HOKKAIDO UNIVERSITY

Title	Heat Pump Model Utilizing Dufour Effect
Author（s）	星名，実
Citation	北海道大学．博士（理学）甲第11373号
Issue Date	2014．03－25
DOI	10．14943／doctoral．．k11373
Doc URL	http：／hdl．handle．net／2115／55559
Theses（doctoral）	
File Information	Minoru＿Hoshina．pdf

Instructions for use

DOCTORAL THESIS

Heat Pump Model Utilizing Dufour Effect

Minoru Hoshina
Department of Condensed Matter Physics, Graduate School of Science, Hokkaido University

March, 2014

Acknowledgements

The author would like to express his sincere gratitude to Professor Koji Okuda and Professor Koji Nemoto for their continuing guidance and encouragement. They supported the author throughout the present work and gave the author great pleasure of studying physics. The author would also like to thank Professor Migaku Oda and Professor Takafumi Kita for helpful suggestions and observations and a critical reading of this thesis, and Y. Izumida, Y. Tami, and T. Nogawa for fruitful discussions.

Finally, I would like to thank my parents for their mental and financial support.

Abstract

We propose a heat pump model utilizing the Dufour effect and study this system by numerical and theoretical analysis. Numerically, we perform molecular dynamics (MD) simulations of this system and measure the cooling power and the coefficient of performance (COP) as figures of merit. In these simulations, we confirm that this system is surely useful as a heat pump.

Theoretically, we derive the phenomelogical equations describing this system by using the linear irreversible thermodynamics and compare the theoretical results with the data obtained numerically. We also apply the transport coefficients derived microscopically from the Chapman-Enskog theory to our phenomelogical equations and verify the validity of our theory in more detail.

Contents

1 Introduction 1
1.1 History of Dufour Effect 1
1.2 Aim of this thesis 3
1.3 Organization of this thesis 4
2 Review 5
2.1 Linear Irreversible Thermodynamics 5
2.1.1 Onsager Theory and Linear Relation 5
2.1.2 Entropy Production of Non-uniform Gas Mixture 7
2.1.3 Linear Relation of Non-uniform Gas Mixture 13
2.1.4 Time Evolution Equation of x_{A} and T 18
2.2 Phenomenology of Dufour Effect 21
3 Model 26
3.1 Construction of Heat Pump Model 26
3.2 MD Simulation of the Model 29
3.2.1 The Simulation Model 30
3.2.2 Results of the Simulations 33
4 Theoretical Analysis 47
4.1 Expression of the Cooling Power and the COP 47
4.1. 1 Time Evolution of x_{A} and T in the Mixing Process 48
4.1.2 Expression of the Cooling Power 50
4.1.3 Expression of the COP 50
4.2 Approximate Calculation 52
4.2.1 Assumptions for Approximation 52
4.2.2 Cooling Power 53
4.2.3 COP 56
4.3 Numerical Confirmation 56
4.3.1 Simulation Model for Confirmation 56
4.3.2 Numerical Calculation of k_{T} 59
4.3.3 Comparison with Theory 61
4.4 The Case of $T_{h} \neq T_{c}$ 64
4.4.1 Cooling Power 67
4.4.2 COP 70
5 Summary 73
A Chapman-Enskog theory 76
A. 1 Expression for the thermal-diffusion ratio $\left[k_{T}\right]_{1}$ 76
A. 2 The Derivation of the two-dimensional expression 79
A.2.1 Boltzmann's equation and Enskog's method 79
A.2.2 Second approximate solution of Boltzmann's equation 85
A.2.3 Expression for the thermal-diffusion ratio k_{T} 91
A.2.4 Calculation of the matrix elements 96
B Derivations of the MD Algorithms 100
B. 1 The Derivation of eqs.(3.12)-(3.16) 100
B. 2 The Derivation of eq.(3.18) 104

Chapter 1

Introduction

1.1 History of Dufour Effect

In 1873, L. Dufour discovered Dufour effect, or the diffusion thermoeffect by experiment. ${ }^{1), 3)}$ In his experiments, a porous vessel was contained within another airtight vessel, and two different types of gasses were infused into the porous vessel and the space between the two vessels. When hydrogen was circulated in the space between the vessels, while the inner vessel was filled with air, he observed a temperature falls inside the porous vessel. A similar temperature fall was observed, when air was circulated in the space between the two vessels, while the inner vessel was filled with carbon dioxide. Moreover he found that these temperature falls occur near the surface of the porous partition during the diffusion process of the circulated gas into the porous vessel. These results implied that a diffusive mixing of different gasses induces a flow of heat in the gas mixture. By considering the molecular weights of the gases used in the experiment, it was presumed that the heat current of this
phenomenon is transformed from the higher-molecular-weight gas toward the lower-molecular-weight gas. Later, it was found that the porous diaphragm of his experiment was not essential for Duffour effect. For example, Miller (1949) used an iris diaphragm in his experiment ${ }^{2}$) of Dufour effect.

In the 1910's, Chapman and Enskog succeeded in the first theoretical description of Duffour effect. Using the kinetic theory, ${ }^{4), 5)}$ they microscopically analyzed the non-uniform gas mixture, in which the temperature T and the number densities of molecules of the two gasses n_{A}, n_{B} are non-uniform in space. From Chapman-Enskog theory of non-uniform gases, mainly, the two results concerned with Dufour effect were derived. The first result is that the heat current \boldsymbol{q} is proportional to the mole fraction gradient $\boldsymbol{\nabla} x_{A}$ not only to the temperature gradient $\boldsymbol{\nabla} T$, where the the mole fraction of the component A is defined as

$$
\begin{equation*}
x_{A} \equiv \frac{n_{A}}{\sum_{i} n_{i}} . \tag{1.1}
\end{equation*}
$$

Therefore,

$$
\begin{equation*}
\boldsymbol{q}=-\kappa \boldsymbol{\nabla} T-n k_{B} T^{2} D^{\prime \prime} \boldsymbol{\nabla} x_{A}, \tag{1.2}
\end{equation*}
$$

where $D^{\prime \prime}$ is the coefficient of Dufour effect, k_{B} is Boltzmann constant, and n is the total number density of all the components, i.e. $n=\sum_{i} n_{i}$. The derivation of The second term of Eq.(1.2) means that, when the two chemically different gases mix, the heat is transferred from the side of the component B to the side of A if $D^{\prime \prime}<0$, conversely the heat flows from A to B if $D^{\prime \prime}>0$. The second main result of the Chapman-Enskog theory concerned with Dufour effect is that, for such special cases of the intermolecular potential, as the
rigid sphere, inverse power repulsion potentials, and the Lennard-Jones potential, the coefficient of Dufour effect $D^{\prime \prime}$ is positive if the molecular weight of the component A is higher than that of the component B. This second result is consistent with the experiment by Dufour.

In the 1940 's, L. Waldmann constructed the phenomenology of Dufour effect, by introducing the phenomenological equation of the mole fraction x_{A} and the temperature T. His phenomenology explained the result of Dufour's experiment that the temperature changes occur near the surface of the porous partition. Although the first derivation of the his phenomenological equation was very complicated, his equation was later derived by using the liner irreversible thermodynamics ${ }^{11)-13)}$ in a comprehensible way. Thus, after reviewing the liner irreversible thermodynamics in next chapter, we will come back to the Waldmann's Phenomenology in the section 2.2.

1.2 Aim of this thesis

Although the Dufour effect was discovered and studied long before, as seen in the previous section, industrial applications of this phenomena have not been devised, compared with Soret effect which is the contrary effect of Dufour effect ${ }^{1}$. For this reason, our purpose in this thesis is to investigate a possibility of application of Dufour effect from the fundamental physical point of view, considering a heat pump model utilizing this effect. Therefore, we will not go deeply into the industrial field this time. The purpose of this

[^0]study is also inspired by the studies of the thermoelectric by H.Callen ${ }^{9)}$ and other physicist. ${ }^{10)}$

1.3 Organization of this thesis

The organization of the present thesis is as follows. In chapter 2, we review the microscopical studies concerned with the Dufour effect. After reviewing the liner irreversible thermodynamics, ${ }^{8), 11)-13)}$ we review the Waldmann's phenomenology. ${ }^{7)}$ In chapter 3, the heat pump model is proposed, and using the molecular dynamics (MD) simulation, ${ }^{16)-18)}$ the usefulness as a heat pump of this mode is confirmed numerically. In chapter 4, we analytically calculate the cooling power and the coefficient of power (COP) in the simple case, and this result is compared with the data obtained numerically by the MD simulation. In this comparison, we use the transport coefficient microscopically calculated by the Chapman-Enskog theory. ${ }^{4}$) We summarize the results of this thesis, and discuss the remaining works in chapter 5 .

Chapter 2

Review

2.1 Linear Irreversible Thermodynamics

2.1.1 Onsager Theory and Linear Relation

In 1931, L. Onsager discovered a general and powerful set of reciprocal relations describing a system in which two or more irreversible processes occur simultaneously. ${ }^{8)}$ These relations are so called "Onsager's reciprocal relations", and became a genesis of the development of the liner irreversible thermodynamics. Consider a set of irreversible processes described by a set of measurable parameters $\left\{\alpha_{i}\right\}$ of the system. If these parameters are changed by $\left\{\delta \alpha_{i}\right\}$ in an infinitesimal time δt, we assume that the rates of change of these $\left\{\alpha_{i}\right\}$ can be written as

$$
\begin{equation*}
\frac{\delta \alpha_{i}}{\delta t}=\sum_{j} L_{i j} \frac{\delta S}{\delta \alpha_{j}} \tag{2.1}
\end{equation*}
$$

where the sum \sum_{j} is taken for all the irreversible processes, and $S(\boldsymbol{\alpha})$ is the entropy of the system, and the coefficients $L_{i j}$'s are called the Onsager
coefficients. Since the entropy $S(\boldsymbol{\alpha})$ should be maximized in equilibrium, the more the system is apart from equilibrium the more the differentials $\frac{\delta S}{\delta \alpha_{i}}$ change from zero. Therefore, Eq.(2.1) means that if the system is in the irreversible process, the rates of change of measurable parameters α_{i} are proportional to the differentials $\frac{\delta S}{\delta \alpha_{i}}$ as a degree of nonequilibrium. These relations will be called simply "linear relations" in this thesis. From the assumption of these relations, Onsager derived the following simple symmetry relations,

$$
\begin{equation*}
L_{i j}=L_{j i}, \tag{2.2}
\end{equation*}
$$

using the property of time reversal invariance of the microscopic dynamics of the molecules. This symmetry relation is called "Onsager's reciprocal relation", and he won the Nobel prize for chemistry in 1968. In the following, we call the term $\frac{\delta S}{\delta \alpha_{i}}$ as "force", and $\frac{\delta \alpha_{i}}{\delta t}$ as "current" of the process.

In this section, the linear relations of the system of the non-uniform gas mixture will be derived. But, in generally, it is very difficult to calculate the forces $\frac{\delta S}{\delta \alpha_{i}}$ directly. By calculating the rate of entropy change in the irreversible process $\frac{\delta S}{\delta t}$, the forces $\frac{\delta S}{\delta \alpha_{i}}$ and the corresponding currents $\frac{\delta \alpha_{i}}{\delta t}$ can be identified from the following equation,

$$
\begin{equation*}
\frac{\delta S}{\delta t}=\sum_{j} \frac{\delta S}{\delta \alpha_{j}} \frac{\delta \alpha_{j}}{\delta t} \tag{2.3}
\end{equation*}
$$

Thus, for deriving the linear relations, we may calculate the rate of entropy change $\frac{\delta S}{\delta t}$ of the irreversible process in the nonuniform gas system.

2.1.2 Entropy Production of Non-uniform Gas Mixture

To calculate the rate of change of the entropy in the irreversible process, the variation of the entropy $d S$ is divided into the two terms,

$$
\begin{equation*}
d S=d_{e} S+d_{i} S, \tag{2.4}
\end{equation*}
$$

where $d_{e} S$ is the entropy supplied to the system by its surroundings, and $d_{i} S$ is the entropy produced inside the system. And the second law of thermodynamics states

$$
\begin{equation*}
d_{i} S \geq 0 \tag{2.5}
\end{equation*}
$$

By using the expressions

$$
\begin{align*}
S & =\int_{V} \rho s d V \tag{2.6}\\
\frac{d_{e} S}{d t} & =-\int_{\Omega=\partial V} \boldsymbol{J}_{s, t o t} \cdot d \boldsymbol{\Omega} \tag{2.7}\\
\frac{d_{i} S}{d t} & =\int_{V} \sigma d V \tag{2.8}
\end{align*}
$$

where ρ is the density, s is the entropy per unit mass, $\boldsymbol{J}_{s, \text { tot }}$ is the total entropy flux, and σ is the entropy production rate per unit volume, we can rewrite eqs.(2.4) and (2.5) in a local form as

$$
\begin{align*}
\frac{\partial(\rho s)}{\partial t} & =-\boldsymbol{\nabla} \cdot \boldsymbol{J}_{s, t o t}+\sigma \tag{2.9}\\
\sigma & \geq 0 \tag{2.10}
\end{align*}
$$

Using Langrange derivative

$$
\begin{equation*}
\frac{d}{d t} \equiv \frac{\partial}{\partial t}+\boldsymbol{v}_{G} \cdot \boldsymbol{\nabla} \tag{2.11}
\end{equation*}
$$

eq. (2.9) can be rewritten in a different form,

$$
\begin{equation*}
\rho \frac{d s}{d t}=-\boldsymbol{\nabla} \cdot \boldsymbol{J}_{s}+\sigma \tag{2.12}
\end{equation*}
$$

where \boldsymbol{v}_{G} is the velocity of the local center of mass and \boldsymbol{J}_{s} is the entropy flux defined as

$$
\begin{equation*}
\boldsymbol{J}_{s} \equiv \boldsymbol{J}_{s, \text { tot }}-\rho s \boldsymbol{v}_{G} . \tag{2.13}
\end{equation*}
$$

The entropy production rate σ can be given by calculating $\frac{d s}{d t}$ using eq.(2.12).
To obtain $\frac{d s}{d t}$, we assume the "local equilibrium" which implies that "Although the total system is in nonequilibrium, there exists a local system of small mass (or volume) elements, where the local thermodynamics variables fulfill the following equilibrium thermodynamic relation",

$$
\begin{equation*}
T d s=d u+p d v-\sum_{k} \mu_{k} d c_{k}, \tag{2.14}
\end{equation*}
$$

where u is the internal energy per unit mass, p is the equilibrium pressure, v is the specific volume per unit mass, μ_{k} is the chemical potential of component k (defined as partial specific Gibbs function $\left.\mu_{k} \equiv\left(\partial G / \partial M_{k}\right)_{T, p, M_{k}^{\prime}}\right)$, and c_{k} is the mass fraction defined as

$$
\begin{equation*}
c_{k} \equiv \frac{\rho_{k}}{\rho} \tag{2.15}
\end{equation*}
$$

using ρ_{k} denoting the density of the component k. In particular we assume that eq. (2.14) remains valid for mass (or volume) elements moving with the local center of mass, therefore using Langrange derivative eq.(2.11) we can write

$$
\begin{equation*}
T \frac{d s}{d t}=\frac{d u}{d t}+p \frac{d v}{d t}-\sum_{k} \mu_{k} \frac{d c_{k}}{d t} . \tag{2.16}
\end{equation*}
$$

Thus, for calculating $\frac{d s}{d t}$, we need to calculate $\frac{d u}{d t}, \frac{d v}{d t}$ and $\frac{d c_{k}}{d t}$.
The time differentials $\frac{d u}{d t}, \frac{d v}{d t}$ and $\frac{d c_{k}}{d t}$ come from each conservation law. First we use the conservation of mass of each component k,

$$
\begin{equation*}
\frac{\partial \rho_{k}}{\partial t}=-\boldsymbol{\nabla} \cdot\left(\rho_{k} \boldsymbol{v}_{k}\right) \tag{2.17}
\end{equation*}
$$

or, summing up eq.(2.17) for all the components,

$$
\begin{equation*}
\frac{\partial \rho}{\partial t}=-\boldsymbol{\nabla} \cdot\left(\rho \boldsymbol{v}_{G}\right) . \tag{2.18}
\end{equation*}
$$

Using Lagrange differential eq.(2.17) can be rewritten as $\frac{d}{d t}$,

$$
\begin{align*}
\frac{d \rho_{k}}{d t} & =-\boldsymbol{\nabla} \cdot\left(\rho_{k} \boldsymbol{v}_{k}\right)+\boldsymbol{v}_{G} \cdot \boldsymbol{\nabla} \rho_{k} \tag{2.19}\\
& =-\rho_{k} \boldsymbol{\nabla} \cdot \boldsymbol{v}_{G}-\boldsymbol{\nabla} \cdot \boldsymbol{J}_{k} \tag{2.20}
\end{align*}
$$

where $\boldsymbol{J}_{k} \equiv \rho_{k}\left(\boldsymbol{v}_{k}-\boldsymbol{v}_{G}\right)$ is the mass diffusion flow of the component k. Similarly, summing up eq.(2.20) for all the components, we obtain

$$
\begin{equation*}
\frac{d \rho}{d t}=-\rho \boldsymbol{\nabla} \cdot \boldsymbol{v}_{G} \tag{2.21}
\end{equation*}
$$

where we used

$$
\begin{equation*}
\sum_{k} \boldsymbol{J}_{k}=0 . \tag{2.22}
\end{equation*}
$$

Thus, using eqs.(2.20) and (2.21), we can calculate $\frac{d c_{k}}{d t}$ and $\frac{d v}{d t}$ as

$$
\begin{align*}
\frac{d c_{k}}{d t}=\frac{d\left(\rho_{k} / \rho\right)}{d t} & =\frac{1}{\rho} \frac{d \rho_{k}}{d t}-\frac{\rho_{k}}{\rho^{2}} \frac{d \rho}{d t} \tag{2.23}\\
& =-\frac{1}{\rho} \boldsymbol{\nabla} \cdot \boldsymbol{J}_{k} \tag{2.24}\\
\frac{d v}{d t}=\frac{d\left(\rho^{-1}\right)}{d t} & =-\frac{1}{\rho^{2}} \frac{d \rho}{d t} \tag{2.25}\\
& =\frac{1}{\rho} \boldsymbol{\nabla} \cdot \boldsymbol{v}_{G} . \tag{2.26}
\end{align*}
$$

Next, we use the conservation of energy for calculating $\frac{d u}{d t}$. The conservation law is expressed as

$$
\begin{equation*}
\frac{\partial(\rho e)}{\partial t}=-\boldsymbol{\nabla} \cdot \boldsymbol{J}_{e}, \tag{2.27}
\end{equation*}
$$

where e is the energy per unit mass and \boldsymbol{J}_{e} is the energy flux. The total energy density ρe including not only the internal energy density ρu but also the kinetic energy and the potential energy of the elements of the fluid is written as

$$
\begin{equation*}
\rho e=\frac{1}{2} \rho v_{G}^{2}+\sum_{k} \rho_{k} \Psi_{k}+\rho u, \tag{2.28}
\end{equation*}
$$

where Ψ_{k} is the external potential energy per unit mass of the component k. By substituting eq.(2.28) into eq.(2.27),

$$
\begin{equation*}
\frac{\partial \frac{1}{2} \rho v_{G}^{2}}{\partial t}+\sum_{k} \frac{\partial \rho_{k} \Psi_{k}}{\partial t}+\frac{\partial \rho u}{\partial t}=-\boldsymbol{\nabla} \cdot \boldsymbol{J}_{e} . \tag{2.29}
\end{equation*}
$$

With the conservation of mass eq.(2.17), the second term of eq.(2.29) can be written as

$$
\begin{align*}
\frac{\partial \rho \Psi_{k}}{\partial t} & =\rho_{k} \frac{\partial \Psi_{k}}{\partial t}+\underbrace{\Psi_{k} \frac{\partial \rho_{k}}{\partial t}}_{-\Psi_{k} \boldsymbol{\nabla} \cdot \rho_{k} \boldsymbol{v}_{k}} \tag{2.30}\\
& =\rho_{k} \frac{\partial \Psi_{k}}{\partial t}-\rho_{k} \boldsymbol{F}_{k} \cdot \boldsymbol{v}_{k}-\boldsymbol{\nabla} \cdot \rho_{k} \Psi_{k} \boldsymbol{v}_{k} \tag{2.31}\\
& =\rho_{k} \frac{\partial \Psi_{k}}{\partial t}-\rho_{k} \boldsymbol{F}_{k} \cdot \boldsymbol{v}_{G}-\boldsymbol{F}_{k} \cdot \boldsymbol{J}_{k}-\boldsymbol{\nabla} \cdot\left(\rho_{k} \Psi_{k} \boldsymbol{v}_{G}+\Psi_{k} \boldsymbol{J}_{k}\right), \tag{2.32}
\end{align*}
$$

where $\boldsymbol{F}_{k} \equiv-\boldsymbol{\nabla} \Psi_{k}$ is the force exerted on the component k per unit mass. With the relation derived from eq.(2.18)

$$
\begin{equation*}
\rho \frac{d a}{d t}=\frac{\partial(a \rho)}{\partial t}+\boldsymbol{\nabla} \cdot a \rho \boldsymbol{v}_{G}, \tag{2.33}
\end{equation*}
$$

using a denoting an arbitrary function as a scalar or a component of a vector or tensor, the first and third terms of eq.(2.29) can be written as

$$
\begin{gather*}
\frac{\partial \rho u}{\partial t}=\rho \frac{d u}{d t}-\boldsymbol{\nabla} \cdot u \rho \boldsymbol{v}_{G} \tag{2.34}\\
\frac{\partial \frac{1}{2} \rho v_{G}^{2}}{\partial t}=\rho \frac{d \frac{1}{2} v_{G}^{2}}{d t}-\boldsymbol{\nabla} \cdot \frac{\rho}{2} v_{G}^{2} \boldsymbol{v}_{G} . \tag{2.35}
\end{gather*}
$$

Using the equation of the motion of the mass elements

$$
\begin{equation*}
\rho \frac{d v_{G \alpha}}{d t}=-\sum_{\beta} \frac{\partial}{\partial x_{\beta}} P_{\beta \alpha}+\sum_{k} \rho_{k} F_{k \alpha} \quad(\alpha, \beta=x, y, z) \tag{2.36}
\end{equation*}
$$

the second term of eq.(2.35) can be calculated as

$$
\begin{align*}
\rho \frac{d \frac{1}{2} v_{G}^{2}}{d t} & =\rho \boldsymbol{v}_{G} \cdot \frac{d \boldsymbol{v}_{G}}{d t} \tag{2.37}\\
& =-\sum_{\alpha, \beta} v_{G \alpha} \frac{\partial}{\partial x_{\beta}} P_{\beta \alpha}+\sum_{k} \rho_{k} \boldsymbol{F}_{k} \cdot \boldsymbol{v}_{G}, \tag{2.38}\\
& =-\underbrace{\sum_{\alpha, \beta} \frac{\partial}{\partial x_{\beta}}\left(P_{\beta \alpha} v_{G \alpha}\right)}_{\boldsymbol{\nabla} \cdot\left(\boldsymbol{P} \cdot \boldsymbol{v}_{G}\right)}+\sum_{\alpha, \beta} P_{\beta \alpha} \frac{\partial}{\partial x_{\beta}} v_{G \alpha}+\sum_{k} \rho_{k} \boldsymbol{F}_{k} \cdot \boldsymbol{v}_{G} . \tag{2.39}
\end{align*}
$$

where $P_{\beta \alpha}$ is the stress tensor, and we write $\left(\boldsymbol{P} \cdot \boldsymbol{v}_{G}\right)_{\alpha} \equiv P_{\alpha \beta} v_{G \beta}$.
Substituting eqs.(2.34),(2.35),(2.32) and (2.39) into (2.29), we obtain

$$
\begin{align*}
\sum_{\alpha, \beta} P_{\beta \alpha} \frac{\partial}{\partial x_{\beta}} v_{G \alpha} & +\sum_{k} \rho_{k} \boldsymbol{F}_{k} \cdot \boldsymbol{v}_{G}+\sum_{k} \rho_{k} \frac{\partial \Psi_{k}}{\partial t}-\sum_{k} \rho_{k} \boldsymbol{F}_{k} \cdot \boldsymbol{v}_{G}-\sum_{k} \boldsymbol{F}_{k} \cdot \boldsymbol{J}_{k}+\rho \frac{d u}{d t} \\
& =-\boldsymbol{\nabla} \cdot\left[\boldsymbol{J}_{e}-\boldsymbol{P} \cdot \boldsymbol{v}_{G}-\frac{\rho}{2} v_{G}^{2} \boldsymbol{v}_{G}-\sum_{k} \rho_{k} \Psi_{k} \boldsymbol{v}_{G}-\sum_{k} \Psi_{k} \boldsymbol{J}_{k}-u \rho \boldsymbol{v}_{G}\right] \tag{2.40}\\
& =-\boldsymbol{\nabla} \cdot[\underbrace{\boldsymbol{J}_{e}-\left(\rho e \boldsymbol{v}_{G}+\boldsymbol{P} \cdot \boldsymbol{v}_{G}+\sum_{k} \Psi_{k} \boldsymbol{J}_{k}\right)}_{\equiv \boldsymbol{J}_{e}^{\prime}}] \tag{2.42}
\end{align*}
$$

Thus, the $\frac{d u}{d t}$ can be written as

$$
\begin{equation*}
\rho \frac{d u}{d t}=-\boldsymbol{\nabla} \cdot \boldsymbol{J}_{e}^{\prime}-\sum_{\alpha, \beta} P_{\beta \alpha} \frac{\partial}{\partial x_{\beta}} v_{G \alpha}+\sum_{k} \boldsymbol{F}_{k} \cdot \boldsymbol{J}_{k}-\sum_{k} \rho_{k} \frac{\partial \Psi_{k}}{\partial t} . \tag{2.43}
\end{equation*}
$$

Using the results of $\frac{d u}{d t}, \frac{d v}{d t}$ and $\frac{d c_{k}}{d t}$ in eqs. (2.24),(2.26) and (2.43), $\frac{d s}{d t}$ is given by

$$
\begin{align*}
& \rho \frac{d s}{d t}=-\frac{1}{T} \boldsymbol{\nabla} \cdot \boldsymbol{J}_{e}^{\prime}-\frac{1}{T} \sum_{\alpha, \beta} P_{\beta \alpha} \frac{\partial}{\partial x_{\beta}} v_{G \alpha}+\frac{1}{T} \sum_{k} \boldsymbol{F}_{k} \cdot \boldsymbol{J}_{k} \\
&-\frac{1}{T} \sum_{k} \rho_{k} \frac{\partial \Psi_{k}}{\partial t}+\frac{p}{T} \boldsymbol{\nabla} \cdot \boldsymbol{v}_{G}-\frac{1}{T} \sum_{k} \mu_{k} \boldsymbol{\nabla} \cdot \boldsymbol{J}_{k}, \tag{2.44}\\
&=-\boldsymbol{\nabla} \cdot\left(\frac{\boldsymbol{J}_{e}^{\prime}-\sum_{k} \mu_{k} \boldsymbol{J}_{k}}{T}\right)-\boldsymbol{J}_{e}^{\prime} \cdot \frac{\boldsymbol{\nabla} T}{T^{2}}-\sum_{k} \boldsymbol{J}_{k} \cdot \boldsymbol{\nabla} \frac{\mu_{k}}{T} \\
&+\frac{1}{T} \sum_{k} \boldsymbol{F}_{k} \cdot \boldsymbol{J}_{k}-\frac{1}{T} \sum_{\alpha, \beta} \Pi_{\beta \alpha} \frac{\partial v_{G \alpha}}{\partial x_{\beta}}-\frac{1}{T} \sum_{k} \rho_{k} \frac{\partial \Psi_{k}}{\partial t}, \tag{2.45}
\end{align*}
$$

where $\Pi_{\beta \alpha}$ is the viscous stress tensor defined as

$$
\begin{equation*}
\Pi_{\beta \alpha} \equiv P_{\beta \alpha}-p \delta_{\beta \alpha} \tag{2.46}
\end{equation*}
$$

Comparing eq.(2.45) with eq.(2.12), it follows that the expressions for the entropy flux and the entropy production are given by

$$
\begin{align*}
\boldsymbol{J}_{s} & =\frac{1}{T}\left(\boldsymbol{J}_{e}^{\prime}-\sum_{k} \mu_{k} \boldsymbol{J}_{k}\right) \tag{2.47}\\
\sigma & =-\frac{1}{T^{2}} \boldsymbol{J}_{e}^{\prime} \cdot \boldsymbol{\nabla} T-\frac{1}{T} \sum_{k} \boldsymbol{J}_{k} \cdot\left[T \nabla \frac{\mu_{k}}{T}-\boldsymbol{F}_{k}\right]-\frac{1}{T} \Pi_{\beta \alpha} \frac{\partial v_{\alpha}}{\partial x_{\beta}}-\frac{1}{T} \sum_{k} \rho_{k} \frac{\partial \Psi_{k}}{\partial t} \tag{2.48}
\end{align*}
$$

It is convenient to define the force corresponding to the current \boldsymbol{J}_{k} in the form without the factor $\boldsymbol{\nabla} T$. For this purpose, we use

$$
\begin{equation*}
\boldsymbol{\nabla} \frac{\mu_{k}}{T}=-\frac{h_{k}}{T^{2}} \boldsymbol{\nabla} T+\frac{1}{T}\left[\boldsymbol{\nabla} \mu_{k}\right]_{T} \tag{2.49}
\end{equation*}
$$

where h_{k} is the partial specific enthalpy of component k then, by introducing a "heat flux" \boldsymbol{J}_{Q} defined as

$$
\begin{equation*}
\boldsymbol{J}_{Q} \equiv \boldsymbol{J}_{e}^{\prime}-\sum_{k} h_{k} \boldsymbol{J}_{k} \tag{2.50}
\end{equation*}
$$

eqs.(2.47) and (2.48) can be written as

$$
\begin{equation*}
\boldsymbol{J}_{s}=\frac{1}{T} \boldsymbol{J}_{Q}+\sum_{k} s_{k} \boldsymbol{J}_{k} \tag{2.51}
\end{equation*}
$$

$\sigma=-\frac{1}{T^{2}} \boldsymbol{J}_{Q} \cdot \boldsymbol{\nabla} T-\frac{1}{T} \sum_{k} \boldsymbol{J}_{k} \cdot\left[\left(\boldsymbol{\nabla} \mu_{k}\right)_{T}-\boldsymbol{F}_{k}\right]-\frac{1}{T} \Pi_{\beta \alpha} \frac{\partial v_{\alpha}}{\partial x_{\beta}}-\frac{1}{T} \sum_{k} \rho_{k} \frac{\partial \Psi_{k}}{\partial t}$.

2.1.3 Linear Relation of Non-uniform Gas Mixture

To rewrite eq.(2.52) more simply, we introduce the assumption of the mechanical equilibrium state where the acceleration $\frac{d v}{d t}$ vanishes, and the velocity gradients and therefore the viscous stress tensor Π may be neglected. In this state, the equation of motion eq.(2.36) can be written as

$$
\begin{equation*}
0=-\boldsymbol{\nabla} p+\sum_{k} \rho_{k} \boldsymbol{F}_{k} \tag{2.53}
\end{equation*}
$$

We assume that our non-uniform system quickly reaches the mechanical equilibrium state, and therefore we can use eq.(2.53). Indeed in the some cases such as oscillating systems this assumption may not hold, but for instance, in the case of diffusion or thermal diffusion phenomena in closed vessels it is known that one can safely assume this state.

First, we consider the simple case that there are no external forces $\boldsymbol{F}_{k}=0$. In this case, the assumption of the mechanical equilibrium state eq.(2.53) can
be written as

$$
\begin{equation*}
\nabla p=0, \tag{2.54}
\end{equation*}
$$

and the entropy production eq.(2.52) can be written more simply as

$$
\begin{equation*}
\sigma=-\boldsymbol{J}_{Q} \cdot \frac{\boldsymbol{\nabla} T}{T^{2}}-\sum_{k} \boldsymbol{J}_{k} \cdot \frac{\left(\boldsymbol{\nabla} \mu_{k}\right)_{T, p}}{T} . \tag{2.55}
\end{equation*}
$$

If the mixture is consist of the two components A and B, using $\sum_{k} \boldsymbol{J}_{k}=0$,

$$
\begin{equation*}
\sum_{k} c_{k}\left(\boldsymbol{\nabla} \mu_{k}\right)_{T, p}=0 \tag{2.56}
\end{equation*}
$$

coming from the Gibbs-Duhem relation $\sum_{k} c_{k} \delta \mu_{k}=-s \delta T+\rho^{-1} \delta p$ and the second term of the rhs in eq.(2.55) can be calculated

$$
\begin{align*}
-\sum_{k} \boldsymbol{J}_{k} \cdot \frac{\left(\boldsymbol{\nabla} \mu_{k}\right)_{T, p}}{T} & =-\left[\boldsymbol{J}_{A} \cdot \frac{\left(\boldsymbol{\nabla} \mu_{A}\right)_{T, p}}{T}+\boldsymbol{J}_{B} \cdot \frac{\left(\boldsymbol{\nabla} \mu_{B}\right)_{T, p}}{T}\right], \tag{2.57}\\
& =-\boldsymbol{J}_{A} \cdot \frac{\left(\boldsymbol{\nabla} \mu_{A}\right)_{T, p}-\left(\boldsymbol{\nabla} \mu_{B}\right)_{T, p}}{T} \tag{2.58}\\
& =-\boldsymbol{J}_{A} \cdot \frac{1}{c_{B} T}\left(\boldsymbol{\nabla} \mu_{A}\right)_{T, p} \tag{2.59}\\
& =-\boldsymbol{J}_{A} \cdot \frac{1}{c_{B} T}\left(\frac{\partial \mu_{A}}{\partial c_{A}}\right)_{T, p} \boldsymbol{\nabla} c_{A} \tag{2.60}
\end{align*}
$$

where we use the state variables $\left(T, p, c_{A}\right)$. Thus, the entropy production can be written as

$$
\begin{equation*}
\sigma=-\boldsymbol{J}_{Q} \cdot \frac{\boldsymbol{\nabla} T}{T^{2}}-\boldsymbol{J}_{A} \cdot \frac{\mu_{A A}^{c}}{c_{B} T} \boldsymbol{\nabla} c_{A}, \tag{2.61}
\end{equation*}
$$

where we use $\mu_{A A}^{c} \equiv\left(\frac{\partial \mu_{A}}{\partial c_{A}}\right)_{T, p}$.
From eq.(2.61), we can identify the forces corresponding to the currents \boldsymbol{J}_{Q} and \boldsymbol{J}_{A}, thus the linear relation of the present system can be written as

$$
\begin{align*}
& \boldsymbol{J}_{Q}=-L_{q q} \frac{\boldsymbol{\nabla} T}{T^{2}}-L_{q A} \frac{\mu_{A A}^{c}}{c_{B} T} \boldsymbol{\nabla} c_{A}, \tag{2.62}\\
& \boldsymbol{J}_{A}=-L_{A q} \frac{\boldsymbol{\nabla} T}{T^{2}}-L_{A A} \frac{\mu_{A A}^{c}}{c_{B} T} \nabla c_{A}, \tag{2.63}
\end{align*}
$$

where $L_{q q}, L_{q A}, L_{A q}$ and $L_{A A}$ are the Onsager coefficients, and the reciprocal relation is

$$
\begin{equation*}
L_{q A}=L_{A q} . \tag{2.64}
\end{equation*}
$$

Let us introduce the coefficient of thermal conduction κ, the Dufour coefficient $D^{\prime \prime}$, the thermal diffusion coefficient D^{\prime}, and the diffusion coefficient D as following

$$
\begin{align*}
\kappa & \equiv \frac{L_{q q}}{T^{2}}, \tag{2.65}\\
D^{\prime \prime} & \equiv \frac{L_{q A}}{\rho c_{A A} c_{B} T^{2}}, \tag{2.66}\\
D^{\prime} & \equiv \frac{L_{A q}}{\rho c_{A} c_{B} T^{2}} \tag{2.67}\\
D & \equiv \frac{L_{A A} \mu_{A A}^{c}}{\rho c_{B} T} \tag{2.68}
\end{align*}
$$

Using these coefficients, the linear relations eq.(2.62),(2.63) can be written

$$
\begin{align*}
\boldsymbol{J}_{Q} & =-\kappa \boldsymbol{\nabla} T-\rho_{A} \mu_{A A}^{c} T D^{\prime \prime} \nabla c_{A}, \tag{2.69}\\
\boldsymbol{J}_{A} & =-\rho c_{A} c_{B} D^{\prime} \boldsymbol{\nabla} T-\rho D \nabla c_{A}, \tag{2.70}
\end{align*}
$$

and the reciprocal relation becomes

$$
\begin{equation*}
D^{\prime}=D^{\prime \prime} \tag{2.71}
\end{equation*}
$$

We note that the linear relations eqs.(2.69) and (2.70) can be generalized in the case of the $\boldsymbol{F}_{k} \neq 0$. In this case, the assumption of the mechanical equilibrium states

$$
\begin{equation*}
\boldsymbol{\nabla} p=\sum_{k} \rho_{k} \boldsymbol{F}_{k} \tag{2.72}
\end{equation*}
$$

leads to non-vanishing $\boldsymbol{\nabla} p$ in general unlike eq.(2.54). Using the relation

$$
\begin{equation*}
\left(\boldsymbol{\nabla} \mu_{k}\right)_{T}=\left(\boldsymbol{\nabla} \mu_{k}\right)_{T, p}+\left(\frac{\partial \mu_{k}}{\partial p}\right)_{T, c_{i}} \boldsymbol{\nabla} p \tag{2.73}
\end{equation*}
$$

the entropy production eq.(2.52) can be written as

$$
\begin{align*}
\sigma & =-\frac{1}{T^{2}} \boldsymbol{J}_{Q} \cdot \boldsymbol{\nabla} T-\frac{1}{T} \sum_{k} \boldsymbol{J}_{k} \cdot\left[\left(\boldsymbol{\nabla} \mu_{k}\right)_{T}-\boldsymbol{F}_{k}\right], \tag{2.74}\\
& =-\boldsymbol{J}_{Q} \cdot \frac{\boldsymbol{\nabla} T}{T^{2}}-\sum_{k} \boldsymbol{J}_{k} \cdot \frac{\left(\boldsymbol{\nabla} \mu_{k}\right)_{T, p}}{T}-\frac{1}{T} \sum_{k} \boldsymbol{J}_{k} \cdot\left[\left(\frac{\partial \mu_{k}}{\partial p}\right)_{T, c_{i}} \boldsymbol{\nabla} p-\boldsymbol{F}_{k}\right] . \tag{2.75}
\end{align*}
$$

Since $\nabla p \neq 0$, the Gibbs-Duhem relation eq.(2.56) is changed to

$$
\begin{equation*}
\sum_{k} c_{k}\left(\frac{\partial \mu_{k}}{\partial p}\right)_{T, c_{i}}=\rho^{-1} \tag{2.76}
\end{equation*}
$$

and the third term of eq.(2.75) can be calculated as

$$
\begin{align*}
-\frac{1}{T} & \sum_{k} \boldsymbol{J}_{k} \cdot\left[\left(\frac{\partial \mu_{k}}{\partial p}\right)_{T, c_{i}} \boldsymbol{\nabla} p-\boldsymbol{F}_{k}\right] \\
& =-\frac{\boldsymbol{J}_{A}}{T} \cdot\left[\left(\frac{\partial \mu_{A}}{\partial p}\right)_{T, c_{i}} \boldsymbol{\nabla} p-\boldsymbol{F}_{A}-\left(\frac{\partial \mu_{B}}{\partial p}\right)_{T, c_{i}} \boldsymbol{\nabla} p+\boldsymbol{F}_{B}\right], \tag{2.77}\\
& =-\frac{\boldsymbol{J}_{A}}{T} \cdot[\frac{1}{c_{B}}\left(\left(\frac{\partial \mu_{A}}{\partial p}\right)_{T, c_{i}}-\rho^{-1}\right) \underbrace{\boldsymbol{\nabla} p}_{\rho_{A} \boldsymbol{F}_{A}+\rho_{B} \boldsymbol{F}_{B}}+\boldsymbol{F}_{B}-\boldsymbol{F}_{A}], \tag{2.78}\\
& =-\frac{\boldsymbol{J}_{A}}{T c_{B}} \cdot\left[\left(\rho_{A} \mu_{A}^{p}-1\right) \boldsymbol{F}_{A}+\rho_{B} \mu_{A}^{p} \boldsymbol{F}_{B}\right], \tag{2.79}
\end{align*}
$$

where we used the relation $\boldsymbol{J}_{A}+\boldsymbol{J}_{B}=0$, and $\mu_{A}^{p} \equiv\left(\frac{\partial \mu_{A}}{\partial p}\right)_{T, c_{i}}$. Then, the entropy production σ eq.(2.75) becomes

$$
\begin{equation*}
\sigma=-\boldsymbol{J}_{Q} \cdot \frac{\boldsymbol{\nabla} T}{T^{2}}-\boldsymbol{J}_{A} \cdot \frac{1}{c_{B} T}\left[\mu_{A A}^{c} \boldsymbol{\nabla} c_{A}+\left(\rho_{A} \mu_{A}^{p}-1\right) \boldsymbol{F}_{A}+\rho_{B} \mu_{A}^{p} \boldsymbol{F}_{B}\right] . \tag{2.80}
\end{equation*}
$$

Therefore the linear relation in the case of $\boldsymbol{F}_{k} \neq 0$ can be written as

$$
\begin{align*}
\boldsymbol{J}_{Q} & =-L_{q q} \frac{\boldsymbol{\nabla} T}{T^{2}}-L_{q A} \frac{1}{c_{B} T}\left[\mu_{A A}^{c} \boldsymbol{\nabla} c_{A}+\left(\rho_{A} \mu_{A}^{p}-1\right) \boldsymbol{F}_{A}+\rho_{B} \mu_{A}^{p} \boldsymbol{F}_{B}\right], \tag{2.81}\\
\boldsymbol{J}_{A} & =-L_{A q} \frac{\boldsymbol{\nabla} T}{T^{2}}-L_{A A} \frac{1}{c_{B} T}\left[\mu_{A A}^{c} \boldsymbol{\nabla} c_{A}+\left(\rho_{A} \mu_{A}^{p}-1\right) \boldsymbol{F}_{A}+\rho_{B} \mu_{A}^{p} \boldsymbol{F}_{B}\right] . \tag{2.82}
\end{align*}
$$

It is convenient to convert the "per unit mass" expression to the "per unit volume" expression when we compare the theoretical results with MD (molecular dynamics) simulations. Specifically, we use the mole fraction x_{A} instead of the mass fraction c_{A}, the force applied to one particle $\tilde{\boldsymbol{F}}_{k}$ instead of the force per unit mass \boldsymbol{F}_{k}, the partial chemical potential $\tilde{\mu_{k}} \equiv\left(\partial G / \partial N_{k}\right)_{T, p, N_{k}^{\prime}}$ instead of $\mu_{k} \equiv\left(\partial G / \partial M_{k}\right)_{T, p, M_{k}^{\prime}}$, and the diffusion flows

$$
\begin{equation*}
\tilde{\boldsymbol{J}}_{k}^{M} \equiv n_{k}\left(\boldsymbol{v}_{k}-\boldsymbol{v}^{M}\right), \tag{2.83}
\end{equation*}
$$

instead of $\boldsymbol{J}_{k} \equiv \rho_{k}\left(\boldsymbol{v}_{k}-\boldsymbol{v}_{G}\right)$, where $\boldsymbol{v}^{M} \equiv \frac{1}{n} \sum_{k} n_{k} \boldsymbol{v}_{k}$ is the mean velocity. Noting that the relations

$$
\begin{gather*}
\left(\frac{\partial \mu_{A}}{\partial c_{A}}\right)_{T, p} \boldsymbol{\nabla} c_{A}=\left(\boldsymbol{\nabla} \mu_{k}\right)_{T, p}=\left(\frac{\partial \mu_{A}}{\partial x_{A}}\right)_{T, p} \boldsymbol{\nabla} x_{A}=\frac{1}{m_{A}}\left(\frac{\partial \tilde{\mu}_{A}}{\partial x_{A}}\right)_{T, p} \nabla x_{A}, \tag{2.84}\\
\tilde{\boldsymbol{J}}_{A}=m_{A} \frac{c_{B}}{x_{B}} \tilde{\boldsymbol{J}}_{A}^{M}, \quad \tilde{\boldsymbol{J}}_{B}=m_{B} \frac{c_{A}}{x_{A}} \tilde{\boldsymbol{J}}_{B}^{M} \tag{2.85}
\end{gather*}
$$

are satisfied, the linear relations eqs.(2.81) and (2.82) can be rewritten as

$$
\begin{align*}
\boldsymbol{J}_{Q} & =-\kappa \boldsymbol{\nabla} T-n_{A} T D^{\prime \prime}\left[\tilde{\mu}_{A A}^{x} \boldsymbol{\nabla} x_{A}+\left(n_{A} \tilde{\mu}_{A}^{p}-1\right) \tilde{\boldsymbol{F}}_{A}+n_{B} \tilde{\mu}_{A}^{p} \tilde{\boldsymbol{F}}_{B}\right], \tag{2.86}\\
\tilde{\boldsymbol{J}}_{A}^{M} & =-n x_{A} x_{B} D^{\prime} \boldsymbol{\nabla} T-\frac{n}{\tilde{\mu}_{A A}^{x}} D\left[\tilde{\mu}_{A A}^{x} \boldsymbol{\nabla} x_{A}+\left(n_{A} \tilde{\mu}_{A}^{p}-1\right) \tilde{\boldsymbol{F}}_{A}+n_{B} \tilde{\mu}_{A}^{p} \tilde{\boldsymbol{F}}_{B}\right], \tag{2.87}
\end{align*}
$$

and in the case of $\boldsymbol{F}_{k}=0$, more simply

$$
\begin{gather*}
\boldsymbol{J}_{Q}=-\kappa \boldsymbol{\nabla} T-n_{A} T D^{\prime \prime} \tilde{\mu}_{A A}^{x} \boldsymbol{\nabla} x_{A}, \tag{2.88}\\
\tilde{\boldsymbol{J}}_{A}^{M}=-n x_{A} x_{B} D^{\prime} \boldsymbol{\nabla} T-n D \boldsymbol{\nabla} x_{A}, \tag{2.89}
\end{gather*}
$$

where $\tilde{\mu}_{A A}^{x} \equiv\left(\partial \tilde{\mu}_{A} / \partial x_{A}\right)_{T, p}$.

2.1.4 Time Evolution Equation of x_{A} and T

From the linear relations, eqs.(2.81) and (2.82)(or eqs.(2.69) and (2.70)), we can derive the time evolution equation of x_{A} and T. Using the conservation of particle number

$$
\begin{equation*}
\frac{\partial n_{k}}{\partial t}=-\boldsymbol{\nabla} \cdot n_{k} \boldsymbol{v}_{k}, \quad \frac{\partial n}{\partial t}=-\boldsymbol{\nabla} \cdot n \boldsymbol{v}^{M} \tag{2.90}
\end{equation*}
$$

the time derivation of the mole fraction $\frac{\partial x_{A}}{\partial t}$ can be calculated as

$$
\begin{align*}
n \frac{\partial x_{A}}{\partial t}= & \frac{\partial n_{A}}{\partial t}-\frac{n_{A}}{n} \frac{\partial n}{\partial t}, \quad\left(\because x_{A} \equiv \frac{n_{A}}{n}\right), \tag{2.91}\\
= & -\boldsymbol{\nabla} \cdot n_{A} \boldsymbol{v}_{A}+\underbrace{\frac{n_{A}}{n} \boldsymbol{\nabla} \cdot n \boldsymbol{v}^{M}}, \tag{2.92}\\
& \left.=-\boldsymbol{\nabla} \cdot n_{A}\left(\boldsymbol{v}_{A}-\boldsymbol{v}^{M}\right)-n \boldsymbol{v}^{M} \cdot \boldsymbol{v}_{\frac{n_{A}}{n}}^{M}\right)-n \boldsymbol{v}^{M} \cdot \boldsymbol{\nabla} x_{A}, \\
\therefore n\left(\frac{\partial x_{A}}{\partial t}\right. & \left.+\boldsymbol{v}^{M} \cdot \boldsymbol{\nabla} x_{A}\right)=-\boldsymbol{\nabla} \cdot \tilde{\boldsymbol{J}}_{A}^{M} . \tag{2.93}
\end{align*}
$$

From eq.(2.87) and (2.94), the general expression of the time evolution equation of x_{A} can be written as

$$
\begin{align*}
n\left(\frac{\partial x_{A}}{\partial t}+\boldsymbol{v}^{M} \cdot \boldsymbol{\nabla} x_{A}\right)=\boldsymbol{\nabla} \cdot & \left\{n x_{A} x_{B} D^{\prime} \boldsymbol{\nabla} T\right. \\
& \left.+\frac{n}{\tilde{\mu}_{A A}^{x}} D\left[\tilde{\mu}_{A A}^{x} \boldsymbol{\nabla} x_{A}+\left(n_{A} \tilde{\mu}_{A}^{p}-1\right) \tilde{\boldsymbol{F}}_{A}+n_{B} \tilde{\mu}_{A}^{p} \tilde{\boldsymbol{F}}_{B}\right]\right\} . \tag{2.95}
\end{align*}
$$

Thus, in the case of $\boldsymbol{v}^{M}=0$ and $\tilde{\boldsymbol{F}}_{k}=0$, eq.(2.95) becomes

$$
\begin{equation*}
n \frac{\partial x_{A}}{\partial t}=\boldsymbol{\nabla} \cdot\left\{n x_{A} x_{B} D^{\prime} \boldsymbol{\nabla} T+n D \boldsymbol{\nabla} x_{A}\right\} . \tag{2.96}
\end{equation*}
$$

Similarly, the time evolution equation of the temperature can be derived.

Using the following relation

$$
\begin{align*}
\underbrace{d H}_{d\left(\sum_{k} M_{k} h_{k}\right)} & =\underbrace{\left(\frac{\partial H}{\partial T}\right)_{p, M_{k}}}_{C_{p}} d T+\left(\frac{\partial H}{\partial p}\right)_{T, M_{k}} d p+\sum_{k} \underbrace{\left(\frac{\partial H}{\partial M_{k}}\right)_{T, p, M_{k}^{\prime}}}_{\equiv h_{k}} d M_{k} \tag{2.97}\\
& \Leftrightarrow \sum_{k} M_{k} d h_{k}=C_{p} d T+\left(\frac{\partial H}{\partial p}\right)_{T, M_{k}} d p, \tag{2.98}
\end{align*}
$$

the time derivation of the temperature $\frac{\partial T}{\partial t}$ can be calculated as

$$
\begin{align*}
c_{p} \frac{\partial T}{\partial t} & =\sum_{k} \rho_{k} \frac{\partial h_{k}}{\partial t}-\frac{1}{V}\left(\frac{\partial H}{\partial p}\right)_{T, M_{k}} \frac{\partial p}{\partial t} \tag{2.99}\\
& =\sum_{k} \frac{\partial}{\partial t}\left(\rho_{k} h_{k}\right)-\sum_{k} h_{k} \frac{\partial \rho_{k}}{\partial t}-\frac{1}{V}\left(\frac{\partial H}{\partial p}\right)_{T, M_{k}} \frac{\partial p}{\partial t} \tag{2.100}\\
& =\frac{\partial}{\partial t} \underbrace{\sum_{k} \rho_{k} h_{k}}_{\rho u+p}+\sum_{k} h_{k} \boldsymbol{\nabla} \cdot \rho_{k} \boldsymbol{v}_{k}-\frac{1}{V} \underbrace{\left(\frac{\partial H}{\partial p}\right)_{T, M_{k}}}_{V-T\left(\frac{\partial V}{\partial T}\right)_{p, M_{k}}} \frac{\partial p}{\partial t} \tag{2.101}\\
& =\frac{\partial \rho u}{\partial t}+\sum_{k} h_{k} \boldsymbol{\nabla} \cdot \rho_{k} \boldsymbol{v}_{k}+\frac{T}{V}\left(\frac{\partial V}{\partial T}\right)_{p, M_{k}} \frac{\partial p}{\partial t}, \tag{2.102}
\end{align*}
$$

where $c_{p} \equiv C_{p} / V$ is the specific heat at constant pressure per unit volume. By substituting eqs.(2.43) and (2.50) into eq.(2.34), the first term of eq.(2.102)
can be calculated as

$$
\begin{align*}
\frac{\partial \rho u}{\partial t}= & \rho \frac{d u}{d t}-\boldsymbol{\nabla} \cdot \rho u \boldsymbol{v}_{G}, \tag{2.103}\\
=-\boldsymbol{\nabla} \cdot\left(\boldsymbol{J}_{Q}+\right. & \underbrace{\sum_{k} h_{k} \boldsymbol{J}_{k}}_{\sum_{k} h_{k} \rho_{k}\left(\boldsymbol{v}_{k}-\boldsymbol{v}_{G}\right)})-\underbrace{P_{\beta \alpha} \frac{\partial}{\partial x_{\beta}} v_{G \alpha}}_{p \boldsymbol{\nabla} \cdot \boldsymbol{v}_{G}+\Pi_{\beta \alpha} \frac{\partial}{\partial x_{\beta}} v_{G \alpha}} \\
& +\sum_{k} \boldsymbol{F}_{k} \cdot \boldsymbol{J}_{k}-\sum_{k} \rho_{k} \frac{\partial \Psi_{k}}{\partial t}-\boldsymbol{\nabla} \cdot \underbrace{\rho u}_{\sum_{k} \rho_{k} h_{k}-p} \tag{2.104}\\
=-\boldsymbol{\nabla} \cdot \boldsymbol{J}_{Q}-\sum_{k} \underbrace{\boldsymbol{\nabla} \cdot h_{k} \rho_{k} \boldsymbol{v}_{k}}_{h_{k} \boldsymbol{\nabla} \cdot \rho_{k} \boldsymbol{v}_{k}+\rho_{k} \boldsymbol{v}_{k} \cdot \boldsymbol{\nabla} h_{k}} & +\boldsymbol{v}_{G} \cdot \boldsymbol{\nabla} p+\Pi_{\beta \alpha} \frac{\partial}{\partial x_{\beta}} v_{G \alpha} \\
& +\sum_{k} \boldsymbol{F}_{k} \cdot \boldsymbol{J}_{k}-\sum_{k} \rho_{k} \frac{\partial \Psi_{k}}{\partial t} . \tag{2.105}
\end{align*}
$$

Using the viscous stress tensor Π, eq.(2.102) can be written as

$$
\begin{align*}
c_{p} \frac{\partial T}{\partial t}=-\boldsymbol{\nabla} \cdot \boldsymbol{J}_{Q} & +\sum_{k} \rho_{k} \boldsymbol{v}_{k} \cdot \boldsymbol{\nabla} h_{k}+\boldsymbol{v}_{G} \cdot \boldsymbol{\nabla} p+\Pi_{\beta \alpha} \frac{\partial}{\partial x_{\beta}} v_{G \alpha} \\
& +\sum_{k} \boldsymbol{F}_{k} \cdot \boldsymbol{J}_{k}-\sum_{k} \rho_{k} \frac{\partial \Psi_{k}}{\partial t}+\frac{T}{V}\left(\frac{\partial V}{\partial T}\right)_{p, M_{k}} \frac{\partial p}{\partial t} \tag{2.106}
\end{align*}
$$

We assume the mechanical equilibrium state as

$$
\begin{equation*}
\frac{d \boldsymbol{v}_{G}}{d t}=0, \quad \Pi \cong 0, \quad 0=-\boldsymbol{\nabla} p+\sum_{k} \rho_{k} \boldsymbol{F}_{k} \tag{2.107}
\end{equation*}
$$

and constant external forces

$$
\begin{equation*}
\frac{\partial \Psi_{k}}{\partial t}=0 \tag{2.108}
\end{equation*}
$$

and the pressure

$$
\begin{equation*}
\frac{\partial p}{\partial t}=0 \tag{2.109}
\end{equation*}
$$

coming from eq.(2.107) and $\boldsymbol{F}_{k}=-\boldsymbol{\nabla} \Psi_{k}$. Then, the time derivation of the temperature can be calculated as

$$
\begin{align*}
c_{p} \frac{\partial T}{\partial t} & =-\boldsymbol{\nabla} \cdot \boldsymbol{J}_{Q}+\sum_{k} \rho_{k} \boldsymbol{v}_{k} \cdot \boldsymbol{\nabla} h_{k}+\boldsymbol{v}_{G} \cdot \sum_{k} \rho_{k} \boldsymbol{F}_{k}+\sum_{k} \boldsymbol{F}_{k} \cdot \underbrace{\boldsymbol{J}_{k}}_{\rho_{k}\left(\boldsymbol{v}_{k}-\boldsymbol{v}_{G}\right)} \tag{2.110}\\
& =-\boldsymbol{\nabla} \cdot \boldsymbol{J}_{Q}+\sum_{k} \tilde{\boldsymbol{F}}_{k} \cdot \tilde{\boldsymbol{J}}_{k}^{M}+\sum_{k} \tilde{\boldsymbol{F}}_{k} \cdot n_{k} \boldsymbol{v}^{M}, \tag{2.111}
\end{align*}
$$

Substituting the linear relations eqs.(2.86) and (2.87), the general expression of the time evolution equation of T can be written as

$$
\begin{array}{r}
c_{p}^{V} \frac{\partial T}{\partial t}=\boldsymbol{\nabla} \cdot\left\{\kappa \boldsymbol{\nabla} T+n_{A} T D^{\prime \prime}\left[\tilde{\mu}_{A A}^{x} \boldsymbol{\nabla} x_{A}+\left(n_{A} \tilde{\mu}_{A}^{p}-1\right) \tilde{\boldsymbol{F}}_{A}+n_{B} \tilde{\mu}_{A}^{p} \tilde{\boldsymbol{F}}_{B}\right]\right\} \\
-\sum_{k} \tilde{\boldsymbol{F}}_{k} \cdot\left\{n x_{A} x_{B} D^{\prime} \boldsymbol{\nabla} T+\frac{n}{\tilde{\mu}_{A A}^{x}} D\left[\tilde{\mu}_{A A}^{x} \boldsymbol{\nabla} x_{A}+\left(n_{A} \tilde{\mu}_{A}^{p}-1\right) \tilde{\boldsymbol{F}}_{A}\right.\right. \\
 \tag{2.112}\\
\left.\left.+n_{B} \tilde{\mu}_{A}^{p} \tilde{\boldsymbol{F}}_{B}\right]\right\}+\boldsymbol{v}^{M} \cdot \sum_{k} n_{k} \tilde{\boldsymbol{F}}_{k}
\end{array}
$$

Especially, in the case of no external field $\tilde{\boldsymbol{F}}_{k}=0$, eq.(2.112) becomes

$$
\begin{equation*}
c_{p} \frac{\partial T}{\partial t}=\boldsymbol{\nabla} \cdot\left\{\kappa \boldsymbol{\nabla} T+n_{A} T D^{\prime \prime} \tilde{\mu}_{A A}^{x} \boldsymbol{\nabla} x_{A}\right\} . \tag{2.113}
\end{equation*}
$$

2.2 Phenomenology of Dufour Effect

Waldmann's phenomenological equations ${ }^{7)}$ for the Dufour effect are the followings

$$
\begin{align*}
\frac{\partial x_{A}}{\partial t} & =D \nabla^{2} x_{A} \tag{2.114}\\
\frac{\partial T}{\partial t} & =K \nabla^{2} T+\beta \frac{\partial x_{A}}{\partial t} \tag{2.115}
\end{align*}
$$

where $K \equiv \frac{\lambda}{c_{p}}$ and $\beta \equiv \frac{k_{B} n T k_{T}}{c_{p} x_{A} x_{B}}=\frac{k_{B} n T^{2} D^{\prime \prime}}{c_{p} D}$ with $k_{T}=T x_{A} x_{B} \frac{D^{\prime}}{D}$ denoting the thermal diffusion ratio.

Now we can derive these equations from the time evolution equations of x_{A}, T eqs. (2.96) and (2.113)

$$
\begin{align*}
n \frac{\partial x_{A}}{\partial t} & =\boldsymbol{\nabla} \cdot\left\{n x_{A} x_{B} D^{\prime} \boldsymbol{\nabla} T+n D \boldsymbol{\nabla} x_{A}\right\} \tag{2.116}\\
c_{p} \frac{\partial T}{\partial t} & =\boldsymbol{\nabla} \cdot\left\{\kappa \boldsymbol{\nabla} T+n_{A} T D^{\prime \prime} \tilde{\mu}_{A A}^{x} \boldsymbol{\nabla} x_{A}\right\} \tag{2.117}
\end{align*}
$$

under the following three assumptions. First, the system can be regarded as the ideal gas. Second, the temperature gradient due to the diffusion is so small that the thermal diffusion term in eq.(2.116) is negligible and therefore the relation

$$
\begin{equation*}
n \frac{\partial x_{A}}{\partial t} \simeq \boldsymbol{\nabla} \cdot\left(n D \boldsymbol{\nabla} x_{A}\right) \tag{2.118}
\end{equation*}
$$

holds approximately. Third, $\boldsymbol{\nabla} T$ and $\boldsymbol{\nabla} x_{A}$ are so small that the coefficients of $\boldsymbol{\nabla} T$ and $\boldsymbol{\nabla} x_{A}$ in eqs.(2.116) and (2.117) are approximately independent of the position and the time. From the first assumption, we can obtain

$$
\begin{equation*}
\tilde{\mu}_{A A}^{x} \equiv\left(\frac{\partial \tilde{\mu}_{A}}{\partial x_{A}}\right)_{T, p}=\frac{k_{B} T}{x_{A}}, \tag{2.119}
\end{equation*}
$$

thus using the third assumption, eq.(2.117) can be written as

$$
\begin{equation*}
c_{p} \frac{\partial T}{\partial t}=\kappa \boldsymbol{\nabla}^{2} T+n T^{2} k_{B} D^{\prime \prime} \nabla^{2} x_{A} \tag{2.120}
\end{equation*}
$$

Similarly, eq.(2.118) can be written as

$$
\begin{equation*}
\frac{\partial x_{A}}{\partial t}=D \nabla^{2} x_{A} \tag{2.121}
\end{equation*}
$$

by the third assumption, and substituting eq.(2.121) into eq.(2.120),

$$
\begin{equation*}
\frac{\partial T}{\partial t}=\underbrace{\frac{\kappa}{c_{p}}}_{=K} \nabla^{2} T+\underbrace{\frac{n T^{2} k_{B} D^{\prime \prime}}{c_{p} D}}_{=\beta} \frac{\partial x_{A}}{\partial t} . \tag{2.122}
\end{equation*}
$$

Eq.(2.121),(2.122) are the Waldmann's phenomenological equations.
Waldmann considered the following ideal situation to find the solutions to eqs. (2.121) and (2.122). Let the two insulating parallel plates of infinite extent be in the the $x y$-plane at $x= \pm l$, and a diaphragm at $x=0$. Between these plates, the gas mixture of two components is contained. We initially prepare the profile of the higher-molecular-weight gas A as $x_{A}(x)=x_{A}^{0} \pm \delta x_{A}^{0}(x \lessgtr 0)$ and the diaphragm closed. The initial temperature is set to T_{0} in the whole system, and the pressure is assumed uniform and constant. The boundary conditions are

$$
\begin{equation*}
\left(\frac{\partial x_{A}}{\partial x}\right)_{x= \pm l}=\left(\frac{\partial T}{\partial x}\right)_{x= \pm l}=0 . \tag{2.123}
\end{equation*}
$$

The solution of the phenomenological eqs. (2.121) and (2.122) under these conditions is shown in fig. 2.1 where the non-dimensional parameters are used

$$
\begin{equation*}
\xi=\frac{x}{l}, \quad \tau=\frac{\pi D^{2}}{4 l^{2}} t, \quad \theta=\frac{T_{0}-T}{\beta \delta x_{A}^{0}} \tag{2.124}
\end{equation*}
$$

instead of the position x, the time t, and the temperature T, respectively. From fig.2.1, we can observe that the temperature displacement occurs near the $x=0$ where the diffusive mixing occurs at the beginning, and propagates toward the boundary of the system. This result can explain why Dufour observed the temperature fall near the the surface of the porous partition, not in the bulk of the vessel. Because the porous partition retains the flow
of the gasses, the diffusive mixing occurred mainly near or in the porous partition.

Fig. 28. The temperature change θ as a function of (a) time τ at various positions ξ in the diffusion vessel; (b) position ξ at various times τ. (After Waldmann, 1943.)

Fig. 2.1: Non-dimensional time τ and position ξ dependence of the nondimensional local temperature θ in the special case when a relation $D=K$ holds. ${ }^{3)}$

In this way, Waldmann constructed the phenomenology of Dufour effect, by starting from the phenomenological time evolution equations of the mole fraction x_{A} and the temperature T. From his phenomenology, how the temperature difference appears, in the process of the diffusive mixing of the heavy gas and the light gas, was understood.

Chapter 3

Model

3.1 Construction of Heat Pump Model

In sections 1.1 and 2.2 we saw that, when the gasses with different molecular weights mix diffusively, heat flows from the higher-molecular-weight gas toward the lower-molecular-weight gas. In this section, we construct a heat pump model utilizing this property of the Dufour effect.

The main concept of the model is the following. Because the Dufour effect occurs only when a diffusive mixing occurs, we need to make a diffusive mixing happen constantly or intermittently. But, since a diffusive mixing process is transitional, it is difficult to keep the process constant like the steady state of the Peltier effect. ${ }^{9), 10)}$ For this reason, we separate the chemical components of the mixture after the previous mixing process is finished, and then the next diffusive mixing is resumed after the separation of the components. By repeating this procedure, diffusive mixing processes where a heat flow is induced by the Dufour effect are performed on and off. We use an external
electric field for the separation of gasses.
Let us define the model in detail. We consider a gas mixture of the two components A and B, and the molecular weight of the component B assumed to be higher than A , so that

$$
\begin{equation*}
m_{A}<m_{B}, \tag{3.1}
\end{equation*}
$$

where m_{A} and m_{B} are the molecular weight of the gasses A and B, respectively. To separate the mixed components into A and B by an electrical field, electrical charges q_{A} and q_{B} are given to the molecules A and B, respectively, and we assume

$$
\begin{equation*}
q_{A}=-q, \quad q_{B}=q \quad(q>0), \tag{3.2}
\end{equation*}
$$

for simplicity. we also assumed that the particle numbers of the components in the system are N_{A} and N_{B}, and other properties of the components A and B such as a particle interaction or a shape of the molecules are supposed to identical.

This gas mixture is contained in the system as schematically depicted in Fig. 3.1. The boundary at $x=0$ is attached to the heat bath with a high temperature T_{h} at all times, and the boundary at $x=L_{x}$ is attached to the heat bath with a low temperature T_{c} in the separating process or the insulated wall in mixing process. An area of cross section perpendicular to the x-direction of the system is S.

Fig. 3.1: A Schematic figure of the system and the procedures of the heat pump model.

To pump a heat from the bath T_{c} to the bath T_{h}, two procedures we call the separating process and the mixing process are repeated. As schematically depicted in Fig. 3.1, the definition of these processes are following.

1. separating process During this process, the heat bath with T_{c} is removed from the system and is replaced with the insulated wall. Furthermore, a static external electric filed $E_{x}=E(>0)$ is applied in the x-direction. After continuing this process for a time $\Delta t_{\text {sep }}$, the system is switched to the mixing process.
2. mixing process During this process, the heat bath with T_{c} is attached to the boundary at $x=L_{x}$, and the electric filed is turned off $\left(E_{x}=0\right)$. After continuing this process for a time $\Delta t_{\text {mix }}$, the system is switched to the separating process.

In the separating process, the components of the gas mixture are separated so that the component A is gathered around the boundary $x=0$, and B is gathered around the boundary $x=L_{x}$. In other words, a negative gradient of the mole fraction $\frac{\partial x_{A}}{\partial x}(<0)$ is built. The heat energy due to the work done by the external field is leaked to the heat bath with T_{h}, and the system approaches the steady state at the temperature T_{h} if the time $\Delta t_{\text {sep }}$ is taken sufficiently long. Especially, in the case of $T_{h}=T_{c}$, the system approaches the equilibrium state at temperature T_{h} (or T_{c}) if $\Delta t_{\text {sep }}$ is taken longer than the relaxation time of the system to the equilibrium state.

In the mixing process, a diffusive mixing of the components A and B occurs. Since the gradient of the mole fraction $\frac{\partial x_{A}}{\partial x}$ at the beginning of this process is negative and we assumed $m_{A}<m_{B}$, a heat flow toward the B-rich region, that is, in the negative x-direction is expected to occur by the Dufour effect, which means that the heat flows from the heat bath with T_{c} to the heat bath with T_{h}. In the case of $T_{h} \neq T_{c}$, after a relaxation time of the diffusive mixing process, the heat begins to flow to the opposite direction due to the temperature difference of the heat baths. Thus, to improve the efficiency of the heat pump, we should switch the mixing process to the separating process and remove the heat bath T_{c} before the opposite heat flow begins.

3.2 MD Simulation of the Model

In this section, we confirm a performance of this heat pump model numerically by using MD simulations.

3.2.1 The Simulation Model

In our simulation model, the time evolution of the system is governed by a Hamiltonian
$\mathcal{H}=\sum_{i=1}^{N} \frac{\boldsymbol{p}_{i}^{2}}{2 m_{i}}+\sum_{i<j} U^{\mathrm{int}}\left(\left|\boldsymbol{r}_{i}-\boldsymbol{r}_{j}\right|\right)-\sum_{i=1}^{N} q_{i} E_{x}(t) x_{i}+\sum_{i=1}^{N} \sum_{\alpha=1}^{2} U_{x}^{\text {wall }}\left(\left|x_{i}-x^{(\alpha)}\right|\right)$,
where $\boldsymbol{p}_{i}, \boldsymbol{r}_{i}, m_{i}, q_{i}$, and x_{i} denote the momentum, the position, the mass, the electrical charge, and the x-coordinate of the i-th particle, respectively. $U^{\text {int }}$ denoting the interaction potential for the center-to-center distance r of the particles, is taken to be a hard Herzian potential,

$$
U^{\mathrm{int}}(r)= \begin{cases}Y|\sigma-r|^{\frac{5}{2}} & (r \leq \sigma) \tag{3.4}\\ 0 & (\sigma<r)\end{cases}
$$

where σ is the diameter of the particle, and a constant Y is taken to be $Y=10^{5} \epsilon \sigma^{-\frac{5}{2}}$ with an energy unit ϵ. Herzian potential is known to be able to produce the properties similar to hard-sphere system. ${ }^{14), 15)} U_{x}^{\text {wall }}(r)$ denotes the wall potential at the boundaries of x-direction which is defined as

$$
U_{x}^{\mathrm{wall}}(r)= \begin{cases}\epsilon\left(\frac{\sigma}{r}\right)^{2}+U_{0} & (r \leq \sigma) \tag{3.5}\\ 0 & (r>\sigma)\end{cases}
$$

where U_{0} is taken so that the potential is continuous at $r=\sigma \cdot x^{(1)}=0$ and $x^{(2)}=L_{x}$ denote the positions of the walls. The external electric filed $E_{x}(t)$ is defined

$$
E_{x}(t)=\left\{\begin{array}{ll}
E & \text { (for the separating process) } \tag{3.6}\\
0 & \text { (for the mixing process) }
\end{array} .\right.
$$

where E is independent of time t.

Fig. 3.2: A schematic figure of the system used in the simulation. $\left(T_{h}, \gamma_{h}\right),\left(T_{c}, \gamma_{c}\right)$ are the bath temperature and the viscous friction coefficient of the heat bath h, c respectively. The boundaries in the y - and z-directions are connected by periodic boundary conditions, and the potential walls eq.(3.5) are placed at the boundaries in the x-direction at $x=0$ and $x=L_{x}$.

The geometry of the system is shown in Fig. 3.2. The particles are confined in a cuboid box, whose size is denoted by $L_{x} \times L_{y} \times L_{z}$. In the $y-$ and z-directions, periodic boundary conditions are imposed. Heat bath regions are attached to both sides of the x-direction with a width $L_{x} / 5$. The kinetic temperatures in these regions are controlled by the Langevin thermostat ${ }^{20}$) with different temperatures T_{h} and T_{c}. The time evolution of the particles
are governed by the equation of motion

$$
\begin{equation*}
\dot{\boldsymbol{r}}_{i}=\frac{\partial \mathcal{H}}{\partial \boldsymbol{p}_{i}}, \quad \dot{\boldsymbol{p}}_{i}=-\frac{\partial \mathcal{H}}{\partial \boldsymbol{r}_{i}}, \tag{3.7}
\end{equation*}
$$

if the i-th particle is in the bulk $L_{x} / 5 \leq x_{i} \leq 4 L_{x} / 5$, and governed by Langevin equation ${ }^{19)}$

$$
\begin{equation*}
\dot{\boldsymbol{r}}_{i}=\frac{\partial \mathcal{H}}{\partial \boldsymbol{p}_{i}}, \quad \dot{\boldsymbol{p}}_{i}=-\frac{\partial \mathcal{H}}{\partial \boldsymbol{r}_{i}}-\gamma_{a} \frac{\boldsymbol{p}_{i}}{m_{i}}+\boldsymbol{\xi}_{a}(t) \quad(a=h, c), \tag{3.8}
\end{equation*}
$$

if the i-th particle is in the bath region a, where $a=h$ corresponds to the region $0<x_{i}<L_{x} / 5$ and $a=c$ to $4 L_{x} / 5<x_{i}<L_{x} . \boldsymbol{\xi}_{a}(t)$ is the Gaussian white noise whose time correlation functions satisfy

$$
\begin{equation*}
\left\langle\xi_{a \alpha}(t) \xi_{a \beta}\left(t^{\prime}\right)\right\rangle=2 \gamma_{a} k_{B} T_{a} \delta_{\alpha \beta} \delta\left(t-t^{\prime}\right) \quad(\alpha, \beta=x, y, z), \tag{3.9}
\end{equation*}
$$

where k_{B} is the Boltzmann constant, $\delta(t)$ is the delta function, and γ_{a} is the viscous friction coefficient.

The time evolution of the system is performed by integrating eq.(3.7) or eq.(3.8). If the i-th particle is localed in the bulk $L_{x} / 5 \leq x \leq 4 L_{x} / 5$, we use the velocity-Verlet scheme ${ }^{17), 18)}$

$$
\begin{align*}
& \boldsymbol{r}_{i}(t+\delta t)=\boldsymbol{r}_{i}(t)+\boldsymbol{v}_{i}(t) \delta t+\frac{\boldsymbol{f}_{i}(t)}{2 m_{i}}, \tag{3.10}\\
& \boldsymbol{v}_{i}(t+\delta t)=\boldsymbol{v}_{i}(t)+\frac{\boldsymbol{f}_{i}(t+\delta t)+\boldsymbol{f}_{i}(t)}{2 m_{i}} \delta t, \tag{3.11}
\end{align*}
$$

where \boldsymbol{v}_{i} denotes the velocity of the i-th particle \boldsymbol{f}_{i} is the potential force applied to the i-th particle, that is $\boldsymbol{f}_{i} \equiv-\frac{\partial \mathcal{H}}{\partial \boldsymbol{r}_{i}}$. If the i-th particle is located
in the bath region $a(=h, c)$, the velocity-Verlet scheme is replaced with

$$
\begin{align*}
& \boldsymbol{r}_{i}(t+\delta t)=\boldsymbol{r}_{i}(t)+\left(1-\frac{\gamma_{a}}{2 m_{i}} \delta t\right) \boldsymbol{v}_{i}(t) \delta t+\frac{\boldsymbol{F}_{i}(t)}{2 m_{i}} \delta t^{2}+\frac{\Delta \boldsymbol{W}_{\mathbf{2}}}{m_{i}} \tag{3.12}\\
& \boldsymbol{v}_{i}(t+\delta t)=\frac{1}{1+\frac{\gamma_{a} \delta t}{2 m_{i}}}\left[\left(1-\frac{\gamma_{a} \delta t}{2 m_{i}}\right) \boldsymbol{v}_{i}(t)+\frac{\boldsymbol{F}_{i}(t+\delta t)+\boldsymbol{F}_{i}(t)}{2 m_{i}} \delta t+\frac{\Delta \boldsymbol{W}_{\mathbf{1}}}{m_{i}}\right], \tag{3.13}
\end{align*}
$$

where $\left\{\Delta W_{1 j}\right\},\left\{\Delta W_{2 j}\right\}_{(j=x, y, z)}$ are the normal random numbers which obey

$$
\begin{gather*}
\left\langle\Delta W_{1 j}\right\rangle=\left\langle\Delta W_{2 j}\right\rangle=0 \tag{3.14}\\
\left\langle\Delta W_{1 j}^{2}\right\rangle=2 \gamma_{a} k_{B} T_{a} \delta t, \quad\left\langle\Delta W_{2 j}^{2}\right\rangle=2 \gamma_{a} k_{B} T_{a} \frac{\delta t^{3}}{3}, \tag{3.15}\\
\left\langle\Delta W_{1 j} \Delta W_{2 j}\right\rangle=2 \gamma_{a} k_{B} T_{a} \frac{\delta t^{2}}{2}, \tag{3.16}
\end{gather*}
$$

for $j=x, y, z$. Eqs.(3.12)-(3.16) will be derived in Appendix B.1. We use these schemes with a time resolution $\delta t=0.001$, and the viscous friction coefficients of the bath $\gamma_{h}=\gamma_{c}=1$.

In the following simulation in this section, we use the scale unit as $m_{A} \equiv$ $1, \sigma \equiv 1, \epsilon \equiv 1$, and $k_{B} \equiv 1$, which define the unit of the mass, the length, the energy, and the temperature, respectively. In this unit, the unit of time is $\sqrt{m_{A} \sigma^{2} / \epsilon}$.

3.2.2 Results of the Simulations

Fig. 3.3 shows an example of the snapshots of the system. We can confirm that the components A and B are separated by applying the external field E in the separating process and the components are diffusively mixed if the
external field is turned off in the mixing process. In the simulation, the system size are $L_{x}=40, L_{y}=L_{x}=10$, the number of the particles are $N=1000$, where $N_{A}=N_{B}=500$, the external field $E=0.1$, and the temperature of the baths are $T_{h}=1.01, T_{c}=0.99$. Each particles of the component A, B has the mass $m_{A}=1, m_{B}=10$, and the electric charge $q_{A}=-1, q_{B}=1$, respectively. This result can quantitatively be verified in fig. 3.4 which shows

Fig. 3.3: The example of the snapshots of the system when, (a) just after the process switch from the previous mixing process, (b) just before the process switch to the next mixing process, (c) just after the process switch from the previous separating process, (d) just before the process switch to the next separating process.
an example of the time evolution of the local mole fraction $x_{A}(x, t)$ in the mixing process and the separating process.

Fig. 3.4: The profile of the mole fraction $x_{A}(x, t)$ in the mixing process (5000 $\leq t \leq 10000$), and in the separating process $(10000 \leq t \leq$ $15000)$, with $\Delta t_{\text {sep }}=\Delta t_{\text {sep }}=5000$. A curve of $t=\left[t_{1}: t_{2}\right]$ state a profile averaged in the time between $t_{1} \leq t \leq t_{2}$.

Fig.3.5 depicts typical results of the time evolution of the global tem-
perature $T(t)$ defined as the temperature averaged over the whole system. Although the global temperature instantly falls to a constant in the mixing process ($5000 \leq t \leq 10000$ in fig.3.5), a peak of the global temperature is observed in the separating process ($10000 \leq t \leq 15000$ in fig.3.5). This peak is due to the heat produced from the work done by the external field E_{x} turned on at $t=10000$. The temperature fall to T_{h} in the separating process implies that the heat produced by E_{x} leaks to the heat bath with T_{h}, and the system reaches to the equilibrium state at the temperature T_{h}. The same result can also be confirmed in fig.3.6, which shows that the local temperature $T(x, t)$ of the system becomes spatially homogeneous at the temperature T_{h} after a rapid temperature increase. Furthermore, from fig.3.6, we can see that the system reaches the nonequilibrium steady state with the heat conduction with a spatially linear temperature profile.

Global Temperature

Fig. 3.5: A time dependence of the temperature averaged over the whole system. The system is in the mixing process when $5000 \leq t \leq$ 10000 , and in the separating process when $10000 \leq t \leq 15000$ and $t \leq 5000$, with $\Delta t_{\text {sep }}=\Delta t_{\text {sep }}=5000$. The temperature of the hot bath $T_{h}=1.01$, and the average temperature $\bar{T} \equiv\left(T_{h}+T_{c}\right) / 2=1.0$ are also plotted.

Fig. 3.6: The profile of the local temperature $T(x, t)$ in the separating process $(5000 \leq t \leq 10000)$, and in the mixing process $(10000 \leq t \leq$ 15000). A curve of $t=\left[t_{1}: t_{2}\right]$ is drawn following the same rule with fig.3.4.

Fig.3.7 shows the time evolution of the number-density distribution of
the particles $n(x, t)$ with the same parameters as in figs.3.4 and 3.6. We can find from fig. 3.7 that the distribution $n(x, t)$ in the mixing process instantly reaches the steady profile, and this relaxation time of $n(x, t)$ is small than $x_{A}(x, t)$ and $T(x, t)$ as we can see in figs.3.4 and 3.6. This result is assumed to hold in general for the phenomenological analysis in the next section.

Fig. 3.7: The profile of the number-density $n(x, t)$ of the particles in the separating process ($5000 \leq t \leq 10000$), and in the mixing process $(10000 \leq t \leq 15000)$. A curve of $t=\left[t_{1}: t_{2}\right]$ is drawn following the same rule with fig.3.4. In this simulation, we use $N=1000, L_{x}=40$ and $L_{y}=L_{z}=10$, thus the averaged number-density $\bar{n}=0.1$.

We measured the heat current $\dot{Q}^{\text {hot }}(t)$ which flows from the system into the heat bath with T_{h}, and $\dot{Q}^{\text {cold }}(t)$ which flows from the bath with T_{c} into the system, defined as

$$
\begin{equation*}
\dot{Q}^{\text {hot }}(t) \equiv-\sum_{i \in \text { HotBath }} \frac{\delta W_{i}^{\text {hot }}(t)}{\delta t}, \quad \dot{Q}^{\text {cold }}(t) \equiv \sum_{i \in \text { ColdBath }} \frac{\delta W_{i}^{\text {cold }}(t)}{\delta t}, \tag{3.17}
\end{equation*}
$$

where the notations $\sum_{i \in \text { HotBath }}$ and $\sum_{i \in \text { ColdBath }}$ imply the summations for all the particles in the bath regions T_{h} and T_{c}, respectively. $\delta W_{i}^{a}(t)(a=h, c)$ in eq.(3.17) denotes the work done by the Langevin bath a to the i-th particle in the time δt, and becomes approximately
$\delta W_{i}^{a}(t) \simeq \frac{m_{i}}{2} \boldsymbol{v}_{i}^{2}(t+\delta t)-\frac{m_{i}}{2} \boldsymbol{v}_{i}^{2}(t)-\frac{\boldsymbol{F}_{i}(t+\delta t)+\boldsymbol{F}_{i}(t)}{2} \cdot\left(\boldsymbol{r}_{i}(t+\delta t)-\boldsymbol{r}_{i}(t)\right)$,
as derived in the Appendix B. 2 using the stochastic energetics. ${ }^{20)}$ Fig.3.8 shows a examples of the time evolutions of $\dot{Q}^{\text {hot }}(t)$ and $\dot{Q}^{\text {cold }}(t)$. We can see that $\dot{Q}^{\text {hot }}(t)$ has a peak corresponding to the heat leak due to the external field in the separating process, and the equilibrium state is realized at last. The heat current $\dot{Q}^{\text {cold }}(t)$ is zero in the separating process, simply because the heat bath T_{c} is removed during this process. The peaks of $\dot{Q}^{\text {hot }}(t)$ and $\dot{Q}^{\text {cold }}(t)$ in the mixing process which have a similar profile imply that the heat flows from the cold bath T_{c} toward the hot bath T_{h}. Therefore the heat pumped by the Dufour effect is observed.

Fig. 3.8: The time dependence of the heat currents $\dot{Q}^{\text {cold }}(t)$ transferred from the bath T_{c}, and $\dot{Q}^{\text {hot }}(t)$ transferred into the bath T_{h}. The system is in mixing process when $5000 \leq t \leq 10000$, and in the separating process when $t \leq 5000$ and $10000 \leq t \leq 15000$.

In simulating the heat pump, our measurement is started when the system exhibits a steady cyclic behavior with the period $\Delta t_{\text {mix }}+\Delta t_{\text {sep }}$ after transient repetition of the mixing and separating process. To confirm that our model is surely useful as a heat pump, we measured the cooling power $\overline{\dot{Q}}_{c}$ and the coefficient of performance (COP) ϵ defined as

$$
\begin{equation*}
\overline{\dot{Q}}_{c} \equiv \frac{1}{\tau_{1}-\tau_{0}} \int_{\tau_{0}}^{\tau_{1}} \dot{Q}^{\mathrm{cold}}(t) d t \tag{3.19}
\end{equation*}
$$

$$
\begin{equation*}
\epsilon \equiv \frac{\overline{\dot{Q}}_{c}}{\dot{\bar{W}}} \tag{3.20}
\end{equation*}
$$

where τ_{0} is the relaxation time of the system to become cyclic with a period of time $\left(\Delta t_{\text {mix }}+\Delta t_{\text {sep }}\right)$, and τ_{1} is chosen so that $\tau_{1}-\tau_{0}$ is the integral multiple of $\left(\Delta t_{\text {mix }}+\Delta t_{\text {sep }}\right) \cdot \overline{\dot{W}}$ in eq.(3.20) denotes the average work done by the external field E per unit time. Since the system becomes cyclic after the relaxation time $t=\tau_{0}, \bar{W}$ satisfies the first law of thermodynamics written as

$$
\begin{equation*}
\overline{\dot{W}}=\overline{\dot{Q}}_{h}-\overline{\dot{Q}}_{c}, \tag{3.21}
\end{equation*}
$$

where $\overline{\dot{Q}}_{h}$ is defined as

$$
\begin{equation*}
\bar{Q}_{h} \equiv \frac{1}{\tau_{1}-\tau_{0}} \int_{\tau_{0}}^{\tau_{1}} \dot{Q}^{\mathrm{hot}}(t) d t \tag{3.22}
\end{equation*}
$$

Since $\overline{\dot{Q}}_{c}$ and $\overline{\dot{Q}}_{h}$ can be calculated from the data obtained in Fig.3.8 using eqs.(3.19) and (3.22), we can measure the COP ϵ using the relation

$$
\begin{equation*}
\epsilon=\frac{\overline{\dot{Q}}_{c}}{\dot{\bar{Q}}_{h}-\overline{\dot{Q}}_{c}}, \tag{3.23}
\end{equation*}
$$

coming from eqs.(3.20) and (3.21). We can confirm that this system is surely useful as a heat pump by choosing the parameter region where the COP and the cooling power are positive, as follows.

As we saw in Fig.3.8 that the heat flows oppositely (from the hot bath T_{h} to the cold bath T_{c}) after the relaxation of the diffusive mixing. Since this opposite heat flow may decrease the COP and the cooling power because of eqs.(3.23) and (3.19), we need to choose an appropriate value of $\Delta t_{\text {mix }}$ to obtain the positive COP and cooling power. Fig.3.9 shows the $\Delta t_{\text {mix }}$, and $\Delta t_{\text {sep }}$ dependence of the COP ϵ and the cooling power $\overline{\dot{Q}}_{c}$. We can see that ϵ
and $\overline{\dot{Q}}_{c}$ have the maximum positive values, and these results imply that this system is useful as a heat pump. We also measured the temperature difference ΔT between the baths dependence of \bar{Q}_{h} and ϵ, as shown in fig.3.10. But the result of fig.3.10 implies that, this heat pump is useful only when ΔT is very small.

Fig. 3.9: $\Delta t_{\text {sep }}$ and $\Delta t_{\text {mix }}$ dependence of the cooling power and the COP with the temperatures $T_{h}=1.01$ and $T_{c}=0.99$.

Fig. 3.10: The temperature difference $\Delta T=T_{h}-T_{c}$ dependence of the cooling power and the COP, with the process times $\Delta t_{\text {sep }}=\Delta t_{\text {mix }}=3000$, and the temperatures $T_{h}=1+\Delta T / 2$ and $T_{c}=1-\Delta T / 2$.

Chapter 4

Theoretical Analysis

4.1 Expression of the Cooling Power and the COP

We consider a simple case that the heat baths have the same temperature $T_{0}\left(=T_{h}=T_{c}\right)$, and a process is switched to another process after the equilibrium state is realized, which means

$$
\begin{equation*}
\Delta t_{\text {sep }}>\tau_{\text {sep }}, \quad \Delta t_{\text {mix }}>\tau_{\text {mix }} \tag{4.1}
\end{equation*}
$$

where $\tau_{\text {sep }}$ and $\tau_{\text {mix }}$ are the relaxation times to the equilibrium state of the system in the separating process and the mixing process, respectively. We assume that the mechanical equilibrium state is realized quickly in the mixing process. From this assumption and eq.(2.53), since the external field does not exist $(E=0)$ in the mixing process, $\boldsymbol{\nabla} p$ vanishes. Furthermore, we assume that the number-density of the particles $n(x, t)$ in the mixing process reaches the steady distribution quickly compared with the relaxation times of the
mole fraction $x_{A}(x, t)$ and the temperature $T(x, t)$. From this assumption $n(x, t)$ becomes $\bar{n} \equiv \frac{N}{V}$, where N is the total number of particles in the system and V is the volume of the system. The latter assumption is confirmed to hold in our system by the numerical result of fig.3.7. Although we can develop the analysis without the latter assumption, the result becomes too complicated and the essential physical result becomes very similar to the result from the analysis in this section.

The goal of our analysis is to calculate the cooling power \bar{Q}_{c} and the COP ϵ defined as eqs.(3.19) and (3.20), respectively. In this section, we calculate these quantities, in the case of $T_{c}=T_{h}$ under eq.(4.1).

4.1.1 Time Evolution of x_{A} and T in the Mixing Process

Since the external field does not exist, the linear relations eqs.(2.88) and (2.89) hold and we write them simply as

$$
\begin{align*}
J_{Q}(x, t) & =-l_{11} \frac{\partial T}{\partial x}(x, t)-l_{12} \frac{\partial x_{A}}{\partial x}(x, t), \tag{4.2}\\
\tilde{J}_{A}^{M}(x, t) & =-l_{21} \frac{\partial T}{\partial x}(x, t)-l_{22} \frac{\partial x_{A}}{\partial x}(x, t) \tag{4.3}
\end{align*}
$$

where l_{11}, l_{12}, l_{21} and l_{22} are expressed as

$$
\begin{equation*}
l_{11} \equiv \kappa, \quad l_{12} \equiv n_{A} \tilde{\mu}_{A A}^{x} T D^{\prime \prime}, \quad l_{21} \equiv n x_{A} x_{B} D^{\prime}, \quad l_{22} \equiv n D, \tag{4.4}
\end{equation*}
$$

and they depend on the position x and the time t thorough p, T, x_{A} and n as

$$
\begin{equation*}
l_{i j}(x, t)=l_{i j}\left(p(x, t), T(x, t), x_{A}(x, t), n(x, t)\right) \quad(i, j=1,2) . \tag{4.5}
\end{equation*}
$$

Using $l_{i j}$, the time evolution equations eqs.(2.96) and (2.113) become

$$
\begin{align*}
c_{p} \frac{\partial T}{\partial t}(x, t) & =\frac{\partial}{\partial x}\left[l_{11}(x, t) \frac{\partial T}{\partial x}(x, t)+l_{12}(x, t) \frac{\partial x_{A}}{\partial x}(x, t)\right], \tag{4.6}\\
n \frac{\partial x_{A}}{\partial t}(x, t) & =\frac{\partial}{\partial x}\left[l_{21}(x, t) \frac{\partial T}{\partial x}(x, t)+l_{22}(x, t) \frac{\partial x_{A}}{\partial x}(x, t)\right] . \tag{4.7}
\end{align*}
$$

If we neglect the second-order of $\frac{\partial T}{\partial x}$ and $\frac{\partial x_{A}}{\partial x}$, eqs.(4.6) and (4.7) become

$$
\begin{align*}
c_{p} \frac{\partial T}{\partial t}(x, t) & =l_{11}(x, t) \frac{\partial^{2} T}{\partial x^{2}}(x, t)+l_{12}(x, t) \frac{\partial^{2} x_{A}}{\partial x^{2}}(x, t), \tag{4.8}\\
n \frac{\partial x_{A}}{\partial t}(x, t) & =l_{21}(x, t) \frac{\partial^{2} T}{\partial x^{2}}(x, t)+l_{22}(x, t) \frac{\partial^{2} x_{A}}{\partial x^{2}}(x, t), \tag{4.9}
\end{align*}
$$

using $\frac{\partial p}{\partial x}=\frac{\partial n}{\partial x}=0$ which comes from the assumptions. These time evolution equations are solved with the boundary conditions

$$
\begin{gather*}
\tilde{J}_{A}^{M}(0, t)=\tilde{J}_{A}^{M}\left(L_{x}, t\right)=0, \tag{4.10}\\
T(0, t)=T\left(L_{x}, t\right)=T_{0} \tag{4.11}
\end{gather*}
$$

since the both boundaries of x-direction are the heat walls of the same temperature T_{0}. The initial condition of the mixing process are

$$
\begin{equation*}
T(x, 0)=T_{0}, \quad x_{A}(x, 0)=x_{A}^{E}(x), \tag{4.12}
\end{equation*}
$$

where $x_{A}^{E}(x)$ denotes the mole fraction distribution of the equilibrium state in the separating process with the external field E. The distributions of the mole fraction x_{A} and the temperature T in the final state of the mixing process are written as

$$
\begin{equation*}
T\left(x, \Delta t_{\text {mix }}\right)=T_{0}, \quad x_{A}\left(x, \Delta t_{\text {mix }}\right)=\bar{x}_{A} . \tag{4.13}
\end{equation*}
$$

where $\bar{x}_{A} \equiv \frac{N_{A}}{N}$ is the mean mole fraction and the N_{A} is the number of particles of the component A in the system.

4.1.2 Expression of the Cooling Power

The cooling power eq.(3.19) can be expressed as

$$
\begin{equation*}
\overline{\dot{Q}}_{c} \equiv \frac{-Q_{\text {mix }}\left(L_{x}\right)}{\Delta t_{\text {sep }}+\Delta t_{\text {mix }}}, \tag{4.14}
\end{equation*}
$$

where $Q_{\text {mix }}(x)$ is defined as

$$
\begin{equation*}
Q_{\mathrm{mix}}(x) \equiv \int_{0}^{\Delta t_{\mathrm{mix}}} S J_{Q}(x, t) d t \tag{4.15}
\end{equation*}
$$

S is the area of cross section of the system. By eliminating $\frac{\partial x_{A}}{\partial x}$ from eqs. (4.2) and (4.3), and substituting J_{Q} into eq.(4.15), we obtain

$$
\begin{equation*}
Q_{\text {mix }}(x)=S \int_{0}^{\Delta t_{\text {mix }}}\left(-l_{11}+l_{12} \frac{l_{21}}{l_{22}}\right) \frac{\partial T}{\partial x}(x, t) d t+S \int_{0}^{\Delta t_{\text {mix }}} \frac{l_{12}}{l_{22}} \tilde{J}_{A}^{M}(x, t) d t \tag{4.16}
\end{equation*}
$$

Using the boundary condition eq.(4.10), the cooling power eq.(4.14) becomes

$$
\begin{equation*}
\overline{\dot{Q}}_{c}=\frac{-S}{\Delta t_{\text {sep }}+\Delta t_{\text {mix }}} \int_{0}^{\Delta t_{\text {mix }}}\left(-l_{11}+l_{12} \frac{l_{21}}{l_{22}}\right) \frac{\partial T}{\partial x}\left(L_{x}, t\right) d t \tag{4.17}
\end{equation*}
$$

4.1.3 Expression of the COP

We can write $\overline{\dot{W}}$ introduced in eq.(3.20) as

$$
\begin{equation*}
\overline{\dot{W}} \equiv \frac{W_{E}}{\Delta t_{\mathrm{sep}}+\Delta t_{\mathrm{mix}}}, \tag{4.18}
\end{equation*}
$$

where W_{E} denotes the total work done by the external field $E_{x}=E$ to the system in the separating process. W_{E} can be calculated from the initial distributions of the mole fraction x_{A} and the the number-density n of the particles in the separating process

$$
\begin{equation*}
x_{A}^{E=0}(x)=\bar{x}_{A}, \quad n^{E=0}(x)=\bar{n} . \quad\left(\bar{n} \equiv \frac{N}{V}\right) \tag{4.19}
\end{equation*}
$$

and from the final distributions $x_{A}^{E}(x), n^{E}(x)$ in the separating process. By defining $\delta x_{A}^{E}(x)$ and $\delta n^{E}(x)$ as

$$
\begin{equation*}
\delta x_{A}^{E}(x) \equiv x_{A}^{E}(x)-\bar{x}_{A}, \quad \delta n^{E}(x) \equiv n^{E}(x)-\bar{n}, \tag{4.20}
\end{equation*}
$$

W_{E} can be expressed as

$$
\begin{align*}
W_{E} & =\psi_{E}\left[x_{A}^{E=0}(x), n^{E=0}(x)\right]-\psi_{E}\left[x_{A}^{E}(x), n^{E}(x)\right], \tag{4.21}\\
& =\psi_{E}\left[\bar{x}_{A}, \bar{n}\right]-\psi_{E}\left[\bar{x}_{A}+\delta x_{A}^{E}(x), \bar{n}+\delta n^{E}(x)\right], \tag{4.22}
\end{align*}
$$

where $\psi_{E}\left[x_{A}(x), n(x)\right]$ is the potential energy of the system due to the electric field $E_{x}=E$. Eq.(4.21) can be derived only from the fact that the present external field $E_{x}=E$ is conservative. Remembering that the electric charges of the particles are given by $q_{A}=-q(q>0)$ and $q_{B}=q$, we can write the potential energy $\psi_{E}\left[x_{A}(x), n(x)\right]$ as

$$
\psi_{E}\left[x_{A}(x), n(x)\right]=\int_{0}^{L_{x}}\{q E x \underbrace{x_{A}(x) n(x)}_{n_{A}}+(-q E) x \underbrace{\left(1-x_{A}(x)\right) n(x)}_{n_{B}}\} S d x
$$

$$
\begin{equation*}
=q E S \int_{0}^{L_{x}} n(x)\left(2 x_{A}(x)-1\right) x d x \tag{4.23}
\end{equation*}
$$

where n_{A} and n_{B} denote the number-density of particles of each components A and B, respectively. By substituting eq.(4.24) into eq.(4.22), W_{E} becomes

$$
\begin{align*}
W_{E}= & q E S \int_{0}^{L_{x}} \bar{n}\left(2 \bar{x}_{A}-1\right) x d x \\
& -q E L_{x} \int_{0}^{L_{x}}\left(\bar{n}+\delta n^{E}(x)\right)\{\underbrace{2\left(\bar{x}_{A}+\delta x_{A}^{E}(x)\right)-1}_{\left(2 \bar{x}_{A}-1\right)+2 \delta x_{A}^{E}(x)}\} x d x, \tag{4.25}\\
= & q E S \int_{0}^{L_{x}}\left\{\delta n^{E}(x)\left(2 \bar{x}_{A}-1\right)+2 \bar{n} \delta x_{A}^{E}(x)+2 \delta n^{E}(x) \delta x_{A}^{E}(x)\right\} x d x . \tag{4.26}
\end{align*}
$$

Therefore, by substituting eqs.(4.26) and (4.17), the COP can be expressed as

$$
\begin{align*}
\epsilon & =\frac{\overline{\dot{Q}}_{c}}{W_{E} /\left(\Delta t_{\text {sep }}+\Delta t_{\text {mix }}\right)}, \tag{4.27}\\
& =\frac{\int_{0}^{\Delta t_{\text {mix }}}\left(-l_{11}+l_{12} \frac{l_{21}}{l_{22}}\right) \frac{\partial T}{\partial x}\left(L_{x}, t\right) d t}{q E \int_{0}^{L_{x}}\left\{\left(2 \bar{x}_{A}-1\right) \delta n^{E}(x)+2 \bar{n} \delta x_{A}^{E}(x)+2 \delta n^{E}(x) \delta x_{A}^{E}(x)\right\} x d x} . \tag{4.28}
\end{align*}
$$

4.2 Approximate Calculation

4.2.1 Assumptions for Approximation

We make two assumptions to solve the time evolution equations eqs.(4.8) and (4.9) approximately. The first assumption is that $\frac{\partial T}{\partial x}, \frac{\partial x_{A}}{\partial x}$ and E are very small so that the coefficients $l_{11}, l_{12}, l_{21}, l_{22}, c_{p}$ and n which appear in the time evolution equations and the linear relations, approximately depend only on the average values $\bar{p}, \bar{T}, \bar{x}_{A}$ and \bar{n}, which do not depend on the time and the position. From this assumption, we can linearize the time evolution equations eqs.(4.8) and (4.9) with the constant $\bar{l}_{11}, \bar{l}_{12}, \bar{l}_{21}, \bar{l}_{22}, \bar{c}_{p}$ and \bar{n} as

$$
\begin{align*}
& \bar{c}_{p} \frac{\partial T}{\partial t}(x, t)=\bar{l}_{11} \frac{\partial^{2} T}{\partial x^{2}}(x, t)+\bar{l}_{12} \frac{\partial^{2} x_{A}}{\partial x^{2}}(x, t), \tag{4.29}\\
& \bar{n} \frac{\partial x_{A}}{\partial t}(x, t)=\bar{l}_{21} \frac{\partial^{2} T}{\partial x^{2}}(x, t)+\bar{l}_{22} \frac{\partial^{2} x_{A}}{\partial x^{2}}(x, t) . \tag{4.30}
\end{align*}
$$

The second assumption is that the mixture can be regarded as the ideal gas when the system is in the equilibrium state. Under the second assumption, the number-densities $n_{A}^{E}(x)$ and $n_{B}^{E}(x)$ of the particles of the components A and B in the presence of the external field E can be written as

$$
\begin{equation*}
n_{A}^{E}(x)=\frac{1}{S} \frac{N_{A} \beta E q}{1-e^{-\beta E q L_{x}}} e^{-\beta E q x}, \quad n_{B}^{E}(x)=\frac{1}{S} \frac{N_{B} \beta E q}{e^{\beta E q L_{x}}-1} e^{\beta E q x}, \tag{4.31}
\end{equation*}
$$

respectively, using the equilibrium statistical mechanics, where $\beta \equiv 1 / k_{B} \bar{T}$. Using these expression, $\delta n^{E}(x)$ and $\delta x_{A}^{E}(x)$ become

$$
\begin{align*}
\delta n^{E}(x) & =\frac{\beta E q}{S} \frac{N_{A} e^{\beta E q\left(\frac{L_{x}}{2}-x\right)}+N_{B} e^{-\beta E q\left(\frac{L_{x}}{2}-x\right)}}{e^{\beta E q \frac{L_{x}}{2}}-e^{-\beta E q \frac{L_{x}}{2}}} \bar{n}, \tag{4.32}\\
& \simeq\left(2 \bar{n}_{A}-\bar{n}\right) \beta E q\left(\frac{L_{x}}{2}-x\right), \tag{4.33}\\
\delta x_{A}^{E}(x) & =\frac{N_{A} N_{B}}{N_{A}+N_{B}} \frac{e^{\beta E q\left(\frac{L_{x}}{2}-x\right)}-e^{-\beta E q\left(\frac{L_{x}}{2}-x\right)}}{N_{A} e^{\beta E q\left(\frac{L_{x}}{2}-x\right)}+N_{B} e^{-\beta E q\left(\frac{L_{x}}{2}-x\right)}}, \tag{4.34}\\
& \simeq 2 \bar{x}_{A}\left(1-\bar{x}_{A}\right) \beta E q\left(\frac{L_{x}}{2}-x\right), \tag{4.35}
\end{align*}
$$

where we expanded the equations up to the first order of E. Since the mixture is the ideal gas mixture, we can write l_{12} as

$$
\begin{equation*}
l_{12} \equiv n_{A} \tilde{\mu}_{A A}^{x} T D^{\prime \prime}=n_{A} \frac{k_{B} T}{x_{A}} T D^{\prime \prime}=k_{B} T^{2} n D^{\prime \prime} \tag{4.36}
\end{equation*}
$$

4.2.2 Cooling Power

Now, we can calculate approximately the cooling power $\overline{\mathcal{Q}}_{c}$ expressed as eq.(4.17). Eliminating $\frac{\partial^{2} x_{A}}{\partial x^{2}}$ from eqs.(4.29) and (4.30), the time evolution equations become

$$
\begin{equation*}
\bar{c}_{p} \frac{\partial T}{\partial t}=(\underbrace{\bar{l}_{11}-\bar{l}_{12} \bar{l}_{21}}_{\equiv \bar{l}_{1}^{\prime}}) \frac{\partial^{2} T}{\partial x^{2}}+\underbrace{\bar{l}_{12} \frac{\bar{n}}{\bar{l}_{22}}}_{\equiv \bar{l}_{2}^{\prime}} \frac{\partial x_{A}}{\partial t} \tag{4.37}
\end{equation*}
$$

where we introduce \bar{l}_{1}^{\prime} and \bar{l}_{2}^{\prime} for simplicity. By integrating eq.(4.37) with respect to the time t on $\left[0, \Delta t_{\text {mix }}\right]$ and using the initial condition eq.(4.12) and the final state eq.(4.13) of the mixing process, eq.(4.37) can be written as

$$
\begin{equation*}
0=\bar{l}_{1}^{\prime} \int_{0}^{\Delta t_{\text {mix }}} \frac{\partial^{2} T}{\partial x^{2}} d t+\bar{l}_{2}^{\prime}\left(-\delta x_{A}^{E}(x)\right) \tag{4.38}
\end{equation*}
$$

By substituting eq.(4.35) into eq.(4.38), this equation becomes

$$
\begin{equation*}
0=\bar{l}_{1}^{\prime} \frac{\partial^{2}}{\partial x^{2}} \int_{0}^{\Delta t_{\mathrm{mix}}} T(x, t) d t-2 \bar{l}_{2}^{\prime} \bar{x}_{A}\left(1-\bar{x}_{A}\right) \beta E q\left(\frac{L_{x}}{2}-x\right) . \tag{4.39}
\end{equation*}
$$

By integrating eq.(4.38) with respect to x, we obtain

$$
\begin{equation*}
\phi(x) \equiv \int_{0}^{\Delta t_{\operatorname{mix}}} T(x, t) d t=\frac{2 \bar{l}_{2}^{\prime} \bar{x}_{A}\left(1-\bar{x}_{A}\right) \beta E q}{\bar{l}_{1}^{\prime}}\left(-\frac{x^{3}}{6}+\frac{L_{x}}{4} x^{2}\right)+C_{1} x+C_{2} \tag{4.40}
\end{equation*}
$$

where C_{1} and C_{2} are integral constants. Under the boundary condition $T(0, t)=$ T_{0}, thus $\phi(0)=T_{0} \Delta t_{\text {mix }}$, we can write

$$
\begin{equation*}
C_{2}=T_{0} \Delta t_{\text {mix }} \tag{4.41}
\end{equation*}
$$

Similarly using the boundary condition $T\left(L_{x}, t\right)=T_{0}$, therefore $\phi\left(L_{x}\right)=$ $T_{0} \Delta t_{\text {mix }}$, the integral constant C_{1} is given by

$$
\begin{equation*}
C_{1}=-\frac{2 \bar{l}_{2}^{\prime} \bar{x}_{A}\left(1-\bar{x}_{A}\right) \beta E q}{\bar{l}_{1}^{\prime}} \frac{L_{x}^{2}}{12} . \tag{4.42}
\end{equation*}
$$

Therefore we can write eq.(4.40) and its x-derivative as

$$
\begin{gather*}
\phi(x)=\frac{2 \bar{l}_{2}^{\prime} \bar{x}_{A}\left(1-\bar{x}_{A}\right) \beta E q}{\bar{l}_{1}^{\prime}}\left(-\frac{x^{3}}{6}+\frac{L_{x}}{4} x^{2}-\frac{L_{x}^{2}}{12} x\right)+T_{0} \Delta t_{\mathrm{mix}}, \tag{4.43}\\
\therefore \frac{\partial \phi}{\partial x}(x)=\frac{\bar{l}_{2}^{\prime} \bar{x}_{A}\left(1-\bar{x}_{A}\right) \beta E q}{\bar{l}_{1}^{\prime}}\left(-x^{2}+L_{x} x-\frac{L_{x}^{2}}{6}\right) . \tag{4.44}
\end{gather*}
$$

By substituting eq.(4.44) into eq.(4.17), the cooling power can be calculated as

$$
\begin{align*}
& \overline{\dot{Q}}_{c}=\frac{-S}{\Delta t_{\text {sep }}+\Delta t_{\text {mix }}}\left(-\bar{l}_{11}+\bar{l}_{12} \bar{l}_{22}\right. \tag{4.45}\\
& \bar{l}_{22} \tag{4.46}
\end{align*} \underbrace{\int_{0}^{\Delta t_{\text {mix }}} \frac{\partial T}{\partial x}\left(L_{x}, t\right) d t}_{\left.\frac{\partial \phi}{\partial x} L_{x}\right)},
$$

where we used $\bar{l}_{2}^{\prime} \equiv \bar{l}_{12} \frac{\bar{n}}{\bar{l}_{22}}=k_{B} \bar{T}^{2} \bar{n} \frac{D^{\prime \prime}}{D}$ from eq.(4.36). Since the Dufour coefficient $D^{\prime \prime}$ is negative when $m_{A}<m_{B}$ as stated in Section 1.1, eq.(4.48) is positive in our model in the case of $T_{h}=T_{c}$.

4.2.3 COP

Substituting eqs.(4.33) and (4.35) into $\delta x_{A}^{E}(x), \delta n^{E}(x)$ in eq.(4.26), W_{E} can be written as

$$
\begin{align*}
W_{E} & =-q E S \int_{0}^{L_{x}}\{\left(2 \bar{x}_{A}-1\right) \overbrace{(\underbrace{2 \bar{n}_{A}-\bar{n}}_{\bar{n}\left(2 \bar{x}_{A}-1\right)}) \beta E q\left(\frac{L_{x}}{2}-x\right)}^{\delta n^{E}(x)} \\
& +2 \bar{n} \cdot \overbrace{2 \bar{x}_{A}\left(1-\bar{x}_{A}\right) \beta E q\left(\frac{L_{x}}{2}-x\right)}^{\delta x_{A}^{E}(x)}) \tag{4.49}\\
& \cong-S \beta(q E)^{2} \bar{n}\left\{\left(2 \bar{x}_{A}-1\right)^{2}+4 \bar{x}_{A}\left(1-\bar{x}_{A}\right)\right\} x \underbrace{\int_{0}^{L_{x}}\left(\frac{L_{x}}{2} x-x^{2}\right) d x} \tag{4.50}\\
& =\frac{S L_{x}^{3} \beta(q E)^{2} \bar{n}}{12} . \tag{4.51}
\end{align*}
$$

Therefore, using eqs.(4.48) and (4.51), the COP eq.(4.27) becomes

$$
\begin{equation*}
\epsilon=\frac{-2 k_{B} \bar{T}^{2} D^{\prime \prime} \bar{x}_{A}\left(1-\bar{x}_{A}\right)}{L_{x} q E D} \tag{4.52}
\end{equation*}
$$

Again we note that since $D^{\prime \prime}<0, \epsilon>0$ in our model in the case of $T_{h}=T_{c}$.

4.3 Numerical Confirmation

4.3.1 Simulation Model for Confirmation

To confirm the validity of the theoretical results, we compare them with the numerical data obtained by the MD simulations. Before the confirmation, we note that the MD simulations in this section are performed in the 2dimensional system, with the more accurate simulation model of the heat
bath, for saving the computation time and for improving the accuracy of the numerical data.

We use the thermalizing wall model ${ }^{23)}$ as the heat bath in this section. If a particle of the mass m collides with the thermalizing wall with the temperature T, its velocity is stochastically changed to the value \boldsymbol{v} according to distribution functions

$$
\begin{equation*}
P_{n}\left(v_{n}\right)=\frac{m}{k_{B} T}\left|v_{n}\right| \exp \left(-\frac{m v_{n}^{2}}{2 k_{B} T}\right), \quad P_{t}\left(v_{t}\right)=\sqrt{\frac{m}{2 \pi k_{B} T}} \exp \left(-\frac{m v_{t}^{2}}{2 k_{B} T}\right), \tag{4.53}
\end{equation*}
$$

where v_{n} and v_{t} are the perpendicular and parallel to the heat wall, respectively, and the sign of v_{n} is determined so that the direction of \boldsymbol{v} is opposite from the thermalizing wall. When the thermalizing wall is the boundary of the x-direction, these components become $v_{n}=v_{x}$ and $v_{t}=v_{y}$ in the 2D system. If the velocity of the particle before the collision with the thermalizing wall is \boldsymbol{v}_{0}, the energy gain of this particle collision from the thermalizing wall can be expressed as $\frac{m}{2}\left(\boldsymbol{v}^{2}-\boldsymbol{v}_{0}^{2}\right)$ with no approximation. This is because we use the thermalizing wall instead of the Langevin bath for the accurate measurement of the hear currents $\dot{Q}^{\text {hot }}(t), \dot{Q}^{\text {hot }}(t)$.

The geometry of the system is changed as schematically depicted in Fig. 4.1. The system is the two-dimensional rectangle with the size $L_{x} \times L_{y}$. The periodic boundary condition is imposed in the y-direction. The boundary of the x-direction at $x=L_{x}$ is the thermalizing wall with the temperature T_{c} in the mixing process, and the elastically reflecting wall in the separating process. In this model, the wall potential term $U_{x}^{\text {wall }}$ is removed from the Hamiltonian eq.(3.3). The boundary at $x=0$ is the thermalizing wall with the temperature T_{h} in the both processes. The velocity-Verlet scheme
eqs.(3.10) and (3.11) is used for all the particles in the system with the time resolution $\delta t=0.0005$.
(Separating Process) L_{x}

Fig. 4.1: A schematic illustration of the system in this section. Although the system in fig.3.2 used the Langevin heat baths and was threedimensional, but the present system uses the thermalizing walls and is two-dimensional.

As results of these changes in the simulation model, snapshots of the system become as shown in fig.4.2. In the simulations, the system size are $L_{x}=40, L_{y}=25$, the number of the particles are $N=100$, where $N_{A}=$ $N_{B}=50$, and the temperatures of the heat baths are $T_{h}=T_{c}=1$. Other parameters such as the masses and the electric charges of the particles are identical with §3.2.2.

Fig. 4.2: The example of the snapshots of the system in this section. In this simulation, the number of the particles are $N=100, N_{A}=N_{B}=$ 50, the system size are $L_{x}=40, L_{y}=25$, the temperatures of the heat baths are $T_{h}=T_{c}=1$, and each particle has $m_{A} \equiv 1$, $m_{B}=10, q_{A} \equiv-1, q_{B}=1$.

4.3.2 Numerical Calculation of k_{T}

To compare eq.(4.48) and (4.52) with the numerical data, the transport coefficients in these equations should be determined. It is convenient to use the thermal diffusion ratio k_{T} defined as

$$
\begin{equation*}
k_{T}=T x_{A} x_{B} \frac{D^{\prime}}{D} \tag{4.54}
\end{equation*}
$$

which can approximately be calculated by the Chapman-Enskog theory, ${ }^{4), 5)}$ and the results in eqs.(4.48) and (4.51) can be rewritten with the thermal diffusion ratio as

$$
\begin{align*}
\overline{\dot{Q}}_{c} & =\frac{-k_{B} \bar{T} k_{T} \bar{n} \beta E q S L_{x}^{2}}{6\left(\Delta t_{\text {sep }}+\Delta t_{\text {mix }}\right)} \tag{4.55}\\
\epsilon & =\frac{-2 k_{B} \bar{T} k_{T}}{L_{x} q E} \tag{4.56}
\end{align*}
$$

where k_{T} is approximated with the mean values as $k_{T} \simeq\left(\bar{T} \bar{x}_{A} \bar{x}_{B} D / D^{\prime}\right)$, and we used the Onsager reciprocal relation eq.(2.71).

We numerically calculated k_{T} of the two-dimensional system in the first order approximation (Appendix A). Using the parameters $m_{A}=1, m_{B}=$ $10, \bar{T}=1, \bar{x}_{A}=\bar{x}_{B}=0.5$, and $Y=10^{5}$ of the Herzian potential eq.(3.4) used in fig.4.2, the approximate value of k_{T} becomes

$$
\begin{equation*}
k_{T} \simeq-0.142339 \tag{4.57}
\end{equation*}
$$

where we used the extended midpoint method ${ }^{24)}$ with the accuracy $\epsilon=10^{-6}$.
Using eq.(4.57), and the same values of $\bar{n}\left(=N L_{x}^{-1} L_{y}^{-1}\right), \bar{T}, q, S\left(=L_{y}\right), L_{x}$ with fig.4.2, eqs.(4.55) and (4.56) become

$$
\begin{align*}
\bar{Q}_{c} & =\frac{100 \cdot 40 \cdot 0.142339}{6\left(\Delta t_{\text {sep }}+\Delta t_{\text {mix }}\right)} E, \tag{4.58}\\
\epsilon & =\frac{-2 \cdot 0.142339}{40} \frac{1}{E} . \tag{4.59}
\end{align*}
$$

Since eqs.(4.55) and (4.56) are derived under the assumption that $\Delta t_{\text {sep }}$ and $\Delta t_{\text {mix }}$ are larger than $\tau_{\text {sep }}$ and $\tau_{\text {mix }}$, respectively, so that the system reaches the equilibrium state before the process is switched to another, the parameters $\Delta t_{\text {sep }}$ and $\Delta t_{\text {mix }}$ are not essential for the confirmation of our theory. For this reason, when the comparison of eq. (4.58) with the numerical data, we plot
$\left(\Delta t_{\text {sep }}+\Delta t_{\text {mix }}\right) \overline{\dot{Q}}_{c}$, which implies the heat pumped from the cold bath T_{c} in a cycle, not in unit time.

4.3.3 Comparison with Theory

Fig. 4.3 shows the numerical results measuring the work done by the external filed $E_{x}=E$ as varying E, together with the theoretical result eq.(4.51) in the case of $S=L_{y}=25, L_{x}=40, q=1$ and $\bar{n}=0.1$. From fig.4.3, we can see that the numerical data deviate from the theoretical curve when $0.07 \lesssim E$. This result implies that the assumption of small E in the theory is not satisfied when $0.07 \lesssim E$ and the approximations in eqs.(4.33) and (4.35) may not be accurate. A possible reason why the numerical data are smaller than the theory is that the repulsive intermolecular potential disturbs the compression of gasses done by the external field E, therefore decreases the work done by E.

Fig. 4.3: Comparison between the theoretical result eq.(4.51) and the numerical data using MD simulation with the same parameters in fig.4.2

The cooling power and the COP of the theoretical results in eqs.(4.58) and (4.59) are compared with the numerical results by the MD simulations in fig.4.4. We can confirm a good agreement between the theory and the numerical data in the region $E \lesssim 0.05$, and the mismatching in the region $0.07 \lesssim E$ where the assumption of small E is not satisfied. Therefore, the validity of our theory of the heat pump model is verified.

Fig. 4.4: Comparison of the theoretical results eqs.(4.58) and (4.59) with the numerical data by the MD simulations.

4.4 The Case of $T_{h} \neq T_{c}$

Finally, we show that a similar analysis can be executed in the case of $T_{h} \neq T_{c}$, but the temperature difference $\delta T \equiv T_{h}-T_{c}$ is very small, and $\Delta t_{\text {sep }}$ and $\Delta t_{\text {mix }}$ satisfy eq.(4.1). In this case, the time evolution equations eqs.(4.8) and (4.9) hold, and we assume that the linearized version eqs.(4.29) and (4.30) are also valid. Now, the boundary condition of the temperature eq.(4.11) is changed to

$$
\begin{equation*}
T(0, t)=T_{\mathrm{h}}, \quad T\left(L_{x}, t\right)=T_{\mathrm{c}} . \tag{4.60}
\end{equation*}
$$

but the boundary condition of \tilde{J}_{A}^{M} written as eq.(4.10) does not change. The initial condition and final state of $T(x, t)$ and $x_{A}(x, t)$ in the mixing process (eqs.(4.12) and (4.13)) become

$$
\begin{gather*}
T(x, 0)=T_{\mathrm{h}}, \quad x_{A}(x, 0)=x_{A}^{E}(x) \tag{4.61}\\
T\left(x, \Delta t_{\text {mix }}\right)=T^{\delta T}(x), \quad x_{A}\left(x, \Delta t_{\text {mix }}\right)=x_{A}^{\delta T}(x), \tag{4.62}
\end{gather*}
$$

where $T^{\delta T}(x)$ and $x_{A}^{\delta T}(x)$ denote the steady state distribution of the temperature and the mole fraction, respectively, when the temperature difference δT between the heat baths exists.

In the steady state of the mixing process, by eliminating $\left(\partial^{2} x_{A} / \partial x^{2}\right)$ from eqs.(4.29) and (4.30), we can write

$$
\begin{equation*}
\frac{\partial^{2} T^{\delta T}(x)}{\partial x^{2}}=0 \tag{4.63}
\end{equation*}
$$

By integrating eq.(4.63) and using the boundary conditions eqs. (4.60) and (4.12), we can write $T^{\delta T}(x)$ as

$$
\begin{equation*}
T^{(\delta T)}(x)=-\frac{\delta T}{L_{x}} x+T_{\mathrm{h}}, \tag{4.64}
\end{equation*}
$$

where $\delta T \equiv T_{\mathrm{h}}-T_{\mathrm{c}}$. When the temperature is not homogeneous in the system like the case of eq.(4.64), the steady state distribution of the number-density of particles and the mole fraction in the mixing process, which are denoted as $x_{A}^{\delta T}(x)$ and $n^{\delta T}(x)$ respectively, are generally not homogeneous. We can determine $x_{A}^{\delta T}(x)$ and $n^{\delta T}(x)$ with the additional assumption that the mixture can be regarded as the ideal gas in the local systems when the system is in the steady state of the mixing process, not only in the equilibrium state of the separating process. From this assumption, we can write

$$
\begin{equation*}
n^{\delta T}(x)=\frac{p(x)}{k_{B} T^{\delta T}(x)}=\frac{p(x)}{k_{B} T_{\mathrm{h}}\left(1-\frac{\delta T}{T_{\mathrm{h}} L_{x}} x\right)} \cong \frac{p(x)}{k_{B} T_{\mathrm{h}}}\left(1+\frac{\delta T}{T_{\mathrm{h}} L_{x}} x\right), \tag{4.65}
\end{equation*}
$$

where we use $\delta T \ll 1$ in the last approximation. Since $p(x)=$ const., which comes from the assumption of the mechanical equilibrium state $\nabla p=0$, we can determine the coefficient of r.h.s. in eq.(4.65) by using the relation

$$
\begin{align*}
N & =\int_{0}^{L_{x}} S n^{\delta T}(x) d x \tag{4.66}\\
& =\frac{p S}{k_{B} T_{\mathrm{h}}}\left(L_{x}+\frac{\delta T L_{x}}{2 T_{\mathrm{h}}}\right) \tag{4.67}\\
& \cong \frac{p V}{k_{B} \bar{T}}, \quad\left(\bar{T} \equiv \frac{T_{\mathrm{h}}+T_{\mathrm{c}}}{2}, \quad V \equiv L_{x} S\right) \tag{4.68}
\end{align*}
$$

where \bar{T} is the average temperature between the heat baths, V is the volume of the system. From eq.(4.68), eq.(4.65) becomes

$$
\begin{align*}
n^{\delta T}(x) & =\frac{\bar{n} \bar{T}}{T_{\mathrm{h}}}\left(1+\frac{\delta T}{T_{\mathrm{h}} L_{x}} x\right), \tag{4.69}\\
& \cong \bar{n}+\frac{\bar{n} \delta T}{\bar{T} L_{x}}\left(x-\frac{L_{x}}{2}\right), \tag{4.70}
\end{align*}
$$

where $\bar{n} \equiv N / V$. By denoting $\delta n^{\delta T}(x)$ as the displacement from the average
number-density \bar{n}, eq.(4.70) can be written as

$$
\begin{align*}
\delta n^{\delta T}(x) & \equiv n^{\delta T}(x)-\bar{n} \tag{4.71}\\
& =\frac{\bar{n} \delta T}{\bar{T} L_{x}}\left(x-\frac{L_{x}}{2}\right) . \tag{4.72}
\end{align*}
$$

From the expression for $T^{\delta T}(x)$ written as eq.(4.64), we can determine $\delta x_{A}^{\delta T}(x)$ defined as the displacement of the mole fraction $x_{A}^{\delta T}(x)$ from \bar{x}_{A}. In the steady state of the mixing process, the linear relation eq.(4.3) becomes

$$
\begin{equation*}
0=-\bar{l}_{21} \frac{\partial T^{\delta T}}{\partial x}(x)-\bar{l}_{22} \frac{\partial x_{A}^{\delta T}}{\partial x}(x) . \tag{4.73}
\end{equation*}
$$

By substituting eq.(4.64) into eq.(4.73), $x_{A}^{\delta T}(x)$ can be written as

$$
\begin{align*}
\frac{\partial x_{A}^{\delta T}(x)}{\partial x} & =-\frac{\bar{l}_{21}}{\bar{l}_{22}}\left(-\frac{\delta T}{L_{x}}\right), \tag{4.74}\\
& \cong \frac{\bar{x}_{A} \bar{x}_{B} D^{\prime} \delta T}{D L_{x}}, \tag{4.75}\\
\therefore x_{A}^{\delta T}(x) & =\frac{\bar{x}_{A} \bar{x}_{B} D^{\prime} \delta T}{D L_{x}} x+C . \tag{4.76}
\end{align*}
$$

The integral constant C can be determined from that $n^{\delta T}(x)$ satisfies

$$
\begin{align*}
N_{A} & =\int_{0}^{L_{x}} S n_{A}^{\delta T}(x) d x, \tag{4.77}\\
& =\int_{0}^{L_{x}} S n^{\delta T}(x)\left(\frac{\bar{x}_{A} \bar{x}_{B} D^{\prime} \delta T}{D L_{x}} x+C\right) d x, \tag{4.78}\\
& =\int_{0}^{L_{x}} S\left(C n^{\delta T}(x)+\frac{\bar{n} \bar{T}}{T_{\mathrm{h}}} \frac{\bar{x}_{A} \bar{x}_{B} D^{\prime} \delta T}{D L_{x}} x+\mathscr{O}\left(\delta T^{2}\right)\right) d x, \tag{4.79}\\
& \cong C N+\frac{S \bar{n} \bar{T}}{T_{\mathrm{h}}} \frac{\bar{x}_{A} \bar{x}_{B} D^{\prime} \delta T}{D L_{x}} \frac{L_{x}^{2}}{2}, \tag{4.80}
\end{align*}
$$

thus,

$$
\begin{align*}
\therefore C & =\frac{1}{N}\left(N_{A}-\frac{\bar{x}_{A} \bar{x}_{B} D^{\prime} \delta T}{D L_{x}} \frac{S L_{x}^{2} \bar{n} \bar{T}}{2 T_{\mathrm{h}}}\right) \tag{4.82}\\
& =\bar{x}_{A}-\frac{\bar{x}_{A} \bar{x}_{B} D^{\prime} \delta T}{D L_{x}} \frac{L_{x} \bar{T}}{2 T_{\mathrm{h}}}, \tag{4.83}
\end{align*}
$$

where $n_{A}^{\delta T}(x)$ is the steady state distribution of number-density of the particles of the component A when the temperature difference δT exists, and can be written as $n_{A}^{\delta T}(x)=n^{\delta T}(x) x_{A}^{\delta T}(x)$. From eq.(4.83), we obtain

$$
\begin{equation*}
x_{A}^{\delta T}(x)=\underbrace{\frac{\bar{x}_{A} \bar{x}_{B} D^{\prime} \delta T}{D L_{x}}\left(x-\frac{L_{x}}{2}\right)}_{\delta x_{A}^{\delta T}(x)}+\bar{x}_{A} . \tag{4.84}
\end{equation*}
$$

We note that eq.(4.36) is valid in the case of $T_{h} \neq T_{c}$, i.e.

$$
\begin{equation*}
\bar{l}_{12} \equiv \bar{n}_{A} \bar{\mu}^{x}{ }_{A A} \bar{T} D^{\prime \prime}=\bar{n}_{A} \frac{k_{B} \bar{T}}{\bar{x}_{A}} \bar{T} D^{\prime \prime}=k_{B} \bar{T}^{2} \bar{n} D^{\prime \prime} \tag{4.85}
\end{equation*}
$$

because of the additional assumption of the ideal gas.

4.4.1 Cooling Power

The expression of the cooling power eq.(4.17), which is derived from the linear relations and the boundary condition $\widetilde{J}_{A}^{M}\left(L_{x}, t\right)=0$, holds in the case of $\delta T \neq 0$. A difference in analysis due to $\delta T \neq 0$ appears when eq.(4.37) is integrated with the time t for $\left[0, \Delta t_{\text {mix }}\right]$, and eq.(4.38) is changed to

$$
\begin{equation*}
\bar{c}_{p} \underbrace{\left(T^{\delta T}(x)-T_{\mathrm{h}}\right)}_{=-\frac{\delta T}{L_{x}} x(\because: \text { eq.(4.64)) }}=\bar{l}_{1}^{\prime} \int_{0}^{\Delta t_{\text {mix }}} \frac{\partial^{2} T}{\partial x^{2}} d t+\bar{l}_{2}^{\prime}\left(\delta x_{A}^{\delta T}(x)-\delta x_{A}^{E}(x)\right) . \tag{4.86}
\end{equation*}
$$

By substituting eqs.(4.35) and (4.84), the second term in eq.(4.86) becomes

$$
\begin{equation*}
\delta x_{A}^{\delta T}(x)-\delta x_{A}^{E}(x)=\bar{x}_{A} \bar{x}_{B}\left(\frac{D^{\prime} \delta T}{D L_{x}}+2 \beta_{\mathrm{h}} E q\right) x-\bar{x}_{A} \bar{x}_{B} L_{x}\left(\frac{\delta T D^{\prime}}{2 L_{x} D}+\beta_{\mathrm{h}} E q\right) \tag{4.87}
\end{equation*}
$$

where $\beta_{\mathrm{h}} \equiv 1 / k_{B} T_{h}$. With $\phi(x) \equiv \int_{0}^{\Delta t_{\text {mix }}} T(x, t) d t$, we can write eqs.(4.86) and (4.87) as

$$
\begin{align*}
\frac{\partial^{2} \phi}{\partial x^{2}}(x)= & \int_{0}^{\Delta t_{\text {mix }}} \frac{\partial^{2} T}{\partial x^{2}}(x, t) d t \tag{4.88}\\
= & \frac{1}{\bar{l}_{1}^{\prime}}\left\{-\frac{\bar{c}_{p} \delta T}{L_{x}} x-\bar{l}_{2}^{\prime}\left(\delta x_{A}^{\delta T}(x)-\delta x_{A}^{E}(x)\right)\right\}, \tag{4.89}\\
= & \frac{1}{\bar{l}_{1}^{\prime}}\{-[\underbrace{\frac{\bar{c}_{p} \delta T}{L_{x}}+\frac{\bar{l}_{2}^{\prime} \bar{x}_{A} \bar{x}_{B} D^{\prime} \delta T}{D L_{x}}+2 \bar{l}_{2}^{\prime} \bar{x}_{A} \bar{x}_{B} \beta_{\mathrm{h}} E q}_{\phi_{0}}] x \\
& +\underbrace{\frac{\bar{l}_{2}^{\prime} \bar{x}_{A} \bar{x}_{B} D^{\prime} \delta T}{2 D}+\bar{l}_{2}^{\prime} \bar{x}_{A} \bar{x}_{B} \beta_{\mathrm{h}} E q L_{x}}\}, \tag{4.90}
\end{align*}
$$

hence, by integrating eq.(4.90), $\phi(x)$ becomes

$$
\begin{equation*}
\phi(x)=-\frac{\phi_{1}}{6 \bar{l}_{1}^{\prime}} x^{3}+\frac{\phi_{0}}{2 \bar{l}_{1}^{\prime}} x^{2}+C_{1} x+C_{2} . \tag{4.91}
\end{equation*}
$$

where we defined constants ϕ_{1}, ϕ_{0} in eq.(4.90). From the boundary condition $T(0, t)=T_{\mathrm{h}}$, thus $\phi(0)=T_{\mathrm{h}} \Delta t_{\text {mix }}$, the integral constant C_{2} is written as

$$
\begin{equation*}
C_{2}=T_{\mathrm{h}} \Delta t_{\mathrm{mix}} \tag{4.92}
\end{equation*}
$$

Similarly, from the boundary condition $T\left(L_{y}, t\right)=T_{\mathrm{c}}, C_{1}$ is calculated as

$$
\begin{align*}
T_{\mathrm{c}} \Delta t_{\mathrm{mix}} & =-\frac{\phi_{1}}{6 \bar{l}_{1}^{\prime}} L_{x}^{3}+\frac{\phi_{0}}{2 \bar{l}_{1}^{\prime}} L_{x}^{2}+C_{1} L_{x}+T_{\mathrm{h}} \Delta t_{\mathrm{mix}} . \tag{4.93}\\
\therefore C_{1} & =-\frac{\delta T \Delta t_{\mathrm{mix}}}{L_{x}}+\frac{\phi_{1} L_{x}^{2}}{6 \bar{l}_{1}^{\prime}}-\frac{\phi_{0} L_{x}}{2 \bar{l}_{1}^{\prime}} . \tag{4.94}
\end{align*}
$$

Substituting eq.(4.94) into eq.(4.91), we obtain

$$
\begin{align*}
\frac{\partial \phi}{\partial x}\left(L_{x}\right)= & -\frac{\phi_{1}}{2 \bar{l}_{1}^{\prime}} L_{x}^{2}+\frac{\phi_{0}}{\bar{l}_{1}^{\prime}} L_{x}+\left(-\frac{\delta T \Delta t_{\mathrm{mix}}}{L_{x}}+\frac{\phi_{1} L_{x}^{2}}{6 \bar{l}_{1}^{\prime}}-\frac{\phi_{0} L_{x}}{2 \bar{l}_{1}^{\prime}}\right), \tag{4.95}\\
= & -\frac{1}{6 \bar{l}_{1}^{\prime}}\left\{2 \phi_{1} L_{x}^{2}-3 \phi_{0} L_{x}\right\}-\frac{\delta T \Delta t_{\mathrm{mix}}}{L_{x}}, \tag{4.96}\\
= & -\frac{1}{6 \bar{l}_{1}^{\prime}}\left\{2 L_{x}^{2}\left(\frac{\bar{c}_{p} \delta T}{L_{x}}+\frac{\bar{l}_{2}^{\prime} \bar{x}_{A} \bar{x}_{B} D^{\prime} \delta T}{D L_{x}}+2 \bar{l}_{2}^{\prime} \bar{x}_{A} \bar{x}_{B} \beta_{\mathrm{h}} E q\right)\right. \\
& \left.-3 L_{x}\left(\frac{\bar{l}_{2}^{\prime} \bar{x}_{A} \bar{x}_{B} D^{\prime} \delta T}{2 D}+\bar{l}_{2}^{\prime} \bar{x}_{A} \bar{x}_{B} \beta_{\mathrm{h}} E q L_{x}\right)\right\}-\frac{\delta T \Delta t_{\mathrm{mix}}}{L_{x}}, \tag{4.97}\\
=- & -\frac{1}{6 \bar{l}_{1}^{\prime}}\left\{2 \bar{c}_{p} \delta T L_{x}+\frac{\bar{l}_{2}^{\prime} \bar{x}_{A} \bar{x}_{B} D^{\prime} \delta T L_{x}}{2 D}\right. \\
& \left.\quad+\bar{l}_{2}^{\prime} \bar{x}_{A} \bar{x}_{B} \beta_{\mathrm{h}} E q L_{x}^{2}\right\}-\frac{\delta T \Delta t_{\mathrm{mix}}}{L_{x}} . \tag{4.98}
\end{align*}
$$

Therefore, by substituting eq.(4.98) into the expression of the cooling power (eq.(4.17)), $\overline{\dot{Q}}_{c}$ can be written as

$$
\begin{align*}
& \overline{\dot{Q}}_{c}=\frac{-S}{\Delta t_{\text {sep }}+\Delta t_{\text {mix }}} \underbrace{\left(-\bar{l}_{11}+\bar{l}_{12} \bar{l}_{21}\right.}_{=-\bar{l}_{1}^{\prime}(c . f . \text { Eq.(4.37)) }} \overline{\bar{l}}_{22}) \tag{4.99}\\
& \begin{aligned}
& \frac{\partial \phi}{\partial x}\left(L_{x}\right) \\
&= \frac{-S}{6\left(\Delta t_{\text {sep }}+\Delta t_{\text {mix }}\right)}\left\{2 \bar{c}_{p} \delta T L_{x}\right.
\end{aligned}+\frac{\bar{l}_{2}^{\prime} \bar{x}_{A} \bar{x}_{B} D^{\prime} \delta T L_{x}}{2 D} \frac{\partial T}{\partial x}\left(L_{x}, t\right) d t
\end{aligned}, \begin{aligned}
& \simeq \frac{-S}{6\left(\Delta t_{\text {sep }}+\Delta t_{\text {mix }}\right)}\left\{2 \bar{c}_{p} \delta T L_{x}+\frac{\bar{l}_{2}^{\prime} \bar{x}_{A} \bar{x}_{B} D^{\prime} \delta T L_{x}}{2 D}\right. \\
&\left.\quad \bar{l}_{2}^{\prime} \bar{x}_{A} \bar{x}_{B} \beta_{\mathrm{h}} E q L_{x}^{2}+\frac{6 \bar{l}_{1}^{\prime} \delta T \Delta t_{\text {mix }}}{L_{x}}\right\}, \tag{4.100}\\
&\left.\quad+\bar{l}_{2}^{\prime} \bar{x}_{A} \bar{x}_{B} \beta\left(1-\frac{\delta T}{2 \bar{T}}\right) E q L_{x}^{2}+\frac{6 \bar{l}_{1}^{\prime} \delta T \Delta t_{\text {mix }}}{L_{x}}\right\},
\end{align*}
$$

where we write $T_{\mathrm{h}}=\bar{T}+\frac{\delta T}{2}$, and use $\mathscr{O}\left((\delta T)^{2}\right) \simeq 0 . \bar{l}_{2}^{\prime}$ and \bar{l}_{1}^{\prime} in eq.(4.101) can be written from eqs.(4.4) and (4.85) as

$$
\begin{equation*}
\bar{l}_{2}^{\prime} \equiv \bar{l}_{12} \frac{\bar{n}}{\bar{l}_{22}} \cong k_{B} \bar{T}^{2} \bar{n} \frac{D^{\prime \prime}}{D}, \quad \bar{l}_{1}^{\prime} \equiv \bar{l}_{11}-\bar{l}_{12} \bar{l}_{21} \bar{l}_{22} \cong \kappa-k_{B} \bar{T}^{2} \bar{n} \bar{x}_{A} \bar{x}_{B} \frac{D^{\prime \prime 2}}{D} . \tag{4.102}
\end{equation*}
$$

We can easily see that eq.(4.101) becomes eq.(4.48) when $\delta T=0$.

4.4.2 COP

The final state of the mixing process in the case of $\delta T \neq 0$ differs from that in the case of $\delta T=0$. In the case of $\delta T \neq 0$, eq.(4.22) changes to

$$
\begin{equation*}
W_{E}=\psi_{E}\left[\bar{x}_{A}+\delta x_{A}^{\delta T}(x), \bar{n}+\delta n^{\delta T}(x)\right]-\psi_{E}\left[\bar{x}_{A}+\delta x_{A}^{E}(x), \bar{n}+\delta n^{E}(x)\right] . \tag{4.103}
\end{equation*}
$$

From eq.(4.24), eq.(4.103) becomes

$$
\begin{align*}
& W_{E}= q E S \int_{0}^{L_{x}}\left(\bar{n}+\delta n^{\delta T}(x)\right)\{\underbrace{2\left(\bar{x}_{A}+\delta x_{A}^{\delta T}(x)\right)-1}_{\left(2 \bar{x}_{A}-1\right)+2 \delta x_{A}^{\delta T}(x)}\} x d x \tag{4.104}\\
&-q E S \int_{0}^{L_{x}}\left(\bar{n}+\delta n^{E}(x)\right)\{\underbrace{2\left(\bar{x}_{A}+\delta x_{A}^{E}(x)\right)-1}_{\left(2 \bar{x}_{A}-1\right)+2 \delta x_{A}^{E}(x)}\} x d x, \tag{4.105}\\
&=q E S \int_{0}^{L_{x}}\left\{\left(\delta n^{\delta T}(x)-\delta n^{E}(x)\right)\left(2 \bar{x}_{A}-1\right)+2 \bar{n}\left(\delta x_{A}^{\delta T}(x)-\delta x_{A}^{E}(x)\right)\right. \\
&\left.+2 \delta n^{\delta T}(x) \delta x_{A}^{\delta T}(x)-2 \delta n^{E}(x) \delta x_{A}^{E}(x)\right\} x d x . \tag{4.106}
\end{align*}
$$

Substituting eqs.(4.33), (4.35), (4.72) and (4.84) into eq.(4.106), W_{E} can be written as

$$
\begin{align*}
& W_{E}=q E S \int_{0}^{L_{y}}\{\left(2 \bar{x}_{A}-1\right)[\overbrace{\frac{\bar{n} \delta T}{\bar{T} L_{y}}\left(y-\frac{L_{y}}{2}\right)}^{\delta n^{\delta T}(y)}-\overbrace{(\underbrace{}_{\bar{n}\left(2 \bar{x}_{A}-1\right)}-\bar{n}) \beta_{\mathrm{h}} E q\left(\frac{L_{x}}{2}-x\right)}^{\delta n^{E}(x)}] \\
& +2 \bar{n}[\frac{\bar{x}_{A} \bar{x}_{B} D^{\prime} \delta T}{D L_{x}}\left(x-\frac{L_{x}}{2}\right)-\overbrace{2 \bar{x}_{A} \bar{x}_{B} \beta_{\mathrm{h}} E q\left(\frac{L_{x}}{2}-x\right)}^{\delta x_{A}^{\delta T}(x)}] \\
& \left.+\mathscr{O}\left(\delta T^{2}\right)+\mathscr{O}\left(E^{2}\right)\right\} x d x, \tag{4.107}\\
& \cong \bar{n} q E S \int_{0}^{L_{x}}\left\{\left[\left(2 \bar{x}_{A}-1\right) \frac{\delta T}{\bar{T} L_{x}}+\left(2 \bar{x}_{A}-1\right)^{2} \beta_{\mathrm{h}} E q\right.\right. \\
& \left.+\frac{2 \bar{x}_{A} \bar{x}_{B} D^{\prime} \delta T}{D L_{x}}+4 \bar{x}_{A} \bar{x}_{B} \beta_{\mathrm{h}} E q\right] x^{2} \\
& -\left[\left(2 \bar{x}_{A}-1\right) \frac{\delta T}{2 \bar{T}}+\left(2 \bar{x}_{A}-1\right)^{2} \beta_{\mathrm{h}} E q \frac{L_{x}}{2}\right. \\
& \left.\left.+\frac{\bar{x}_{A} \bar{x}_{B} D^{\prime} \delta T}{D}+4 \bar{x}_{A} \bar{x}_{B} \beta_{\mathrm{h}} E q \frac{L_{x}}{2}\right] x\right\} d x, \tag{4.108}\\
& \cong \bar{n} q E S\{\delta T[\left(2 \bar{x}_{A}-1\right)(\underbrace{\frac{1}{3 \bar{T}}-\frac{1}{4 \bar{T}}}_{\frac{1}{12 \bar{T}}})+\frac{\bar{x}_{A} \bar{x}_{B} D^{\prime}}{6 D}] L_{x}^{2} \\
& +\underbrace{\beta_{\mathrm{h}}}_{\cong \beta\left(1-\frac{\delta T}{2 \bar{T}}\right)} E q\left(\frac{L_{x}^{3}}{3}-\frac{L_{x}^{3}}{4}\right)\}, \tag{4.109}\\
& \cong \frac{\bar{n} q E S L_{x}^{2}}{12}\left\{\frac{\delta T}{\bar{T}}\left[2 \bar{x}_{A}-1+\frac{2 \bar{x}_{A} \bar{x}_{B} D^{\prime}}{D}\right]+\beta\left(1-\frac{\delta T}{2 \bar{T}}\right) E q L_{x}\right\} . \tag{4.110}
\end{align*}
$$

Therefore, by substituting eqs. (4.101) and (4.110) into (4.27), the COP
becomes

$$
\begin{align*}
\epsilon= & \frac{\overline{\dot{Q}}_{c}}{W_{E} /\left(\Delta t_{\text {sep }}+\Delta t_{\text {mix }}\right)}, \tag{4.111}\\
= & \frac{-2}{\bar{n} q E L_{x}^{2}}\left\{2 \bar{c}_{p} \delta T L_{x}+\frac{\bar{l}_{2}^{\prime} \bar{x}_{A} \bar{x}_{B} D^{\prime} \delta T L_{x}}{2 D}\right. \\
& \left.\quad+\bar{l}_{2}^{\prime} \bar{x}_{A} \bar{x}_{B} \beta\left(1-\frac{\delta T}{2 \bar{T}}\right) E q L_{x}^{2}+\frac{6 \bar{l}_{1}^{\prime} \delta T \Delta t_{\text {mix }}}{L_{x}}\right\} \\
& \quad /\left\{\frac{\left(2 \bar{x}_{A}-1+2 \bar{x}_{A} \bar{x}_{B} D^{\prime} / D\right) \delta T}{\bar{T}}+\beta\left(1-\frac{\delta T}{2 \bar{T}}\right) E q L_{x}\right\}, \tag{4.112}
\end{align*}
$$

where, \bar{l}_{2}^{\prime} and \bar{l}_{1}^{\prime} are

$$
\begin{equation*}
\bar{l}_{2}^{\prime}=k_{B} \bar{T}^{2} \bar{n} \frac{D^{\prime \prime}}{D}, \quad \bar{l}_{1}^{\prime}=\kappa-k_{B} \bar{T}^{2} \bar{n} \bar{x}_{A} \bar{x}_{B} \frac{D^{\prime \prime 2}}{D}, \tag{4.113}
\end{equation*}
$$

respectively. We can see that eq.(4.112) becomes identical with eq.(4.52) when $T_{c}=T_{h}$.

Chapter 5

Summary

This thesis has been devoted to study a heat pump model utilizing the Dufour effect for investigating a possibility of application of this effect.

In Chapter 2, we reviewed the linear irreversible thermodynamics and the phenomenology of the Dufour effect proposed by Waldmann. We first derived the linear relations of the system consisting of the gas mixture with two chemical components A and B, in which the mole fraction x_{A} and the temperature T are inhomogeneous. Using the linear relations, the time evolution equations of x_{A} and T were derived. From these results, Waldmann's phenomenological equations for the Dufour effect were derived, and their solution was shown.

In Chapter 3, we proposed a heat pump model utilizing the Dufour effect, and numerically confirmed its usefulness as a heat pump. In this heat pump model, the separating process in which the mixture is separated by the external electric field, and the mixing process in which the diffusive mixing occurs and the heat is pumped due to the Dufour effect, are repeated alternatively.

Next, using the MD simulation, we measure the cooling power $\overline{\dot{Q}_{c}}$ and the COP ϵ of a typical three-dimensional system of the heat pump model. Since $\overline{\dot{Q}_{c}}$ and ϵ are positive in a specific parameter region, we confirmed that this system is useful as a heat pump.

In Chapter 4, we theoretically analyzed the model using the linear irreversible thermodynamics. Using some assumptions and approximations, we derived the expression for the cooling power ${\overline{Q_{c}}}_{c}$ and the COP ϵ from the time evolution equations of x_{A} and T, in the case of $\Delta t_{\text {sep }}>\tau_{\text {sep }}, \Delta t_{\text {mix }}>\tau_{\text {mix }}$ and zero temperature difference between the heat baths $\delta T=T_{h}-T_{c}$. To confirm this theoretical result, we calculated $\overline{\dot{Q}_{c}}$ and ϵ by substituting k_{T} derived from the Chapman-Enskog theory as varying the external field E, and compared them with the data obtained from the MD simulation of a typical two-dimensional system in the case of $\delta T=0$. As a result, a good agreement between the theory and the data was observed when the external field E is sufficiently small, which is a condition used in our theory as an assumption. From this agreement, the validity of our theory was verified.

Finally, we discuss some remaining tasks. First, we do not check some theoretical results derived in Chapter 4 numerically yet, for example L_{x} and \bar{n} dependencies of $\overline{\dot{Q}_{c}}$ and ϵ in the case of $\delta T=0$. Second, the theoretical results of $\overline{\dot{Q}_{c}}$ and ϵ in the case of $\delta T \neq 0$ are not confirmed in this thesis. To confirm these results numerically, we must calculate the values of the transport coefficients such as κ and $D^{\prime \prime}$ by the Chapman-Enskog theory. Third, the theoretical calculations of $\overline{\dot{Q}_{c}}$ and ϵ in the case of $\Delta t_{\text {sep }} \lesssim \tau_{\text {sep }}$ and $\Delta t_{\text {mix }} \lesssim \tau_{\text {mix }}$ are remaining. To derive these expressions generally, we need to solve the time evolution equations of x_{A} and T in the separating process.

Since the time evolution equations become very complex in the presence of the external field as we showed in eqs.(2.95) and (2.112), and this would make the theoretical analysis difficult. But it is possible and feasible to solve the time evolution equations numerically and calculate $\overline{\dot{Q}_{c}}$ and ϵ in the case of $\Delta t_{\text {sep }} \lesssim \tau_{\text {sep }}, \Delta t_{\text {mix }} \lesssim \tau_{\text {mix }}$ and $\delta T \neq 0$. One of the purposes to study the case of $\Delta t_{\text {sep }} \lesssim \tau_{\text {sep }}$ and $\Delta t_{\text {mix }} \lesssim \tau_{\text {mix }}$ is to confirm the relation between our model and the Curzon-Ahlborn theory, ${ }^{25)}$ which derived a universal expression of the efficiency of nonequilibrium engines. It is an open problem whether our model can be described within the Curzon-Ahlborn theory or another modified theory is needed. The final remaining work is to confirm our model by experiment, but it is not sure whether the electric field is the best scheme to separate the mixture in an experiment. This is also an open problem.

Appendix A

Chapman-Enskog theory

A. 1 Expression for the thermal-diffusion ratio $\left[k_{T}\right]_{1}$

The first order approximate expression for the thermal diffusion ratio $\left[k_{T}\right]_{1}$ of the three-dimensional system is derived by the Chapman-Enskog theory. ${ }^{4)}$ From the similar derivation, the two-dimensional expression for $\left[k_{T}\right]_{1}$ can be written as

$$
\begin{equation*}
\left[k_{T}\right]_{1}=2 \frac{x_{A} M_{A}^{-\frac{1}{2}}\left(a_{-1-1} a_{01}-a_{0-1} a_{1-1}\right)+x_{B} M_{B}^{-\frac{1}{2}}\left(a_{0-1} a_{11}-a_{01} a_{1-1}\right)}{a_{-1-1} a_{11}-a_{1-1}^{2}} \tag{A.1}
\end{equation*}
$$

where $M_{A} \equiv m_{A} / m_{0}, M_{B} \equiv m_{B} / m_{0}, m_{0}=m_{A}+m_{B}$. The matrix elements $a_{11}, a_{1-1}, a_{-1-1}, a_{01}$ and a_{0-1} in eq. (A.1) are defined as

$$
\begin{align*}
a_{11} & =x_{A}^{2} a_{11}^{\prime \prime}+x_{A} x_{B} a_{11}^{\prime}, \tag{A.2}\\
a_{-1-1} & =x_{A} x_{B} a_{-1-1}^{\prime}+x_{B}^{2} a_{-1-1}^{\prime \prime}, \tag{A.3}\\
a_{1-1} & =x_{A} x_{B} a_{1-1}^{\prime}, \tag{A.4}\\
a_{01} & =x_{A} x_{B} a_{01}^{\prime}, \tag{A.5}\\
a_{0-1} & =-x_{A} x_{B} a_{0-1}^{\prime} . \tag{A.6}
\end{align*}
$$

where $a_{11}^{\prime \prime}, a_{11}^{\prime}, a_{-1-1}^{\prime}, a_{-1-1}^{\prime \prime}, a_{1-1}^{\prime}, a_{01}^{\prime}$ and a_{0-1}^{\prime} are expressed as

$$
\begin{align*}
a_{1-1}^{\prime}= & 2 M_{A}^{\frac{3}{2}} M_{B}^{\frac{3}{2}}\left\{-\hat{\Omega}_{12}^{(1)}(3)+4 \hat{\Omega}_{12}^{(1)}(2)-10 \hat{\Omega}_{12}^{(1)}(1)+2 \hat{\Omega}_{12}^{(2)}(2)\right\} \tag{A.7}\\
a_{01}^{\prime}= & 2 M_{A}^{\frac{1}{2}}\left(2 M_{B}^{2} \hat{\Omega}_{12}^{(1)}(1)-M_{B}^{2} \hat{\Omega}_{12}^{(1)}(2)\right) \tag{A.8}\\
a_{11}^{\prime}= & 2\left\{\left(6 M_{A}^{2} M_{B}+4 M_{B}^{3}\right) \hat{\Omega}_{12}^{(1)}(1)-4 M_{B}^{3} \hat{\Omega}_{12}^{(1)}(2)\right. \\
& \left.\quad+M_{B}^{3} \hat{\Omega}_{12}^{(1)}(3)+2 M_{A} M_{B}^{2} \hat{\Omega}_{12}^{(2)}(2)\right\}, \tag{A.9}\\
a_{0-1}^{\prime}= & 2 M_{B}^{\frac{1}{2}}\left(2 M_{A}^{2} \hat{\Omega}_{12}^{(1)}(1)-M_{A}^{2} \hat{\Omega}_{12}^{(1)}(2)\right), \tag{A.10}\\
a_{-1-1}^{\prime}= & 2\left\{\left(6 M_{B}^{2} M_{A}+4 M_{A}^{3}\right) \hat{\Omega}_{12}^{(1)}(1)-4 M_{A}^{3} \hat{\Omega}_{12}^{(1)}(2)\right. \\
& \left.\quad+M_{A}^{3} \hat{\Omega}_{12}^{(1)}(3)+2 M_{B} M_{A}^{2} \hat{\Omega}_{12}^{(2)}(2)\right\}, \tag{A.11}\\
a_{11}^{\prime \prime}= & \hat{\Omega}_{1}^{(2)}(2), \tag{A.12}\\
a_{-1-1}^{\prime \prime}= & \hat{\Omega}_{2}^{(2)}(2) . \tag{A.13}
\end{align*}
$$

Here, $\hat{\Omega}_{12}^{(l)}(r), \hat{\Omega}_{1}^{(l)}(r)$ and $\hat{\Omega}_{2}^{(l)}(r)(l, r=1,2, \cdots)$ are defined as

$$
\begin{align*}
& \hat{\Omega}_{12}^{(l)}(r)=\frac{1}{2} \sigma\left(\frac{2 k_{B} T}{m_{0} M_{A} M_{B}}\right)^{\frac{1}{2}} \hat{\mathscr{W}}^{(l)}(r) \tag{A.14}\\
& \hat{\Omega}_{1}^{(l)}(r)=\frac{1}{2} \sigma\left(\frac{k_{B} T}{m_{A}}\right)^{\frac{1}{2}} \hat{\mathscr{W}}^{(l)}(r) \tag{A.15}\\
& \hat{\Omega}_{2}^{(l)}(r)=\frac{1}{2} \sigma\left(\frac{k_{B} T}{m_{B}}\right)^{\frac{1}{2}} \hat{\mathscr{W}}^{(l)}(r) \tag{A.16}
\end{align*}
$$

where σ is the diameter of the particles, and $\hat{\mathscr{W}}^{(l)}(r)$ are the non-dimensional values defined as

$$
\begin{equation*}
\hat{\mathscr{W}}^{(l)}(r) \equiv 2 \int_{0}^{\infty} \int_{0}^{1} e^{-g^{2}} g^{2 r+1}\left(1-\cos ^{l} \chi\right) d\left(\frac{b}{\sigma}\right) d\left(g^{2}\right) \tag{A.17}
\end{equation*}
$$

A parameter χ in eq. (A.17) is the scattering angle between the particles of Herzian potential, which is defined as $U^{\text {int }}(r)$ in eq. (3.4), and is the function of the scattering parameters g, b written as

$$
\begin{equation*}
\chi(g, b)=\pi-2 \int_{R}^{\infty}\left\{\frac{r^{4}}{b^{2}}\left(1-\frac{U^{\mathrm{int}}(r)}{k_{B} T g^{2}}\right)-r^{2}\right\}^{-\frac{1}{2}} d r \tag{A.18}
\end{equation*}
$$

where R is the root of

$$
\begin{equation*}
1-\frac{U^{\mathrm{int}}(r)}{k_{B} T g^{2}}-\frac{b^{2}}{r^{2}}=0 . \tag{A.19}
\end{equation*}
$$

A. 2 The Derivation of the two-dimensional expression

A.2.1 Boltzmann's equation and Enskog's method

Boltzmann's equation

Boltzmann's equations for a binary gas-mixture are written as

$$
\begin{align*}
& \frac{\partial f_{A}}{\partial t}+\boldsymbol{c}_{A} \cdot \frac{\partial f_{A}}{\partial \boldsymbol{r}}+\boldsymbol{F}_{A} \cdot \frac{\partial f_{A}}{\partial \boldsymbol{c}_{A}}=\frac{\partial_{e} f_{A}}{\partial t} \tag{A.20}\\
& \frac{\partial f_{B}}{\partial t}+\boldsymbol{c}_{2} \cdot \frac{\partial f_{B}}{\partial \boldsymbol{r}}+\boldsymbol{F}_{B} \cdot \frac{\partial f_{B}}{\partial \boldsymbol{c}_{B}}=\frac{\partial_{e} f_{B}}{\partial t} \tag{A.21}
\end{align*}
$$

where \boldsymbol{c}_{s} is the velocity of molecules of the component $s(=A, B), \boldsymbol{F}_{s}$ is the external force on molecules of $s, f_{s} \equiv f_{s}\left(\boldsymbol{c}_{s}, \boldsymbol{r}, t\right)$ is the distribution of velocities of molecules of $s .\left(\partial_{e} f_{s} / \partial t\right)$ denotes the rate at which the velocity distribution f_{s} is being altered by collisions with molecules. $\left(\partial_{e} f_{s} / \partial t\right)$ may be divided into the parts due to the collisions with molecules of A and B, thus

$$
\begin{equation*}
\frac{\partial_{e} f_{s}}{\partial t}=\left(\frac{\partial_{e} f_{s}}{\partial t}\right)_{A}+\left(\frac{\partial_{e} f_{s}}{\partial t}\right)_{B} \quad(s=A, B) \tag{A.22}
\end{equation*}
$$

If the gas-mixture is very dilute so that collisions between molecules occur only as a two-body collision, we can derive

$$
\begin{align*}
& \left(\frac{\partial_{e} f_{A}}{\partial t}\right)_{B}=\iint\left(f_{A}^{\prime} f_{B}^{\prime}-f_{A} f_{B}\right) \mathrm{g} \alpha_{A B} d \boldsymbol{e}^{\prime} d \boldsymbol{c}_{B} \tag{A.23}\\
& \left(\frac{\partial_{e} f_{A}}{\partial t}\right)_{A}=\iint\left(f^{\prime} f_{A}^{\prime}-f f_{A}\right) g \alpha_{A} d \boldsymbol{e}^{\prime} d \boldsymbol{c} \tag{A.24}
\end{align*}
$$

by using the conservation of probability. Here, \boldsymbol{e}^{\prime} is defined as

$$
\begin{align*}
d \boldsymbol{e}^{\prime} & =\sin \chi d \chi d \\
& =\left(\sin \chi /\left|\frac{\partial b}{\partial \chi}\right|\right) d b \tag{A.25}
\end{align*}
$$

where χ is the scattering angle, b is the scattering diameter, and g denotes the relative velocity $\mathrm{g} \equiv \boldsymbol{c}_{B}-\boldsymbol{c}_{A}$. If $\alpha_{A B}$ is defined as

$$
\begin{equation*}
\alpha_{A B} \equiv b\left|\frac{\partial b}{\partial \chi}\right| / \sin \chi, \tag{A.26}
\end{equation*}
$$

we can write simply

$$
\begin{equation*}
b d b d \epsilon=\alpha_{A B} d \boldsymbol{e}^{\prime} \tag{A.27}
\end{equation*}
$$

We note that α_{A} denotes $\alpha_{A A}$. Thus, we can write eqs. (A.20) and (A.21) as

$$
\begin{align*}
& \mathscr{D}_{A} f_{A}+J_{A}\left(f_{A} f\right)+J_{A B}\left(f_{A} f_{B}\right)=0, \tag{A.28}\\
& \mathscr{D}_{B} f_{B}+J_{B}\left(f_{B} f\right)+J_{B A}\left(f_{A} f_{B}\right)=0, \tag{A.29}
\end{align*}
$$

respectively, where we defined

$$
\begin{align*}
\mathscr{D}_{s} f_{s} & \equiv \frac{\partial f_{s}}{\partial t}+\boldsymbol{c}_{s} \cdot \frac{\partial f_{s}}{\partial \boldsymbol{r}}+\boldsymbol{F}_{s} \cdot \frac{\partial f_{s}}{\partial \boldsymbol{c}_{s}} \quad(s=A, B), \tag{A.30}\\
J_{A}\left(f_{A} f\right) & =\iint\left(f f_{A}-f^{\prime} f_{A}^{\prime}\right) \mathrm{g} \alpha_{A} d \boldsymbol{e}^{\prime} d \boldsymbol{c} \tag{A.31}\\
J_{A B}\left(f_{A} f_{B}\right) & =\iint\left(f_{A} f_{B}-f_{A}^{\prime} f_{B}^{\prime}\right) \mathrm{g} \alpha_{A B} d \boldsymbol{e}^{\prime} d \boldsymbol{c}_{B}, \tag{A.32}
\end{align*}
$$

with similar definitions for $J_{B}\left(f_{B} f\right), J_{B A}\left(f_{A} f_{B}\right)$.

Enskog's method

Enskog's method is one of successive approximate method to solve Boltzmann's equation. In this method, $f_{s}, \mathscr{D}_{s} f_{s}, J_{A}+J_{A B}$ and $J_{B}+J_{B A}$ are written

$$
\begin{gather*}
f_{A}=f_{A}^{(0)}+f_{A}^{(1)}+f_{A}^{(2)}+\cdots, \quad f_{B}=f_{B}^{(0)}+f_{B}^{(1)}+f_{B}^{(2)}+\cdots, \\
\mathscr{D}_{A} f_{A}=\mathscr{D}_{A}^{(0)}+\mathscr{D}_{A}^{(1)}+\mathscr{D}_{A}^{(2)}+\cdots, \quad \mathscr{D}_{B} f_{B}=\mathscr{D}_{B}^{(0)}+\mathscr{D}_{B}^{(1)}+\mathscr{D}_{B}^{(2)}+\cdots, \\
J_{A}+J_{A B}=J_{A}^{(0)}+J_{A}^{(1)}+J_{A}^{(2)}+\cdots, \quad J_{B}+J_{B A}=J_{B}^{(0)}+J_{B}^{(1)}+J_{B}^{(2)}+\cdots, \tag{A.35}
\end{gather*}
$$

and Boltzmann's equations eqs. (A.29) and (A.30) are subdivided into the set of equations

$$
\begin{equation*}
\mathscr{D}_{A}^{(r)}+J_{A}^{(r)}=0, \quad \mathscr{D}_{B}^{(r)}+J_{B}^{(r)}=0 \quad(r=0,1,2,3, \cdots) . \tag{A.36}
\end{equation*}
$$

Furthermore, we assume that $\mathscr{D}_{s}^{(r)}(s=A, B)$ depends only on $f_{s}^{(0)}, f_{s}^{(1)}, \cdots, f_{s}^{(r-1)}$ for $r \geq 1$, and $\mathscr{D}_{s}^{(0)}=0$ for $r=0$, and that $J_{s}^{(r)}(s=A, B)$ depends only on $f_{s}^{(0)}, f_{s}^{(1)}, \cdots, f_{s}^{(r)}$. By defining a appropriate set of $\left\{\mathscr{D}_{s}^{(r)}\right\},\left\{J_{s}^{(r)}\right\}(r=$ $0,1,2, \cdots)$, the functions $f_{s}^{(0)}, f_{s}^{(1)}, f_{s}^{(2)}, \cdots$ can be obtained one by one so that the distribution functions f_{A} and f_{B} are approximately obtained from Eq. (A.33).

In this method, $\left\{J_{A}^{(r)}\right\},\left\{J_{B}^{(r)}\right\}$ are defined as

$$
\begin{align*}
& J_{A}^{(0)} \equiv J_{A}\left(f_{A}^{(0)} f^{(0)}\right)+J_{A B}\left(f_{A}^{(0)} f_{B}^{(0)}\right), \tag{A.37}\\
& J_{A}^{(r)} \equiv J_{A}\left(f_{A}^{(0)} f^{(r)}\right)+J_{A}\left(f_{A}^{(1)} f^{(r-1)}\right)+\cdots+J_{A}\left(f_{A}^{(r)} f^{(0)}\right) \\
& +J_{A B}\left(f_{A}^{(0)} f_{B}^{(r)}\right)+J_{A B}\left(f_{A}^{(1)} f_{B}^{(r-1)}\right)+\cdots+J_{A B}\left(f_{A}^{(r)} f_{B}^{(0)}\right) \quad(r \geq 1), \tag{A.38}\\
& J_{B}^{(0)} \equiv J_{B}\left(f_{B}^{(0)} f^{(0)}\right)+J_{B A}\left(f_{A}^{(0)} f_{B}^{(0)}\right), \tag{A.39}\\
& J_{B}^{(r)} \equiv J_{B}\left(f_{B}^{(0)} f^{(r)}\right)+J_{B}\left(f_{B}^{(1)} f^{(r-1)}\right)+\cdots+J_{B}\left(f_{B}^{(r)} f^{(0)}\right) \\
& +J_{B A}\left(f_{A}^{(0)} f_{B}^{(r)}\right)+J_{B A}\left(f_{A}^{(1)} f_{B}^{(r-1)}\right)+\cdots+J_{B A}\left(f_{A}^{(r)} f_{B}^{(0)}\right) \quad(r \geq 1) . \tag{A.40}
\end{align*}
$$

From these definitions, the divided Boltzmann's equations eq. (A.36) for $r=0$ become

$$
\begin{align*}
& J_{A}^{(0)} \equiv J_{A}\left(f_{A}^{(0)} f^{(0)}\right)+J_{A B}\left(f_{A}^{(0)} f_{B}^{(0)}\right)=0 \tag{A.41}\\
& J_{B}^{(0)} \equiv J_{B}\left(f_{B}^{(0)} f^{(0)}\right)+J_{B A}\left(f_{A}^{(0)} f_{B}^{(0)}\right)=0 \tag{A.42}
\end{align*}
$$

From Eqs. (A.41) and (A.42), the first approximate solutions can be obtain as

$$
\begin{align*}
f_{A}^{(0)}\left(\boldsymbol{c}_{A}, \boldsymbol{r}, t\right) & =n_{A} \frac{m_{A}}{2 \pi k_{B} T} \exp \left\{-\frac{m_{A}}{2 k_{B} T}\left[\left(u_{A}-u_{0}\right)^{2}+\left(v_{A}-v_{0}\right)^{2}\right]\right\} \tag{А.43}\\
f_{B}^{(0)}\left(\boldsymbol{c}_{B} \boldsymbol{r}, t\right) & =n_{B} \frac{m_{B}}{2 \pi k_{B} T} \exp \left\{-\frac{m_{B}}{2 k_{B} T}\left[\left(u_{B}-u_{0}\right)^{2}+\left(v_{B}-v_{0}\right)^{2}\right]\right\} \tag{A.44}
\end{align*}
$$

where u and v denote the $x-$ and $y-$ components of \boldsymbol{c}, respectively, and \boldsymbol{c}_{0} is the mean velocity of the mixture. We note that $n_{A}, n_{B}, \boldsymbol{c}_{0}$, and T generally depend on \boldsymbol{r} and t.

To define $\left\{\mathscr{D}_{s}^{(r)}\right\}$, we divide an mean value of ϕ which is a function of $\boldsymbol{c}, \boldsymbol{r}$,
and t, into $\left\{\bar{\phi}^{(r)}\right\}$ so that

$$
\begin{equation*}
\bar{\phi} \equiv \frac{1}{n} \int f \phi d \boldsymbol{c}=\frac{1}{n} \int \sum_{r=0}^{\infty} f^{(r)} \phi d \boldsymbol{c}=\sum_{r=0}^{\infty} \bar{\phi}^{(r)} \tag{A.45}
\end{equation*}
$$

and

$$
\begin{equation*}
\bar{\phi}^{(r)} \equiv \frac{1}{n} \int f^{(r)} \phi d \boldsymbol{c} . \tag{A.46}
\end{equation*}
$$

In particular, we divide P and \boldsymbol{q} defined as

$$
\begin{align*}
\mathrm{P} \equiv \mathrm{P}_{A}+\mathrm{P}_{B} & \equiv \rho_{A} \overline{\boldsymbol{C}_{A} \boldsymbol{C}_{A}}+\rho_{B} \overline{\boldsymbol{C}_{B} \boldsymbol{C}_{B}}, \\
& =\left[\begin{array}{cc}
\rho_{A} \overline{C_{A x}^{2}} & \rho_{A} \overline{C_{A x} C_{A y}} \\
\rho_{A} \overline{C_{A y} C_{A x}} & \rho_{A} \overline{C_{A y}^{2}}
\end{array}\right]+\left[\begin{array}{cc}
\rho_{B} \overline{C_{B x}^{2}} & \rho_{B} \overline{C_{B x} C_{B y}} \\
\rho_{B} \overline{C_{B y} C_{B x}} & \rho_{B} \overline{C_{B y}^{2}}
\end{array}\right], \tag{A.48}
\end{align*}
$$

$$
\begin{equation*}
\boldsymbol{q} \equiv \boldsymbol{q}_{A}+\boldsymbol{q}_{B} \equiv n_{A} \overline{E_{A} \boldsymbol{C}_{A}}+n_{B} \overline{E_{B} \boldsymbol{C}_{B}}, \tag{A.49}
\end{equation*}
$$

into $\left\{\mathrm{P}^{(r)}\right\}$ and $\left\{\boldsymbol{q}^{(r)}\right\}$, respectively, so that

$$
\begin{equation*}
\mathrm{P}=\sum_{r=0}^{\infty} \mathrm{P}^{(r)}, \quad \boldsymbol{q}=\sum_{r=0}^{\infty} \boldsymbol{q}^{(r)} \tag{A.50}
\end{equation*}
$$

where

$$
\begin{gather*}
\mathrm{P}^{(r)}=m_{A} \int \boldsymbol{C}_{A} \boldsymbol{C}_{A} f_{A}^{(r)} d \boldsymbol{c}_{A}+m_{B} \int \boldsymbol{C}_{B} \boldsymbol{C}_{B} f_{B}^{(r)} d \boldsymbol{c}_{B} \tag{A.51}\\
\boldsymbol{q}^{(r)}=\int E_{A} \boldsymbol{C}_{A} f_{A}^{(r)} d \boldsymbol{c}_{A}+\int E_{B} \boldsymbol{C}_{B} f_{B}^{(r)} d \boldsymbol{c}_{B} \tag{A.52}
\end{gather*}
$$

and ρ_{s} is the density of the component $s(=A, B), \boldsymbol{C}_{s} \equiv \boldsymbol{c}_{s}-\boldsymbol{c}_{0}$, and $E_{s} \equiv$ $\frac{1}{2} m_{s} C_{s}^{2}$. If $r=0$, we can calculate

$$
\begin{equation*}
\boldsymbol{q}^{(0)}=0, \quad \mathbf{P}^{(0)}=\mathrm{U} p, \tag{A.53}
\end{equation*}
$$

by using eqs. (A.43) and (A.44).
Next, we divide the time derivative $\frac{\partial}{\partial t}$ into $\left\{\frac{\partial_{r}}{\partial t}\right\}(r=0,1,2, \cdots)$ so that

$$
\begin{equation*}
\frac{\partial}{\partial t}=\frac{\partial_{0}}{\partial t}+\frac{\partial_{1}}{\partial t}+\frac{\partial_{2}}{\partial t}+\cdots, \tag{A.54}
\end{equation*}
$$

where

$$
\begin{align*}
& \frac{D_{0} n_{s}}{D t} \equiv \equiv \frac{\partial_{0} n_{s}}{\partial t}+\boldsymbol{c}_{0} \cdot \frac{\partial n_{s}}{\partial \boldsymbol{r}} \equiv-n_{s} \frac{\partial}{\partial \boldsymbol{r}} \cdot \boldsymbol{c}_{0}, \tag{A.55}\\
& \frac{\partial_{r} n_{s}}{\partial t} \equiv-\frac{\partial}{\partial \boldsymbol{r}} \cdot\left(n_{s} \overline{\boldsymbol{C}}_{s}^{(r)}\right) \quad(r>0), \tag{A.56}\\
& \rho \frac{D_{0} \boldsymbol{c}_{0}}{D t} \equiv \rho\left\{\frac{\partial_{0} \boldsymbol{c}_{0}}{\partial t}+\left(\boldsymbol{c}_{0} \cdot \frac{\partial}{\partial \boldsymbol{r}} \boldsymbol{c}_{0}\right)\right\} \equiv \rho_{A} \boldsymbol{F}_{A}+\rho_{B} \boldsymbol{F}_{B}-\frac{\partial}{\partial \boldsymbol{r}} \cdot \mathrm{P}^{(0)}, \tag{A.57}\\
&=\rho_{A} \boldsymbol{F}_{A}+\rho_{B} \boldsymbol{F}_{B}-\frac{\partial p}{\partial \boldsymbol{r}}, \tag{A.58}\\
& \rho \frac{\partial_{r} \boldsymbol{c}_{0}}{\partial t} \equiv-\frac{\partial}{\partial \boldsymbol{r}} \cdot \mathrm{P}^{(r) \quad(r>0),} \tag{A.59}\\
& n k_{B} \frac{D_{0} T}{D t} \equiv n k_{B}\left\{\frac{\partial_{0} T}{\partial t}+\boldsymbol{c}_{0} \cdot \frac{\partial T}{\partial \boldsymbol{r}}\right\} \equiv-p \frac{\partial}{\partial \boldsymbol{r}} \cdot \boldsymbol{c}_{0}, \tag{A.60}\\
& n k_{B} \frac{\partial_{r} T}{\partial t} \equiv n k_{B} \frac{\partial}{\partial \boldsymbol{r}} \cdot\left(n_{A} \overline{\boldsymbol{C}}_{A}^{(r)}+n_{B} \overline{\boldsymbol{C}}_{B}^{(r)}\right)+\rho_{A} \overline{\boldsymbol{C}}_{A}^{(r)} \cdot \boldsymbol{F}_{A} \\
&+\rho_{B} \overline{\boldsymbol{C}}_{B}^{(r)} \cdot \boldsymbol{F}_{B}-\frac{\partial}{\partial \boldsymbol{r}} \cdot \boldsymbol{q}^{(r)}-\mathrm{P}^{(r)}: \frac{\partial}{\partial \boldsymbol{r}} \boldsymbol{c}_{0} \quad(r>0), \tag{A.61}
\end{align*}
$$

and

$$
\begin{gather*}
\frac{D_{0}}{D t} \equiv \frac{\partial_{0}}{\partial t}+\boldsymbol{c}_{0} \cdot \frac{\partial}{\partial \boldsymbol{r}} \tag{A.62}\\
\overline{\boldsymbol{C}}_{A}^{(r)} \equiv \frac{1}{n_{A}} \int f_{A}^{(r)} \boldsymbol{C}_{A} d \boldsymbol{c}_{A}, \quad \overline{\boldsymbol{C}}_{B}^{(r)} \equiv \frac{1}{n_{B}} \int f_{B}^{(r)} \boldsymbol{C}_{B} d \boldsymbol{c}_{B} \tag{A.63}\\
\overline{\boldsymbol{C}}_{A}=\sum_{r=0}^{\infty} \overline{\boldsymbol{C}}_{A}^{(r)}, \quad \overline{\boldsymbol{C}}_{B}=\sum_{r=0}^{\infty} \overline{\boldsymbol{C}}_{B}^{(r)} \tag{A.64}
\end{gather*}
$$

are assumed so that the conservation laws of energy, momentum and mass are satisfied. With these subdivided time derivatives $\left\{\partial_{r} / \partial t\right\}(r=0,1,2, \cdots)$,
the subdivision of $\mathscr{D}_{s} f_{s}(s=A, B)$ in eq. (A.34) are defined as

$$
\begin{equation*}
\mathscr{D}_{s}^{(r)} \equiv \frac{\partial_{0} f_{s}^{(r-1)}}{\partial t}+\frac{\partial_{1} f_{s}^{(r-2)}}{\partial t}+\cdots+\frac{\partial_{r-1} f_{s}^{(0)}}{\partial t}+\left(\boldsymbol{c}_{s} \cdot \frac{\partial}{\partial \boldsymbol{r}}+\boldsymbol{F}_{s} \cdot \frac{\partial}{\partial \boldsymbol{c}_{s}}\right) f_{s}^{(r-1)} \tag{A.65}
\end{equation*}
$$

for $r \geq 1$. We note that $\mathscr{D}_{s}^{(0)}=0$ for $r=0$.

A.2.2 Second approximate solution of Boltzmann's equation

Second approximations $J^{(1)}$ and $\mathscr{D}^{(1)}$
The second approximate solutions $f_{A}^{(1)}, f_{B}^{(1)}$ are obtained by solving the subdivided Boltzmann's equation eq. (A.36) for $r=1$. If we define the functions $\Phi_{A}^{(1)}, \Phi_{B}^{(1)}$ as $f_{A}^{(1)}=f_{A}^{(0)} \Phi_{A}^{(1)}, f_{B}^{(1)}=f_{B}^{(0)} \Phi_{B}^{(1)}, J_{A}^{(1)}$ can be written as

$$
\begin{align*}
J_{A}^{(1)} \equiv & J_{A}\left(f_{A}^{(0)} f^{(1)}\right)+J_{A}\left(f_{A}^{(1)} f^{(0)}\right)+J_{A B}\left(f_{A}^{(0)} f_{B}^{(1)}\right)+J_{A B}\left(f_{A}^{(1)} f_{B}^{(0)}\right), \tag{A.66}\\
= & J_{A}\left(f_{A}^{(0)} f^{(0)} \Phi^{(1)}\right)+J_{A}\left(f_{A}^{(0)} \Phi_{A}^{(1)} f^{(0)}\right) \\
& \quad+J_{A B}\left(f_{A}^{(0)} f_{B}^{(0)} \Phi_{B}^{(1)}\right)+J_{A B}\left(f_{A}^{(0)} \Phi_{A}^{(1)} f_{B}^{(0)}\right), \tag{A.67}\\
= & \iint(\mathrm{A} .67) \\
& +\iint\left(f_{A}^{(0)} f^{(0)} \Phi^{(1)}-f_{A}^{(0)} f_{B}^{(0)} f^{\prime(0)} \Phi_{B}^{(1)}-f_{A}^{\prime(0)}+f_{A}^{(0)} \Phi_{A}^{(1)} \Phi_{B}^{\prime(1)}\right. \\
& \left.+f_{A}^{(0)}-f_{A}^{\prime(0)} \Phi_{A}^{(1)} f^{\prime(1)} f_{B}^{(0)}-f_{A}^{\prime(0)} \Phi_{A}^{(1)} f_{B}^{\prime(0)}\right) \mathrm{g} \alpha_{1} d \boldsymbol{e}^{\prime} d \boldsymbol{c} \tag{A.68}\\
= & \iint f_{A B}^{(0)} f^{(0)}\left(\Phi^{\prime} d \boldsymbol{c}_{B},\right. \\
& \left.\quad+\iint f_{A}^{(0)}-\Phi_{B}^{(1)}+\Phi_{A}^{(1)}-\Phi_{A}^{(1)}\right) \mathrm{g} \alpha_{1} d \boldsymbol{e}^{\prime} d \boldsymbol{c} \tag{A.69}\\
= & \left.n_{A}^{2} I_{A}\left(\Phi^{(1)}\right)+\Phi_{B}^{\prime(1)}+\Phi_{A}^{(1)}-\Phi_{A}^{\prime(1)}\right) \mathrm{g} \alpha_{A B} d \boldsymbol{e}^{\prime} d \boldsymbol{c}_{B}, \tag{A.70}
\end{align*}
$$

where $I_{A}, I_{A B}$ are the integrals defined as

$$
\begin{align*}
n_{A}^{2} I_{A}(F) & \equiv \iint f_{A}^{(0)} f^{(0)}\left(F_{A}+F-F_{A}^{\prime}-F^{\prime}\right) \mathrm{g} \alpha_{A} d \boldsymbol{e}^{\prime} d \boldsymbol{c} \tag{A.71}\\
n_{A} n_{B} I_{A B}(K) & \equiv \iint f_{A}^{(0)} f_{B}^{(0)}\left(K-K^{\prime}\right) \operatorname{g} \alpha_{A B} d \boldsymbol{e}^{\prime} d \boldsymbol{c}_{B} \tag{A.72}
\end{align*}
$$

F is a function of \boldsymbol{c}_{A}, and K is a function of $\boldsymbol{c}_{A}, \boldsymbol{c}_{B}$. Similarly, we can write

$$
\begin{equation*}
J_{B}^{(1)}=n_{B}^{2} I_{B}\left(\Phi^{(1)}\right)+n_{A} n_{B} I_{B A}\left(\Phi_{A}^{(1)}+\Phi_{B}^{(1)}\right) \tag{А.73}
\end{equation*}
$$

where I_{B} and $I_{B A}$ are

$$
\begin{align*}
n_{B}^{2} I_{B}(F) & \equiv \iint f_{B}^{(0)} f^{(0)}\left(F_{B}+F-F_{B}^{\prime}-F^{\prime}\right) \mathrm{g} \alpha_{B} d \boldsymbol{e}^{\prime} d \boldsymbol{c} \tag{A.74}\\
n_{A} n_{B} I_{B A}(K) & \equiv \iint f_{A}^{(0)} f_{B}^{(0)}\left(K-K^{\prime}\right) \operatorname{g} \alpha_{A B} d \boldsymbol{e}^{\prime} d \boldsymbol{c}_{A} \tag{A.75}
\end{align*}
$$

From eq. (A.65), $\mathscr{D}_{A}^{(1)}$ is defined as

$$
\begin{equation*}
\mathscr{D}_{A}^{(1)} \equiv \frac{\partial_{0} f_{A}^{(0)}}{\partial t}+\left(\boldsymbol{c}_{A} \cdot \frac{\partial}{\partial \boldsymbol{r}},+\boldsymbol{F}_{A} \cdot \frac{\partial}{\partial \boldsymbol{c}_{A}}\right) f_{A}^{(0)} \tag{A.76}
\end{equation*}
$$

It is convenient to change the variables as

$$
\left(\boldsymbol{c}_{A}, \boldsymbol{r}, t\right) \rightarrow\left(\boldsymbol{c}_{A}-\boldsymbol{c}_{0}(\boldsymbol{r}, t), \boldsymbol{r}, t\right)\left(=\left(\boldsymbol{C}_{A}, \boldsymbol{r}, t\right)\right)
$$

Then, eq. (A.76) is transformed into

$$
\begin{align*}
\mathscr{D}_{A}^{(1)} \rightarrow & \frac{\partial_{0} f_{A}^{(0)}}{\partial t}-\frac{\partial_{0} \boldsymbol{c}_{0}}{\partial t} \cdot \frac{\partial f_{A}^{(0)}}{\partial \boldsymbol{C}_{A}} \\
& +\left(\boldsymbol{C}_{A}+\boldsymbol{c}_{0}\right) \cdot\left\{\frac{\partial f_{A}^{(0)}}{\partial \boldsymbol{r}}-\left(\frac{\partial}{\partial \boldsymbol{r}} \boldsymbol{c}_{0}\right) \cdot \frac{\partial f_{A}^{(0)}}{\partial \boldsymbol{C}_{A}}\right\}+\boldsymbol{F}_{A} \cdot \frac{\partial f_{A}^{(0)}}{\partial \boldsymbol{C}_{A}} . \tag{A.77}
\end{align*}
$$

By using the vector relation,

$$
\begin{align*}
\boldsymbol{a} \cdot\{(\boldsymbol{\nabla} \boldsymbol{b}) \cdot \boldsymbol{c}\}=a_{i}\left(\partial_{i} b_{j}\right) c_{j} & =\{(\boldsymbol{a} \cdot \boldsymbol{\nabla}) \boldsymbol{b}\} \cdot \boldsymbol{c} \tag{A.78}\\
& =\boldsymbol{c} \boldsymbol{a}: \boldsymbol{\nabla} \boldsymbol{b} \tag{A.79}
\end{align*}
$$

where $\mathrm{A}: \mathrm{B}$ is defined as $\mathrm{A}: \mathrm{B} \equiv \sum_{i j} A_{i j} B_{j i}$, we can write

$$
\begin{align*}
& \mathscr{D}_{A}^{(1)}=\underbrace{\frac{\partial_{0} f_{A}^{(0)}}{\partial t}+\boldsymbol{c}_{0} \cdot \frac{\partial f_{A}^{(0)}}{\partial \boldsymbol{r}}}_{\frac{D_{0} f_{A}^{(0)}}{\partial t}}+\boldsymbol{C}_{A} \cdot \frac{\partial f_{A}^{(0)}}{\partial \boldsymbol{r}} \\
& -\frac{\partial_{0} \boldsymbol{c}_{0}}{\partial t} \cdot \frac{\partial f_{A}^{(0)}}{\partial \boldsymbol{C}_{A}}-\underbrace{\boldsymbol{c}_{0} \cdot\left\{\left(\frac{\partial}{\partial \boldsymbol{r}} \boldsymbol{c}_{0}\right) \cdot \frac{\partial f_{A}^{(0)}}{\partial \boldsymbol{C}_{A}}\right\}}_{c_{0 i}\left(\partial_{i} c_{0 j}\right)\left(\frac{\partial f_{A}^{(0)}}{\partial C_{A}}\right)_{j}} \\
& +\boldsymbol{F} \cdot \frac{\partial f_{A}^{(0)}}{\partial \boldsymbol{C}_{A}}-\underbrace{\boldsymbol{C}_{A} \cdot\left\{\left(\frac{\partial}{\partial \boldsymbol{r}} \boldsymbol{c}_{0}\right) \cdot \frac{\partial f_{A}^{(0)}}{\partial \boldsymbol{C}_{A}}\right\}}_{C_{i}\left(\partial_{i} c_{0 j}\right)\left(\frac{\partial f_{A}^{(0)}}{\partial \boldsymbol{C}_{A}}\right)_{j}}, \tag{A.80}\\
& =\frac{D_{0} f_{A}^{(0)}}{\partial t}+\boldsymbol{C}_{A} \cdot \frac{\partial f_{A}^{(0)}}{\partial \boldsymbol{r}} \underbrace{-\frac{\partial_{0} \boldsymbol{c}_{0}}{\partial t} \cdot \frac{\partial f_{A}^{(0)}}{\partial \boldsymbol{C}_{A}}-\left(\boldsymbol{c}_{0} \cdot \frac{\partial \boldsymbol{c}_{0}}{\partial \boldsymbol{r}}\right) \cdot \frac{\partial f_{A}^{(0)}}{\partial \boldsymbol{C}_{A}}+\boldsymbol{F} \cdot \frac{\partial f_{A}^{(0)}}{\partial \boldsymbol{C}_{A}}}_{\left(\boldsymbol{F}-\frac{\partial \boldsymbol{o}_{0}}{\partial t}-\boldsymbol{c}_{0} \cdot \frac{\partial \boldsymbol{c}_{0}}{\partial r}\right) \cdot \frac{\partial f_{f_{A}}^{(0)}}{\partial \boldsymbol{C}_{A}}} \\
& -\frac{\partial f_{A}^{(0)}}{\partial \boldsymbol{C}_{A}} \boldsymbol{C}_{A}: \frac{\boldsymbol{c}_{0}}{\partial \boldsymbol{r}},(\mathrm{~A} .81) \tag{A.81}\\
& =\frac{D_{0} f_{A}^{(0)}}{D t}+\boldsymbol{C}_{A} \cdot \frac{\partial f_{A}^{(0)}}{\partial \boldsymbol{r}}+\left(\boldsymbol{F}-\frac{D_{0} \boldsymbol{c}_{0}}{D t}\right) \cdot \frac{\partial f_{A}^{(0)}}{\partial \boldsymbol{C}_{A}}-\frac{\partial f_{A}^{(0)}}{\partial \boldsymbol{C}_{A}} \boldsymbol{C}_{A}: \frac{\partial}{\partial \boldsymbol{r}} \boldsymbol{c}_{0}, \tag{A.82}\\
& =f_{A}^{(0)}\left\{\frac{D_{0} \ln f_{A}^{(0)}}{D t}+\boldsymbol{C}_{A} \cdot \frac{\partial \ln f_{A}^{(0)}}{\partial \boldsymbol{r}}+\left(\boldsymbol{F}-\frac{D_{0} \boldsymbol{c}_{0}}{D t}\right) \cdot \frac{\partial \ln f_{A}^{(0)}}{\partial \boldsymbol{C}_{A}}\right. \\
& \left.-\frac{\partial \ln f_{A}^{(0)}}{\partial \boldsymbol{C}_{A}} \boldsymbol{C}_{A}: \frac{\partial}{\partial \boldsymbol{r}} \boldsymbol{c}_{0}\right\} . \tag{A.83}
\end{align*}
$$

By substituting the first approximate distribution

$$
\begin{equation*}
\ln f_{A}^{(0)}=\text { const. }+\ln \frac{n_{A}}{T^{\frac{2}{2}}}-\frac{m_{A} C_{A}^{2}}{2 k_{B} T}, \tag{A.84}
\end{equation*}
$$

eq. (A.83) becomes

$$
\begin{equation*}
\mathscr{D}_{A}^{(1)}=f_{A}^{(0)}\left\{\left(\mathscr{C}_{A}^{2}-2\right) \boldsymbol{C}_{A} \cdot \boldsymbol{\nabla} \ln T+x_{A}^{-1} \boldsymbol{d}_{A B} \cdot \boldsymbol{C}_{A}+2 \mathscr{C}_{A}^{\circ} \mathscr{C}_{A}: \boldsymbol{\nabla} \boldsymbol{c}_{0}\right\}, \tag{A.85}
\end{equation*}
$$

where \mathscr{C}_{A} and $\boldsymbol{d}_{A B}$ are defined as

$$
\begin{align*}
\mathscr{C}_{A} & \equiv\left(\frac{m_{A}}{2 k_{B} T}\right)^{\frac{1}{2}} \boldsymbol{C}_{A} \tag{A.86}\\
\boldsymbol{d}_{A B} & \equiv x_{A} \boldsymbol{\nabla} \ln p_{A}-\frac{\rho_{A} \rho_{2}}{\rho p}\left(\boldsymbol{F}_{A}-\boldsymbol{F}_{2}\right)-\frac{\rho_{A}}{\rho p} \boldsymbol{\nabla} p \tag{A.87}
\end{align*}
$$

respectively, and we denote the product $\boldsymbol{C}_{A}^{\circ} \boldsymbol{C}_{\boldsymbol{A}}$ as

$$
\boldsymbol{C}_{A}^{\circ} \boldsymbol{C}_{A} \equiv\left(\begin{array}{cc}
U_{A}^{2}-\frac{1}{2} C_{A}^{2} & U_{A} V_{A} \tag{A.88}\\
V_{A} U_{A} & V_{A}^{2}-\frac{1}{2} C_{A}^{2}
\end{array}\right)
$$

From the similar calculation for the component B, we can write

$$
\begin{equation*}
\mathscr{D}_{B}^{(1)}=f_{B}^{(0)}\left\{\left(\mathscr{C}_{B}^{2}-2\right) \boldsymbol{C}_{B} \cdot \boldsymbol{\nabla} \ln T+x_{B}^{-1} \boldsymbol{d}_{B A} \cdot \boldsymbol{C}_{B}+2 \mathscr{C}_{B}^{\circ} \mathscr{C}_{B}: \nabla \boldsymbol{c}_{0}\right\} . \tag{A.89}
\end{equation*}
$$

where \mathscr{C}_{B} and $\boldsymbol{d}_{B A}$ are defined as

$$
\begin{align*}
\mathscr{C}_{B} & \equiv\left(\frac{m_{B}}{2 k_{B} T}\right)^{\frac{1}{2}} \boldsymbol{C}_{B} \tag{A.90}\\
\boldsymbol{d}_{B A} & \equiv x_{B} \boldsymbol{\nabla} \ln p_{B}-\frac{\rho_{B} \rho_{2}}{\rho p}\left(\boldsymbol{F}_{B}-\boldsymbol{F}_{2}\right)-\frac{\rho_{B}}{\rho p} \nabla p \tag{A.91}
\end{align*}
$$

respectively. If the assumption of the mechanical equilibrium state (see Sec. 2.1.3) and $\boldsymbol{F}_{A}=\boldsymbol{F}_{B}=0$ are satisfied, $\boldsymbol{d}_{A B}$ becomes the mole fraction gradient, i.e.

$$
\begin{equation*}
\boldsymbol{d}_{A B}=\nabla x_{A} . \tag{A.92}
\end{equation*}
$$

Second approximations $f_{A}^{(1)}$ and $f_{B}^{(1)}$
From eqs. (A.70) and (A.73), the subdivided Boltzmann's equation can be written as

$$
\begin{align*}
& \mathscr{D}_{A}^{(1)}=-n_{A}^{2} I_{A}\left(\Phi^{(1)}\right)-n_{A} n_{B} I_{A B}\left(\Phi_{A}^{(1)}+\Phi_{B}^{(1)}\right), \tag{A.93}\\
& \mathscr{D}_{B}^{(1)}=-n_{B}^{2} I_{B}\left(\Phi^{(1)}\right)-n_{A} n_{B} I_{B A}\left(\Phi_{A}^{(1)}+\Phi_{B}^{(1)}\right) . \tag{А.94}
\end{align*}
$$

Since $\boldsymbol{\nabla} \ln T, \boldsymbol{d}_{A B}$, and $\boldsymbol{\nabla} \boldsymbol{c}_{0}$ occur linearly, $\Phi_{A}^{(1)}, \Phi_{B}^{(1)}$ are expressible in the forms

$$
\begin{align*}
& \Phi_{A}^{(1)}=-\boldsymbol{A}_{A} \cdot \boldsymbol{\nabla} \ln T-\boldsymbol{D}_{A} \cdot \boldsymbol{d}_{A B}-2 \mathrm{~B}_{A}: \boldsymbol{\nabla} \boldsymbol{c}_{0} \tag{A.95}\\
& \Phi_{B}^{(1)}=-\boldsymbol{A}_{B} \cdot \boldsymbol{\nabla} \ln T-\boldsymbol{D}_{B} \cdot \boldsymbol{d}_{A B}-2 \mathrm{~B}_{B}: \boldsymbol{\nabla} \boldsymbol{c}_{0} \tag{A.96}
\end{align*}
$$

where, the vectors $\boldsymbol{A}, \boldsymbol{D}$ and tensor B are defined as

$$
\begin{equation*}
\boldsymbol{A}_{s}=\boldsymbol{C}_{s} A_{s}\left(C_{s}\right), \quad \boldsymbol{D}_{s}=\boldsymbol{C}_{s} D_{s}\left(C_{s}\right), \quad \mathrm{B}_{s}=\boldsymbol{C}_{s}^{\circ} \boldsymbol{C}_{s} B_{s}\left(C_{s}\right) \quad(s=1,2) \tag{A.97}
\end{equation*}
$$

and $A_{s}\left(C_{s}\right), B_{s}\left(C_{s}\right)$ and $D_{s}\left(C_{s}\right)$ are the functions of n_{s}, T and C_{s}. Hence, the second approximate solutions $f_{A}=f_{A}^{(0)}+f_{A}^{(1)}$ and $f_{B}=f_{B}^{(0)}+f_{B}^{(1)}$ are written as

$$
\begin{align*}
& f_{A}=f_{A}^{(0)}\left\{1-A_{A}\left(C_{A}\right) \boldsymbol{C}_{A} \cdot \boldsymbol{\nabla} \ln T-D_{A}\left(C_{A}\right) \boldsymbol{C}_{A} \cdot \boldsymbol{d}_{A B}\right. \\
& \tag{A.98}\\
& \left.\quad-2 B_{A}\left(C_{A}\right) \boldsymbol{C}_{A}^{\circ} \boldsymbol{C}_{A}: \boldsymbol{\nabla} \boldsymbol{c}_{0}\right\} \\
& f_{B}=f_{B}^{(0)}\left\{1-A_{B}\left(C_{B}\right) \boldsymbol{C}_{B} \cdot \boldsymbol{\nabla} \ln T-D_{B}\left(C_{B}\right) \boldsymbol{C}_{B} \cdot \boldsymbol{d}_{A B}\right. \tag{A.99}\\
& \\
& \left.-2 B_{B}\left(C_{B}\right) \boldsymbol{C}_{B}^{\circ} \boldsymbol{C}_{B}: \boldsymbol{\nabla} \boldsymbol{c}_{0}\right\}
\end{align*}
$$

From eqs. (A.85) and (A.89), these functions $\boldsymbol{A}_{s}, \boldsymbol{D}_{s}$ and tensor B_{s} must satisfy the integral equations

$$
\begin{align*}
& f_{A}^{(0)}\left(\mathscr{C}_{A}^{2}-\frac{5}{2}\right) \boldsymbol{C}_{A}=n_{A}^{2} I_{A}\left(\boldsymbol{A}_{A}\right)+n_{A} n_{B} I_{A B}\left(\boldsymbol{A}_{A}+\boldsymbol{A}_{B}\right), \tag{A.100}\\
& f_{B}^{(0)}\left(\mathscr{C}_{B}^{2}-\frac{5}{2}\right) \boldsymbol{C}_{B}=n_{B}^{2} I_{B}\left(\boldsymbol{A}_{B}\right)+n_{A} n_{B} I_{B A}\left(\boldsymbol{A}_{A}+\boldsymbol{A}_{B}\right), \\
& f_{A}^{(0)} x_{A}^{-1} \boldsymbol{C}_{A}=n_{A}^{2} I_{A}\left(\boldsymbol{D}_{A}\right)+n_{A} n_{B} I_{A B}\left(\boldsymbol{D}_{A}+\boldsymbol{D}_{B}\right), \\
& -f_{B}^{(0)} x_{B}^{-1} \boldsymbol{C}_{B}=n_{B}^{2} I_{B}\left(\boldsymbol{D}_{B}\right)+n_{A} n_{B} I_{B A}\left(\boldsymbol{D}_{A}+\boldsymbol{D}_{B}\right), \tag{A.101}\\
& f_{A}^{(0)} \mathscr{C}_{A}^{\circ} \mathscr{C}_{A}=n_{A}^{2} I_{A}\left(\mathrm{~B}_{A}\right)+n_{A} n_{B} I_{A B}\left(\mathrm{~B}_{A}+\mathrm{B}_{B}\right), \\
& f_{B}^{(0)} \mathscr{C}_{B}^{\circ} \mathscr{C}_{B}=n_{B}^{2} I_{B}\left(\mathrm{~B}_{B}\right)+n_{A} n_{B} I_{B A}\left(\mathrm{~B}_{A}+\mathrm{B}_{B}\right), \tag{A.102}
\end{align*}
$$

respectively.
It is convenient to rewrite eq. (A.100), (A.101) and (A.102) with the bracket $\{\cdot, \cdot\}$ defined as

$$
\begin{equation*}
n^{2}\{F, G\} \equiv n_{A}^{2}[F, G]_{A}+n_{A} n_{B}\left[F_{A}+F_{B}, G_{A}+G_{B}\right]_{A B}+n_{B}^{2}[F, G]_{B} \tag{A.103}
\end{equation*}
$$

where the brackets $[\cdot, \cdot]_{A},[\cdot, \cdot]_{B}$ and $[\cdot, \cdot]_{A B}$ are defined as

$$
\begin{align*}
{[F, G]_{A} } & \equiv \int G_{A} I_{A}(F) d \boldsymbol{c}_{A} \tag{A.104}\\
{[F, G]_{B} } & \equiv \int G_{B} I_{B}(F) d \boldsymbol{c}_{B} \tag{A.105}\\
{\left[F_{A}+G_{B}, H_{A}+K_{B}\right]_{A B} } & \equiv \int F_{A} I_{A B}\left(H_{A}+K_{B}\right) d \boldsymbol{c}_{A} \\
& +\int G_{B} I_{B A}\left(H_{A}+K_{B}\right) d \boldsymbol{c}_{B} \tag{A.106}
\end{align*}
$$

respectively. By using these brackets, eqs. (A.100), (A.101) and (A.102) are
rewritten as

$$
\begin{align*}
n^{2}\{\boldsymbol{A}, \boldsymbol{a}\}= & n_{A}^{2}[\boldsymbol{A}, \boldsymbol{a}]_{A}+n_{A} n_{B}\left[\boldsymbol{a}_{A}+\boldsymbol{a}_{B}, \boldsymbol{A}_{A}+\boldsymbol{A}_{B}\right]_{A B}+n_{B}^{2}[\boldsymbol{A}, \boldsymbol{a}]_{B}, \\
= & n_{A}^{2} \int \boldsymbol{a}_{A} \cdot I_{A}\left(\boldsymbol{A}_{A}\right) d \boldsymbol{c}_{A}+n_{A} n_{B} \int \boldsymbol{a}_{A} \cdot I_{A B}\left(\boldsymbol{A}_{A}+\boldsymbol{A}_{B}\right) d \boldsymbol{c}_{A} \tag{A.107}\\
& +n_{A} n_{B} \int \boldsymbol{a}_{B} \cdot I_{B A}\left(\boldsymbol{A}_{A}+\boldsymbol{A}_{B}\right) d \boldsymbol{c}_{B}+n_{B}^{2} \int \boldsymbol{a}_{B} \cdot I_{A}\left(\boldsymbol{A}_{B}\right) d \boldsymbol{c}_{B}, \tag{A.108}\\
= & \int f_{A}^{(0)}\left(\mathscr{C}_{A}^{2}-\frac{5}{2}\right) \boldsymbol{C}_{A} \cdot \boldsymbol{a}_{A} d \boldsymbol{c}_{A}+\int f_{B}^{(0)}\left(\mathscr{C}_{B}^{2}-\frac{5}{2}\right) \boldsymbol{C}_{B} \cdot \boldsymbol{a}_{B} d \boldsymbol{c}_{B}, \tag{A.109}\\
n^{2}\{\boldsymbol{D}, \boldsymbol{a}\}= & n_{A}^{2}[\boldsymbol{D}, \boldsymbol{a}]_{A}+n_{A} n_{B}\left[\boldsymbol{a}_{A}+\boldsymbol{a}_{B}, \boldsymbol{D}_{A}+\boldsymbol{D}_{B}\right]_{A B}+n_{B}^{2}[\boldsymbol{D}, \boldsymbol{a}]_{B}, \\
= & n_{A}^{2} \int \boldsymbol{a}_{A} \cdot I_{A}\left(\boldsymbol{D}_{A}\right) d \boldsymbol{c}_{A}+n_{A} n_{B} \int \boldsymbol{a}_{A} \cdot I_{A B}\left(\boldsymbol{D}_{A}+\boldsymbol{D}_{B}\right) d \boldsymbol{c}_{A} \\
& \quad+n_{A} n_{B} \int \boldsymbol{a}_{B} \cdot I_{B A}\left(\boldsymbol{D}_{A}+\boldsymbol{D}_{B}\right) d \boldsymbol{c}_{B}+n_{B}^{2} \int \boldsymbol{a}_{B} \cdot I_{A}\left(\boldsymbol{D}_{B}\right) d \boldsymbol{c}_{B}, \\
= & x_{A}^{-1} \int f_{A}^{(0)} \boldsymbol{C}_{A} \cdot \boldsymbol{a}_{A} d \boldsymbol{c}_{A}-x_{B}^{-1} \int f_{B}^{(0)} \boldsymbol{C}_{B} \cdot \boldsymbol{a}_{B} d \boldsymbol{c}_{B}, \tag{A.110}
\end{align*}
$$

and

$$
\begin{equation*}
n^{2}\{\mathrm{~B}, \mathrm{~b}\}=\int f_{A}^{(0)} \mathscr{C}_{A}^{\circ} \mathscr{C}_{A}: \mathrm{b}_{A} d \boldsymbol{c}_{A}+\int f_{B}^{(0)} \mathscr{C}_{B}^{\circ} \mathscr{C}_{B}: \mathrm{b}_{B} d \boldsymbol{c}_{B} \tag{A.111}
\end{equation*}
$$

respectively.

A.2.3 Expression for the thermal-diffusion ratio k_{T}

Calculation of the the diffusion flow
The expression for k_{T} can be obtained by calculating

$$
\begin{equation*}
\overline{\boldsymbol{C}}_{A}-\overline{\boldsymbol{C}}_{B}=\frac{1}{n_{A}} \int f_{A} \boldsymbol{C}_{A} d \boldsymbol{c}_{A}-\frac{1}{n_{B}} \int f_{B} \boldsymbol{C}_{B} d \boldsymbol{c}_{B} . \tag{A.112}
\end{equation*}
$$

We note that the diffusion flow $\tilde{\boldsymbol{J}}_{A}^{M}$ can be written with eq. (A.112) as

$$
\begin{equation*}
\overline{\boldsymbol{C}}_{A}-\overline{\boldsymbol{C}}_{B}=\frac{n_{B}+n_{A}}{n_{B}} \overline{\boldsymbol{C}}_{A}=\frac{1}{x_{B} n_{A}} \underbrace{n_{A}\left(\overline{\boldsymbol{c}}_{A}-\overline{\boldsymbol{c}}_{0}\right)}_{\tilde{\boldsymbol{J}}_{A}^{M}} . \tag{A.113}
\end{equation*}
$$

By substituting eqs. (A.98) and (A.99), eq. (A.112) becomes

$$
\begin{align*}
& \overline{\boldsymbol{C}}_{A}- \overline{\boldsymbol{C}}_{B} \\
&=- \frac{1}{n_{A}} \int f_{A}^{(0)}\left\{A_{A}\left(C_{A}\right) \boldsymbol{C}_{A} \cdot \boldsymbol{\nabla} \ln T+D_{A}\left(C_{A}\right) \boldsymbol{C}_{A} \cdot \boldsymbol{d}_{A B}\right\} \boldsymbol{C}_{A} d \boldsymbol{c}_{A} \\
&+\frac{1}{n_{B}} \int f_{B}^{(0)}\left\{A_{B}\left(C_{B}\right) \boldsymbol{C}_{B} \cdot \boldsymbol{\nabla} \ln T+D_{B}\left(C_{B}\right) \boldsymbol{C}_{B} \cdot \boldsymbol{d}_{A B}\right\} \boldsymbol{C}_{B} d \boldsymbol{c}_{B}, \\
&=-\left\{\frac{1}{n_{A}} \int f_{A}^{(0)} A_{A}\left(C_{A}\right) \boldsymbol{C}_{A} \boldsymbol{C}_{A} d \boldsymbol{c}_{A}-\frac{1}{n_{B}} \int f_{B}^{(0)} A_{B}\left(C_{B}\right) \boldsymbol{C}_{B} \boldsymbol{C}_{B} d \boldsymbol{c}_{B}\right\} \cdot \boldsymbol{\nabla} \ln T \\
&-\left\{\frac{1}{n_{A}} \int f_{A}^{(0)} D_{A}\left(C_{A}\right) \boldsymbol{C}_{A} \boldsymbol{C}_{A} d \boldsymbol{c}_{A}-\frac{1}{n_{B}} \int f_{B}^{(0)} D_{B}\left(C_{B}\right) \boldsymbol{C}_{B} \boldsymbol{C}_{B} d \boldsymbol{c}_{B}\right\} \cdot \boldsymbol{d}_{A B} \tag{A.115}\\
&=- \frac{1}{2}\left[\left\{\frac{1}{n_{A}} \int f_{A}^{(0)} A_{A}\left(C_{A}\right) C_{A} C_{A} d \boldsymbol{c}_{A}-\frac{1}{n_{B}} \int f_{B}^{(0)} A_{B}\left(C_{B}\right) C_{B} C_{B} d \boldsymbol{c}_{B}\right\} \boldsymbol{\nabla} \ln T\right. \\
&\left.+\left\{\frac{1}{n_{A}} \int f_{A}^{(0)} D_{A}\left(C_{A}\right) C_{A} C_{A} d \boldsymbol{c}_{A}-\frac{1}{n_{B}} \int f_{B}^{(0)} D_{B}\left(C_{B}\right) C_{B} C_{B} d \boldsymbol{c}_{B}\right\} \boldsymbol{d}_{A B}\right] \\
&=- \frac{1}{2}[\frac{1}{n}\{\underbrace{}_{n_{B}^{2}\left\{\frac{1}{x_{A}} \int f_{A}^{(0)} \boldsymbol{A}_{A} \cdot \boldsymbol{C}_{A} d \boldsymbol{c}_{A}-\frac{1}{x_{B}} \int f_{B}^{(0)} \boldsymbol{A}_{B} \cdot \boldsymbol{C}_{B} d \boldsymbol{c}_{B}\right\} \boldsymbol{\nabla} \ln T} \\
&+\frac{1}{n} \underbrace{\left.\left\{\frac{1}{x_{A}} \int f_{A}^{(0)} \boldsymbol{D}_{A} \cdot \boldsymbol{C}_{A} d \boldsymbol{c}_{A}-\frac{1}{x_{B}} \int f_{B}^{(0)} \boldsymbol{D}_{B} \cdot \boldsymbol{C}_{B} d \boldsymbol{c}_{B}\right\} \boldsymbol{d}_{A B}\right]} \\
&=-\frac{n}{2}\left[\{\boldsymbol{D}, \boldsymbol{A}\} \boldsymbol{\nabla} \ln T+\{\boldsymbol{D}, \boldsymbol{D}\} \boldsymbol{d}_{A B}\right], \tag{A.116}
\end{align*}
$$

where we used the relation

$$
\begin{equation*}
\int F\left(C_{s}^{2}\right) \boldsymbol{C}_{s} \boldsymbol{C}_{s} d \boldsymbol{C}_{s}=\frac{1}{2} \cup \int F\left(C_{s}^{2}\right) C_{s}^{2} d \boldsymbol{C}_{s} \quad(s=A, B) \tag{A.117}
\end{equation*}
$$

Thus, by comparing with eqs. (2.89) and (A.113), we can obtain

$$
\begin{align*}
D & =\frac{n_{A} n_{B}}{2 n}\{\boldsymbol{D}, \boldsymbol{D}\} \tag{A.118}\\
k_{T} & \equiv T x_{A} x_{B} \frac{D^{\prime}}{D}=\frac{\{\boldsymbol{D}, \boldsymbol{A}\}}{\{\boldsymbol{D}, \boldsymbol{D}\}} \tag{A.119}
\end{align*}
$$

Expression for $\{\boldsymbol{D}, \boldsymbol{A}\}$ and $\{\boldsymbol{D}, \boldsymbol{D}\}$

To calculate the brackets $\{\boldsymbol{D}, \boldsymbol{A}\}$ and $\{\boldsymbol{D}, \boldsymbol{D}\}$, we introduce the Sonine polynomials $S_{m}^{(n)}(x)$. Let s be a positive number $(s>0)$, and the polynomial $S_{m}^{(n)}(x)$ is defined as

$$
\begin{equation*}
(1-s)^{-m-1} e^{-x s /(1-s)}=\sum_{n=0}^{\infty} s^{n} S_{m}^{(n)}(x) . \tag{A.120}
\end{equation*}
$$

It is derived that $S_{m}^{(n)}(x)$ is written as

$$
\begin{equation*}
S_{m}^{(n)}(x)=\sum_{p=0}^{n}(-x)^{p}(m+n)_{n-p} / p!(n-p)!, \tag{A.121}
\end{equation*}
$$

where the subscript in $(m+n)_{(n-p)}$ denotes the product of the $(n-p)$ factors $m+n, m+n-1, \cdots, m+n-q+1$. Especially, it is also derived that the polynomial $S_{m}^{(n)}(x)$ satisfies

$$
\begin{gather*}
S_{m}^{(0)}(x)=1, \quad S_{m}^{(1)}(x)=m+1-x \tag{A.122}\\
\int_{0}^{\infty} e^{-x} S_{m}^{(p)}(x) S_{m}^{(q)}(x) x^{m} d x= \begin{cases}0 & (p \neq q) \\
\frac{\Gamma(m+p+1)}{p!} & (p=q)\end{cases} \tag{A.123}
\end{gather*}
$$

Now, we define the vector function $\tilde{\boldsymbol{A}}_{s}(s=A, B)$ as

$$
\begin{equation*}
\tilde{\boldsymbol{A}}_{s} \equiv \boldsymbol{A}_{s}-\frac{\{\boldsymbol{A}, \boldsymbol{D}\}}{\{\boldsymbol{D}, \boldsymbol{D}\}} \boldsymbol{D}_{s}=\boldsymbol{A}_{s}-k_{T} \boldsymbol{D}_{s} \tag{A.124}
\end{equation*}
$$

and the expansion coefficients $\left\{a_{p}\right\},\left\{d_{p}\right\}$ written as

$$
\begin{array}{ll}
\tilde{\boldsymbol{A}}_{A}=\sum_{p=-\infty}^{+\infty} a_{p} \boldsymbol{a}_{A}^{(p)}, & \tilde{\boldsymbol{A}}_{B}=\sum_{p=-\infty}^{+\infty \prime} a_{p} \boldsymbol{a}_{B}^{(p)} \\
\boldsymbol{D}_{A}=\sum_{p=-\infty}^{+\infty} d_{p} \boldsymbol{a}_{A}^{(p)}, & \boldsymbol{D}_{B}=\sum_{p=-\infty}^{+\infty} d_{p} \boldsymbol{a}_{B}^{(p)} \tag{A.126}
\end{array}
$$

where $\left\{\boldsymbol{a}_{A}^{(p)}\right\},\left\{\boldsymbol{a}_{B}^{(p)}\right\}$ are defined as

$$
\left.\begin{array}{ll}
\boldsymbol{a}_{A}^{(0)} \equiv \frac{M_{A}^{\frac{1}{2}} \rho_{B} \mathscr{C}_{A}}{\rho}, & \boldsymbol{a}_{B}^{(0)} \equiv-\frac{M_{B}^{\frac{1}{2}} \rho_{A} \mathscr{C}_{B}}{\rho} \\
\boldsymbol{a}_{A}^{(p)} \equiv S_{1}^{(p)}\left(\mathscr{C}_{A}^{2}\right) \mathscr{C}_{A}, & \boldsymbol{a}_{A}^{(-p)} \equiv 0, \quad \boldsymbol{a}_{B}^{(p)} \equiv 0, \quad \boldsymbol{a}_{B}^{(-p)} \equiv S_{1}^{(p)}\left(\mathscr{C}_{B}^{2}\right) \mathscr{C}_{B} . \tag{A.128}
\end{array} \quad(p \neq 0), ~ 又 \mathrm{A.127)}\right)
$$

and the notation Σ^{\prime} implies that the summation does not include the term of $p=0$. The expansion coefficients $\left\{d_{p}\right\}$ can be obtained from the equations

$$
\begin{equation*}
\left\{\boldsymbol{D}, \boldsymbol{a}^{(q)}\right\}=\left\{\sum_{p=-\infty}^{+\infty} d_{p} \boldsymbol{a}^{(p)}, \boldsymbol{a}^{(q)}\right\}=\sum_{p=-\infty}^{+\infty} d_{p} a_{p q}=\delta_{q} \quad(q=-\infty, \cdots,+\infty) \tag{A.129}
\end{equation*}
$$

where the matrix element $a_{p q}$ is defined as

$$
\begin{equation*}
a_{p q} \equiv\left\{\boldsymbol{a}^{(p)}, \boldsymbol{a}^{(q)}\right\} \equiv a_{q p} \tag{A.130}
\end{equation*}
$$

and δ_{q} can be calculated as

$$
\begin{align*}
& \delta_{0}=\frac{1}{n}\left(\frac{2 k_{B} T}{m_{0}}\right)^{\frac{1}{2}} \tag{A.131}\\
& \delta_{q}=0 \quad(q \neq 0) \tag{A.132}
\end{align*}
$$

Similarly, the expansion coefficients $\left\{a_{p}\right\}$ can be obtained from the equations

$$
\begin{equation*}
\left\{\tilde{\boldsymbol{A}}, \boldsymbol{a}^{(q)}\right\}=\left\{\sum_{p=-\infty}^{+\infty \prime} a_{p} \boldsymbol{a}^{(p)}, \boldsymbol{a}^{(q)}\right\}=\sum_{p=-\infty}^{+\infty, \prime} a_{p} a_{p q}=\alpha_{q} \quad(q \neq 0) \tag{A.133}
\end{equation*}
$$

where $\alpha_{q}(q \neq 0)$ can be calculated as

$$
\begin{gather*}
\alpha_{1}=-\frac{2 n_{A}}{n^{2}}\left(\frac{2 k_{B} T}{m_{A}}\right)^{\frac{1}{2}}, \quad-\frac{2 n_{B}}{n^{2}}\left(\frac{2 k_{B} T}{m_{B}}\right)^{\frac{1}{2}} \tag{A.134}\\
\alpha_{q}=0 \quad(q \neq \pm 1) \tag{A.135}
\end{gather*}
$$

From Cramer's rule, $\left\{d_{p}\right\}$ and $\left\{a_{p}\right\}$ is written as

$$
\begin{align*}
& d_{p}=\delta_{0} \lim _{m \rightarrow \infty} \frac{\mathscr{A}_{0 p}^{(m)}}{\mathscr{A}^{(m)}}, \tag{A.136}\\
& a_{p}=\lim _{m \rightarrow \infty} \frac{\alpha_{1} \mathscr{A}_{1 p}^{\prime(m)}+\alpha_{-1} \mathscr{A}_{-1, p}^{\prime(m)}}{\mathscr{A}^{\prime(m)}}, \quad(p \neq 0) . \tag{A.137}
\end{align*}
$$

where $\mathscr{A}^{(m)}$ is the determinant with elements $\left\{a_{p q}\right\}(-m \leq p \leq m,-m \leq$ $q \leq m), \mathscr{A}_{0 p}^{(m)}$ is the co-factor of $a_{0 p}$ in the expansion of $\mathscr{A}^{(m)}$, and $\mathscr{A}_{q p}^{\prime(m)}$ is the co-factor of $a_{q p}$ in the expansion of $\mathscr{A}^{\prime(m)} \equiv \mathscr{A}_{00}^{(m)}$. Thus, $\{\boldsymbol{D}, \boldsymbol{D}\}$ and $\{\boldsymbol{D}, \boldsymbol{A}\}$ is written as

$$
\begin{align*}
\{\boldsymbol{D}, \boldsymbol{A}\}= & \sum_{p=-\infty}^{+\infty} d_{p} \underbrace{\left\{\boldsymbol{a}^{(p)}, \boldsymbol{A}\right\}}_{\alpha_{p}}=d_{1} \alpha_{1}+d_{-1} \alpha_{-1}, \tag{A.138}\\
= & \alpha_{1} \delta_{0} \lim _{m \rightarrow \infty} \frac{\mathscr{A}_{01}^{(m)}}{\mathscr{A}^{(m)}}+\alpha_{-1} \delta_{0} \lim _{m \rightarrow \infty} \frac{\mathscr{A}_{0-1}^{(m)}}{\mathscr{A}^{(m)}}, \tag{A.139}\\
=- & -\frac{2 n_{A}}{n^{2}}\left(\frac{2 k_{B} T}{m_{A}}\right)^{\frac{1}{2}} \cdot \frac{1}{n}\left(\frac{2 k_{B} T}{m_{0}}\right)^{\frac{1}{2}} \lim _{m \rightarrow \infty} \frac{\mathscr{A}_{01}^{(m)}}{\mathscr{A}^{(m)}} \\
& \quad-\frac{2 n_{B}}{n^{2}}\left(\frac{2 k_{B} T}{m_{B}}\right)^{\frac{1}{2}} \cdot \frac{1}{n}\left(\frac{2 k_{B} T}{m_{0}}\right)^{\frac{1}{2}} \lim _{m \rightarrow \infty} \frac{\mathscr{A}_{0-1}^{(m)}}{\mathscr{A}^{(m)}}, \tag{A.140}\\
=- & \frac{4 x_{A} k_{B} T}{n^{2} m_{A}^{\frac{1}{2}} m_{0}^{\frac{1}{2}}} \lim _{m \rightarrow \infty} \frac{\mathscr{A}_{01}^{(m)}}{\mathscr{A}^{(m)}}-\frac{4 x_{B} k_{B} T}{n^{2} m_{B}^{\frac{1}{2}} m_{0}^{\frac{1}{2}}} \lim _{m \rightarrow \infty} \frac{\mathscr{A}_{0-1}^{(m)}}{\mathscr{A}^{(m)}}, \tag{A.141}\\
=- & -\frac{4 k_{B} T}{n^{2}} \lim _{m \rightarrow \infty} \frac{x_{A}\left(m_{A} m_{0}\right)^{-\frac{1}{2} \mathscr{A}_{01}^{(m)}+x_{B}\left(m_{B} m_{0}\right)^{-\frac{1}{2}} \mathscr{A}_{0-1}^{(m)}}}{\mathscr{A}^{(m)}}, \tag{A.142}
\end{align*}
$$

$$
\begin{align*}
\{\boldsymbol{D}, \boldsymbol{D}\} & =\sum_{p=-\infty}^{+\infty} d_{p} \underbrace{\left\{\boldsymbol{a}^{(p)}, \boldsymbol{D}\right\}}_{\delta_{p}}=d_{0} \delta_{0} \tag{A.143}\\
& =\delta_{0}^{2} \lim _{m \rightarrow \infty} \frac{\mathscr{A}_{00}^{(m)}}{\mathscr{A}^{(m)}}, \tag{A.144}\\
& =\frac{1}{n^{2}} \frac{2 k_{B} T}{m_{0}} \lim _{m \rightarrow \infty} \frac{\mathscr{A}^{\prime(m)}}{\mathscr{A}^{(m)}} \tag{A.145}
\end{align*}
$$

From eqs. (A.145) and (A.142), the expression for k_{T} becomes

$$
\begin{align*}
k_{T} & =\frac{\{\boldsymbol{D}, \boldsymbol{A}\}}{\{\boldsymbol{D}, \boldsymbol{D}\}}, \tag{A.146}\\
& =-\frac{4 k_{B} T}{n^{2}} \lim _{m \rightarrow \infty} \frac{x_{A}\left(m_{A} m_{0}\right)^{-\frac{1}{2}} \mathscr{A}_{01}^{(m)}+x_{B}\left(m_{B} m_{0}\right)^{-\frac{1}{2}} \mathscr{A}_{0-1}^{(m)}}{\mathscr{A}^{(m)}} \\
& \quad / \frac{1}{n^{2}} \frac{2 k_{B} T}{m_{0}} \lim _{m \rightarrow \infty} \frac{\mathscr{A}^{\prime(m)}}{\mathscr{A}^{(m)}}, \tag{A.147}\\
& =-2 \lim _{m \rightarrow \infty} \frac{x_{A} M_{A}^{-\frac{1}{2}} \mathscr{A}_{01}^{(m)}+x_{B} M_{B}^{-\frac{1}{2}} \mathscr{A}_{0,-1}^{(m)}}{\mathscr{A}^{\prime(m)}}, \tag{A.148}
\end{align*}
$$

where $M_{A} \equiv m_{A} / m_{0}, M_{B} \equiv m_{B} / m_{0}$, and $m_{0} \equiv m_{A}+m_{B}$.

A.2.4 Calculation of the matrix elements

The m-th approximation to k_{T} is given by

$$
\begin{equation*}
\left[k_{T}\right]_{m} \equiv-2 \frac{x_{A} M_{A}^{-\frac{1}{2}} \mathscr{A}_{01}^{(m)}+x_{B} M_{B}^{-\frac{1}{2}} \mathscr{A}_{0,-1}^{(m)}}{\mathscr{A}^{\prime(m)}} \tag{A.149}
\end{equation*}
$$

If we take $m=1$, the determinations in eq. (A.149) are written as

$$
\begin{align*}
& \mathscr{A}_{01}^{(1)}=-\left|\begin{array}{cc}
a_{-1-1} & a_{-10} \\
a_{1-1} & a_{10}
\end{array}\right|=-\left(a_{-1-1} a_{10}-a_{0-1} a_{1-1}\right), \tag{A.150}\\
& \mathscr{A}_{0-1}^{(1)}=-\left|\begin{array}{cc}
a_{-10} & a_{-11} \\
a_{10} & a_{11}
\end{array}\right|=-\left(a_{0-1} a_{11}-a_{01} a_{1-1}\right), \tag{A.151}\\
& \mathscr{A}^{\prime(1)}=\mathscr{A}_{00}^{(1)}=\left|\begin{array}{cc}
a_{-1-1} & a_{-11} \\
a_{-11} & a_{11}
\end{array}\right|=a_{-1-1} a_{11}-a_{1-1}^{2}, \tag{A.152}
\end{align*}
$$

and the first approximation to k_{T} becomes

$$
\begin{equation*}
\left[k_{T}\right]_{1}=2 \frac{x_{A} M_{A}^{-\frac{1}{2}}\left(a_{-1-1} a_{10}-a_{0-1} a_{1-1}\right)+x_{B} M_{B}^{-\frac{1}{2}}\left(a_{0-1} a_{11}-a_{01} a_{1-1}\right)}{a_{-1-1} a_{11}-a_{1-1}^{2}} \tag{A.153}
\end{equation*}
$$

By using the relations

$$
\begin{align*}
a_{p q} & \equiv\left\{\boldsymbol{a}^{(p)}, \boldsymbol{a}^{(q)}\right\}, \tag{A.154}\\
& =x_{A}^{2}\left[\boldsymbol{a}_{1}^{(p)}, \boldsymbol{a}_{1}^{(q)}\right]_{A}+x_{A} x_{B}\left[\boldsymbol{a}_{1}^{(p)}+\boldsymbol{a}_{2}^{(p)}, \boldsymbol{a}_{1}^{(q)}+\boldsymbol{a}_{2}^{(q)}\right]_{A B}+x_{B}^{2}\left[\boldsymbol{a}_{2}^{(p)}, \boldsymbol{a}_{2}^{(q)}\right]_{B}, \tag{A.155}
\end{align*}
$$

and $\boldsymbol{a}_{1}^{(-1)}=\boldsymbol{a}_{2}^{(1)}=0$, the matrix elements a_{11}, a_{1-1} and a_{-1-1} are written as

$$
\begin{align*}
a_{11} & =x_{A}^{2}\left[\boldsymbol{a}_{1}^{(1)}, \boldsymbol{a}_{1}^{(1)}\right]_{A}+x_{A} x_{B}\left[\boldsymbol{a}_{1}^{(1)}, \boldsymbol{a}_{1}^{(1)}\right]_{A B}, \tag{A.156}\\
& =x_{A}^{2} \underbrace{\left[S\left(\mathscr{C}_{A}^{2}\right) \mathscr{C}_{A}, S\left(\mathscr{C}_{A}^{2}\right) \mathscr{C}_{A}\right]_{A}}_{a_{11}^{\prime \prime}}+x_{A} x_{B} \underbrace{\left[S\left(\mathscr{C}_{A}^{2}\right) \mathscr{C}_{A}, S\left(\mathscr{C}_{A}^{2}\right) \mathscr{C}_{A}\right]_{A B}}_{a_{11}^{\prime}}, \tag{A.157}\\
a_{-1-1} & =x_{A} x_{B}\left[\boldsymbol{a}_{2}^{(-1)}, \boldsymbol{a}_{2}^{(-1)}\right]_{A B}+x_{B}^{2}\left[\boldsymbol{a}_{2}^{(-1)}, \boldsymbol{a}_{2}^{(-1)}\right]_{B}, \tag{A.158}\\
& =x_{A} x_{B} \underbrace{\left[S\left(\mathscr{C}_{B}^{2}\right) \mathscr{C}_{B}, S\left(\mathscr{C}_{B}^{2}\right) \mathscr{C}_{B}\right]_{A B}}_{a_{-1-1}^{\prime}}+x_{A}^{2} \underbrace{\left[S\left(\mathscr{C}_{B}^{2}\right) \mathscr{C}_{B}, S\left(\mathscr{C}_{B}^{2}\right) \mathscr{C}_{B}\right]_{B}}_{a_{-1-1}^{\prime \prime}}, \tag{A.159}\\
a_{1-1} & =x_{A} x_{B}\left[\boldsymbol{a}_{1}^{(1)}, \boldsymbol{a}_{2}^{(-1)}\right]_{A B}=x_{A} x_{B} \underbrace{\left[S\left(\mathscr{C}_{A}^{2}\right) \mathscr{C}_{A}, S\left(\mathscr{C}_{B}^{2}\right) \mathscr{C}_{B}\right]_{A B}}_{a_{1-1}^{\prime}}, \tag{A.160}
\end{align*}
$$

where we denote $S(x) \equiv S_{\frac{3}{2}}^{(1)}(x)$. Here, the new elements $a_{11}^{\prime \prime}, a_{11}^{\prime}, a_{-1-1}^{\prime}, a_{-1-1}^{\prime \prime}$ and a_{1-1}^{\prime} defined as

$$
\begin{align*}
a_{11}^{\prime \prime} & =\left[S\left(\mathscr{C}_{A}^{2}\right) \mathscr{C}_{A}, S\left(\mathscr{C}_{A}^{2}\right) \mathscr{C}_{A}\right]_{A}, \quad a_{11}^{\prime}=\left[S\left(\mathscr{C}_{A}^{2}\right) \mathscr{C}_{A}, S\left(\mathscr{C}_{A}^{2}\right) \mathscr{C}_{A}\right]_{A B}, \tag{A.161}\\
a_{-1-1}^{\prime} & =\left[S\left(\mathscr{C}_{B}^{2}\right) \mathscr{C}_{B}, S\left(\mathscr{C}_{B}^{2}\right) \mathscr{C}_{B}\right]_{A B}, \quad a_{-1-1}^{\prime \prime}=\left[S\left(\mathscr{C}_{B}^{2}\right) \mathscr{C}_{B}, S\left(\mathscr{C}_{B}^{2}\right) \mathscr{C}_{B}\right]_{B}, \tag{A.162}
\end{align*}
$$

$$
\begin{equation*}
a_{1-1}^{\prime}=\left[S\left(\mathscr{C}_{A}^{2}\right) \mathscr{C}_{A}, S\left(\mathscr{C}_{B}^{2}\right) \mathscr{C}_{B}\right]_{A B}, \tag{A.163}
\end{equation*}
$$

can be calculated as

$$
\begin{align*}
a_{11}^{\prime \prime}= & \hat{\Omega}_{1}^{(2)}(2), \tag{A.164}\\
a_{11}^{\prime}= & 2\left\{\left(6 M_{A}^{2} M_{B}+4 M_{B}^{3}\right) \hat{\Omega}_{12}^{(1)}(1)-4 M_{B}^{3} \hat{\Omega}_{12}^{(1)}(2)\right. \\
& \left.\quad+M_{B}^{3} \hat{\Omega}_{12}^{(1)}(3)+2 M_{A} M_{B}^{2} \hat{\Omega}_{12}^{(2)}(2)\right\}, \tag{A.165}\\
a_{-1-1}^{\prime}= & 2\left\{\left(6 M_{B}^{2} M_{A}+4 M_{A}^{3}\right) \hat{\Omega}_{12}^{(1)}(1)-4 M_{A}^{3} \hat{\Omega}_{12}^{(1)}(2)\right. \\
& \left.+M_{A}^{3} \hat{\Omega}_{12}^{(1)}(3)+2 M_{B} M_{A}^{2} \hat{\Omega}_{12}^{(2)}(2)\right\}, \tag{A.166}\\
a_{-1-1}^{\prime \prime}= & \hat{\Omega}_{2}^{(2)}(2), \tag{A.167}\\
a_{1-1}^{\prime}= & 2 M_{A}^{\frac{3}{2}} M_{B}^{\frac{3}{2}}\left\{-\hat{\Omega}_{12}^{(1)}(3)+4 \hat{\Omega}_{12}^{(1)}(2)-10 \hat{\Omega}_{12}^{(1)}(1)+2 \hat{\Omega}_{12}^{(2)}(2)\right\}, \tag{A.168}
\end{align*}
$$

respectively. Similarly, from the relations

$$
\begin{align*}
a_{0 q} & \equiv\left\{\boldsymbol{a}^{(0)}, \boldsymbol{a}^{(q)}\right\}, \tag{A.169}\\
& =x_{A}^{2}\left[\boldsymbol{a}_{1}^{(0)}, \boldsymbol{a}_{1}^{(q)}\right]_{A}+x_{A} x_{B}\left[\boldsymbol{a}_{1}^{(0)}+\boldsymbol{a}_{2}^{(0)}, \boldsymbol{a}_{1}^{(q)}+\boldsymbol{a}_{2}^{(q)}\right]_{A B}+x_{B}^{2}\left[\boldsymbol{a}_{2}^{(0)}, \boldsymbol{a}_{2}^{(q)}\right]_{B}, \tag{A.170}\\
& =x_{A} x_{B}\left\{\left[\boldsymbol{a}_{1}^{(0)}, \boldsymbol{a}_{1}^{(q)}+\boldsymbol{a}_{2}^{(q)}\right]_{A B}+\left[\boldsymbol{a}_{2}^{(0)}, \boldsymbol{a}_{1}^{(q)}+\boldsymbol{a}_{2}^{(q)}\right]_{A B}\right\}, \tag{A.171}\\
& =x_{A} x_{B}\left\{\frac{\rho_{2}}{\rho} M_{A}^{\frac{1}{2}}\left[\mathscr{C}_{A}, \boldsymbol{a}_{1}^{(q)}+\boldsymbol{a}_{2}^{(q)}\right]_{A B}-\frac{\rho_{1}}{\rho} M_{B}^{\frac{1}{2}}\left[\mathscr{C}_{B}, \boldsymbol{a}_{1}^{(q)}+\boldsymbol{a}_{2}^{(q)}\right]_{A B}\right\}, \tag{A.172}
\end{align*}
$$

and $\boldsymbol{a}_{1}^{(0)} \equiv \frac{M_{A}^{\frac{1}{2}} \rho_{B}}{\rho} \mathscr{C}_{A}, \boldsymbol{a}_{2}^{(0)} \equiv-\frac{M_{B}^{\frac{1}{2}} \rho_{A}}{\rho} \mathscr{C}_{B}$, the elements a_{01} and a_{0-1} become

$$
\begin{align*}
a_{01} & =x_{A} x_{B}\{\frac{\rho_{2}}{\rho} M_{A}^{\frac{1}{2}}\left[\mathscr{C}_{A}, \boldsymbol{a}_{1}^{(1)}\right]_{A B}-\frac{\rho_{1}}{\rho} \underbrace{M_{B}^{\frac{1}{2}}\left[\mathscr{C}_{B}, \boldsymbol{a}_{1}^{(1)}\right]_{A B}}_{-M_{A}^{\frac{1}{2}}\left[\mathscr{C}_{A}, a_{1}^{(1)}\right]_{A B}}\}, \tag{A.173}\\
& =x_{A} x_{B} M_{A}^{\frac{1}{2}}\left[\mathscr{C}_{A}, \boldsymbol{a}_{1}^{(1)}\right]_{A B}, \tag{A.174}\\
& =x_{A} x_{B} \underbrace{M_{A}^{\frac{1}{2}}\left[\mathscr{C}_{A}, S\left(\mathscr{C}_{A}^{2}\right) \mathscr{C}_{A}\right]_{A B}}_{a_{01}^{\prime}}, \tag{A.175}\\
a_{0-1} & =x_{A} x_{B}\{\frac{\rho_{2}}{\rho} \underbrace{M_{A}^{\frac{1}{2}}\left[\mathscr{C}_{A}, \boldsymbol{a}_{2}^{(-1)}\right]_{A B}}_{-M_{B}^{\frac{1}{2}}\left[\mathscr{C}_{B}, a_{2}^{(-1)}\right]_{A B}}-\frac{\rho_{1}}{\rho} M_{B}^{\frac{1}{2}}\left[\mathscr{C}_{B}, \boldsymbol{a}_{2}^{(-1)}\right]_{A B}\}, \tag{A.176}\\
& =-x_{A} x_{B} M_{B}^{\frac{1}{2}}\left[\mathscr{C}_{B}, a_{2}^{(-1)}\right]_{A B} \tag{A.177}\\
& =-x_{A} x_{B} \underbrace{M_{B}^{\frac{1}{2}} 1\left[\mathscr{C}_{B}, S\left(\mathscr{C}_{B}^{2}\right) \mathscr{C}_{B}\right]_{A B}}_{a_{0-1}^{\prime}} . \tag{A.178}
\end{align*}
$$

Here, the elements a_{01}^{\prime} and a_{0-1}^{\prime} defined as

$$
\begin{equation*}
a_{01}^{\prime}=M_{A}^{\frac{1}{2}}\left[\mathscr{C}_{A}, S\left(\mathscr{C}_{A}^{2}\right) \mathscr{C}_{A}\right]_{A B}, \quad a_{0-1}^{\prime}=M_{B}^{\frac{1}{2}}\left[\mathscr{C}_{B}, S\left(\mathscr{C}_{B}^{2}\right) \mathscr{C}_{B}\right]_{A B} \tag{A.179}
\end{equation*}
$$

can be written as

$$
\begin{align*}
a_{01}^{\prime} & =2 M_{A}^{\frac{1}{2}}\left(2 M_{B}^{2} \hat{\Omega}_{12}^{(1)}(1)-M_{B}^{2} \hat{\Omega}_{12}^{(1)}(2)\right) \tag{A.180}\\
a_{0-1}^{\prime} & =2 M_{B}^{\frac{1}{2}}\left(2 M_{A}^{2} \hat{\Omega}_{12}^{(1)}(1)-M_{A}^{2} \hat{\Omega}_{12}^{(1)}(2)\right) \tag{A.181}
\end{align*}
$$

respectively. As a result, the two dimensional expression in Sec. A. 1 is derived.

Appendix B

Derivations of the MD

Algorithms

B. 1 The Derivation of eqs.(3.12)-(3.16)

In the following derivation, we write the Langevin equation eq.(3.8) simply as

$$
\begin{align*}
\dot{r}(t) & =v(t) \tag{B.1}\\
\dot{v}(t) & =\frac{f(t)}{m}+\frac{\xi(t)}{m} \tag{B.2}\\
f(t) & \equiv-\frac{\partial \mathcal{H}(\boldsymbol{r}(t), \boldsymbol{p}(t), t)}{\partial r}-\gamma v(t) \tag{B.3}
\end{align*}
$$

where the Gaussian white noise $\xi(t)$ obeys

$$
\begin{equation*}
\langle\xi(t)\rangle=0, \quad\left\langle\xi(t) \xi\left(t^{\prime}\right)\right\rangle=2 \gamma k_{B} T \delta\left(t-t^{\prime}\right) \tag{B.4}
\end{equation*}
$$

By integrating for $[t, t+\delta t]$, eq.(B.2) becomes

$$
\begin{equation*}
v(t+\delta t)=v(t)+\frac{1}{m} \int_{t}^{t+\delta t} f\left(t^{\prime}\right) d t^{\prime}+\frac{1}{m} \int_{t}^{t+\delta t} \xi\left(t^{\prime}\right) d t^{\prime} \tag{B.5}
\end{equation*}
$$

By substituting the relation

$$
\begin{equation*}
f\left(t^{\prime}\right)=f\left(t_{0}\right)+f^{\prime}\left(t_{0}\right)\left(t^{\prime}-t_{0}\right)+\int_{t_{0}}^{t^{\prime}} d t^{\prime \prime} \int_{t_{0}}^{t^{\prime \prime}} f^{\prime \prime}\left(t^{\prime \prime \prime}\right) d t^{\prime \prime \prime} \tag{B.6}
\end{equation*}
$$

the second term of eq.(B.5) becomes

$$
\begin{align*}
\int_{t}^{t+\delta t} f\left(t^{\prime}\right) d t^{\prime} & =f(t) \delta t+f^{\prime}(t) \frac{\delta t^{2}}{2}+\int_{t}^{t+\delta t} d t^{\prime} \int_{t}^{t^{\prime}} d t^{\prime \prime} \int_{t}^{t^{\prime \prime}} f^{\prime \prime}\left(t^{\prime \prime \prime}\right) d t^{\prime \prime \prime} \tag{B.7}\\
& =f(t) \delta t+\frac{f(t+\delta t)-f(t)}{\delta t} \frac{\delta t^{2}}{2}+R_{v}(t) \tag{B.8}\\
& =\frac{f(t+\delta t)+f(t)}{2} \delta t+R_{v}(t) \tag{B.9}
\end{align*}
$$

where the remainder term $R_{v}(t)$ is defined as

$$
\begin{equation*}
R_{v}(t)=-\frac{\delta t}{2} \int_{t}^{t+\delta t} d t^{\prime} \int_{t}^{t^{\prime}} f^{\prime \prime}\left(t^{\prime \prime}\right) d t^{\prime \prime}+\int_{t}^{t+\delta t} d t^{\prime} \int_{t}^{t^{\prime}} d t^{\prime \prime} \int_{t}^{t^{\prime \prime}} f^{\prime \prime}\left(t^{\prime \prime \prime}\right) d t^{\prime \prime \prime} \tag{B.10}
\end{equation*}
$$

With eq.(B.9), we can write eq.(B.5) as

$$
\begin{equation*}
v(t+\delta t)=v(t)+\frac{f(t+\delta t)+f(t)}{2 m} \delta t+\frac{\Delta W_{1}(t)}{m}+\frac{R_{v}(t)}{m} \tag{B.11}
\end{equation*}
$$

where $\Delta W_{1}(t)$ denotes

$$
\begin{equation*}
\Delta W_{1}(t) \equiv \int_{t}^{t+\delta t} \xi\left(t^{\prime}\right) d t^{\prime} \tag{B.12}
\end{equation*}
$$

By expressing eq.(B.11) using $F(t)=-\frac{\partial \mathcal{H}}{\partial r}$, we can derive
$v(t+\delta t)=\frac{1}{1+\frac{\gamma \delta t}{2 m}}\left[\left(1-\frac{\gamma \delta t}{2 m}\right) v(t)+\frac{F(t+\delta t)+F(t)}{2 m} \delta t+\frac{\Delta W_{1}(t)}{m}\right]+\frac{R_{v}(t)}{m+\frac{\gamma \delta t}{2}}$.
If the function $f(t)$ is smooth, $R_{v}(t)$ can be evaluated as $R_{v}(t)=\mathcal{O}\left(\delta t^{3}\right)$. Therefore eq.(B.13) is approximately equal to eq.(3.13) when δt is sufficiently small.

Similarly, by integrating for $[t, t+\delta t]$, eq.(B.1) becomes

$$
\begin{align*}
r(t+\delta t) & =r(t)+\int_{t}^{t+\delta t} v\left(t^{\prime}\right) d t^{\prime} \tag{B.14}\\
& =r(t)+v(t) \delta t+\int_{t}^{t+\delta t} d t^{\prime} \int_{t}^{t^{\prime}} \dot{v}\left(t^{\prime \prime}\right) d t^{\prime \prime} \tag{B.15}
\end{align*}
$$

By substituting eq.(B.2)

$$
\begin{equation*}
\dot{v}\left(t^{\prime}\right)=\frac{f(t)}{m}+\int_{t}^{t^{\prime}} \frac{f^{\prime}\left(t^{\prime \prime}\right)}{m} d t^{\prime \prime}+\frac{\xi\left(t^{\prime}\right)}{m} \tag{B.16}
\end{equation*}
$$

eq.(B.15) becomes

$$
\begin{equation*}
r(t+\delta t)=r(t)+v(t) \delta t+\frac{f(t)}{m} \frac{\delta t^{2}}{2}+R_{r}(t)+\frac{\Delta W_{2}(t)}{m} \tag{B.17}
\end{equation*}
$$

where $\Delta W_{2}(t), R_{r}(t)$ are defined as

$$
\begin{align*}
\Delta W_{2}(t) & \equiv \int_{t}^{t+\delta t} d t^{\prime} \int_{t}^{t^{\prime}} \xi\left(t^{\prime \prime}\right) d t^{\prime \prime} \tag{B.18}\\
R_{r}(t) & \equiv \int_{t}^{t+\delta t} d t^{\prime} \int_{t}^{t^{\prime}} d t^{\prime \prime} \int_{t}^{t^{\prime \prime}} \frac{f^{\prime}\left(t^{\prime \prime \prime}\right)}{m} d t^{\prime \prime \prime} \tag{B.19}
\end{align*}
$$

respectively. By expressing eq.(B.17) using $F(t)=-\frac{\partial \mathcal{H}}{\partial r}$, we can write

$$
\begin{equation*}
r(t+\delta t)=r(t)+\left(1-\frac{\gamma}{2 m} \delta t\right) v(t) \delta t+\frac{F(t)}{2 m} \delta t^{2}+\frac{\Delta W_{2}(t)}{m}+R_{r}(t) \tag{B.20}
\end{equation*}
$$

With a similar discussion with $R_{v}(t)$, eq.(3.12) can be derived approximately from eq.(B.20), when δt is sufficiently small.
$\Delta W_{2}(t)$ and $\Delta W_{2}(t)$ are the Gaussian random numbers, since they are superpositions of the Gaussian noise ξ as seen in the definitions eqs.(B.12) and (B.18). Although they are continuous functions of time in general, it is convenient to discretize them so that

$$
\begin{equation*}
\Delta W_{1 n} \equiv \int_{t_{n}}^{t_{n+1}} \xi(t) d t, \quad \Delta W_{2 n} \equiv \int_{t_{n}}^{t_{n+1}} d t \int_{t_{n}}^{t} \xi(s) d s \tag{B.21}
\end{equation*}
$$

The time correlation of the $\Delta W_{1 n}$ and $\Delta W_{2 n}$ can be written using eq.(B.4) as

$$
\begin{align*}
& \left\langle\Delta W_{1 n}\right\rangle=\int_{t_{n}}^{t_{n+1}} \underbrace{\langle\xi(t)\rangle}_{=0} d t=0 . \tag{B.22}\\
& \left\langle\Delta W_{2 n}\right\rangle=\int_{t_{n}}^{t_{n+1}} d t \int_{t_{n}}^{t}\langle\xi(s)\rangle d s=0 . \tag{B.23}\\
& \left\langle\Delta W_{1 n} \Delta W_{1 n^{\prime}}\right\rangle=\int_{t_{n}}^{t_{n+1}} d t \int_{t_{n^{\prime}}}^{t_{n^{\prime}+1}} d t^{\prime}\left\langle\xi(t) \xi\left(t^{\prime}\right)\right\rangle \tag{B.24}\\
& =\delta_{n n^{\prime}} \int_{t_{n}}^{t_{n+1}} d t \int_{t_{n}}^{t_{n+1}} d t^{\prime} \underbrace{\left\langle\xi(t) \xi\left(t^{\prime}\right)\right\rangle}_{2 \gamma k_{B} T \delta\left(t-t^{\prime}\right)} \tag{B.25}\\
& =\delta_{n n^{\prime}} \int_{t_{n}}^{t_{n+1}} d t \cdot 2 \gamma k_{B} T \tag{B.26}\\
& =\delta_{n n^{\prime}} 2 \gamma k_{B} T \delta t, \quad\left(\delta t \equiv t_{n+1}-t_{n}\right) . \tag{B.27}\\
& \left\langle\Delta W_{2 n} \Delta W_{2 n^{\prime}}\right\rangle=\int_{t_{n}}^{t_{n+1}} d t \int_{t_{n}}^{t} d s \int_{t_{n^{\prime}}}^{t_{n^{\prime}+1}} d t^{\prime} \int_{t_{n^{\prime}}}^{t^{\prime}} d s^{\prime}\left\langle\xi(s) \xi\left(s^{\prime}\right)\right\rangle \tag{B.28}\\
& =\delta_{n n^{\prime}} \int_{t_{n}}^{t_{n+1}} d t \int_{t_{n}}^{t} d s \int_{t_{n}}^{t_{n+1}} d t^{\prime} \int_{t_{n}}^{t^{\prime}} d s^{\prime}\left\langle\xi(s) \xi\left(s^{\prime}\right)\right\rangle \tag{B.29}\\
& =\delta_{n n^{\prime}} 2 \gamma k_{B} T \int_{t_{n}}^{t_{n+1}} d t \int_{t_{n}}^{t} d s \int_{t_{n}}^{t_{n+1}} d t^{\prime} \theta\left(t^{\prime}-s\right) \tag{B.30}\\
& =\delta_{n n^{\prime}} 2 \gamma k_{B} T \int_{t_{n}}^{t_{n+1}} d t \int_{t_{n}}^{t} d s\left(t_{n+1}-s\right) \tag{B.31}\\
& =\delta_{n n^{\prime}} 2 \gamma k_{B} T \int_{t_{n}}^{t_{n+1}} d t \underbrace{\left[t_{n+1}\left(t-t_{n}\right)-\frac{t^{2}}{2}+\frac{t_{n}^{2}}{2}\right]}_{-\frac{1}{2}\left[\left(t-t_{n+1}\right)^{2}-\left(t_{n+1}-t_{n}\right)^{2}\right]} \tag{B.32}\\
& =\delta_{n n^{\prime}} 2 \gamma k_{B} T \frac{\delta t^{3}}{3} . \tag{B.33}
\end{align*}
$$

$$
\begin{align*}
\left\langle\Delta W_{1 n} \Delta W_{2 n^{\prime}}\right\rangle & =\int_{t_{n}}^{t_{n+1}} d t \int_{t_{n^{\prime}}}^{t_{n^{\prime}+1}} d t^{\prime} \int_{t_{n^{\prime}}}^{t^{\prime}} d s^{\prime}\left\langle\xi(t) \xi\left(s^{\prime}\right)\right\rangle \tag{B.34}\\
& =\delta_{n n^{\prime}} \int_{t_{n}}^{t_{n+1}} d t \int_{t_{n}}^{t_{n+1}} d t^{\prime} \int_{t_{n}}^{t^{\prime}} d s^{\prime}\left\langle\xi(t) \xi\left(s^{\prime}\right)\right\rangle \tag{B.35}\\
& =\delta_{n n^{\prime}} 2 \gamma k_{B} T \int_{t_{n}}^{t_{n+1}} d t \int_{t_{n}}^{t_{n+1}} d t^{\prime} \theta\left(t^{\prime}-t\right) \tag{B.36}\\
& =\delta_{n n^{\prime}} 2 \gamma k_{B} T \int_{t_{n}}^{t_{n+1}} d t\left(t_{n+1}-t\right) \tag{B.37}\\
& =\delta_{n n^{\prime}} 2 \gamma k_{B} T \frac{\delta t^{2}}{2} . \tag{B.38}
\end{align*}
$$

The normal random numbers obeying eqs.(B.22)-(B.38) can be created by expressing them as

$$
\begin{equation*}
\Delta W_{1}=\sqrt{2 \gamma k_{B} T} \delta t^{\frac{1}{2}} \eta, \quad \Delta W_{2}=\sqrt{2 \gamma k_{B} T} \frac{\delta t^{\frac{3}{2}}}{2}\left(\eta+\frac{\tilde{\eta}}{\sqrt{3}}\right) \tag{B.39}
\end{equation*}
$$

where $\eta, \tilde{\eta}$ are the standard normal random numbers.

B. 2 The Derivation of eq.(3.18)

Suppose the i-th particle obeys Lnagevin equation

$$
\begin{equation*}
\dot{\boldsymbol{r}}_{i}=\boldsymbol{v}_{i}, \quad m_{i} \dot{\boldsymbol{v}}_{i}=-\frac{\partial \mathcal{H}}{\partial \boldsymbol{r}_{i}}-\gamma \boldsymbol{v}_{i}+\boldsymbol{\xi}(t) \tag{B.40}
\end{equation*}
$$

then the "heat" $d Q_{i}$ which the i-th particle gains from the heat bath in the time δt is defined in stochastic energetics ${ }^{20), 21)}$ as

$$
\begin{equation*}
d Q_{i} \equiv\left(-\gamma \boldsymbol{v}_{i}(t)+\boldsymbol{\xi}(t)\right) \circ d \boldsymbol{r}_{i}(t) \tag{B.41}
\end{equation*}
$$

where the notation 'o' implies that the integral must calculated by Stratonovich integral, ${ }^{22)}$ which is defined as

$$
\begin{equation*}
\int_{t_{0}}^{t} f(s) \circ d B(s) \equiv \lim _{n \rightarrow \infty} \sum_{i=1}^{n} \frac{f\left(t_{i}+\Delta t_{i}\right)+f\left(t_{i}\right)}{2}\left(B\left(t_{i}+\Delta t_{i}\right)-B\left(t_{i}\right)\right) \tag{B.42}
\end{equation*}
$$

where $B(t)$ is a certain time dependent random variable, and $\left\{t_{i}\right\}$ are the discretized times defined as $t_{0}=t_{1}<t_{2}<\cdots<t_{n+1}=t$, and $t_{i+1} \equiv t_{i}+\Delta t_{i}$. Using eq.(B.41), δW_{i} defined in $\S 3.2 .2$ can be written as

$$
\begin{equation*}
\delta W_{i} \equiv \int_{t}^{t+\delta t}\left(-\gamma \boldsymbol{v}_{i}(s)+\boldsymbol{\xi}(s)\right) \circ d \boldsymbol{r}_{i}(s) \tag{B.43}
\end{equation*}
$$

or, by substituting eq.(B.40),

$$
\begin{equation*}
\delta W_{i} \equiv \int_{t}^{t+\delta t}\left(m_{i} \dot{\boldsymbol{v}}_{i}(s)-\boldsymbol{F}_{i}(s)\right) \circ d \boldsymbol{r}_{i}(s) \tag{B.44}
\end{equation*}
$$

where $\boldsymbol{F}_{i} \equiv-\frac{\partial \mathcal{H}}{\partial \boldsymbol{r}_{i}}$. If δt is very small, and $\boldsymbol{F}_{i}(s)$ is a sufficiently smooth function, the second term of eq.(B.44) can be approximated as

$$
\begin{align*}
& \int_{t}^{t+\delta t} \quad \boldsymbol{F}_{i}(s) \circ d \boldsymbol{r}_{i}(s) \\
& =\lim _{n \rightarrow \infty} \sum_{j=1}^{n}\left(\frac{\boldsymbol{F}_{i}\left(t_{j}+\Delta t_{j}\right)+\boldsymbol{F}_{i}\left(t_{j}\right)}{2}\right) \cdot\left(\boldsymbol{r}_{i}\left(t_{j}+\Delta t_{j}\right)-\boldsymbol{r}_{i}\left(t_{j}\right)\right) \\
& \quad\left(\text { where } t=t_{1}<t_{2}<\cdots<t_{n+1}=t+\delta t\right), \tag{B.45}
\end{align*}
$$

$$
\begin{equation*}
\simeq \frac{\boldsymbol{F}_{i}(t+\delta t)+\boldsymbol{F}_{i}(t)}{2} \cdot\left(\boldsymbol{r}_{i}(t+\delta t)-\boldsymbol{r}_{i}(t)\right) \tag{B.46}
\end{equation*}
$$

Since we can write, by the definition of Stratonovich integral eq.(B.42),

$$
\begin{align*}
\int_{t}^{t+\delta t} \ddot{x}(s) \circ d x(s)= & \lim _{n \rightarrow \infty} \sum_{j=1}^{n} \frac{\ddot{x}_{i}\left(t_{j}+\Delta t_{j}\right)+\ddot{x}_{i}\left(t_{j}\right)}{2}\left(x_{i}\left(t_{j}+\Delta t_{j}\right)-x_{i}\left(t_{j}\right)\right), \\
= & \lim _{\left\{\Delta t_{i}\right\} \rightarrow 0} \sum_{j=1}^{n} \frac{\ddot{x}_{i}\left(t_{j}\right)}{2} \frac{x_{i}\left(t_{j}+\Delta t_{j}\right)-x_{i}\left(t_{j}\right)}{\Delta t_{j}} \Delta t_{j} \tag{B.47}\\
& +\lim _{\left\{\Delta t_{i}\right\} \rightarrow 0} \sum_{j=1}^{n} \frac{\ddot{x}_{i}\left(t_{j}+\Delta t_{j}\right)}{2} \frac{x_{i}\left(t_{j}+\Delta t_{j}\right)-x_{i}\left(t_{j}\right)}{\Delta t_{j}} \Delta t_{j}, \tag{B.48}\\
= & \int_{t}^{t+\delta t} \frac{\ddot{x}(s)}{2} \dot{x}(s) d s+\int_{t}^{t+\delta t} \frac{\ddot{x}(s)}{2} \dot{x}(s) d s, \tag{B.49}\\
= & \int_{t}^{t+\delta t} \frac{d}{d s}\left(\frac{\dot{x}(s)}{2}\right)^{2} d s, \tag{B.50}\\
= & \frac{\dot{x}(t+\delta t)}{2}-\frac{\dot{x}(t)}{2} . \tag{B.51}
\end{align*}
$$

the first term of eq.(B.44) can be written as

$$
\begin{equation*}
\int_{t}^{t+\delta t} m_{i} \dot{\boldsymbol{v}}_{i}(s) \circ d \boldsymbol{r}_{i}(s)=\frac{m_{i}}{2} \boldsymbol{v}_{i}^{2}(t+\delta t)-\frac{m_{i}}{2} \boldsymbol{v}_{i}^{2}(t) \tag{B.52}
\end{equation*}
$$

Substituting into eq.(B.42), we can derive eq.(3.18),

$$
\begin{equation*}
\delta W_{i} \simeq \frac{m_{i}}{2} \boldsymbol{v}_{i}^{2}(t+\delta t)-\frac{m_{i}}{2} \boldsymbol{v}_{i}^{2}(t)-\frac{\boldsymbol{F}_{i}(t+\delta t)+\boldsymbol{F}_{i}(t)}{2} \cdot\left(\boldsymbol{r}_{i}(t+\delta t)-\boldsymbol{r}_{i}(t)\right) \tag{B.53}
\end{equation*}
$$

Bibliography

${ }^{1)}$ L. Dufour, Ann. der Physik, Ann. Phys, 148, 490 (1873).
${ }^{2)}$ L. Miller, Z. Naturforsch. 4a, 262 (1949).
${ }^{3)}$ K. E. Grew, and L. Thomas, Thermal Diffusion in Gases, (Cambridge, 1952).
${ }^{4)}$ S. Chapman, T. G. Cowling, The mathmatical theory of non-uniform gases, (3rd ed. Cambridge, 1990).
${ }^{5)}$ S. Chapman, Proc. Roy. Soc. A, 177, 37 (1940).
${ }^{6)}$ W. H. Furry, R. C. Jones, L. Onsager, Phys. Rev. 55, 1083 (1939).
${ }^{7)}$ L. Waldmann, Z. Phys, 121, 501 (1943).
${ }^{8)}$ L. Onsager, Phys. Rev. 37, 405 (1931).
${ }^{9)}$ H. B. Callen, Phys. Rev. 73, 1349 (1948).
${ }^{10)}$ D. M. Rowe, Thermoelectrics handbook, Macro to Nano, (Taylor \& Frances, 2006).
${ }^{11)}$ S. R. De Groot and P. Mazur, Non-Equilibrium Thermodynamics, (Dover Publications, 1962).
${ }^{12)}$ Rolf Haase, Thermodynamics of Irreversible Processes, (Addison-Wesley, 1969).
${ }^{13)}$ I. Prigogine, Introduction to Thermodynamics of Irreversible Processes, (New York, 1961).
${ }^{14)}$ Y. Yuge, N. Ito, and A. Shimizu, J. Phys. Soc. Jpn. 74, 1895 (2005).
${ }^{15)}$ S. Yukawa, J. Phys. Soc. Jpn. 78, 0230002 (2009).
${ }^{16)}$ W. H. Press, et.al., Numerical Recipes, (3rd ed. Cambridge, 2007).
${ }^{17)}$ D. Frenkel, B. Smit, Understanding molecular simulation; from algorithms to applications, (2nd.ed. Academic Press, 2002).
${ }^{18)}$ M. P. Allen, D. J. Tildesley, Computer simulation of liquids, (OXFORD SCIENCE PUBLICATIONS, 1987).
${ }^{19)}$ R. Zwanzig, Nonequilibrium statistical mechanics, (Oxford University Press, 2001)
${ }^{20)}$ K. Sekimoto, Stochastic Energetics: Lecture Notes in Physics,(Springer,2000).
${ }^{21)}$ K. Sekimoto, J. Phys. Soc. Jpn. 66, 1234 (1997).
${ }^{22)}$ C. W. Gardiner, Handbook of Stochastic Methods for Physics, Chemistry and the Natural Scienses, (Springer, 1985).
${ }^{23)}$ A. Kamimura, N. Ito, J. Phys. Soc. Jpn. 77, 125001 (2008).
${ }^{24)}$ W. H. Press, S. A. Teukolsky, W. T. Vetterling, B. F. Flannery, Numerical Recipes : The Art of Scientific Computing, (Cambridge University Press, 2007).
${ }^{25)}$ F. Curzon, B. Ahoborn, Am. J. Phys. 43, 22 (1975).

[^0]: ${ }^{1}$ Soret effect is the phenomena that the diffusion flow occurs when the temperature gradient is present in the gas mixture. This effect is well described by the linear nonreversible thermodynamics. Soret effect is utilized for the Isotope separation. ${ }^{6)}$

