“§') HOKKAIDO UNIVERSITY
~N X7
Title The edge of the wedge theorem for the sheaf of holomorphic functions of exponential type and Laplace hyperfunctions
Author(s) 00,00
Citation 0o0o0o0o.00@0)00113630
Issue Date 2014-03-25
DOI 10.14943/doctoral.k11363
Doc URL http://hdl.handle.net/2115/55565
Type theses (doctoral)
File Information Kohei_Umeta.pdf

®

Instructions for use

Hokkaido University Collection of Scholarly and Academic Papers : HUSCAP



https://eprints.lib.hokudai.ac.jp/dspace/about.en.jsp

The edge of the wedge theorem for the sheaf of holomorphic
functions of exponential type and Laplace hyperfunctions

(0DOoO000O0oDOoOUOU0UOoDooOUOUOOoOoDooOn)

Kohei Umeta

Department of Mathematics,
Hokkaido University, Japan

March 2014



The edge of the wedge theorem for the sheaf of
holomorphic functions of exponential type and
Laplace hyperfunctions

(Oo0DbOo0OOo0ooOobOooOoooobono
OoooDooog)

Kohei Umeta *

Abstract

We establish an edge of the wedge theorem for the sheaf of holomor-
phic functions with exponential growth at infinity. As an application,
we construct the sheaf of Laplace hyperfunctions, and we also study
several properties of this sheaf.

1 Introduction

In [7], H. Komatsu introduces Laplace hyperfunctions in one variable and
their Laplace transforms which play a part in solving both linear ordinary
differential equations and partial differential equations. Roughly speaking,
a Laplace hyperfunction is presented as a difference of boundary values of
holomorphic functions with exponential growth at infinity from a complex
domain to a real domain. By the theory of Laplace hyperfunctions, we can
treat Laplace transforms for functions without any growth conditions in a
framework of hyperfunctions.

To localize the notion of Laplace hyperfunctions is desired in order to
further develop the theory of Laplace hyperfunctions. For that purpose,
N. Honda and the author [1] established a vanishing theorem of cohomology
groups on a pseudoconvex open subset for holomorphic functions with expo-
nential growth at infinity. As its benefits, the sheaf of Laplace hyperfunctions
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in one variable was constructed. The aim of this article is to establish the
edge of the wedge theorem for the sheaf of holomorphic functions with expo-
nential growth at infinity. The edge of the wedge theorem plays an important
role in constructing the sheaf of Laplace hyperfunctions in several variables.

The plan of the paper is as follows.

In Section 2, we review the definition of Laplace hyperfunctions with com-
pact support and several fundamental theorems established by H. Komatsu.

In Section 3, we state the vanishing theorem on a pseudoconvex open sub-
set for holomorphic functions of exponential type. We first define the sheaf
O;‘p of holomorphic functions of exponential type on X. We also introduce
the regularity condition at infinity for an open subset which are needed for
the vanishing theorem. In subsection 3.4, we state the vanishing theorem.
To prove the vanishing theorem, we rely on the theory of L? estimates for the
0 operator in Hérmander [3]. The fundamental ideas and techniques were al-
ready established in the papers T. Kawai [6] and S. Saburi [17] which treated
several vanishing theorems for holomorphic functions with infra-exponential
growth. We refer the reader to [1] for the details. We also give the example of
the vanishing theorem does not holds without regularity condition at infinity.

In Section 4, we define the sheaf of Laplace hyperfunctions in one variable
with holomorphic parameters. We also show that locally integrable functions
of exponential type are regarded as Laplace hyperfunctions in subsection 4.2.

We need some preparations to establish the edge of the wedge theorem
for the sheaf of holomorphic functions of exponential type. In subsection
5.1, we first show the Martineau type theorem for holomorphic functions of
exponential type which is a key to prove the edge of the wedge theorem. We
show the edge of the wedge theorem in subsection 5.2.

In Section 6, using the result in Section 5, we construct the sheaf of
Laplace hyperfunctions on R? and show that real analytic functions of expo-
nential type can be regarded as Laplace hyperfunctions.

In Section 7, we prove the softness of the sheaf B%’ :

At the end of the introduction, the author would like to express the
deepest appreciation to Professor Naofumi Honda for his polite teaching and
generous support. The author also grateful to Professor Hikosaburo Komatsu
for the valuable lectures and advises.

2 Laplace hyperfunctions of one variable

At first, we briefly recall the definition of Laplace hyperfunctions with sup-
port in [a, o] (a € RU{+o0}) and several fundamental theorems established
by H.Komatsu ([7] - [13]).



We denote by D? the radial compactification CLIS oo of C. The topology
of D? is defined in the following way. A fundamental system of neighborhoods
of (0o € Sloo consists of all the sets given by

(1) {zeC,iEF,|zl>r}l_l{woo;w€F}

||

for a neighborhood I" of ¢ in S* and r > 0.

Now we introduce the notion of Laplace hyperfunctions with support in
la, oc]. For an open subset U C D?, the set Op;”(U) of holomorphic functions
of exponential type on U consists of a holomorphic function F'(z) on U N C
which satisfies, for any compact set K in U,

(2) |F(2)] < Cgetixll (ze KNQC)

with some positive constants C'x and Hy. We denote by Op:” the associated
sheaf on D? of the presheaf {OF:"(U)}y. It is easily seen that the restriction
of Op:” to C is nothing but the sheaf O¢ of holomorphic functions on C.

DEFINITION 2.1 ([7]). The space B[e;io] of Laplace hyperfunctions with sup-
port in [a, 00| is the quotient space
o O (0 \ [n, o)

O (D?)

Every element of Op:"(D? \ [a, oc]) that is extendable to a holomorphic
function of exponential type on D? is identified with 0. Each equivalence
class [F'(z)] represented by F' € Op(D? \ [a, 0o]) is considered to be a
Laplace hyperfunction f(z). The class f(z) = [F] € B, of an F(z) €

la, 0
Op’ (D* \ [a, o¢]) can be considered as a boundary value of F(z), and we
sometimes denote it by

(4) f(z) = F(z +i0) — F(z — i0).

It is an immediate consequence of this definition that the restriction of B[ef;o]

to R is isomorphic to the set of hyperfunctions on R with support in [a, 00).

THEOREM 2.2 ([11]). We have the natural isomorphism

O’ (V' \ [a, oc])
exp  ~ D )
(5) B[a, oo] T Og;p(‘/)

for any open neighborhood V' of [a, oo] in D2.
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Remember that the space Bj,, o) of ordinary hyperfunctions with support
in [a, 00) is defined by
Oc(C\ [a, 0))

(6) Bia, ) := Oc(C) :

Hence the restrictions Op"(D? \ [a, ¢]) = Oc¢(C \ [a, 00)) and Op(D?)
— O¢(C) induce the canonical morphism p : BF;ZO} — Bla, ), for which we
have the followings.

THEOREM 2.3 ([7]). The morphism p: B;" = Bla o0 is surjective.

[a, o0]

Since every ordinary hyperfunction with support in [a, co) can be ex-
tended to a Laplace hyperfunction by the above theorem, we have

exp

(7) B[a, 00) ~ [a, c0]

ReXp
By
Here BE’;’} denotes the set of Laplace hyperfunctions with support in {oo}.
We give the definition of Laplace transforms and inverse Laplace trans-
forms for Laplace hyperfunctions.

~

DEFINITION 2.4 ([7]). The Laplace transform f(X\) of a Laplace hyperfunction
f(x) = [F] € B,Y, is defined by the integral

~

0 fovi= [ P
c
where the path C' of the integration is composed of a ray from e*®oo(—m/2

< a <0) to a point c < a and a ray from c to ePoo(0 < B < 7/2).

It follows from Pdlya’s theorem ([16]) that the Laplace transform with
origin at ¢ € C

9) me(A) = /00 e Mm(z)dz

of an m(z) € Op;(D?) is a holomorphic function outside a convex compact

~

set. Hence the Laplace transform f(\) does not depend on a choice of F.

THEOREM 2.5 ([7]). The Laplace transformation L is an isomorphism of
linear spaces

(10) L B — LB

la, 0] la,o0]?



where £B 1;0 is the space of all holomorphic functions ]?(A) of exponential

type deﬁned on a neighborhood Q0 of the semi-circle {€¥;|0] < m/2} in D?
which satisfies

| YR
(11) lim log| flpe)l < —acosf, 0] <m/2.

p—00 P

For ]?( A) € LB || the inverse image L] is given by

[a, o]

I Sy

where A is a fixed point in N C and the path of the integration is taken in
QncC.

3 The vanishing theorem for holomorphic func-
tions of exponential type

The purpose of the section is to review the vanishing theorem for cohomol-
ogy groups on a pseudoconvex open subset with coefficients in the sheaf of
holomorphic functions with exponential growth at infinity. All the proofs for
the theorems in this section are given in [1].

3.1 Sheaf of holomorphic functions of exponential type
on X

Let n € N. We first introduce the radial compactification D*"* of C™.

DEFINITION 3.1. We denote by D*" the radial compactification C™ L1 .S*" oo
of C", where S**~1 is the real (2n — 1)-dimensional unit sphere. Let D be a
closed unit ball in C™ which is considered as a real 2n-dimensional topological
manifold with the boundary S*"~1, and let p : D — D> be the bijection
defined by

z
1 =[]

cCn it zc D
p(z) =
z€ S loo, if z€ 0D

Then D* is equipped with the topology so that p becomes a topological iso-
morphism.



Note that any closed subset in D?" is compact.

Let m be a non-negative integer and X := C"*™. We denote by X
the partial radial compactification D** x C™ of C**™, and we also denote
by X. the closed subset X \ X in X. Let p; : X = D> x C™ — D™
(resp. ps : X=D"xC" — C™) be the canonical projection to the first
(resp. second) space. A family of fundamental neighborhoods of a point
(20, wo) € X C X consists of

(13) Be(z0, wo) = {(z,w) € X; |z — 20| <€, |w—wp| <€}

for € > 0, and that of (zp, wy) € X consists of a product of an open cone
and an open ball given by

(14) G(T, wp) := <{z eC 2| >r = € r} U Foo)

|2
1
X {wE(Cm; |w — wol <_}a
r

where 7 > 0 and I' runs through open neighborhoods of z; in S**~loo.
Let Ox be the sheaf of holomorphic functions on X. We define the sheaf
of holomorphic functions of exponential type on X.

DEFINITION 3.2. Let ) be an open subset in X. The set O (2) of holomor-
phic functions of exponential type on ) consists of a holomorphic function
f(z,w) on QN X which satisfies, for any compact set K in Q,

(15) |f(z,w)| < Cgetixll ((z,w) e KNX)

with some positive constants C'x and Hx. We denote by Oi?p the associated
sheaf on X of the presheaf {07 (D) }a-

For any open subset 2 C X, we can take an exhausting family {Q}, of
Q) satisfying the conditions below.

1. Q. is an open subset of €2, and the union of € is equal to €.
2. Q. is a compact set and Q, C Uy (k=1,2,...).
3. Each Q4 is a finite union of open subsets given by either (13) or (14).

Then f € OFP(Q) if and only if the estimate (15) holds with K = Q4

(k =1,2,...). In particular, if Q C X, then each Q is bounded in X and
the estimate (15) is always satisfied. Hence we see that the restriction of
OL* to X is nothing but the sheaf Ox of holomorphic functions on X.
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3.2 Soft resolution for the sheaf (’)?;fp

We review a soft resolution for the sheaf O?p.

DEFINITION 3.3. For an open subset Q C X, we denote by G(Q) the set
of real valued continuous functions ¢(z,w) on QN X that satisfy, for any
compact set K in €,

(16) p(z,w) < ak + B2 (z,w) € KNX)
with some positive constants ax and P .

Clearly G(Q2) is a directed set with respect to the partial order f < ¢
— f(z,w) < g(z,w) for (z,w) € QN X.

DEFINITION 3.4. Let Q be an open subset in X. We denote by LE(9) the set
of locally square integrable functions f on QN X satisfying

(17) / £ (2 w)Pe-?EW A < 4oo
QNx

for some ¢ € G(Q).

We denote by Lé’(p () the set of (p, q)-forms on QN X with coefficients
in LZ(Q). Moreover we set

fé(ﬂ@(Q) - {f c Lé’(p’Q)(Q); 5f c L(Qj(p’q"'l)(Q)} .

The presheaf { LZ ()}, (resp. {Lé’(p’q) (€2 }Q and {Eé“”” (Q) }Q) forms a sheaf

on X. We denote it by £2 (resp. £é’(p ) and ﬁé’(p ). Note that these sheaves
are soft.

PROPOSITION 3.5 ([1]). We have the following soft resolution for the sheaf
07" on X.

(18) 0 OUPo 200 B 20D F D g

Hence we see that flabby dim O;’?p < dim X + 1.



3.3 Regularity condition at oo for an open subset in X

We introduce the regularity condition at co for an open subset in X which
are needed for the vanishing theorem for the sheaf (’);’fp.

DEFINITION 3.6 ([1]). For a subset A in X, we define the set clos’ (A) C Xoo
as follows. A point (z, w) € Xo belongs to closl (A) if there ewist points
{(2zk, wg) tren in AN X that satisfy the following two conditions.

1. (2, wp) = (2, w) in X.

2. %—)1@51{;%0@.

We set NL(A) := X \ clos’ (X \ A). An open subset U in X is said to be
reqular at oo if NL(U) = U N X, is satisfied.

Note that, for subsets A;, As, ..., A, in X, we have
NL(Ain---NA) =NL(A)N---NNL(A).

Hence a finite intersection of open subsets which are regular at oo is again
regular at co. We give a sufficient condition for which an open subset becomes
regular at co. Let A be a subset in X, and we set

(19)  NE(A) = {(¢ w) € Xoi (¢, w) € ReCx {w]) N A} € Xo,

where R ¢ is the real half line in C" with direction ¢ and the closure is taken
in X. For subsets Ay, As, ..., Ay in X, we have

(20) NE(A U---UA) = NE(A)U---UNE(A).

LEMMA 3.7 ([1]). Let U be an open subset in X. If NE(U) = UN X holds,
then U is reqular at co.

A finite union of open subsets which satisfy the condition given in the
above lemma is also regular at co by (20). We give some examples of open
subsets which are regular at co.

EXAMPLE 3.8 ([1]). Let U be the open set G,.(I',0)UU where U is a bounded
open subset in X and the cone G.(I', 0) was defined by (14) with r > 0

and T' being an open subset in S*™~ L. Then U is reqular at oo as we have

NL(U) = UnN Xo. In particular, D* and D? \ [a, +o00] (a € [—o00,00)) are
reqular at co.

ExaMpLE 3.9 ([1]). For the set U = D*\ {1,2,3,4,...,+00} we have
NL(U) = Sloo \ {+o00}. Hence U is reqular at oo. However, for the set
U :=D?\{1,2,4,8,16,...,+00}, U is not reqular because of N1 (U) = Stoc.
Note that we have NL(U) = S'oco for the both cases.



3.4 Vanishing theorem for the sheaf C’);(p

Before stating the vanishing theorem, we prepare some notations. For a
subset A in X, we denote by dist(p, A) the distance between a point p and
A, ie., dist(p, A) = infoea|p — ¢q|. If A is empty, we set dist(p, A) = +o0.
We also define, for ¢ = (z,w) € X,

distpen(q, A) = dist(q, AN p; ' (p2(q))) = « ig)feA\z — ¢

For an open subset © C X, we define the function by

R 1 diStDQn (p, X \ Q)
) vl = min {5, S

} for p=(z,w) € X,
and we set
(22)
1
Q= {p = (z,w) € QN X; dist(p, X \ Q) > ¢, Jw| < —} (e >0).
€
Note that i(p) is lower semicontinuous (i.e., {p € X; ¢(p) > ¢} is open
for ¢ € R) and continuous with respect to the variables z, however, it is

not necessarily continuous with respect to the variables w. Furthermore, if
pi((X\Q)Npyt(we)) (wy € C™) is a bounded subset in C", then ¥(z, wp) is

identically equal to = for a sufficiently large z. Hence the values of ¥ (z, w)

for a large z are independent of the shape of {2 in a bounded region.

THEOREM 3.10 ([1]). Assume the following conditions 1. and 2.
1. QN X s pseudoconver in X and () is reqular at co.

2. At a point in QNX sufficiently close to z = 0o the ¥(z,w) is continuous
and uniformly continuous with respect to the variables w, that s, for
any € > 0, there exist 6. > 0 and R, > 0 for which ¢(z,w) is continuous
on Qe g = QN A{|z] > R} and it satisfies

[0(z, w) — (2, w)| <e, ((z, w), (2, w') € Qe g, |w—w'| <d).

Then we have

(23) HYQ, 0) =0 (k#0).



REMARK 3.11.  4) Let U (resp. W) be an open subset in D?" (resp. C™).
IfUNC™ and W are pseudoconver in C* and C™ respectively, and if U
is reqular at oo in D?", then U x W automatically satisfies the condition
2. in the theorem. Therefore we have

HYU x W, 0) =0 (k#0).

i1) Ifn =1, the vanishing theorem still holds for an open subset U x W C
D? x C™ of product type without the reqularity of U at co. However, if
n is greater than one, one cannot expect the vanishing theorem anymore
without the reqularity condition.

We now give examples.

EXAMPLE 3.12 ([1]). Assumen = m = 1,i.e., X = C,xC, and X = D2xC,,.
Let f: X — C be the holomorphic map defined by f(z,w) = zw. Set

Q:={CeC (| <1}U{¢eCarg(| <1} CC,
Q= (f*l(Q)>o c X.
Here the closure and the interior are taken in X. To understand the shape of

Q clearly, the intersection of € and the complex line {(z,w) € X; w = wy}
for wy € C,, is described below.

1 o
_Q - ]D27 (U) 7£ 0)7

(@0 py () = (“’0 > °
Cc ]D)Q, (U)o = 0)

Then 2 satisfies all the conditions of the theorem, and hence, we have

k expy _
HE(Q, OF") =0 (k #0).
EXAMPLE 3.13 ([1]). Assume n = 2 and m = 0, i.e, X = (C%ZLZQ) and
X =D* Set
7r
U= {(21, 2) € X; arg(=1)| < T, |l < |l }
Q= (U)"\ {pe} C X,

where po, denotes the point (1,0,0,0)c0 in S3c0 C D*. Note that QNX = U
is pseudoconvex in X, while ) is not regular at co. In this case, we have
H'(Q, (’);(p) # 0 which is shown below, and the vanishing theorem does not
hold for €2.
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Let Y = Cl x CL and Y = D2 x C!, and let us consider the holomorphic
map f: X \ {z1 =0} — Y defined by f(z1, 22) = (zl, ﬁ) Set
1

0= {<z, w) € Y; |arg(2)] < % | < 1},
(T) \ aw} x f0h) ¥

Here ¢, = (1,0)00 € S'oo € D?. Note that  is an open subset of non-
product type in D? x C. As f gives a biholomorphic map between U and U
which extends to a continuous isomorphism between €2 and €2, we have

k exp\ __ k(O ex
HH(Q, O%) = HY(Q, O3%), (ke N),

QO -

Hence it suffices to prove H' (S, OFF) # 0. Set

Vi (fecimer= 1)) cot W penim<ny,

Noticing ((V \ {gso}) X W)U (V x (W \ {0})) = Q, we have the long exact
sequence
(24) OZP((V \{gee}) x W) & OZF(V x (W {0}))

= OZP(V\ {gso}) x (WN\A{0})) — H'(2, OF®).
Suppose H'(, OF*) = 0. Then ¢ becomes surjective. It is well known that

there exists a holomorphlc function g(z) in O (V' \ {¢so}) which does not
belong to Op;” (V') (for existence of such a holomorphic function, see [15]).

Set h(z,w) = % Then h(z,w) belongs to OZP((V'\ {g}) x (W {0})).

As ¢ is surjective, there exist hy(z,w) € OFP((V\{goo}) x W) and hy(z,w) €
OFP(V x (W {0})) satistying h = hy + hy. Clearly we have

omy/—1g(z) = /Ch(z,w)dw = /C(hl(z,w) + ho(z,w))dw

= / ho(z, w)dw,
c

where C' is a small circle turning around the origin in W. Since
hs(z,w)dw belongs to Op:"(V'), we get g(z) € O (V'), which contradicts

c
the choice of g(z), i.e., g(z) ¢ Op:’(V). Therefore we have obtained the
conclusion H*(Q, (’);’fp) HY(Q, OZ") # 0.
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4 Laplace hyperfunctions of one variable with
holomorphic parameters

Thanks to Theorem 3.10, we can construct the sheaf of Laplace hyperfunc-
tions of one variable with holomorphic parameters. In this section, we give
its definition and we construct the sheaf morphism from the sheaf of lo-
cally integrable functions with exponential growth to the sheaf of Laplace

hyperfunctions. From now on, we consider the case of dimension n = 1.
Let N = R x C™(m > 0), and let N = R x C™ be the closure of N in
X =D? x C™.

4.1 Sheaf of Laplace hyperfunctions on N
The following fact is shown by Theorem 3.10.

THEOREM 4.1 ([1]). The closed set R in D? is purely 1- codimensional rel-

ative to the sheaf Opy. More generally, the closed set N in X is purely 1-

codimensional relative to the sheaf O?p, i.e., %Nk((’);‘p) =0 fork #1.

DEFINITION 4.2. The sheaf BOT" of Laplace hyperfunctions on N is defined
by

(25) BOZP .= 4 0%%) © wy.

Here Jfﬁl((?‘;?p) is the first derived sheaf of O;(p with support in N, the
Ly denotes the constant sheaf on N having stalk Z and wy denotes the
orientation sheaf %ﬂﬁl(Zx) on N. FEspecially, in the case of m=0, we define
the sheaf B%(pof Laplace hyperfunctions of one variable on R by

(26) B2 = 5 (Op7) ® w.

Since the sheaf #Q(OFF) is zero by Theorem 4.1, we find that the
presheaf U — Hy_ (U, OF) is a sheaf, and is equal to BOT®. Hence
the global sections of the sheaf BOL® can be written in terms of cohomology
groups. For an open set  C R and a pseudoconvex open subset 7' C C™,
by taking a complex neighborhood V of Q in D?, we have

O ((V\ Q) x T)

ex; _ 1 ex —
(27)  BOSP(QxT) = Hy,p(V x T,0%) = o T)

12



According to the excision theorem, we may replace V' by any complex open
set containing (2. Similarly we have

O (D?\ [a, odl)

™ 1REXPY __
(28) F[a, o] (R7 Bﬁ ) - OE});p(DQ)

Hence the set Bﬁff;o} defined by H. Komatsu coincides with I, (R, B2?) in
our framework. Note that the restriction of B2 to R is isomorphic to the
sheaf Bg of ordinary hyperfunctions because of O3’ |c = Oc.

Now we state the theorem for the flabbiness and the unique continuation
property of BOG®.

THEOREM 4.3 ([1]). Let ; C Q9 C R and Wy, C Wy C C™ be open subsets.
Then we have

i) If Wi is a Stein open subset in C™, then BOL"(Qa xW1) — BOZP(Q) %
W) is surjective, i.e., the sheaf Bo%p s flabby with respect to the variable
of hyperfunction.

ii) If Wi and Wy be non-empty connected open subsets in C™, then
BOTY (1 x Wa) — BOLP (4 x Wh) s injective, i.e., the sheaf BOL" has a
unique continuation property with respect to variables of holomorphic param-
eters.

4.2 Embedding of locally integrable functions with ex-
ponential growth

We construct the sheaf morphism from the sheaf of locally integrable func-
tions with exponential growth to the sheaf of Laplace hyperfunctions and
show its injectivity.

DEFINITION 4.4. Let Q be an open subset in R. The set L;P(Q) of locally
integrable functions of exponential type on €1 consists of a locally integrable
function f(x) on QMR which satisfies, for any compact set K in €,

(29) /K @ e < o0

with a constant Hx. We denote by LY the associated sheaf on R of the
presheaf { L2 () }a.

loc

Note that, if Q@ C R, the estimate (29) is always satisfied. Hence the
restriction of £;” to R is isomorphic to the sheaf £ . of locally integrable

functions on R.
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Let us construct a sheaf morphism ¢ from the sheaf £)7” to the sheaf
BZ™®. Tt suffices to give a morphism ¢ kR, L) — Tk (R, BZ*) for any

loc
compact set K in R. Moreover, by considering a partition of support, it is
enough to give morphisms for any K C [0, oo} or K C [—o0, 0].
Let K be a compact set in [0, oo] or [—o0, 0] and let f € T'g(R, £P)
satisfying (29) for a constant Hy. For an arbitrary constant A > Hy, we set

Al

27r\/_/ ft—z

As f(z)e~“l"l is integrable on R, the functions F'* give a holomorphic func-
tions of exponential type on D\ K. If K C [0, o], we define the morphism
g Tr(R, £7P) — Tk(R, BZ®) by uk(f) = [FF], where F'™ is given by

(30). Note that 1k (f) does not depend on a choice of A. As a matter of fact,
we have the following equation

(30) F*(z2) = dt.

Alt]

zw\ﬁ/ ft—z dt = 27TF/ 1) t—z
= QW\/Tl /_Oo f(t)dt /AB e Ut=2) gy

for constants B > A > Hg and the right hand side of (31) is an entire
function of exponential type. Hence tx is well-defined and clearly satisfies
supp i (f) Csupp f. If K C [—o0, 0], we define vi by tx(f) = [F~] in the
similar way as the case of K in [0, co]. Note that, for any compact set K in
R, we have

(32) [Frl == [Qm/_/ t—z]

in Tx(R, Bg) and ') (R, L2P) = T ooy (R, L7F) = 0. Therefore we can

loc loc

e~ Blt|
dt

(31)

define the morphism ¢x for any compact set K in R (using a partition of sup-
port, if necessary). We define the morphism ¢ : ['.(R, L) — T'.(R, BZ™P)

loc

by {tx}x. Hence i, is extended to the sheaf morphlsm L LTP BEXP

loc
uniquely. The details are as follows; let U be an open subset in R. For a
locally integrable function of exponential type f € L2P(U), we first decom-
pose it into a locally finite sum of locally integrable functions of exponential

type with compact support:

(33) F=> h

14



Then the morphism ¢y : L13°(U) — BZP(U) is defined by

loc

(34) w(f) = elf).

A

This is defined independently of a choice of a locally finite decomposition
(33) of [ € L3P (D).
Let us show that the sheaf morphism ¢ : L7 — BZ" is injective. For that

purpose, we see that tx is injective for any compact K in [0, oo] or [—o0, 0].

PROPOSITION 4.5 ([19]). Let K be a compact set in [0, oo] or [-o0, 0]. Let
[ €Tk(R, L3P and let F*(z) be the function defined by (30). Then F*(z+

loc

V—1e) — F*(z — \/—1¢) converge to f(x) almost everywhere as ¢ — 0.

By Proposition 4.5, the morphism ¢, satisfies

suppte(f) =suppf,  f e TR, LJP).

Hence we get the following theorem.

exp exp - - - .
oo — Bz s injective and we can

as Laplace hyperfunctions.

THEOREM 4.6. The sheaf morphism ¢ : L

regard functions in L0

We also see that the Laplace transformation as a Laplace hyperfunction
and an ordinary function coincide on the space of locally integrable functions
with exponential growth.

THEOREM 4.7 ([19]). Let K be a compact subset in [0, co| and let f €

Tk (R, LTP). The Laplace transform o(f) of the Laplace hyperfunction i(f)
coincides with the ordinary Laplace transform of f .

5 The edge of the wedge theorem for the

sheaf OB};% of holomorphic functions of ex-

ponential type

The purpose of this section is to establish the edge of the wedge theorem
for the sheaf of holomorphic functions of exponential type. The theorem is
stated in subsection 5.2.

15



5.1 Martineau type theorem for holomorphic functions
of exponential type

Before going into the proof for the theorem, we prepare several theorems.

LEMMA 5.1. Let S C R be a closed set and V. C C™(m > 0) a Stein open
set. Assume that K1, ..., K,_1 are locally closed sets in C. Then we have

(35) Héxm...mn_lxv(ﬂ)z x C" ' x V, 05 i) =0 (k>n+1).

Proof. Take arbitrary open neighborhoods U of S in D? and W; (1 < i <

n — 1) of K; in C, respectively. Set

(36)
T:=UxW; x---xW,_1 xV,
To:=(U\NS)x Wy x - x Wy x--- X Wy_y XV,
T,=UxWyx--x(W;\K;) X xW,.1xV, (j=1,...,n—1).

Then the families of those sets {T, To, ..., T,—1} and {7, ..., T,,—1} give
an open covering of the pair (T, T\ (S x Ky x --- x K,_1 x V)) of open
sets. It follows from Theorem 3.10 and Remark 3.11 that these open sets
compose a Leray covering of the pair with respect to the sheaf OJ%));I;«:nflxv
of holomorphic functions of exponential type on D?* x C*! x V. Hence we
can compute the cohomology groups (35) by this covering, and the result
immediately comes from the fact that the number of open subsets of the

covering is n + 1. O]

The following Martineau type theorem for holomorphic functions of ex-
ponential type plays an important role in proving the edge of the wedge

theorem for the sheaf O3, .

THEOREM 5.2. (The Martineau type theorem for holomorphic functions of
exponential type)

Let S = [a, ](a € R) be a compact set in R. Let K = K; x --- x K, 1 C
L = Ly x - X Ly, be a pair of closed polydisc in C*1, and let W C
V. C C™(m > 0) be a pair of non-empty connected Stein domains. Then the
restriction

(37)

HE, ooy (D*XC XV, OFE i) = Heypoo (DX CV W, OpE ot y)

1S injective.
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Proof. Let (z, w, t) be the coordinates of C, x C*~! x C™. Take an open
sector U containing S in D? whose opening is sufficiently small. Set
(38)
Ts kv :=(U\S)x (C\Ky) x---x(C\Kj)x - x(C\ Ku—1) XV,
Té?}(’v =Ux (C\K;)x - x(C\K;) x---x (C\ K,_1) xV,
Té'j)KV =(U\S)Xx (C\K;)x++xCx-+x(C\K,1)xV,
(G=1,...,n—1).
For S x K x V', by taking the relative open covering introduced in the proof
for Lemma 5.1, we obtain the representation

I'(T. , 0P
ngKxV(D2 X Cn_l X V, Oz ) = ( SEY D2xC 1><V)

D2xCr—1xV 1 G) exp :
jG—BO F(TS, K,V» O]szcnflxv)

The sets Ts  w and TS(J )L’W are also defined by (38) where K and V' are
replaced by L and W, respectively. Then the canonical morphism (37) coin-
cides with

exp exp
F(TS,K,Va O]D)QX(C"*IXV) F(TS,L7W7 O]D)2><(C"*1><V)
L n—1 n—1

jajo F(Tg)K,V’ OB};};Cnflxv) jEEO F(Té‘?)[/,W’ O]?))};px(cnflxv)

(39)

Let us prove that the morphism ¢ is injective. For an element F(z, w, t) in

exp
F<TS,K7V7 OD2><(C”71><V>7 we deﬁl’le

B 1 F(z, p, t)
(40) G(Z7 o t) - (271'\/__1)“71 /YIXN.X’Yn—l (:ul - wl) s (Nn—l - wn—1>d,u7

where each v; is an integral path in C\ K which encircles K; with clock
direction such that the variable w; is outside v; . Note that G(z, w, ) is a
holomorphic functions of exponential type on T x v by deformation of the
integral path. Now let us take an integral path ; in C\ L; which encircles
Ly with clock direction such that w;, and ~; are inside 7;. Then we have
(41)
1 F(z, wy, oy .y fhn—1, t)
Gz, w, t) = —/ du
(27TV _1)n—2 Yo X XY —1 (HQ - w2) s (H’n—l - wn—l)
1 F(z, p, t
TN S / (2, p, 1) .
(277\/ _1)n7 F1 X2 X X Yn—1 (:ul - wl) ce (;un—l - wn—l)

We denote by Hi(z, w, t) the second term on the right hand side of (41). Note
that Hy(z, w, t) is a holomorphic function of exponential type on Tb(’,l)K,V by

17



Figure 1.

deformation of the integral path. Let us take integral paths 7; (7 > 2) in
C\ L, in the similar way to ;. Applying the similar deformations for the

first term on the right hand side of (41) in the order of 7o, ..., ¥,_1, We
obtain
n—1
G(Z7 w, t) = F(Zv w, t) + ZHJ'(Z’ w, t)? H € F(Té’]K Vo O]]e]));px(cn 1><V)
j=1

If we could prove that G(z, w, t) can be extended to Té?}m, as a holomor-
phic functions of exponential type when «(F) = 0 in Hg, ;. (D?* x C* x
W, O, cno14y), then we get the injectivity of the morphism ¢.

Suppose that F' satisfies «(F) = 0in ngLXw(]DZXC" IxW, Oy ).

D2xCr—1xV
Then there exist functions {F};}; C S > F( S L ws Opaxcn— 1><V) with F =

> Fjon Ts pw. Now we take an arbitrary point (z w, t) in T kv and
closed sectors T and I as Figure 1. Let us denote by D; and ﬁj the interior
of v; and 7;, respectively. Take a relatively compact open subset Z in V
satisfying W N Z # . We may assume w € (Dy \ Dy) x -+ X (Dp_1 \ Dy_1)
and t € Z. By Cauchy’s integral formula we have

(42)

CUJt th
G(z, w, t) = 27r\/_/ d 27r\/_/ d(

for a sufficiently large A. Let G,;(z, w, t) (j = 0, 1) be the functions given
by the integrals on the right hand side of (42) corresponding to I and I in
that order. For w and t belonging to a relatively compact open subset in
(C" '\ L)YN((Dy\ Dy) X -+ X (Dp_y \ Dn_1)) and W N Z, respectively, we

18



have
(43)
Go(z, w, t)
—A¢

W— Z/ [ = R

d¢du

_ / / (C K, ) dcdp.
(27T V _1)71 T Y1 XX Yn—1 (//Ll - wl) AR (,U/’nfl - w?’l*l)(g - Z)
Since e~4¢ compensates the exponential growth of Fy at infinity, we have
(44)
FO Ca /1'7 AC

w—/ e

“*FO 0(C, p, e

27T\/_/+F0 (-2

dg
co=v=10 FO Ca 22 ) A
27r¢_ (-

This gives Go(z, w, t) = 0 for (w, t) € (ﬁl\Dl) X X (Dy_1\ Dp_1) XV by
the unique continuation property of a holomorphic function, and we obtain
G(z, w, t) = —G1(z, w, t). As we can take any paths I', I, v; and ; (1 <
Jj < n—1), wesee that G(z, w, t) can be extended to Tg’)}g v as a holomorphic

functions of exponential type. O

¢ = 0.

By the Martineau type theorem we obtain the following results.

LEMMA 5.3. Let S = [a, 0o)(a € R) be a compact set in R. Let K =
Ky x -+ x K,_1 be a closed polydisc in C*', and let V be a Stein domain
in C™. Then

45 HE xC XV, 0% i) =0 k #mn).
Sx ><V D2xC xV

Proof. 1t follows from Lemma 5.1 that (45) holds for £ > n+1. Let us prove
that the k-th cohomology group vanishes for £ < n — 1. We use induction
on the dimension n. When n = 1, the assertion to be proved is

HY oy (D* x V, Opi” ) = Lsxy(D* X V, Opi ) = 0,

which is nothing but the uniqueness of an analytic continuation for a usual
holomorphic function. Assume that, for (n — 2)-dimensional cylindrical com-
pact sets, (45) is proved for any Stein domain V. We consider an (n — 1)-
dimensional cylindrical compact set K = K; X --- x K,,_1. For simplicity,
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set K = K; X -+ x K, 5. Forthepair S x K xV Cc Sx K xC xV, we
obtain the following exact sequence of cohomology groups.

(46)
o= Hi e,y (D2 x CH 1V Opzcn-1xy)
= HE, gy @ X €2 X Cx V, O e y)
BN ngkx(C\Kn_l)xv(DQ X C" 2 x (C\ Kyo1) X V, O cni ) =

For 0 < k£ < n — 2, the following cohomology groups vanish by the induction
hypothesis:

H]SCXRX(CXVGDZ X CniQ x C x V’ O]%));px(?"—lxv) = 0’
k 2 n—2 ex
HSXIN{X((C\anl)XV(D xC X (C \ K"_l) xV, O]D)pr(cnflxv) = 0.

Note that the spaces of parameters are CxV and (C\ K,,_;) x V, respectively.
Therefore (45) is proved for 0 < k < n — 2. According to Theorem 5.2, for
k = mn — 1 the morphism ¢ in (46) is injective. Therefore, together with the
fact that the preceding term vanishes, we conclude that H g;}( (D xCrtx
v, OB’;‘;Cn,lxv) = 0. [

COROLLARY 5.4. Let S = [a, ](a € R) be a compact set in R. Let K =
Kix-+-xK, 1 CL=Lyx-x L, be a pair of closed polydisc in C**,
and let V-.C C™(m > 0) be a Stein domain. Then

(A7) Hiwmuoxv(D? x C*7H x V, OF )=0  (k#n).

D2xCn—1xV

Proof. Consider the fundamental long exact sequence of cohomology groups
T H§XLXV(D2 X Cnil X Va O]%));I;(Cn—lxv>

— ]LI"S“X(L\K)XV(ID2 x C" ' x V, 052 et )

k+1 2 n—1 €xp
— HSXKXV(D xC X V> ODZXCn—IXv)

k+1 2 n—1 exp
— HSXLXV(D x C X V’ O]D)QX(C”—1><V> e

(48)

for the pair S x K x V € S x L x V. For 0 < k <n — 2, we have (47) by
Lemma 5.3, and for k& > n 4+ 1, this follows from Lemma 5.1. Finally, for
k = n — 1, this follows from the facts that the preceding term Hg;ixv(]DQ X

C" ! x V, Op2 cn-1,,,) vanishes, and that the morphism
(49) HZ gy (D* x C" P X V, O i)

— HE (D x C XV, 052 i y)
is injective by Theorem 5.2. Hence we have the assertion. ]
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This result can be generalized to the pair of two analytic polyhedra by
making use of Oka’s embedding. Now we recall the definition of the analytic
polyhedron and prepare two lemmas to prove the similar theorem for analytic
polyhedra.

DEFINITION 5.5. Let U be a domain. A compact subset D in U defined by

(50) {zeCY | Fi(2) <1, ..., | Fx(2) |[< 1},
with some finitely many Fy, ..., Fx € Oc¢n is called an analytic polyhedron
of U.

LEMMA 5.6. ([4], Corollary5.3.7) Let 0 <= F < Lo L1 < -+« L, < 0
be an exact sequence of sheaves on a topological space on X, and S C X a
locally closed set. If

HE(X, L;) =0 (r+ji<k<N+j j=0,...,n),

then
HYX,F)=0 (r<k<N).

LEMMA 5.7. ([18], Proposition B.4.2) Let M be a module, and let ¢, ..., ¢,
be a family of commuting endomorphism of M. Let M be a Koszul complex
associated to the sequence (¢1, ..., ¢p). Assume for each 1 < j < p, ¢; is

ingective as an endomorphism of the module y . Then H/ (M) =0
Y iy $i(M
forj #p, and HP(M') >~ ————.
i1 Gi(M)
THEOREM 5.8. Let S = [a, oo](a € R) be a compact set in R. Let K and L

be two compact analytic polyhedra in C*1, and let V be a Stein domain in
C™. Then

(51)  Hy(ps)xv (D x C*1 x V, OFF )=0 (0<k<n-—1).

D2xCr—1xV

Proof. For simplicity, we omit the symbol V' for the space of parameters. By
replacing K by K N L, we can assume K C L. Hence, by the definition of the
analytic polyhedron, there are holomorphic functions Fy, ..., Fis, ..., Fj on
C"! such that L and K can be expressed as

L:{wGC”_1;|E(w)|§1, i=1, 2k;}

and
K:{wecn—l; F(w)| <1, i=1, Qkk}
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Since L is bounded, we assume that L is contained in the polydisc of the
radius r. Further, choose a real number

R::max{l, max  sup|Fj(w)], T}.

K +1<j<k weL

Let us consider the closed embedding ¥ : D? x C~! — D? x Cfﬁ DFF defined
by
U(z, w) = (2, w, Fi(w), ..., Fy(w), ..., Fp(w)).

We also define L and K in C=D+F by

i [wi [ R, ..., fwa| < R,
L=< (w, @) eCh Dk, |y <1, ..., |dy <1,
| Wy [S R, [ [ R
and
~ |w1|§R7"-7|wn—1|§R,
K:: (w)u})ec(n*l)+k’ |U~}1|§1,7|a}kl|S1,
|1Dk/+1 |S 1a7|wk|§1

Noticing S x (L \ K) = ¥~1(S x (L \ K)), we have

(52)
n— ex ~ n— k ex
H gy (D X C 71 OF8 eoa) = HE ;2 (D2 5 COTVFE 0,008 ).

On the other hand, for the sheaf OFS° .., of holomorphic functions of

exponential type on D? x C*~ D¢ we have, from Corollary 5.4,
(53) Hy, gy (D* x COTVHOTF () =0 (0<p<(n—1)+k)
Hence, if there exists an inverse resolution of the sheaf W,Op" .-, by the
sheaf OF5° u_1x Of length &, it follows from Lemma 5.6 that (51) holds.
Let ¢1, ..., ¢p be a family of commuting endomorphisms of
[(D? x Cn—1+k, O3 cn-n) defined by

0;(f) = [z, w, w)(w; — Fj(w)) (1<j<k),
and let ey, ..., e; be the canonical basis of ZF. For an ordered subset [ :=
(i1, ..., 15) of {1, ..., k}, we define the element of /J\(Zk) by ef :==e;, A=+ A
e;;. We set

D2 xC(n—1)+k>?

M9 = M@ AZF), M:=0%
Z
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and we define the differential d from M) to MUY by letting, for an element
ferin MW,

(fer) == zqsz ciner

The commutativity of the operators gbj clearly implies d o d = 0. Hence we
obtain a Koszul complex M associated to the sequence (¢1, ..., ¢k):

(54) 0— MO 4 pm L k),

Let us show that this complex is an inverse resolution of the sheaf W, O ..,

by the sheaf OF° 1. of length k. For the proof of this fact, we need the
following lemma

LEMMA 5.9. For each 1 < j <k and p € D?* x C"=YV+* the morphism ¢; is
M,

injective as an endomorphism of the module j_l—p.

Zi:1 sz‘(Mp)

Proof. We first prove the lemma in the case of p € U(D? x CM~Y+k), Sup-

M
pose that f € M, satisfies ¢;(f) = 0 in j_l—p. Then there exist
. i=1 ¢i(Mp)
g1, - -, gj—1 € M, such that ¢;(f) = 23;11 ®i(g;) holds. Therefore we have

(55) f(z, w0, w)(w; = F(w)) = Zgi(z, w, w)(w; — Fi(w))

on a neighborhood of p. Setting w; = F;(w) in (55), we obtain

(56) > gi(z, w, b, ..., Wiy, Fi(w), Wy, ..., ) (@ — Fi(w)) =0,

For1 <:<j5—1, weput

hl’<2', w, ’lI)) — gi(Z7 w, 11)) - gi<z7 w, wlv e Ilé}] )17 E?(w)a ijrlJ ey wk)

Then h; belongs to M, as p € ¥(D? x (C(" D+k) . By (55) and (56), we have

Z¢l(h1(zv w, 'LD)) = Zhl(z7 w, ’LZJ)(’LZJZ - Fl(w))
B 1gz(z,w,w)w -
B i—1 w; — F](w)( ' E( ))
Fw w)y = Bw)
B w; — Fj(w) S )



on a neighborhood of p. This implies that ¢; is injective as an endomorphism
M

Z ¢i(My)
of ¢; in the casep ¢ W(D?x C=V+k) Tfp; # Fj(w) holds on a neighborhood
of p, by (55) we have

for each p € W(D? x C"~1+k) Next, we show the injectivity

i1 gi(z, w, W)

-E e r = T (M),

i=1

(57) [z w, w)
Otherwise, as is shown in the case of p € ¥U(D? x C"~V*F) we see the

injectivity of ¢;. Therefore the claim of the lemma holds on D?x C(*~V+k [

Now we prove that the complex M is the inverse resolution of the sheaf
V.02 oo by the sheaf OF5° (1), of length k.

LEMMA 5.10. The following complez of the sheaves on D? x C"~D+k js exact:

(58) 0= MO L M0 5 L pME 5 w05 0.

Proof. Let us show that for each p € D? x C»~D+¥ the sequence of the stalks

(59) 0— MO 4 MO 5 &M S (0,088 1), =0
is exact. Note that we have
0 (p ¢ U(D? x Cl=VHh)),
(¥ Opesn-i)p = exp 2 1)+k
(Oymexcn-1y)p (p € U(D* x Cr=DHh)).

By Lemma 5.9, we can apply Lemma 5.7 to the complex M,. Hence we
obtain

0, (J # k),

H'(M,) =
(M) Coker (M, k1—>M ) ~ % (j=F).

Therefore the exactness of the sequence (59) have been obtained for p ¢
U(D? x C=V+F) For p € U(D? x C=1+k) | the restriction mapping p :
M, — (Oex%)gxcn 1y)p turns out to be the substitution w = (Fi(w), ..., Fy(w)).
Hence pis surJectlve Furthermore, by considering the Taylor expansion at p,

24



its kernel consists of the germs of type S gilz, w, W) (w;— Fy(w)). We thus
obtain the exact sequence 0 — Y%  ¢;(M,) — M, — (Oypexcn-1))p = 0.

M
This implies that # is isomorphic to (OF %)QX(C,L 1)) . Therefore
i=1 Pi\p
we get the exactness of (59) on D? x C=D+k, O
This completes the proof of Theorem 5.8. n

5.2 The edge of the wedge theorem for the sheaf of
holomorphic functions of exponential type

Now we are ready to show the edge of the wedge theorem for the sheaf Opy,.

THEOREM 5.11. The closed set R* C D** is purely n-codimensional relative
to the sheaf O 5

]D)2n;
(60) O =0 ()
Proof. It suffices to compute the stalks of 25 (Op)) at pae = (400, 0, ..., 0)

€ S?" 1o, as R™ is purely n-codimensional relatlve to the sheaf Ocn of holo-
morphic functions on C". We set

1
U, = {(21,...,zn) e C";|arg z1| <, |z1] > = |zi] <e€lz1] (2<i< n)},

A =U_ cDh™

for any € > 0. Here the closure and interior are taken in D?". Note that
{A}es0 is a fundamental system of neighborhoods of p,, in D?". Hence we
have

Higr(Op oo = H, ign(Ae, Op).

]D)Qn ]D)2n
€l0
We also set
1
Vo= {ze@;\argz| <€, |z| > —},
€

We = {(wy, ..., wmq) €EC" Hwy] <e (1<i<n-—1)},
B.:=V. xW.cD?*xC"!

for any € > 0. Then {B}.so is a fundamental system of neighborhoods
of ¢oo := ((4+00,0), 0) € Stoo x C* ! in D? x C"!. Let us consider the
holomorphic map @ : C" \ {z; = 0} — C x C"! defined by

2 2
D(z1, ...y 2p) = (zl, —2,...,—n).

21 21
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Then ® gives a biholomorphic map between U, and V, x W,. As S?" !\ {1, =
0} and S! x R?"~2 are isomorphic by the correspondence

T T2

> x3 Lon
) y Tt )
Vari+ a3 Ja? + xl Vi + a3 N

(.ﬁEl, o, ..., [IZ’Qn) —> (

= = - (1, 2) X (1)
VIR VIR I+ ) <
the map ® extends to a continuous isomorphism between A, and B.. There-
fore we obtain

(61) %i( ]%));E)l)poo = %k ( bes )QOO'

Rn RxRn—1 D2xCn—1

Hence it suffices to prove that the right hand side of (61) vanishes for k # n.
Let us take two points a, b satisfying e ' < a < b < oo. We put S; = (7', 0]
and Sy = [a, oo]. We have the long exact sequence of cohomology groups

I H(kSlmSﬂX(WeﬂR"*l)(BEa Oﬂe));px(cn—l)
(62) — j:ela 2H§jX(WeﬂR”—1)(‘B€7 Og;pxcnfl)

exp

— H(kSlUSQ)X(WeﬂRn_l)(BH ODZchfl) —

Noticing that R™ is purely n-codimensional relative to the sheaf O¢» and the
sheaf 735 (Ocn) of hyperfunctions is flabby, that we obtain

H(IfslﬁSQ)X(WgﬂR7L71)(BE? O]?))};px(cnfl) = O (k 7é n)?

(63) c o O
HS1><(WENR”*1)(Bea O]D)QX(C”—1> =0 (k §£ n)

Hence, by the long exact sequence of cohomology groups (62), this implies

(64) H(kSlUSz)X(WEF\IRn*l)(Bﬂ O]%));px(c"—l) = Hggx(WeﬁRnfl)(Be’ O](]B));Z(C”_1>

(k#n—1,n).
We also have the following exact sequence by (62).
0= Hy . rmny(Bes Opcnt)
(65) — H(nS:LlJSQ)X(WéﬂR”—l)(Bﬂ Opsyen-t)

— F(S1QSQ)X(W€><R"71)(C"‘7 RTL(O(C”))
_L> Fslx(WeﬂR"*)(Cna RZ(OC")) D [{gg><(W5MR"—1)(B67 O](Ia;z(cnfl)'
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As the morphism ¢ in (65) is injective, if Hg ! (Be, Ops- on-1) van-

x (WenRn—1)
ishes, we have H?S:LlJSg)X(WEﬁR”—l)(BG’ Opeen1) = 0. Therefore, together
with (64), If we could prove that
(66) HE,  w.rmn1y(D? X We, Op i) =0 (k #n)

for a complex neighborhood W, of the origin in C*~!, then the assertion
follows. For k > n + 1, (66) holds by Lemma 5.1. Hence let us show that
(66) holds for 0 < k < n — 1. Using the entire function on C"!

few) = € — (Wi + -+ +wy_y)
for € > 0, we put

L. = {w cC" ' lwi| <e .. wny] < e} AR,

(67) M, = L. N {Re(f.(w)) < 0}.

Note that L. and M, are closed analytic polyhedra because R can be ex-
pressed as R = {w € C; eV~ < 1, |eV~1| < 1} and Re(f.(w)) < 0 is
equivalent to |e/<)| < 1. Now

W, = {(wi, ..., wy1) €C"Y5 |wy| <€, Re(fe(w)) > 0}
is clearly a complex neighborhood of the origin in C*~! and

L\ M. =W.nR" L.

Hence by Theorem 5.11 , we obtain

(68)
HSzX(VVeﬁR”*U(D2 X Cn_l’ OJ?»);I;@%) = HEQ><(Le\Me)<D2 X Cn_la Ou%ipxcnfl)

=0 (0<k<n-—1).
This completes the proof. n

THEOREM 5.12. The boundary OR"™ of R™ in D*" is purely n-codimensional
relative to the sheaf Oy, , i.e.,

(69) Hpn(055) =0, (k#n)
Proof. 1t suffices to compute the stalks of . (Opah) at pe = (+00, 0, ..., 0)

€ OR" C D?". Let us consider the fundamental system {A.}.o of neigh-
borhoods of the point p,, the one {B.}.so of neighborhoods of the point
Ioo = ((400, 0), 0) € Stoo x C*! and the holomorphic map ® in the proof
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of Theorem 5.11. As ® gives a biholomorphic map between S" tooN A, and
(S%o0 x R"1) N B., we have

%ﬁ@" (O]?D);E )poo = %]E‘QXR”_I (OI%));pX(Cnfl )qOO
exp )

- hgﬂ H?oo}x(WéﬂRn—l)(Bm O]D)QX(Cnfl
€l0

(70)

Hence it follows from (66) that the purely n-codimensionality of OR" relative

to the sheaf Op;). O

6 Sheaf of Laplace hyperfunctions in several
variables

As an application of Theorem 5.11 established in the previous section, we
construct cohomologically the sheaf of Laplace hyperfunctions on R”. In this
section, we give the sheaf of Laplace hyperfunctions on R” and we show that
the sheaf of real analytic functions of exponential type is a subsheaf of the
sheaf of Laplace hyperfunctions.

DEFINITION 6.1. The sheaf of Laplace hyperfunctions on R™ is defined by

(71) B = An(O5) © wi

R

where Zgw denotes the constant sheaf on R™ having stalk 7 and wew denotes

the orientation sheaf HZ(Zpzn) on R~,

Since the sheaves %Rin((?g;i) are zero for K < n by Theorem 5.11, we

find that the presheaf U — Hz- (U, Ops.) is a sheaf, and is equal to B

Hence the global sections of the sheaf B%’ of Laplace hyperfunctions can be

written in terms of cohomology groups. For an open set Q C R”, by taking
a complex neighborhood U of €2 in D?*, we have

P(Q, B2P) = HA(U, O5%).

Note that the above representation does not depend on a choice of the com-
plex neighborhood U'.

DEFINITION 6.2. Let i : R" — D" be the natural embedding. The sheaf of
real analytic functions of exponential type on R™ is defined by

(72) AZP = 1O = O g
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We show that real analytic functions of exponential type are regarded as
Laplace hyperfunctions. There is a natural morphism
iOF @ wgw|—n] — i'O5R ~ i 'R (O5sh).
Using the shift functor [n] and the functor (-) ® wgw, we get the sheaf mor-
phism ¢ : AZP — B2, We denote by Ag~ the sheaf of real analytic functions
on R™. Let j : R® — R” be a natural embedding, and let ¢ : Agn — Bgn.
Now we consider the commutative diagram of sheaf morphisms:

exp ¢ exp
A —— B

o' l lﬁ .
j*AR“ % .]* B]R”

As a and 7,9 are injective, we have the following theorem.

THEOREM 6.3. The sheaf morphism AZY — BZP is injective and we can
regard real analytic functions of exponential type as Laplace hyperfunctions.

THEOREM 6.4. The sheaf morphism B]%F — J«Bgn s surjective.

Proof. Let © C R™ be an open set, and let U C D** be a complex neighbor-
hood of €. Consider the following exact sequence of cohomology groups:

e (U, Op2) = Hiuno (U, Opsn) = Hidl o (U, Opsh).

R?NQ

It follows from Theorem 5.12 that we have HgﬁJmQ(U, Open) = 0. Hence, by

taking inductive limit with respect to © C R™ of the above exact sequence
of cohomology groups, we have the following exact sequence of sheaves
B2 — juBrn — 0.

This implies that the morphism B%’ — 7.Bgrn is surjective. ]

7 Softness of the sheaf B%f

In this section we prove the softness of the sheaf B%’ . For that purpose we
prepare some propositions.

LEMMA 7.1. Let S be a locally closed set in R™. Then we have

(73) HED™, O5%) =0 (k#n,n+1).
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Proof. For 0 < k <n — 1, Theorem 5.11 implies
HE(D?, Op) = Ts(D*, A5 (053)) = 0.

On the other hand, for k¥ > n+ 2, (73) follows from that flabby dim Op3) <
n—+ 1. O

We introduce some notations which are needed for the subsequent propo-
sition. For 1 < j < n, we define the holomorphic map ®; : C* \ {z; =0} —
C x C* ! by

21 Zj—1 Zj+1 Zn,
(bj(zl""7zj"">zn)_(Zj?f>"'?f7f7""f .
“j i~ <

DEFINITION 7.2. Let K C R" and S C R be closed sets, and let Ly, -+, L,
be closed sets in C. We say that K is a ®;-closed subset in R" if ®; gives
a biholomorphic map between K NR™ and (SN R) x Ly X -+ x L,_1 which
extends to a continuous isomorphism between K and S X Ly X -+ X L,_1.

PROPOSITION 7.3. Let OR" be a boundary of R™ in D?**. Then we have
(74) Hlpn(D™, Oph) =0 (k#n).

Proof. For k # n,n + 1, taking Lemma 7.1 into account, we have (74). Let

us show HHH(D?*, OSP) = 0. For a sufficiently large €, we set
AR D y larg

K ={(z, ..., z2) € C"Jarg 2| < ¢, Rez; > ¢, || <elzg| (K#7)},
K ={(21, .., za) € C";Jargz; — 7| <6, Rez; < —e, 2] < ¢elz| (kK #J)},
Li=K;NoR" (x=+, -, 1<j<n).

Here the closer 7]* is taken in D?*. Then the family of those closed sets
{LT, Ly, ..., L}, L,} gives a closed covering of OR™. As ®; gives a con-

tinuous isomorphism between L7 and {£oo} x {|z1] < e} x -+ x {|z;1] <
e}  {lz5s1] < €} x -+ x {Jza] < e}, we have

(75> Hi;t (]D)Zn’ O]%)};Ii) = Hf:l:oo}xﬂxl|§e}><-~~><{|acn|§5}<D2 X Cn_la O]]e])};pxcn—l)
(1<j<n, keZ).

Then the right hand side of (75) vanishes for £ > n + 1 by Lemma 5.1.

In particular, we obtain HZI (D, Opa) = 0. So we use induction on the
i

number 2n of closed sets L} comprising JR" to see HpE (D, O = 0.
It suffices to prove that H"{' (D>, O%F) = 0 from HZII(]D%, Opn) =0
1

LiuLf D2n
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D2n
cohomology groups

c o HPTH(D™, Op) & Hy (D™, OFF)

and HTH(D*", Opyt) = 0. We consider the following exact sequence of
2

(76) — ffz;éL;(H)%l,CDEﬁi)

(P, O) -
As L7 N L§ is ®;-closed or ®,-closed, we obtain HZ;%L; (D", Opa) = 0 by
Lemma 5.1 . This implies IL]’L"”;[SJL2+ (D", Ogih) = 0. O

As an immediate consequence of the proposition, we obtain the following
corollary.

COROLLARY 7.4. Let L be a finite union of ®;-closed subsets in R". Then
we have

(77) Hi(D™, Og) =0  (k#n).

By Theorem 5.12 given in the previous section, we obtain the following
proposition.

PROPOSITION 7.5. The sheaf Hp, (Open) is soft on OR™.

Proof. Let us show that every section on an arbitrary closed set K C OR™ can
be extended to the whole space, i.e., the restriction map I'(OR", 4. (Opsn )
— (K, k. (Opsn)) is surjective. As OR™ is a paracompact Hausdorff
topological space, we have

D(K, Agpn (Opsn)) = lim T, Agn (Opan)).-
OOk
Here the limit is taken with respect to all open subsets on JR™ containing
K. Therefore every element of I'(K, 5. (Ops,)) can be first extended to
an open neighborhood €2 of K on OR". Let us take a finite closed covering
of OR™ \ © which satisfies the condition of Corollary 7.4. Note that, by
Theorem 5.12, we have the following representation of the global sections of

Hohn (Opsn) on an open set Q :
DO, A (O2)) = HAU, O3,

where U is an arbitrary open neighborhood of Q in D?". Let us consider the
long exact sequence of cohomology groups

(78) -+ = Hpga (D*", OF2) — Hg(U, O%) — Hig o(D*", Oph) — -+

Then Hgﬂg\ﬂ(DQ", Ops») vanishes by Corollary 7.4. This implies that the
sheaf F5}. (Opsn) is soft on OR™. O
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THEOREM 7.6. The sheaf #2(Og3h) is soft on R™.

Proof. Let j : R® — R» be the embedding. For an open set Q@ C R» and
a complex neighborhood U C D?", we consider the long exact sequence of
cohomology groups

o= Hporo(U, O5) — HE

e o(U. O5) = Hinno(U, Oph) — -+

for the pair OR" N Q C RN Q. It follows from the flabbiness of the sheaf of
usually hyperfunctions and Theorem 5.12 that we have

Hgnoo(U, O53) =0, Hiding(U, OF3%) = 0.

Hence, by taking inductive limit with respect to  C R" of the above long
exact sequence of cohomology groups, we have the following exact sequence
of sheaves

0 = Hpn (Opan) — B — jBra — 0.

Since the sheaves 5. (Ops,) and j.Brn are soft, the softness of B%)
follows from the above exact sequence. O
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