
, (A.116)

where we used the relation∫
F (C2

s )CsCs dCs =
1

2
U

∫
F (C2

s )C
2
s dCs (s = A,B). (A.117)
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Thus, by comparing with eqs. (2.89) and (A.113), we can obtain

D =
nAnB

2n
{D,D}, (A.118)

kT ≡ TxAxB
D′

D
=

{D,A}
{D,D}

. (A.119)

Expression for {D,A} and {D,D}

To calculate the brackets {D,A} and {D,D}, we introduce the Sonine

polynomials S
(n)
m (x). Let s be a positive number (s > 0), and the polynomial

S
(n)
m (x) is defined as

(1− s)−m−1e−xs/(1−s) =
∞∑
n=0

snS(n)
m (x). (A.120)

It is derived that S
(n)
m (x) is written as

S(n)
m (x) =

n∑
p=0

(−x)p(m+ n)n−p/p!(n− p)!, (A.121)

where the subscript in (m+n)(n−p) denotes the product of the (n−p) factors

m + n,m + n − 1, · · · ,m + n − q + 1. Especially, it is also derived that the

polynomial S
(n)
m (x) satisfies

S(0)
m (x) = 1, S(1)

m (x) = m+ 1− x, (A.122)

∫ ∞

0

e−xS(p)
m (x)S(q)

m (x)xm dx =

0 (p 6= q),

Γ(m+p+1)
p!

(p = q).

(A.123)

Now, we define the vector function Ãs (s = A,B) as

Ãs ≡ As −
{A,D}
{D,D}

Ds = As − kTDs, (A.124)
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and the expansion coefficients {ap}, {dp} written as

ÃA =
+∞ ′∑
p=−∞

apa
(p)
A , ÃB =

+∞ ′∑
p=−∞

apa
(p)
B , (A.125)

DA =
+∞∑

p=−∞

dpa
(p)
A , DB =

+∞∑
p=−∞

dpa
(p)
B , (A.126)

where {a(p)
A }, {a(p)

B } are defined as

a
(0)
A ≡ M

1
2
AρBCA

ρ
, a

(0)
B ≡ −M

1
2
BρACB

ρ
, (A.127)

a
(p)
A ≡ S

(p)
1 (C 2

A)CA, a
(−p)
A ≡ 0, a

(p)
B ≡ 0, a

(−p)
B ≡ S

(p)
1 (C 2

B)CB. (p 6= 0),

(A.128)

and the notation Σ′ implies that the summation does not include the term

of p = 0. The expansion coefficients {dp} can be obtained from the equations

{D,a(q)} = {
+∞∑

p=−∞

dpa
(p),a(q)} =

+∞∑
p=−∞

dpapq = δq (q = −∞, · · · ,+∞)

(A.129)

where the matrix element apq is defined as

apq ≡ {a(p),a(q)} ≡ aqp, (A.130)

and δq can be calculated as

δ0 =
1

n

(
2kBT

m0

) 1
2

, (A.131)

δq = 0 (q 6= 0). (A.132)

Similarly, the expansion coefficients {ap} can be obtained from the equations

{Ã,a(q)} = {
+∞′∑
p=−∞

apa
(p),a(q)} =

+∞,′∑
p=−∞

apapq = αq (q 6= 0), (A.133)
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where αq(q 6= 0) can be calculated as

α1 = −2nA

n2

(
2kBT

mA

) 1
2

, −2nB

n2

(
2kBT

mB

) 1
2

, (A.134)

αq = 0 (q 6= ±1). (A.135)

From Cramer’s rule, {dp} and {ap} is written as

dp = δ0 lim
m→∞

A (m)
0p

A (m)
, (A.136)

ap = lim
m→∞

α1A
′ (m)
1p + α−1A

′ (m)
−1,p

A ′ (m)
, (p 6= 0). (A.137)

where A (m) is the determinant with elements {apq}(−m ≤ p ≤ m, −m ≤

q ≤ m), A (m)
0p is the co-factor of a0p in the expansion of A (m), and A ′ (m)

qp is

the co-factor of aqp in the expansion of A ′ (m) ≡ A (m)
00 . Thus, {D,D} and

{D,A} is written as

{D,A} =
+∞∑

p=−∞

dp {a(p),A}︸ ︷︷ ︸
αp

= d1α1 + d−1α−1, (A.138)

= α1δ0 lim
m→∞

A (m)
01

A (m)
+ α−1δ0 lim

m→∞

A (m)
0−1

A (m)
, (A.139)

= −2nA

n2

(
2kBT

mA

) 1
2

· 1
n

(
2kBT

m0

) 1
2

lim
m→∞

A (m)
01

A (m)

− 2nB

n2

(
2kBT

mB

) 1
2

· 1
n

(
2kBT

m0

) 1
2

lim
m→∞

A (m)
0−1

A (m)
,

(A.140)

= − 4xAkBT

n2m
1
2
Am

1
2
0

lim
m→∞

A (m)
01

A (m)
− 4xBkBT

n2m
1
2
Bm

1
2
0

lim
m→∞

A (m)
0−1

A (m)
, (A.141)

= −4kBT

n2
lim

m→∞

xA(mAm0)
− 1

2A (m)
01 + xB(mBm0)

− 1
2A (m)

0−1

A (m)
, (A.142)
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{D,D} =
+∞∑

p=−∞

dp {a(p),D}︸ ︷︷ ︸
δp

= d0δ0, (A.143)

= δ20 lim
m→∞

A (m)
00

A (m)
, (A.144)

=
1

n2

2kBT

m0

lim
m→∞

A ′(m)

A (m)
. (A.145)

From eqs. (A.145) and (A.142), the expression for kT becomes

kT =
{D,A}
{D,D}

, (A.146)

= −4kBT

n2
lim

m→∞

xA(mAm0)
− 1

2A (m)
01 + xB(mBm0)

− 1
2A (m)

0−1

A (m)/
1

n2

2kBT

m0

lim
m→∞

A ′(m)

A (m)
, (A.147)

= −2 lim
m→∞

xAM
− 1

2
A A (m)

01 + xBM
− 1

2
B A (m)

0,−1

A ′(m)
, (A.148)

where MA ≡ mA/m0, MB ≡ mB/m0, and m0 ≡ mA +mB.

A.2.4 Calculation of the matrix elements

The m-th approximation to kT is given by

[kT ]m ≡ −2
xAM

− 1
2

A A (m)
01 + xBM

− 1
2

B A (m)
0,−1

A ′(m)
. (A.149)
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If we take m = 1, the determinations in eq. (A.149) are written as

A (1)
01 = −

∣∣∣∣∣∣a−1−1 a−10

a1−1 a10

∣∣∣∣∣∣ = −(a−1−1a10 − a0−1a1−1), (A.150)

A (1)
0−1 = −

∣∣∣∣∣∣a−10 a−11

a10 a11

∣∣∣∣∣∣ = −(a0−1a11 − a01a1−1), (A.151)

A ′(1) = A (1)
00 =

∣∣∣∣∣∣a−1−1 a−11

a−11 a11

∣∣∣∣∣∣ = a−1−1a11 − a21−1, (A.152)

and the first approximation to kT becomes

[kT ]1 = 2
xAM

− 1
2

A (a−1−1a10 − a0−1a1−1) + xBM
− 1

2
B (a0−1a11 − a01a1−1)

a−1−1a11 − a21−1

.

(A.153)

By using the relations

apq ≡ {a(p),a(q)}, (A.154)

= x2A[a
(p)
1 ,a

(q)
1 ]A + xAxB[a

(p)
1 + a

(p)
2 ,a

(q)
1 + a

(q)
2 ]AB + x2B[a

(p)
2 ,a

(q)
2 ]B,

(A.155)

and a
(−1)
1 = a

(1)
2 = 0, the matrix elements a11, a1−1 and a−1−1 are written as

a11 = x2A[a
(1)
1 ,a

(1)
1 ]A + xAxB[a

(1)
1 ,a

(1)
1 ]AB, (A.156)

= x2A [S(C 2
A)CA, S(C

2
A)CA]A︸ ︷︷ ︸

a′′11

+xAxB [S(C 2
A)CA, S(C

2
A)CA]AB︸ ︷︷ ︸

a′11

, (A.157)

a−1−1 = xAxB[a
(−1)
2 ,a

(−1)
2 ]AB + x2B[a

(−1)
2 ,a

(−1)
2 ]B, (A.158)

= xAxB [S(C 2
B)CB, S(C

2
B)CB]AB︸ ︷︷ ︸

a′−1−1

+x2A [S(C 2
B)CB, S(C

2
B)CB]B︸ ︷︷ ︸

a′′−1−1

, (A.159)

a1−1 = xAxB[a
(1)
1 ,a

(−1)
2 ]AB = xAxB [S(C 2

A)CA, S(C
2
B)CB]AB︸ ︷︷ ︸

a′1−1

, (A.160)

97



where we denote S(x) ≡ S
(1)
3
2

(x). Here, the new elements a′′11, a
′
11, a

′
−1−1, a

′′
−1−1

and a′1−1 defined as

a′′11 = [S(C 2
A)CA, S(C

2
A)CA]A, a′11 = [S(C 2

A)CA, S(C
2
A)CA]AB, (A.161)

a′−1−1 = [S(C 2
B)CB, S(C

2
B)CB]AB, a′′−1−1 = [S(C 2

B)CB, S(C
2
B)CB]B,

(A.162)

a′1−1 = [S(C 2
A)CA, S(C

2
B)CB]AB, (A.163)

can be calculated as

a′′11 = Ω̂
(2)
1 (2), (A.164)

a′11 = 2
{
(6M2

AMB + 4M3
B)Ω̂

(1)
12 (1)− 4M3

BΩ̂
(1)
12 (2)

+M3
BΩ̂

(1)
12 (3) + 2MAM

2
BΩ̂

(2)
12 (2)

}
, (A.165)

a′−1−1 = 2
{
(6M2

BMA + 4M3
A)Ω̂

(1)
12 (1)− 4M3

AΩ̂
(1)
12 (2)

+M3
AΩ̂

(1)
12 (3) + 2MBM

2
AΩ̂

(2)
12 (2)

}
, (A.166)

a′′−1−1 = Ω̂
(2)
2 (2), (A.167)

a′1−1 = 2M
3
2
AM

3
2
B

{
− Ω̂

(1)
12 (3) + 4Ω̂

(1)
12 (2)− 10Ω̂

(1)
12 (1) + 2Ω̂

(2)
12 (2)

}
, (A.168)

respectively. Similarly, from the relations

a0q ≡ {a(0),a(q)}, (A.169)

= x2A[a
(0)
1 ,a

(q)
1 ]A + xAxB[a

(0)
1 + a

(0)
2 ,a

(q)
1 + a

(q)
2 ]AB + x2B[a

(0)
2 ,a

(q)
2 ]B,

(A.170)

= xAxB

{
[a

(0)
1 ,a

(q)
1 + a

(q)
2 ]AB + [a

(0)
2 ,a

(q)
1 + a

(q)
2 ]AB

}
, (A.171)

= xAxB

{ρ2
ρ
M

1
2
A [CA,a

(q)
1 + a

(q)
2 ]AB − ρ1

ρ
M

1
2
B [CB,a

(q)
1 + a

(q)
2 ]AB

}
,

(A.172)
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and a
(0)
1 ≡ M

1
2
A ρB
ρ

CA,a
(0)
2 ≡ −M

1
2
B ρA
ρ

CB, the elements a01 and a0−1 become

a01 = xAxB

{ρ2
ρ
M

1
2
A [CA,a

(1)
1 ]AB − ρ1

ρ
M

1
2
B [CB,a

(1)
1 ]AB︸ ︷︷ ︸

−M
1
2
A [CA,a

(1)
1 ]AB

}
, (A.173)

= xAxBM
1
2
A [CA,a

(1)
1 ]AB, (A.174)

= xAxBM
1
2
A [CA, S(C

2
A)CA]AB︸ ︷︷ ︸

a′01

, (A.175)

a0−1 = xAxB

{ρ2
ρ
M

1
2
A [CA,a

(−1)
2 ]AB︸ ︷︷ ︸

−M
1
2
B [CB ,a

(−1)
2 ]AB

−ρ1
ρ
M

1
2
B [CB,a

(−1)
2 ]AB

}
, (A.176)

= −xAxBM
1
2
B [CB,a

(−1)
2 ]AB (A.177)

= −xAxBM
1
2
B1[CB, S(C

2
B)CB]AB︸ ︷︷ ︸

a′0−1

. (A.178)

Here, the elements a′01 and a′0−1 defined as

a′01 =M
1
2
A [CA, S(C

2
A)CA]AB, a′0−1 =M

1
2
B [CB, S(C

2
B)CB]AB. (A.179)

can be written as

a′01 = 2M
1
2
A

(
2M2

BΩ̂
(1)
12 (1)−M2

BΩ̂
(1)
12 (2)

)
(A.180)

a′0−1 = 2M
1
2
B

(
2M2

AΩ̂
(1)
12 (1)−M2

AΩ̂
(1)
12 (2)

)
, (A.181)

respectively. As a result, the two dimensional expression in Sec. A.1 is derived.
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Appendix B

Derivations of the MD

Algorithms

B.1 The Derivation of eqs.(3.12)-(3.16)

In the following derivation, we write the Langevin equation eq.(3.8) sim-

ply as

ṙ(t) = v(t), (B.1)

v̇(t) =
f(t)

m
+
ξ(t)

m
, (B.2)

f(t) ≡ −∂H(r(t),p(t), t)

∂r
− γv(t), (B.3)

where the Gaussian white noise ξ(t) obeys

〈ξ(t)〉 = 0, 〈ξ(t)ξ(t′)〉 = 2γkBTδ(t− t′). (B.4)

By integrating for [t, t+ δt], eq.(B.2) becomes

v(t+ δt) = v(t) +
1

m

∫ t+δt

t

f(t′)dt′ +
1

m

∫ t+δt

t

ξ(t′)dt′. (B.5)

100



By substituting the relation

f(t′) = f(t0) + f ′(t0) (t
′ − t0) +

∫ t′

t0

dt′′
∫ t′′

t0

f ′′(t′′′)dt′′′, (B.6)

the second term of eq.(B.5) becomes∫ t+δt

t

f(t′)dt′ = f(t) δt+ f ′(t)
δt2

2
+

∫ t+δt

t

dt′
∫ t′

t

dt′′
∫ t′′

t

f ′′(t′′′)dt′′′ (B.7)

= f(t) δt+
f(t+ δt)− f(t)

δt

δt2

2
+Rv(t) (B.8)

=
f(t+ δt) + f(t)

2
δt+Rv(t), (B.9)

where the remainder term Rv(t) is defined as

Rv(t) = −δt
2

∫ t+δt

t

dt′
∫ t′

t

f ′′(t′′)dt′′ +

∫ t+δt

t

dt′
∫ t′

t

dt′′
∫ t′′

t

f ′′(t′′′)dt′′′.

(B.10)

With eq.(B.9), we can write eq.(B.5) as

v(t+ δt) = v(t) +
f(t+ δt) + f(t)

2m
δt+

∆W1(t)

m
+
Rv(t)

m
, (B.11)

where ∆W1(t) denotes

∆W1(t) ≡
∫ t+δt

t

ξ(t′)dt′. (B.12)

By expressing eq.(B.11) using F (t) = −∂H
∂r
, we can derive

v(t+δt) =
1

1 + γδt
2m

[(
1− γδt

2m

)
v(t)+

F (t+ δt) + F (t)

2m
δt+

∆W1(t)

m

]
+

Rv(t)

m+ γδt
2

.

(B.13)

If the function f(t) is smooth, Rv(t) can be evaluated as Rv(t) = O(δt3).

Therefore eq.(B.13) is approximately equal to eq.(3.13) when δt is sufficiently

small.
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Similarly, by integrating for [t, t+ δt], eq.(B.1) becomes

r(t+ δt) = r(t) +

∫ t+δt

t

v(t′)dt′ (B.14)

= r(t) + v(t)δt+

∫ t+δt

t

dt′
∫ t′

t

v̇(t′′)dt′′. (B.15)

By substituting eq.(B.2)

v̇(t′) =
f(t)

m
+

∫ t′

t

f ′(t′′)

m
dt′′ +

ξ(t′)

m
, (B.16)

eq.(B.15) becomes

r(t+ δt) = r(t) + v(t)δt+
f(t)

m

δt2

2
+Rr(t) +

∆W2(t)

m
, (B.17)

where ∆W2(t), Rr(t) are defined as

∆W2(t) ≡
∫ t+δt

t

dt′
∫ t′

t

ξ(t′′)dt′′, (B.18)

Rr(t) ≡
∫ t+δt

t

dt′
∫ t′

t

dt′′
∫ t′′

t

f ′(t′′′)

m
dt′′′, (B.19)

respectively. By expressing eq.(B.17) using F (t) = −∂H
∂r
, we can write

r(t+ δt) = r(t) +
(
1− γ

2m
δt
)
v(t)δt+

F (t)

2m
δt2 +

∆W2(t)

m
+Rr(t). (B.20)

With a similar discussion with Rv(t), eq.(3.12) can be derived approximately

from eq.(B.20), when δt is sufficiently small.

∆W2(t) and ∆W2(t) are the Gaussian random numbers, since they are

superpositions of the Gaussian noise ξ as seen in the definitions eqs.(B.12)

and (B.18). Although they are continuous functions of time in general, it is

convenient to discretize them so that

∆W1n ≡
∫ tn+1

tn

ξ(t)dt, ∆W2n ≡
∫ tn+1

tn

dt

∫ t

tn

ξ(s)ds. (B.21)
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The time correlation of the ∆W1n and ∆W2n can be written using eq.(B.4)

as

〈∆W1n〉 =
∫ tn+1

tn

〈ξ(t)〉︸ ︷︷ ︸
=0

dt = 0. (B.22)

〈∆W2n〉 =
∫ tn+1

tn

dt

∫ t

tn

〈ξ(s)〉ds = 0. (B.23)

〈∆W1n∆W1n′〉 =
∫ tn+1

tn

dt

∫ tn′+1

tn′

dt′ 〈ξ(t)ξ(t′)〉 (B.24)

= δnn′

∫ tn+1

tn

dt

∫ tn+1

tn

dt′ 〈ξ(t)ξ(t′)〉︸ ︷︷ ︸
2γkBTδ(t−t′)

(B.25)

= δnn′

∫ tn+1

tn

dt · 2γkBT (B.26)

= δnn′ 2γkBTδt, (δt ≡ tn+1 − tn). (B.27)

〈∆W2n∆W2n′〉 =
∫ tn+1

tn

dt

∫ t

tn

ds

∫ tn′+1

tn′

dt′
∫ t′

tn′

ds′ 〈ξ(s)ξ(s′)〉 (B.28)

= δnn′

∫ tn+1

tn

dt

∫ t

tn

ds

∫ tn+1

tn

dt′
∫ t′

tn

ds′ 〈ξ(s)ξ(s′)〉 (B.29)

= δnn′ 2γkBT

∫ tn+1

tn

dt

∫ t

tn

ds

∫ tn+1

tn

dt′ θ(t′ − s) (B.30)

= δnn′ 2γkBT

∫ tn+1

tn

dt

∫ t

tn

ds (tn+1 − s) (B.31)

= δnn′ 2γkBT

∫ tn+1

tn

dt
[
tn+1(t− tn)−

t2

2
+
t2n
2

]
︸ ︷︷ ︸
− 1

2

[
(t−tn+1)2−(tn+1−tn)2

] (B.32)

= δnn′ 2γkBT
δt3

3
. (B.33)
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〈∆W1n∆W2n′〉 =
∫ tn+1

tn

dt

∫ tn′+1

tn′

dt′
∫ t′

tn′

ds′ 〈ξ(t)ξ(s′)〉 (B.34)

= δnn′

∫ tn+1

tn

dt

∫ tn+1

tn

dt′
∫ t′

tn

ds′ 〈ξ(t)ξ(s′)〉 (B.35)

= δnn′ 2γkBT

∫ tn+1

tn

dt

∫ tn+1

tn

dt′ θ(t′ − t) (B.36)

= δnn′ 2γkBT

∫ tn+1

tn

dt (tn+1 − t) (B.37)

= δnn′ 2γkBT
δt2

2
. (B.38)

The normal random numbers obeying eqs.(B.22)-(B.38) can be created by

expressing them as

∆W1 =
√

2γkBT δt
1
2η, ∆W2 =

√
2γkBT

δt
3
2

2

(
η +

η̃√
3

)
, (B.39)

where η, η̃ are the standard normal random numbers.

B.2 The Derivation of eq.(3.18)

Suppose the i-th particle obeys Lnagevin equation

ṙi = vi, miv̇i = −∂H
∂ri

− γvi + ξ(t), (B.40)

then the “heat” dQi which the i-th particle gains from the heat bath in the

time δt is defined in stochastic energetics20),21) as

dQi ≡
(
− γvi(t) + ξ(t)

)
◦ dri(t), (B.41)
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where the notation ’◦’ implies that the integral must calculated by Stratonovich

integral,22) which is defined as∫ t

t0

f(s) ◦ dB(s) ≡ lim
n→∞

n∑
i=1

f(ti +∆ti) + f(ti)

2

(
B(ti +∆ti)−B(ti)

)
.

(B.42)

where B(t) is a certain time dependent random variable, and {ti} are the

discretized times defined as t0 = t1 < t2 < · · · < tn+1 = t, and ti+1 ≡ ti+∆ti.

Using eq.(B.41), δWi defined in §3.2.2 can be written as

δWi ≡
∫ t+δt

t

(
− γvi(s) + ξ(s)

)
◦ dri(s), (B.43)

or, by substituting eq.(B.40),

δWi ≡
∫ t+δt

t

(
miv̇i(s)− Fi(s)

)
◦ dri(s), (B.44)

where Fi ≡ − ∂H
∂ri

. If δt is very small, and Fi(s) is a sufficiently smooth

function, the second term of eq.(B.44) can be approximated as∫ t+δt

t

Fi(s) ◦ dri(s)

= lim
n→∞

n∑
j=1

(
Fi(tj +∆tj) + Fi(tj)

2

)
·
(
ri(tj +∆tj)− ri(tj)

)
(
where t = t1 < t2 < · · · < tn+1 = t+ δt

)
,

(B.45)

' Fi(t+ δt) + Fi(t)

2
·
(
ri(t+ δt)− ri(t)

)
. (B.46)
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Since we can write, by the definition of Stratonovich integral eq.(B.42),∫ t+δt

t

ẍ(s) ◦ dx(s) = lim
n→∞

n∑
j=1

ẍi(tj +∆tj) + ẍi(tj)

2

(
xi(tj +∆tj)− xi(tj)

)
,

(B.47)

= lim
{∆ti}→0

n∑
j=1

ẍi(tj)

2

xi(tj +∆tj)− xi(tj)

∆tj
∆tj

+ lim
{∆ti}→0

n∑
j=1

ẍi(tj +∆tj)

2

xi(tj +∆tj)− xi(tj)

∆tj
∆tj,

(B.48)

=

∫ t+δt

t

ẍ(s)

2
ẋ(s)ds+

∫ t+δt

t

ẍ(s)

2
ẋ(s)ds, (B.49)

=

∫ t+δt

t

d

ds

(
ẋ(s)

2

)2

ds, (B.50)

=
ẋ(t+ δt)

2
− ẋ(t)

2
. (B.51)

the first term of eq.(B.44) can be written as∫ t+δt

t

miv̇i(s) ◦ dri(s) =
mi

2
v2
i (t+ δt)− mi

2
v2
i (t). (B.52)

Substituting into eq.(B.42), we can derive eq.(3.18),

δWi '
mi

2
v2
i (t+ δt)− mi

2
v2
i (t)−

Fi(t+ δt) + Fi(t)

2
·
(
ri(t+ δt)− ri(t)

)
.

(B.53)
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