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The edge of the wedge theorem for the sheaf of
holomorphic functions of exponential type and

Laplace hyperfunctions
(指数型正則関数の層に対する楔の刃の定理

とラプラス超関数)

Kohei Umeta ∗

Abstract

We establish an edge of the wedge theorem for the sheaf of holomor-
phic functions with exponential growth at infinity. As an application,
we construct the sheaf of Laplace hyperfunctions, and we also study
several properties of this sheaf.

1 Introduction

In [7], H. Komatsu introduces Laplace hyperfunctions in one variable and
their Laplace transforms which play a part in solving both linear ordinary
differential equations and partial differential equations. Roughly speaking,
a Laplace hyperfunction is presented as a difference of boundary values of
holomorphic functions with exponential growth at infinity from a complex
domain to a real domain. By the theory of Laplace hyperfunctions, we can
treat Laplace transforms for functions without any growth conditions in a
framework of hyperfunctions.

To localize the notion of Laplace hyperfunctions is desired in order to
further develop the theory of Laplace hyperfunctions. For that purpose,
N. Honda and the author [1] established a vanishing theorem of cohomology
groups on a pseudoconvex open subset for holomorphic functions with expo-
nential growth at infinity. As its benefits, the sheaf of Laplace hyperfunctions
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in one variable was constructed. The aim of this article is to establish the
edge of the wedge theorem for the sheaf of holomorphic functions with expo-
nential growth at infinity. The edge of the wedge theorem plays an important
role in constructing the sheaf of Laplace hyperfunctions in several variables.

The plan of the paper is as follows.
In Section 2, we review the definition of Laplace hyperfunctions with com-

pact support and several fundamental theorems established by H. Komatsu.
In Section 3, we state the vanishing theorem on a pseudoconvex open sub-

set for holomorphic functions of exponential type. We first define the sheaf
Oexp

X̂
of holomorphic functions of exponential type on X̂. We also introduce

the regularity condition at infinity for an open subset which are needed for
the vanishing theorem. In subsection 3.4, we state the vanishing theorem.
To prove the vanishing theorem, we rely on the theory of L2 estimates for the
∂ operator in Hörmander [3]. The fundamental ideas and techniques were al-
ready established in the papers T. Kawai [6] and S. Saburi [17] which treated
several vanishing theorems for holomorphic functions with infra-exponential
growth. We refer the reader to [1] for the details. We also give the example of
the vanishing theorem does not holds without regularity condition at infinity.

In Section 4, we define the sheaf of Laplace hyperfunctions in one variable
with holomorphic parameters. We also show that locally integrable functions
of exponential type are regarded as Laplace hyperfunctions in subsection 4.2.

We need some preparations to establish the edge of the wedge theorem
for the sheaf of holomorphic functions of exponential type. In subsection
5.1, we first show the Martineau type theorem for holomorphic functions of
exponential type which is a key to prove the edge of the wedge theorem. We
show the edge of the wedge theorem in subsection 5.2.

In Section 6, using the result in Section 5, we construct the sheaf of
Laplace hyperfunctions on Rn and show that real analytic functions of expo-
nential type can be regarded as Laplace hyperfunctions.

In Section 7, we prove the softness of the sheaf Bexp

Rn .
At the end of the introduction, the author would like to express the

deepest appreciation to Professor Naofumi Honda for his polite teaching and
generous support. The author also grateful to Professor Hikosaburo Komatsu
for the valuable lectures and advises.

2 Laplace hyperfunctions of one variable

At first, we briefly recall the definition of Laplace hyperfunctions with sup-
port in [a, ∞] (a ∈ R⊔{+∞}) and several fundamental theorems established
by H.Komatsu ([7] - [13]).
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We denote by D2 the radial compactification C⊔S1∞ of C. The topology
of D2 is defined in the following way. A fundamental system of neighborhoods
of ξ∞ ∈ S1∞ consists of all the sets given by

(1)

{
z ∈ C ,

z

|z|
∈ Γ, |z| > r

}
⊔ {w∞;w ∈ Γ}

for a neighborhood Γ of ξ in S1 and r > 0.
Now we introduce the notion of Laplace hyperfunctions with support in

[a, ∞]. For an open subset U ⊂ D2, the set Oexp
D2 (U) of holomorphic functions

of exponential type on U consists of a holomorphic function F (z) on U ∩ C
which satisfies, for any compact set K in U ,

(2) |F (z)| ≤ CKe
HK |z| (z ∈ K ∩ C)

with some positive constants CK and HK . We denote by Oexp
D2 the associated

sheaf on D2 of the presheaf {Oexp
D2 (U)}U . It is easily seen that the restriction

of Oexp
D2 to C is nothing but the sheaf OC of holomorphic functions on C.

Definition 2.1 ([7]). The space Bexp
[a,∞] of Laplace hyperfunctions with sup-

port in [a, ∞] is the quotient space

(3)
Oexp

D2 (D2 \ [a, ∞])

Oexp
D2 (D2)

.

Every element of Oexp
D2 (D2 \ [a, ∞]) that is extendable to a holomorphic

function of exponential type on D2 is identified with 0. Each equivalence
class [F (z)] represented by F ∈ Oexp

D2 (D2 \ [a, ∞]) is considered to be a
Laplace hyperfunction f(x). The class f(x) = [F ] ∈ Bexp

[a,∞] of an F (z) ∈
Oexp

D2 (D2 \ [a, ∞]) can be considered as a boundary value of F (z), and we
sometimes denote it by

(4) f(x) = F (x+ i0)− F (x− i0).

It is an immediate consequence of this definition that the restriction of Bexp
[a,∞]

to R is isomorphic to the set of hyperfunctions on R with support in [a, ∞).

Theorem 2.2 ([11]). We have the natural isomorphism

(5) Bexp
[a,∞]

∼=
Oexp

D2 (V \ [a, ∞])

Oexp
D2 (V )

for any open neighborhood V of [a, ∞] in D2.
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Remember that the space B[a,∞) of ordinary hyperfunctions with support
in [a, ∞) is defined by

(6) B[a,∞) :=
OC(C \ [a, ∞))

OC(C)
.

Hence the restrictions Oexp
D2 (D2 \ [a, ∞]) → OC(C \ [a, ∞)) and Oexp

D2 (D2)
→ OC(C) induce the canonical morphism ρ : Bexp

[a,∞] → B[a,∞), for which we
have the followings.

Theorem 2.3 ([7]). The morphism ρ : Bexp
[a,∞] → B[a,∞) is surjective.

Since every ordinary hyperfunction with support in [a, ∞) can be ex-
tended to a Laplace hyperfunction by the above theorem, we have

(7) B[a,∞)
∼=
Bexp
[a,∞]

Bexp
{∞}

.

Here Bexp
{∞} denotes the set of Laplace hyperfunctions with support in {∞}.

We give the definition of Laplace transforms and inverse Laplace trans-
forms for Laplace hyperfunctions.

Definition 2.4 ([7]). The Laplace transform f̂(λ) of a Laplace hyperfunction
f(x) = [F ] ∈ Bexp

[a,∞] is defined by the integral

(8) f̂(λ) :=

∫
C

e−λzF (z)dz,

where the path C of the integration is composed of a ray from eiα∞(−π/2
< α < 0) to a point c < a and a ray from c to eiβ∞(0 < β < π/2).

It follows from Pólya’s theorem ([16]) that the Laplace transform with
origin at c ∈ C

(9) m̂c(λ) =

∫ ∞

c

e−λzm(z)dz

of an m(z) ∈ Oexp
D2 (D2) is a holomorphic function outside a convex compact

set. Hence the Laplace transform f̂(λ) does not depend on a choice of F .

Theorem 2.5 ([7]). The Laplace transformation L is an isomorphism of
linear spaces

(10) L : Bexp
[a,∞] −→ LB

exp
[a,∞],
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where LBexp
[a,∞] is the space of all holomorphic functions f̂(λ) of exponential

type defined on a neighborhood Ω of the semi-circle {eiθ; |θ| < π/2} in D2

which satisfies

(11) lim
ρ→∞

log |f̂(ρeiθ)|
ρ

≤ −a cos θ, |θ| < π/2.

For f̂(λ) ∈ LBexp
[a,∞], the inverse image L−1f̂ is given by

(12)

[
1

2π
√
−1

∫ ∞

Λ

eλzf̂(λ)dλ

]
∈ Bexp

[a,∞],

where Λ is a fixed point in Ω ∩ C and the path of the integration is taken in
Ω ∩ C.

3 The vanishing theorem for holomorphic func-

tions of exponential type

The purpose of the section is to review the vanishing theorem for cohomol-
ogy groups on a pseudoconvex open subset with coefficients in the sheaf of
holomorphic functions with exponential growth at infinity. All the proofs for
the theorems in this section are given in [1].

3.1 Sheaf of holomorphic functions of exponential type
on X̂

Let n ∈ N. We first introduce the radial compactification D2n of Cn.

Definition 3.1. We denote by D2n the radial compactification Cn⊔S2n−1∞
of Cn, where S2n−1 is the real (2n− 1)-dimensional unit sphere. Let D be a
closed unit ball in Cn which is considered as a real 2n-dimensional topological
manifold with the boundary S2n−1, and let ρ : D → D2n be the bijection
defined by

ρ(z) =


z

1− |z|
∈ Cn, if z ∈ D◦

z ∈ S2n−1∞, if z ∈ ∂D
.

Then D2n is equipped with the topology so that ρ becomes a topological iso-
morphism.

5



Note that any closed subset in D2n is compact.

Let m be a non-negative integer and X := Cn+m. We denote by X̂
the partial radial compactification D2n × Cm of Cn+m, and we also denote
by X∞ the closed subset X̂ \ X in X̂. Let p1 : X̂ = D2n × Cm → D2n

(resp. p2 : X̂ = D2n × Cm → Cm) be the canonical projection to the first
(resp. second) space. A family of fundamental neighborhoods of a point
(z0, w0) ∈ X ⊂ X̂ consists of

(13) Bϵ(z0, w0) := {(z, w) ∈ X; |z − z0| < ϵ, |w − w0| < ϵ}

for ϵ > 0, and that of (z0, w0) ∈ X∞ consists of a product of an open cone
and an open ball given by

(14) Gr(Γ, w0) :=

({
z ∈ Cn; |z| > r,

z

|z|
∈ Γ

}
∪ Γ∞

)
×
{
w ∈ Cm; |w − w0| <

1

r

}
,

where r > 0 and Γ runs through open neighborhoods of z0 in S2n−1∞.
Let OX be the sheaf of holomorphic functions on X. We define the sheaf

of holomorphic functions of exponential type on X̂.

Definition 3.2. Let Ω be an open subset in X̂. The set Oexp

X̂
(Ω) of holomor-

phic functions of exponential type on Ω consists of a holomorphic function
f(z, w) on Ω ∩X which satisfies, for any compact set K in Ω,

(15) |f(z, w)| ≤ CKe
HK |z| ((z, w) ∈ K ∩X)

with some positive constants CK and HK. We denote by Oexp

X̂
the associated

sheaf on X̂ of the presheaf {Oexp

X̂
(Ω)}Ω.

For any open subset Ω ⊂ X̂, we can take an exhausting family {Ωk}k of
Ω satisfying the conditions below.

1. Ωk is an open subset of Ω, and the union of Ωk is equal to Ω.

2. Ωk is a compact set and Ωk ⊂ Ωk+1 (k = 1, 2, . . . ).

3. Each Ωk is a finite union of open subsets given by either (13) or (14).

Then f ∈ Oexp

X̂
(Ω) if and only if the estimate (15) holds with K = Ωk

(k = 1, 2, . . . ). In particular, if Ω ⊂ X, then each Ωk is bounded in X and
the estimate (15) is always satisfied. Hence we see that the restriction of
Oexp

X̂
to X is nothing but the sheaf OX of holomorphic functions on X.
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3.2 Soft resolution for the sheaf Oexp

X̂

We review a soft resolution for the sheaf Oexp

X̂
.

Definition 3.3. For an open subset Ω ⊂ X̂, we denote by G(Ω) the set
of real valued continuous functions φ(z, w) on Ω ∩ X that satisfy, for any
compact set K in Ω,

(16) φ(z, w) ≤ αK + βK |z| ((z, w) ∈ K ∩X)

with some positive constants αK and βK.

Clearly G(Ω) is a directed set with respect to the partial order f ≤ g
⇐⇒ f(z, w) ≤ g(z, w) for (z, w) ∈ Ω ∩X.

Definition 3.4. Let Ω be an open subset in X̂. We denote by L2
G(Ω) the set

of locally square integrable functions f on Ω ∩X satisfying

(17)

∫
Ω∩X
|f(z, w)|2e−φ(z,w)dλ < +∞

for some φ ∈ G(Ω).

We denote by L
2,(p,q)
G (Ω) the set of (p, q)-forms on Ω∩X with coefficients

in L2
G(Ω). Moreover we set

L̃
2,(p,q)
G (Ω) :=

{
f ∈ L2,(p,q)

G (Ω); ∂f ∈ L2,(p,q+1)
G (Ω)

}
.

The presheaf
{
L2

G(Ω)
}
Ω

(
resp.

{
L
2,(p,q)
G (Ω)

}
Ω
and

{
L̃
2,(p,q)
G (Ω)

}
Ω

)
forms a sheaf

on X̂. We denote it by L2
G (resp. L2,(p,q)

G and L̃2,(p,q)
G ). Note that these sheaves

are soft.

Proposition 3.5 ([1]). We have the following soft resolution for the sheaf
Oexp

X̂
on X̂.

(18) 0→ Oexp

X̂
→L̃2,(0,0)

G
∂0→ L̃2,(0,1)

G
∂1→ . . .

∂→ L̃2,(0,n+m)
G → 0.

Hence we see that flabby dim Oexp

X̂
≤ dim X̂ + 1.
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3.3 Regularity condition at ∞ for an open subset in X̂

We introduce the regularity condition at ∞ for an open subset in X̂ which
are needed for the vanishing theorem for the sheaf Oexp

X̂
.

Definition 3.6 ([1]). For a subset A in X̂, we define the set clos1∞(A) ⊂ X∞
as follows. A point (z, w) ∈ X∞ belongs to clos1∞(A) if there exist points
{(zk, wk)}k∈N in A ∩X that satisfy the following two conditions.

1. (zk, wk)→ (z, w) in X̂.

2. |zk+1|
|zk|
→ 1 as k →∞.

We set N1
∞(A) := X∞ \ clos1∞(X \ A). An open subset U in X̂ is said to be

regular at ∞ if N1
∞(U) = U ∩X∞ is satisfied.

Note that, for subsets A1, A2, . . . , Aℓ in X̂, we have

N1
∞(A1 ∩ · · · ∩ Aℓ) = N1

∞(A1) ∩ · · · ∩N1
∞(Aℓ).

Hence a finite intersection of open subsets which are regular at ∞ is again
regular at∞. We give a sufficient condition for which an open subset becomes
regular at ∞. Let A be a subset in X̂, and we set

(19) NL
∞(A) :=

{
(ζ, w) ∈ X∞; (ζ, w) ∈ (R+ζ × {w}) ∩ A

}
⊂ X∞,

where R+ζ is the real half line in Cn with direction ζ and the closure is taken
in X̂. For subsets A1, A2, . . . , Aℓ in X̂, we have

(20) NL
∞(A1 ∪ · · · ∪ Aℓ) = NL

∞(A1) ∪ · · · ∪NL
∞(Aℓ).

Lemma 3.7 ([1]). Let U be an open subset in X̂. If NL
∞(U) = U ∩X∞ holds,

then U is regular at ∞.

A finite union of open subsets which satisfy the condition given in the
above lemma is also regular at ∞ by (20). We give some examples of open
subsets which are regular at ∞.

Example 3.8 ([1]). Let U be the open set Gr(Γ, 0)∪ Ũ where Ũ is a bounded
open subset in X and the cone Gr(Γ, 0) was defined by (14) with r > 0
and Γ being an open subset in S2n−1. Then U is regular at ∞ as we have
NL

∞(U) = U ∩ X∞. In particular, D2 and D2 \ [a,+∞] (a ∈ [−∞,∞)) are
regular at ∞.

Example 3.9 ([1]). For the set U := D2 \ {1, 2, 3, 4, . . . ,+∞} we have
N1

∞(U) = S1∞ \ {+∞}. Hence U is regular at ∞. However, for the set
U := D2\{1, 2, 4, 8, 16, . . . ,+∞}, U is not regular because of N1

∞(U) = S1∞.
Note that we have NL

∞(U) = S1∞ for the both cases.
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3.4 Vanishing theorem for the sheaf Oexp

X̂

Before stating the vanishing theorem, we prepare some notations. For a
subset A in X, we denote by dist(p,A) the distance between a point p and
A, i.e., dist(p, A) := infq∈A |p − q|. If A is empty, we set dist(p, A) = +∞.
We also define, for q = (z, w) ∈ X,

distD2n(q, A) := dist(q, A ∩ p−1
2 (p2(q))) = inf

(ζ, w)∈A
|z − ζ|.

For an open subset Ω ⊂ X̂, we define the function by

(21) ψ(p) := min

{
1

2
,
distD2n(p, X \ Ω)

1 + |z|

}
for p = (z, w) ∈ X,

and we set
(22)

Ωϵ :=

{
p = (z, w) ∈ Ω ∩X; dist(p, X \ Ω) > ϵ, |w| < 1

ϵ

}
(ϵ > 0).

Note that ψ(p) is lower semicontinuous (i.e., {p ∈ X; ψ(p) > c} is open
for c ∈ R) and continuous with respect to the variables z, however, it is
not necessarily continuous with respect to the variables w. Furthermore, if
p1((X \Ω)∩ p−1

2 (w0)) (w0 ∈ Cm) is a bounded subset in Cn, then ψ(z, w0) is

identically equal to
1

2
for a sufficiently large z. Hence the values of ψ(z, w)

for a large z are independent of the shape of Ω in a bounded region.

Theorem 3.10 ([1]). Assume the following conditions 1. and 2.

1. Ω ∩X is pseudoconvex in X and Ω is regular at ∞.

2. At a point in Ω∩X sufficiently close to z =∞ the ψ(z, w) is continuous
and uniformly continuous with respect to the variables w, that is, for
any ϵ > 0, there exist δϵ > 0 and Rϵ > 0 for which ψ(z, w) is continuous
on Ωϵ, Rϵ := Ωϵ ∩ {|z| > Rϵ} and it satisfies

|ψ(z, w)− ψ(z, w′)| < ϵ, ((z, w), (z, w′) ∈ Ωϵ, Rϵ , |w − w′| < δϵ).

Then we have

(23) Hk(Ω, Oexp

X̂
) = 0 (k ̸= 0).

.
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Remark 3.11. i) Let U (resp. W ) be an open subset in D2n (resp. Cm).
If U ∩Cn and W are pseudoconvex in Cn and Cm respectively, and if U
is regular at∞ in D2n, then U×W automatically satisfies the condition
2. in the theorem. Therefore we have

Hk(U ×W, Oexp

X̂
) = 0 (k ̸= 0).

ii) If n = 1, the vanishing theorem still holds for an open subset U ×W ⊂
D2×Cm of product type without the regularity of U at ∞. However, if
n is greater than one, one cannot expect the vanishing theorem anymore
without the regularity condition.

We now give examples.

Example 3.12 ([1]). Assume n = m = 1, i.e.,X = Cz×Cw and X̂ = D2×Cw.
Let f : X → C be the holomorphic map defined by f(z, w) = zw. Set

Ω̃ := {ζ ∈ C; |ζ| < 1} ∪ {ζ ∈ C; | arg ζ| < 1} ⊂ C,

Ω :=
(
f−1(Ω̃)

)◦
⊂ X̂.

Here the closure and the interior are taken in X̂. To understand the shape of
Ω clearly, the intersection of Ω and the complex line {(z, w) ∈ X̂; w = w0}
for w0 ∈ Cw is described below.

p1(Ω ∩ p−1
2 (w0)) =


(

1

w0

Ω̃

)◦

⊂ D2, (w0 ̸= 0),

C ⊂ D2, (w0 = 0).

Then Ω satisfies all the conditions of the theorem, and hence, we have
Hk(Ω, Oexp

X̂
) = 0 (k ̸= 0).

Example 3.13 ([1]). Assume n = 2 and m = 0, i.e., X = C2
(z1,z2)

and

X̂ = D4. Set

U :=
{
(z1, z2) ∈ X; | arg(z1)| <

π

4
, |z2| < |z1|

}
,

Ω :=
(
U
)◦ \ {p∞} ⊂ X̂,

where p∞ denotes the point (1, 0, 0, 0)∞ in S3∞ ⊂ D4. Note that Ω∩X = U
is pseudoconvex in X, while Ω is not regular at ∞. In this case, we have
H1(Ω, Oexp

X̂
) ̸= 0 which is shown below, and the vanishing theorem does not

hold for Ω.
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Let Y = C1
z ×C1

w and Ŷ = D2 ×C1, and let us consider the holomorphic

map f : X \ {z1 = 0} → Y defined by f(z1, z2) =

(
z1,

z2
z1

)
. Set

Ũ :=
{
(z, w) ∈ Y ; | arg(z)| < π

4
, |w| < 1

}
,

Ω̃ :=
(
Ũ
)◦
\ ({q∞} × {0}) ⊂ Ŷ .

Here q∞ = (1, 0)∞ ∈ S1∞ ⊂ D2. Note that Ω̃ is an open subset of non-
product type in D2 × C. As f gives a biholomorphic map between U and Ũ
which extends to a continuous isomorphism between Ω and Ω̃, we have

Hk(Ω, Oexp

X̂
) = Hk(Ω̃, Oexp

Ŷ
), (k ∈ N).

Hence it suffices to prove H1(Ω̃, Oexp

Ŷ
) ̸= 0. Set

V :=

({
z ∈ C; | arg(z)| < π

4

})◦

⊂ D2, W := {w ∈ C; |w| < 1} .

Noticing ((V \ {q∞}) ×W ) ∪ (V × (W \ {0})) = Ω̃, we have the long exact
sequence

(24) Oexp

Ŷ
((V \ {q∞})×W )⊕Oexp

Ŷ
(V × (W \ {0}))

ι→ Oexp

Ŷ
((V \ {q∞})× (W \ {0}))→ H1(Ω̃, Oexp

Ŷ
).

Suppose H1(Ω̃, Oexp

Ŷ
) = 0. Then ι becomes surjective. It is well known that

there exists a holomorphic function g(z) in Oexp
D2 (V \ {q∞}) which does not

belong to Oexp
D2 (V ) (for existence of such a holomorphic function, see [15]).

Set h(z, w) :=
g(z)

w
. Then h(z, w) belongs to Oexp

Ŷ
((V \ {q∞})× (W \ {0})).

As ι is surjective, there exist h1(z, w) ∈ Oexp

Ŷ
((V \{q∞})×W ) and h2(z, w) ∈

Oexp

Ŷ
(V × (W \ {0})) satisfying h = h1 + h2. Clearly we have

2π
√
−1g(z) =

∫
C

h(z, w)dw =

∫
C

(h1(z, w) + h2(z, w))dw

=

∫
C

h2(z, w)dw,

where C is a small circle turning around the origin in W . Since∫
C

h2(z, w)dw belongs to Oexp
D2 (V ), we get g(z) ∈ Oexp

D2 (V ), which contradicts

the choice of g(z), i.e., g(z) /∈ Oexp
D2 (V ). Therefore we have obtained the

conclusion H1(Ω, Oexp

X̂
) = H1(Ω̃, Oexp

Ŷ
) ̸= 0.
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4 Laplace hyperfunctions of one variable with

holomorphic parameters

Thanks to Theorem 3.10, we can construct the sheaf of Laplace hyperfunc-
tions of one variable with holomorphic parameters. In this section, we give
its definition and we construct the sheaf morphism from the sheaf of lo-
cally integrable functions with exponential growth to the sheaf of Laplace
hyperfunctions. From now on, we consider the case of dimension n = 1.
Let N = R × Cm(m ≥ 0), and let N = R × Cm be the closure of N in
X̂ = D2 × Cm.

4.1 Sheaf of Laplace hyperfunctions on N

The following fact is shown by Theorem 3.10.

Theorem 4.1 ([1]). The closed set R in D2 is purely 1- codimensional rel-
ative to the sheaf Oexp

D2 . More generally, the closed set N in X̂ is purely 1-
codimensional relative to the sheaf Oexp

X̂
, i.e., H k

N
(Oexp

X̂
) = 0 for k ̸= 1.

Definition 4.2. The sheaf BOexp

N
of Laplace hyperfunctions on N is defined

by

(25) BOexp

N
:= H 1

N
(Oexp

X̂
) ⊗
ZN

ωN .

Here H 1
N
(Oexp

X̂
) is the first derived sheaf of Oexp

X̂
with support in N , the

ZN denotes the constant sheaf on N having stalk Z and ωN denotes the
orientation sheaf H 1

N
(ZX̂) on N . Especially, in the case of m=0, we define

the sheaf Bexp

R of Laplace hyperfunctions of one variable on R by

(26) Bexp

R := H 1
R (O

exp
D2 ) ⊗

ZR

ωR.

Since the sheaf H 0
N
(Oexp

X̂
) is zero by Theorem 4.1, we find that the

presheaf U 7→ H1
N∩U(U, O

exp

X̂
) is a sheaf, and is equal to BOexp

N
. Hence

the global sections of the sheaf BOexp
N can be written in terms of cohomology

groups. For an open set Ω ⊂ R and a pseudoconvex open subset T ⊂ Cm,
by taking a complex neighborhood V of Ω in D2, we have

(27) BOexp

N
(Ω× T ) = H1

Ω×T (V × T,O
exp

X̂
) =
Oexp

X̂
((V \ Ω)× T )
Oexp

X̂
(V × T )

.

12



According to the excision theorem, we may replace V by any complex open
set containing Ω. Similarly we have

(28) Γ[a,∞](R, Bexp

R ) =
Oexp

D2 (D2 \ [a, ∞])

Oexp
D2 (D2)

.

Hence the set Bexp
[a,∞] defined by H. Komatsu coincides with Γ[a,∞](R, B

exp

R ) in

our framework. Note that the restriction of Bexp

R to R is isomorphic to the
sheaf BR of ordinary hyperfunctions because of Oexp

D2 |C = OC.
Now we state the theorem for the flabbiness and the unique continuation

property of BOexp
N .

Theorem 4.3 ([1]). Let Ω1 ⊂ Ω2 ⊂ R̄ and W1 ⊂ W2 ⊂ Cm be open subsets.
Then we have

i) IfW1 is a Stein open subset in Cm, then BOexp

N
(Ω2×W1)→ BOexp

N
(Ω1×

W1) is surjective, i.e., the sheaf BOexp

N
is flabby with respect to the variable

of hyperfunction.

ii) If W1 and W2 be non-empty connected open subsets in Cm, then
BOexp

N
(Ω1 ×W2)→ BOexp

N
(Ω1 ×W1) is injective, i.e., the sheaf BOexp

N
has a

unique continuation property with respect to variables of holomorphic param-
eters.

4.2 Embedding of locally integrable functions with ex-
ponential growth

We construct the sheaf morphism from the sheaf of locally integrable func-
tions with exponential growth to the sheaf of Laplace hyperfunctions and
show its injectivity.

Definition 4.4. Let Ω be an open subset in R. The set Lexp
loc (Ω) of locally

integrable functions of exponential type on Ω consists of a locally integrable
function f(x) on Ω ∩ R which satisfies, for any compact set K in Ω,

(29)

∫
K∩R
|f(x)|e−HK |x|dx <∞

with a constant HK. We denote by Lexp
loc the associated sheaf on R of the

presheaf {Lexp
loc (Ω)}Ω.

Note that, if Ω ⊂ R, the estimate (29) is always satisfied. Hence the
restriction of Lexp

loc to R is isomorphic to the sheaf L1
loc of locally integrable

functions on R.

13



Let us construct a sheaf morphism ι from the sheaf Lexp
loc to the sheaf

Bexp

R . It suffices to give a morphism ιK : ΓK(R, Lexp
loc )→ ΓK(R, Bexp

R ) for any

compact set K in R. Moreover, by considering a partition of support, it is
enough to give morphisms for any K ⊆ [0, ∞] or K ⊆ [−∞, 0].

Let K be a compact set in [0, ∞] or [−∞, 0] and let f ∈ ΓK(R, Lexp
loc )

satisfying (29) for a constant HK . For an arbitrary constant A ≥ HK , we set

(30) F±(z) :=
e±Az

2π
√
−1

∫ ∞

−∞

f(t)e−A|t|

t− z
dt.

As f(x)e−A|x| is integrable on R, the functions F± give a holomorphic func-
tions of exponential type on D2 \K. If K ⊆ [0, ∞], we define the morphism
ιK : ΓK(R, Lexp

loc ) → ΓK(R, Bexp

R ) by ιK(f) = [F+], where F+ is given by

(30). Note that ιK(f) does not depend on a choice of A. As a matter of fact,
we have the following equation

(31)

eAz

2π
√
−1

∫ ∞

−∞

f(t)e−A|t|

t− z
dt− eBz

2π
√
−1

∫ ∞

−∞

f(t)e−B|t|

t− z
dt

=
1

2π
√
−1

∫ ∞

−∞
f(t)dt

∫ B

A
e−w(|t|−z)dw

for constants B > A ≥ HK and the right hand side of (31) is an entire
function of exponential type. Hence ιK is well-defined and clearly satisfies
supp ιK(f) ⊂ supp f . If K ⊆ [−∞, 0], we define ιK by ιK(f) = [F−] in the
similar way as the case of K in [0, ∞]. Note that, for any compact set K in
R, we have

(32)
[
F+
]
= [F−] =

[
1

2π
√
−1

∫ ∞

−∞

f(t)

t− z
dt

]
in ΓK(R, BR) and Γ{∞}(R, Lexp

loc ) = Γ{−∞}(R, Lexp
loc ) = ∅. Therefore we can

define the morphism ιK for any compact set K in R (using a partition of sup-
port, if necessary). We define the morphism ιc : Γc(R, Lexp

loc ) → Γc(R, Bexp

R )
by {ιK}K . Hence ιc is extended to the sheaf morphism ι : Lexp

loc → B
exp

R
uniquely. The details are as follows; let U be an open subset in R. For a
locally integrable function of exponential type f ∈ Lexp

loc (U), we first decom-
pose it into a locally finite sum of locally integrable functions of exponential
type with compact support:

(33) f =
∑
λ

fλ.

14



Then the morphism ιU : Lexp
loc (U)→ B

exp

R (U) is defined by

(34) ιU(f) =
∑
λ

ιc(fλ).

This is defined independently of a choice of a locally finite decomposition
(33) of f ∈ Lexp

loc (U).
Let us show that the sheaf morphism ι : Lexp

loc → B
exp

R is injective. For that
purpose, we see that ιK is injective for any compact K in [0, ∞] or [−∞, 0].

Proposition 4.5 ([19]). Let K be a compact set in [0, ∞] or [−∞, 0]. Let
f ∈ ΓK(R, Lexp

loc ) and let F±(z) be the function defined by (30). Then F±(x+√
−1ε)− F±(x−

√
−1ε) converge to f(x) almost everywhere as ε→ 0.

By Proposition 4.5, the morphism ιc satisfies

suppιc(f) = suppf, f ∈ Γc(R, Lexp
loc ).

Hence we get the following theorem.

Theorem 4.6. The sheaf morphism ι : Lexp
loc → B

exp

R is injective and we can
regard functions in Lexp

loc as Laplace hyperfunctions.

We also see that the Laplace transformation as a Laplace hyperfunction
and an ordinary function coincide on the space of locally integrable functions
with exponential growth.

Theorem 4.7 ([19]). Let K be a compact subset in [0, ∞] and let f ∈
ΓK(R, Lexp

loc ). The Laplace transform ι̂(f) of the Laplace hyperfunction ι(f)
coincides with the ordinary Laplace transform of f .

5 The edge of the wedge theorem for the

sheaf Oexp
D2n of holomorphic functions of ex-

ponential type

The purpose of this section is to establish the edge of the wedge theorem
for the sheaf of holomorphic functions of exponential type. The theorem is
stated in subsection 5.2.
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5.1 Martineau type theorem for holomorphic functions
of exponential type

Before going into the proof for the theorem, we prepare several theorems.

Lemma 5.1. Let S ⊂ R be a closed set and V ⊂ Cm(m ≥ 0) a Stein open
set. Assume that K1, . . . , Kn−1 are locally closed sets in C. Then we have

(35) Hk
S×K1×···×Kn−1×V (D

2 × Cn−1 × V, Oexp
D2×Cn−1×V ) = 0 (k ≥ n+ 1).

Proof. Take arbitrary open neighborhoods U of S in D2 and Wi (1 ≤ i ≤
n− 1) of Ki in C, respectively. Set
(36)
T := U ×W1 × · · · ×Wn−1 × V,
T0 := (U \ S)×W1 × · · · ×Wj × · · · ×Wn−1 × V,
Tj := U ×W1 × · · · × (Wj \Kj)× · · · ×Wn−1 × V, (j = 1, . . . , n− 1).

Then the families of those sets {T, T0, . . . , Tn−1} and {T0, . . . , Tn−1} give
an open covering of the pair (T, T \ (S × K1 × · · · × Kn−1 × V )) of open
sets. It follows from Theorem 3.10 and Remark 3.11 that these open sets
compose a Leray covering of the pair with respect to the sheaf Oexp

D2×Cn−1×V
of holomorphic functions of exponential type on D2 × Cn−1 × V . Hence we
can compute the cohomology groups (35) by this covering, and the result
immediately comes from the fact that the number of open subsets of the
covering is n+ 1.

The following Martineau type theorem for holomorphic functions of ex-
ponential type plays an important role in proving the edge of the wedge
theorem for the sheaf Oexp

D2n .

Theorem 5.2. (The Martineau type theorem for holomorphic functions of
exponential type)
Let S = [a, ∞](a ∈ R) be a compact set in R. Let K = K1 × · · · ×Kn−1 ⊂
L = L1 × · · · × Ln−1 be a pair of closed polydisc in Cn−1, and let W ⊂
V ⊂ Cm(m ≥ 0) be a pair of non-empty connected Stein domains. Then the
restriction
(37)
Hn
S×K×V (D2×Cn−1×V, Oexp

D2×Cn−1×V )→ Hn
S×L×W (D2×Cn−1×W, Oexp

D2×Cn−1×V )

is injective.
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Proof. Let (z, w, t) be the coordinates of Cz × Cn−1
w × Cm

t . Take an open
sector U containing S in D2 whose opening is sufficiently small. Set
(38)

TS,K, V := (U \ S)× (C \K1)× · · · × (C \Kj)× · · · × (C \Kn−1)× V,
T

(0)
S,K, V := U × (C \K1)× · · · × (C \Kj)× · · · × (C \Kn−1)× V,

T
(j)
S,K, V := (U \ S)× (C \K1)× · · · × C× · · · × (C \Kn−1)× V,

(j = 1, . . . , n− 1).

For S ×K × V , by taking the relative open covering introduced in the proof
for Lemma 5.1, we obtain the representation

Hn
S×K×V (D2 × Cn−1 × V, Oexp

D2×Cn−1×V ) =
Γ(TS,K, V , Oexp

D2×Cn−1×V )
n−1
⊕
j=0

Γ(T
(j)
S,K, V , O

exp
D2×Cn−1×V )

.

The sets TS,L,W and T
(j)
S,L,W are also defined by (38) where K and V are

replaced by L and W , respectively. Then the canonical morphism (37) coin-
cides with

(39) ι :
Γ(TS,K, V , Oexp

D2×Cn−1×V )
n−1
⊕
j=0

Γ(T
(j)
S,K, V , O

exp
D2×Cn−1×V )

−→
Γ(TS,L,W , Oexp

D2×Cn−1×V )
n−1
⊕
j=0

Γ(T
(j)
S,L,W , O

exp
D2×Cn−1×V )

.

Let us prove that the morphism ι is injective. For an element F (z, w, t) in
Γ(TS,K, V , Oexp

D2×Cn−1×V ), we define

(40) G(z, w, t) :=
1

(2π
√
−1)n−1

∫
γ1×···×γn−1

F (z, µ, t)

(µ1 − w1) . . . (µn−1 − wn−1)
dµ,

where each γj is an integral path in C \ Kj which encircles Kj with clock
direction such that the variable wj is outside γj . Note that G(z, w, t) is a
holomorphic functions of exponential type on TS,K, V by deformation of the
integral path. Now let us take an integral path γ̃1 in C \ L1 which encircles
L1 with clock direction such that w1 and γ1 are inside γ̃1. Then we have
(41)

G(z, w, t) =
1

(2π
√
−1)n−2

∫
γ2×···×γn−1

F (z, w1, µ2, . . . , µn−1, t)

(µ2 − w2) . . . (µn−1 − wn−1)
dµ

+
1

(2π
√
−1)n−1

∫
γ̃1×γ2×···×γn−1

F (z, µ, t)

(µ1 − w1) . . . (µn−1 − wn−1)
dµ.

We denote byH1(z, w, t) the second term on the right hand side of (41). Note

that H1(z, w, t) is a holomorphic function of exponential type on T
(1)
S,K, V by
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deformation of the integral path. Let us take integral paths γ̃j (j ≥ 2) in
C \ Lj in the similar way to γ̃1. Applying the similar deformations for the
first term on the right hand side of (41) in the order of γ2, . . . , γn−1, we
obtain

G(z, w, t) = F (z, w, t) +
n−1∑
j=1

Hj(z, w, t), Hj ∈ Γ(T
(j)
S,K, V , O

exp
D2×Cn−1×V ).

If we could prove that G(z, w, t) can be extended to T
(0)
S,K, V as a holomor-

phic functions of exponential type when ι(F ) = 0 in Hn
S×L×W (D2 × Cn−1 ×

W, Oexp
D2×Cn−1×V ), then we get the injectivity of the morphism ι.

Suppose that F satisfies ι(F ) = 0 inHn
S×L×W (D2×Cn−1×W, Oexp

D2×Cn−1×V ).

Then there exist functions {Fj}j ⊂ ⊕n−1
j=0 Γ(T

(j)
S,L,W , O

exp
D2×Cn−1×V ) with F =∑

j Fj on TS,L,W . Now we take an arbitrary point (z, w, t) in TS,K, V and

closed sectors Γ and Γ
′
as Figure 1. Let us denote by Dj and D̃j the interior

of γj and γ̃j, respectively. Take a relatively compact open subset Z in V
satisfying W ∩Z ̸= ∅. We may assume w ∈ (D̃1 \D1)× · · · × (D̃n−1 \Dn−1)
and t ∈ Z. By Cauchy’s integral formula we have
(42)

G(z, w, t) =
eAz

2π
√
−1

∫
Γ

G(ζ, w, t)e−Aζ

ζ − z
dζ − eAz

2π
√
−1

∫
Γ
′

G(ζ, w, t)e−Aζ

ζ − z
dζ

for a sufficiently large A. Let Gj(z, w, t) (j = 0, 1) be the functions given
by the integrals on the right hand side of (42) corresponding to Γ and Γ

′
in

that order. For w and t belonging to a relatively compact open subset in
(Cn−1 \ L) ∩ ((D̃1 \D1)× · · · × (D̃n−1 \Dn−1)) and W ∩ Z, respectively, we
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have
(43)
G0(z, w, t)

=
eAz

(2π
√
−1)n

n−1∑
j=0

∫
Γ

∫
γ1×···×γn−1

Fj(ζ, µ, t)e
−Aζ

(µ1 − w1) . . . (µn−1 − wn−1)(ζ − z)
dζdµ

=
eAz

(2π
√
−1)n

∫
Γ

∫
γ1×···×γn−1

F0(ζ, µ, t)e
−Aζ

(µ1 − w1) . . . (µn−1 − wn−1)(ζ − z)
dζdµ.

Since e−Aζ compensates the exponential growth of F0 at infinity, we have
(44)

1

2π
√
−1

∫
Γ

F0(ζ, µ, t)e
−Aζ

ζ − z
dζ

=
1

2π
√
−1

∫ ∞+
√
−10

a+
√
−10

F0(ζ, µ, t)e
−Aζ

ζ − z
dζ

− 1

2π
√
−1

∫ ∞−
√
−10

a−
√
−10

F0(ζ, µ, t)e
−Aζ

ζ − z
dζ = 0.

This gives G0(z, w, t) ≡ 0 for (w, t) ∈ (D̃1 \D1)×· · ·×(D̃n−1 \Dn−1)×V by
the unique continuation property of a holomorphic function, and we obtain
G(z, w, t) = −G1(z, w, t). As we can take any paths Γ, Γ

′
, γj and γ̃j (1 ≤

j ≤ n−1), we see that G(z, w, t) can be extended to T
(0)
S,K, V as a holomorphic

functions of exponential type.

By the Martineau type theorem we obtain the following results.

Lemma 5.3. Let S = [a, ∞](a ∈ R) be a compact set in R. Let K =
K1 × · · · ×Kn−1 be a closed polydisc in Cn−1, and let V be a Stein domain
in Cm. Then

(45) Hk
S×K×V (D2 × Cn−1 × V, Oexp

D2×Cn−1×V ) = 0 (k ̸= n).

Proof. It follows from Lemma 5.1 that (45) holds for k ≥ n+1. Let us prove
that the k-th cohomology group vanishes for k ≤ n − 1. We use induction
on the dimension n. When n = 1, the assertion to be proved is

H0
S×V (D2 × V, Oexp

D2×V ) = ΓS×V (D2 × V, Oexp
D2×V ) = 0,

which is nothing but the uniqueness of an analytic continuation for a usual
holomorphic function. Assume that, for (n−2)-dimensional cylindrical com-
pact sets, (45) is proved for any Stein domain V . We consider an (n − 1)-
dimensional cylindrical compact set K = K1 × · · · × Kn−1. For simplicity,
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set K̃ = K1 × · · · ×Kn−2. For the pair S ×K × V ⊂ S × K̃ × C × V , we
obtain the following exact sequence of cohomology groups.
(46)
· · · → Hk

S×K×V (D2 × Cn−1 × V, Oexp
D2×Cn−1×V )

→ Hk
S×K̃×C×V (D

2 × Cn−2 × C× V, Oexp
D2×Cn−1×V )

ι→ Hk
S×K̃×(C\Kn−1)×V (D

2 × Cn−2 × (C \Kn−1)× V, Oexp
D2×Cn−1×V )→ · · ·

For 0 ≤ k ≤ n− 2, the following cohomology groups vanish by the induction
hypothesis:

Hk
S×K̃×C×V (D

2 × Cn−2 × C× V, Oexp
D2×Cn−1×V ) = 0,

Hk
S×K̃×(C\Kn−1)×V (D

2 × Cn−2 × (C \Kn−1)× V, Oexp
D2×Cn−1×V ) = 0.

Note that the spaces of parameters are C×V and (C\Kn−1)×V , respectively.
Therefore (45) is proved for 0 ≤ k ≤ n − 2. According to Theorem 5.2, for
k = n − 1 the morphism ι in (46) is injective. Therefore, together with the
fact that the preceding term vanishes, we conclude that Hn−1

S×K×V (D2×Cn−1×
V, Oexp

D2×Cn−1×V ) = 0.

Corollary 5.4. Let S = [a, ∞](a ∈ R) be a compact set in R. Let K =
K1 × · · · ×Kn−1 ⊂ L = L1 × · · · × Ln−1 be a pair of closed polydisc in Cn−1,
and let V ⊂ Cm(m ≥ 0) be a Stein domain. Then

(47) Hk
S×(L\K)×V (D2 × Cn−1 × V, Oexp

D2×Cn−1×V ) = 0 (k ̸= n).

Proof. Consider the fundamental long exact sequence of cohomology groups

(48)

· · · → Hk
S×L×V (D2 × Cn−1 × V, Oexp

D2×Cn−1×V )

→ Hk
S×(L\K)×V (D2 × Cn−1 × V, Oexp

D2×Cn−1×V )

→ Hk+1
S×K×V (D

2 × Cn−1 × V, Oexp
D2×Cn−1×V )

→ Hk+1
S×L×V (D

2 × Cn−1 × V, Oexp
D2×Cn−1×V )→ · · ·

for the pair S ×K × V ⊂ S × L × V . For 0 ≤ k ≤ n − 2, we have (47) by
Lemma 5.3, and for k ≥ n + 1, this follows from Lemma 5.1. Finally, for
k = n− 1, this follows from the facts that the preceding term Hn−1

S×L×V (D2 ×
Cn−1 × V, Oexp

D2×Cn−1×V ) vanishes, and that the morphism

(49) Hn
S×K×V (D2 × Cn−1 × V, Oexp

D2×Cn−1×V )

→ Hn
S×L×V (D2 × Cn−1 × V, Oexp

D2×Cn−1×V )

is injective by Theorem 5.2. Hence we have the assertion.
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This result can be generalized to the pair of two analytic polyhedra by
making use of Oka’s embedding. Now we recall the definition of the analytic
polyhedron and prepare two lemmas to prove the similar theorem for analytic
polyhedra.

Definition 5.5. Let U be a domain. A compact subset D in U defined by

(50) {z ∈ Cn; | F1(z) |≤ 1, . . . , | FN(z) |≤ 1},

with some finitely many F1, . . . , FN ∈ OCn is called an analytic polyhedron
of U .

Lemma 5.6. ([4], Corollary 5.3.7) Let 0 ← F ← L0 ← L1 ← · · · ← Ln ← 0
be an exact sequence of sheaves on a topological space on X, and S ⊂ X a
locally closed set. If

Hk
S(X, Lj) = 0 (r + j ≤ k ≤ N + j, j = 0, . . . , n),

then
Hk
S(X, F) = 0 (r ≤ k ≤ N).

Lemma 5.7. ([18], P ropositionB.4.2) Let M be a module, and let ϕ1, . . . , ϕp
be a family of commuting endomorphism of M . Let M · be a Koszul complex
associated to the sequence (ϕ1, . . . , ϕp). Assume for each 1 ≤ j ≤ p, ϕj is

injective as an endomorphism of the module
M∑j−1

i=1 ϕi(M)
. Then Hj(M ·) = 0

for j ̸= p, and Hp(M ·) ≃ M∑p
i=1 ϕi(M)

.

Theorem 5.8. Let S = [a, ∞](a ∈ R) be a compact set in R. Let K and L
be two compact analytic polyhedra in Cn−1, and let V be a Stein domain in
Cm. Then

(51) Hk
S×(L\K)×V (D2 × Cn−1 × V, Oexp

D2×Cn−1×V ) = 0 (0 ≤ k ≤ n− 1).

Proof. For simplicity, we omit the symbol V for the space of parameters. By
replacing K by K∩L, we can assume K ⊂ L. Hence, by the definition of the
analytic polyhedron, there are holomorphic functions F1, . . . , Fk′ , . . . , Fk on
Cn−1 such that L and K can be expressed as

L =
{
w ∈ Cn−1 ; |Fi(w)| ≤ 1, i = 1, 2, . . . , k

′
}

and
K =

{
w ∈ Cn−1 ; |Fi(w)| ≤ 1, i = 1, 2, . . . , k

′
, . . . , k

}
.
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Since L is bounded, we assume that L is contained in the polydisc of the
radius r. Further, choose a real number

R := max

{
1, max

k′+1≤j≤k
sup
w∈L
|Fj(w)|, r

}
.

Let us consider the closed embedding Ψ : D2
z×Cn−1

w → D2
z×C(n−1)+k

w, w̃ defined
by

Ψ(z, w) = (z, w, F1(w), . . . , Fk′ (w), . . . , Fk(w)).

We also define L̃ and K̃ in C(n−1)+k by

L̃ :=


| w1 |≤ R, . . . , |wn−1| ≤ R,

(w, w̃) ∈ C(n−1)+k ; | w̃1 |≤ 1, . . . , | w̃k′ |≤ 1,
| w̃k′+1 |≤ R, . . . , | w̃k |≤ R


and

K̃ :=


| w1 |≤ R, . . . , |wn−1| ≤ R,

(w, w̃) ∈ C(n−1)+k ; | w̃1 |≤ 1, . . . , | w̃k′ |≤ 1,
| w̃k′+1 |≤ 1, . . . , | w̃k |≤ 1

 .

Noticing S × (L \K) = Ψ−1(S × (L̃ \ K̃)), we have
(52)
Hp
S×(L\K)(D

2 × Cn−1, Oexp
D2×Cn−1) ∼= Hp

S×(L̃\K̃)
(D2 × C(n−1)+k, Ψ∗Oexp

D2×Cn−1).

On the other hand, for the sheaf Oexp

D2×C(n−1)+k of holomorphic functions of

exponential type on D2 × C(n−1)+k, we have, from Corollary 5.4,

(53) Hp

S×(L̃\K̃)
(D2 × C(n−1)+k, Oexp

D2×C(n−1)+k) = 0 (0 ≤ p ≤ (n− 1) + k).

Hence, if there exists an inverse resolution of the sheaf Ψ∗Oexp
D2×Cn−1 by the

sheaf Oexp

D2×C(n−1)+k of length k, it follows from Lemma 5.6 that (51) holds.
Let ϕ1, . . . , ϕk be a family of commuting endomorphisms of
Γ(D2 × C(n−1)+k, Oexp

D2×C(n−1)+k) defined by

ϕj(f) = f(z, w, w̃)(w̃j − Fj(w)) (1 ≤ j ≤ k),

and let e1, . . . , ek be the canonical basis of Zk. For an ordered subset I :=

(i1, . . . , ij) of {1, . . . , k}, we define the element of
j
∧(Zk) by eI := ei1 ∧ · · · ∧

eij . We set

M (j) :=M ⊗
Z

j
∧(Zk), M := Oexp

D2×C(n−1)+k ,
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and we define the differential d fromM (j) toM (j+1) by letting, for an element
feI in M

(j),

d(feI) :=
k∑
i=1

ϕi(f)ei ∧ eI .

The commutativity of the operators ϕj clearly implies d ◦ d = 0. Hence we
obtain a Koszul complexM associated to the sequence (ϕ1, . . . , ϕk):

(54) 0→M (0) d→M (1) → . . .
d→M (k) → 0.

Let us show that this complex is an inverse resolution of the sheaf Ψ∗Oexp
D2×Cn−1

by the sheaf Oexp

D2×C(n−1)+k of length k. For the proof of this fact, we need the
following lemma.

Lemma 5.9. For each 1 ≤ j ≤ k and p ∈ D2 ×C(n−1)+k, the morphism ϕj is

injective as an endomorphism of the module
Mp∑j−1

i=1 ϕi(Mp)
.

Proof. We first prove the lemma in the case of p ∈ Ψ(D2 × C(n−1)+k). Sup-

pose that f ∈ Mp satisfies ϕj(f) = 0 in
Mp∑j−1

i=1 ϕi(Mp)
. Then there exist

g1, . . . , gj−1 ∈Mp such that ϕj(f) =
∑j−1

i=1 ϕi(gi) holds. Therefore we have

(55) f(z, w, w̃)(w̃j − Fj(w)) =
j−1∑
i=1

gi(z, w, w̃)(w̃i − Fi(w))

on a neighborhood of p. Setting w̃j = Fj(w) in (55), we obtain

(56)

j−1∑
i=1

gi(z, w, w̃1, . . . , w̃j−1, Fj(w), w̃j+1, . . . , w̃k)(w̃i − Fi(w)) = 0.

For 1 ≤ i ≤ j − 1, we put

hi(z, w, w̃) :=
gi(z, w, w̃)− gi(z, w, w̃1, . . . , w̃j−1, Fj(w), w̃j+1, . . . , w̃k)

w̃j − Fj(w)
.

Then hi belongs to Mp as p ∈ Ψ(D2 × C(n−1)+k). By (55) and (56), we have

.

j−1∑
i=1

ϕi(hi(z, w, w̃)) =

j−1∑
i=1

hi(z, w, w̃)(w̃i − Fi(w))

=

j−1∑
i=1

gi(z, w, w̃)

w̃j − Fj(w)
(w̃i − Fi(w))

=
f(z, w, w̃)(w̃j − Fj(w))

w̃j − Fj(w)
= f(z, w, w̃)
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on a neighborhood of p. This implies that ϕj is injective as an endomorphism

of
Mp∑j−1

i=1 ϕi(Mp)
for each p ∈ Ψ(D2×C(n−1)+k). Next, we show the injectivity

of ϕj in the case p /∈ Ψ(D2×C(n−1)+k). If w̃j ̸= Fj(w) holds on a neighborhood
of p, by (55) we have

(57) f(z, w, w̃) =

j−1∑
i=1

gi(z, w, w̃)

w̃j − Fj(w)
(w̃i − Fi(w)) =

j−1∑
i=1

ϕi

(
gi(z, w, w̃)

w̃j − Fj(w)

)
.

Otherwise, as is shown in the case of p ∈ Ψ(D2 × C(n−1)+k), we see the
injectivity of ϕj. Therefore the claim of the lemma holds on D2×C(n−1)+k.

Now we prove that the complexM is the inverse resolution of the sheaf
Ψ∗Oexp

D2×Cn−1 by the sheaf Oexp

D2×C(n−1)+k of length k.

Lemma 5.10. The following complex of the sheaves on D2×C(n−1)+k is exact:

(58) 0→M (0) d→M (1) → . . .
d→M (k) → Ψ∗Oexp

D2×Cn−1 → 0.

Proof. Let us show that for each p ∈ D2×C(n−1)+k the sequence of the stalks

(59) 0→M (0)
p

d→M (1)
p → . . .

d→M (k)
p → (Ψ∗Oexp

D2×Cn−1)p → 0

is exact. Note that we have

(Ψ∗Oexp
D2×Cn−1)p =


0 (p /∈ Ψ(D2 × C(n−1)+k)),

(Oexp
Ψ(D2×Cn−1))p (p ∈ Ψ(D2 × C(n−1)+k)).

By Lemma 5.9, we can apply Lemma 5.7 to the complex Mp. Hence we
obtain

Hj(Mp) =


0, (j ̸= k),

Coker(M
(k−1)
p →M

(k)
p ) ≃ Mp∑k

i=1 ϕi(Mp)
, (j = k).

Therefore the exactness of the sequence (59) have been obtained for p /∈
Ψ(D2 × C(n−1)+k). For p ∈ Ψ(D2 × C(n−1)+k), the restriction mapping ρ :
Mp → (Oexp

Ψ(D2×Cn−1))p turns out to be the substitution w̃ = (F1(w), . . . , Fk(w)).
Hence ρ is surjective. Furthermore, by considering the Taylor expansion at p,
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its kernel consists of the germs of type
∑k

i=1 gi(z, w, w̃)(w̃i−Fi(w)). We thus

obtain the exact sequence 0 →
∑k

i=1 ϕi(Mp) → Mp → (Oexp
Ψ(D2×Cn−1))p → 0.

This implies that
Mp∑k

i=1 ϕi(Mp)
is isomorphic to (Oexp

Ψ(D2×Cn−1))p. Therefore

we get the exactness of (59) on D2 × C(n−1)+k.

This completes the proof of Theorem 5.8.

5.2 The edge of the wedge theorem for the sheaf of
holomorphic functions of exponential type

Now we are ready to show the edge of the wedge theorem for the sheaf Oexp
D2n .

Theorem 5.11. The closed set Rn ⊂ D2n is purely n-codimensional relative
to the sheaf Oexp

D2n, i.e.,

(60) H k
Rn(Oexp

D2n) = 0 (k ̸= n).

Proof. It suffices to compute the stalks of H k
Rn(O

exp
D2n) at p∞ := (+∞, 0, . . . , 0)

∈ S2n−1∞, as Rn is purely n-codimensional relative to the sheaf OCn of holo-
morphic functions on Cn. We set

Uϵ :=

{
(z1, . . . , zn) ∈ Cn; | arg z1| < ϵ, |z1| >

1

ϵ
, |zi| < ϵ|z1| (2 ≤ i ≤ n)

}
,

Aϵ := Uϵ
◦ ⊂ D2n

for any ϵ > 0. Here the closure and interior are taken in D2n. Note that
{Aϵ}ϵ>0 is a fundamental system of neighborhoods of p∞ in D2n. Hence we
have

H k
Rn(Oexp

D2n)p∞ = lim−→
ϵ↓0

Hk
Aϵ∩Rn(Aϵ, Oexp

D2n).

We also set

Vϵ :=

{
z ∈ C; | arg z| < ϵ, |z| > 1

ϵ

}
,

Wϵ :=
{
(w1, . . . , wn−1) ∈ Cn−1; |wi| < ϵ (1 ≤ i ≤ n− 1)

}
,

Bϵ := Vϵ
◦ ×Wϵ ⊂ D2 × Cn−1

for any ϵ > 0. Then {Bϵ}ϵ>0 is a fundamental system of neighborhoods
of q∞ := ((+∞, 0), 0) ∈ S1∞ × Cn−1 in D2 × Cn−1. Let us consider the
holomorphic map Φ : Cn \ {z1 = 0} → C× Cn−1 defined by

Φ(z1, . . . , zn) =

(
z1,

z2
z1
, . . . ,

zn
z1

)
.
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Then Φ gives a biholomorphic map between Uϵ and Vϵ×Wϵ. As S
2n−1\{x1 =

0} and S1 × R2n−2 are isomorphic by the correspondence

(x1, x2, . . . , x2n) 7→

(
x1√
x21 + x22

,
x2√
x21 + x22

)
×

(
x3√
x21 + x22

, . . . ,
x2n√
x21 + x22

)
,

(
x1√

1 + |y|2
,

x2√
1 + |y|2

,
y√

1 + |y|2

)

7→(x1, x2)× (y),

the map Φ extends to a continuous isomorphism between Aϵ and Bϵ. There-
fore we obtain

(61) H k
Rn(Oexp

D2n)p∞
∼= H k

R×Rn−1(Oexp
D2×Cn−1)q∞ .

Hence it suffices to prove that the right hand side of (61) vanishes for k ̸= n.
Let us take two points a, b satisfying ϵ−1 < a < b <∞. We put S1 = (ϵ−1, b]
and S2 = [a, ∞]. We have the long exact sequence of cohomology groups

(62)

· · · → Hk
(S1∩S2)×(Wϵ∩Rn−1)(Bϵ, Oexp

D2×Cn−1)

→ ⊕
j=1, 2

Hk
Sj×(Wϵ∩Rn−1)(Bϵ, Oexp

D2×Cn−1)

→ Hk
(S1∪S2)×(Wϵ∩Rn−1)(Bϵ, Oexp

D2×Cn−1)→ · · · .

Noticing that Rn is purely n-codimensional relative to the sheaf OCn and the
sheaf H n

Rn(OCn) of hyperfunctions is flabby, that we obtain

(63)
Hk

(S1∩S2)×(Wϵ∩Rn−1)(Bϵ, Oexp
D2×Cn−1) = 0 (k ̸= n),

Hk
S1×(Wϵ∩Rn−1)(Bϵ, Oexp

D2×Cn−1) = 0 (k ̸= n).

Hence, by the long exact sequence of cohomology groups (62), this implies

(64) Hk
(S1∪S2)×(Wϵ∩Rn−1)(Bϵ, Oexp

D2×Cn−1) = Hk
S2×(Wϵ∩Rn−1)(Bϵ, Oexp

D2×Cn−1)

(k ̸= n− 1, n).

We also have the following exact sequence by (62).

(65)

0→ Hn−1
S2×(Wϵ∩Rn−1)(Bϵ, Oexp

D2×Cn−1)

→ Hn−1
(S1∪S2)×(Wϵ∩Rn−1)(Bϵ, Oexp

D2×Cn−1)

→ Γ(S1∩S2)×(Wϵ×Rn−1)(Cn, H n
Rn(OCn))

ι→ ΓS1×(Wϵ∩Rn−1)(Cn, H n
Rn(OCn))⊕Hn

S2×(Wϵ∩Rn−1)(Bϵ, Oexp
D2×Cn−1).
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As the morphism ι in (65) is injective, if Hn−1
S2×(Wϵ∩Rn−1)(Bϵ, Oexp

D2×Cn−1) van-

ishes, we have Hn−1
(S1∪S2)×(Wϵ∩Rn−1)(Bϵ, Oexp

D2×Cn−1) = 0. Therefore, together

with (64), If we could prove that

(66) Hk
S2×(Wϵ∩Rn−1)(D

2 ×Wϵ, Oexp
D2×Cn−1) = 0 (k ̸= n)

for a complex neighborhood Wϵ of the origin in Cn−1, then the assertion
follows. For k ≥ n + 1, (66) holds by Lemma 5.1. Hence let us show that
(66) holds for 0 ≤ k ≤ n− 1. Using the entire function on Cn−1

fϵ(w) = ϵ2 − (w2
1 + · · ·+ w2

n−1)

for ϵ > 0, we put

(67)
Lϵ =

{
w ∈ Cn−1 ; |w1| ≤ ϵ, . . . , |wn−1| ≤ ϵ

}
∩ Rn−1,

Mϵ = Lϵ ∩ {Re(fϵ(w)) ≤ 0} .

Note that Lϵ and Mϵ are closed analytic polyhedra because R can be ex-
pressed as R = {w ∈ C; |e

√
−1w| ≤ 1, |e−

√
−1w| ≤ 1} and Re(fϵ(w)) ≤ 0 is

equivalent to |efϵ(w)| ≤ 1. Now

W̃ϵ =
{
(w1, . . . , wn−1) ∈ Cn−1 ; |wi| < ϵ, Re(fϵ(w)) > 0

}
is clearly a complex neighborhood of the origin in Cn−1 and

Lϵ \Mϵ = W̃ϵ ∩ Rn−1.

Hence by Theorem 5.11 , we obtain
(68)
Hk
S2×(W̃ϵ∩Rn−1)

(D2 × Cn−1, Oexp
D2×Cn−1) = Hk

S2×(Lϵ\Mϵ)(D
2 × Cn−1, Oexp

D2×Cn−1)

= 0 (0 ≤ k ≤ n− 1).

This completes the proof.

Theorem 5.12. The boundary ∂Rn of Rn in D2n is purely n-codimensional
relative to the sheaf Oexp

D2n, i.e.,

(69) H k
∂Rn(Oexp

D2n) = 0, (k ̸= n)

Proof. It suffices to compute the stalks of H k
∂Rn(Oexp

D2n) at p∞ = (+∞, 0, . . . , 0)
∈ ∂Rn ⊂ D2n. Let us consider the fundamental system {Aϵ}ϵ>0 of neigh-
borhoods of the point p∞, the one {Bϵ}ϵ>0 of neighborhoods of the point
q∞ = ((+∞, 0), 0) ∈ S1∞× Cn−1 and the holomorphic map Φ in the proof
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of Theorem 5.11. As Φ gives a biholomorphic map between Sn−1∞∩Aϵ and
(S0∞× Rn−1) ∩Bϵ, we have

(70)

H k
∂Rn(Oexp

D2n)p∞
∼= H k

∂R×Rn−1(Oexp
D2×Cn−1)q∞

= lim−→
ϵ↓0

Hk
{∞}×(Wϵ∩Rn−1)(Bϵ, Oexp

D2×Cn−1).

Hence it follows from (66) that the purely n-codimensionality of ∂Rn relative
to the sheaf Oexp

D2n .

6 Sheaf of Laplace hyperfunctions in several

variables

As an application of Theorem 5.11 established in the previous section, we
construct cohomologically the sheaf of Laplace hyperfunctions on Rn. In this
section, we give the sheaf of Laplace hyperfunctions on Rn and we show that
the sheaf of real analytic functions of exponential type is a subsheaf of the
sheaf of Laplace hyperfunctions.

Definition 6.1. The sheaf of Laplace hyperfunctions on Rn is defined by

(71) Bexp

Rn := H n
Rn(Oexp

D2n) ⊗
ZRn

ωRn

where ZRn denotes the constant sheaf on Rn having stalk Z and ωRn denotes
the orientation sheaf H n

Rn(ZD2n) on Rn.

Since the sheaves H k
Rn(O

exp
D2n) are zero for k < n by Theorem 5.11, we

find that the presheaf U 7→ Hn
Rn∩U(U, O

exp
D2n) is a sheaf, and is equal to Bexp

Rn .
Hence the global sections of the sheaf Bexp

Rn of Laplace hyperfunctions can be

written in terms of cohomology groups. For an open set Ω ⊂ Rn, by taking
a complex neighborhood U of Ω in D2n, we have

Γ(Ω, Bexp

Rn ) = Hn
Ω(U, O

exp
D2n).

Note that the above representation does not depend on a choice of the com-
plex neighborhood U .

Definition 6.2. Let i : Rn → D2n be the natural embedding. The sheaf of
real analytic functions of exponential type on Rn is defined by

(72) Aexp

Rn := i−1Oexp
D2n = Oexp

D2n |Rn .
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We show that real analytic functions of exponential type are regarded as
Laplace hyperfunctions. There is a natural morphism

i−1Oexp
D2n ⊗ ωRn [−n] −→ i!Oexp

D2n ≃ i−1RΓRn(Oexp
D2n).

Using the shift functor [n] and the functor (·) ⊗ ωRn , we get the sheaf mor-
phism ϕ : Aexp

Rn → B
exp

Rn . We denote by ARn the sheaf of real analytic functions

on Rn. Let j : Rn → Rn be a natural embedding, and let ψ : ARn → BRn .
Now we consider the commutative diagram of sheaf morphisms:

Aexp

Rn

ϕ−−−→ Bexp

Rn

α

y yβ
j∗ARn

j∗ψ−−−→ j∗BRn

.

As α and j∗ψ are injective, we have the following theorem.

Theorem 6.3. The sheaf morphism Aexp

Rn → B
exp

Rn is injective and we can
regard real analytic functions of exponential type as Laplace hyperfunctions.

Theorem 6.4. The sheaf morphism Bexp

Rn → j∗BRn is surjective.

Proof. Let Ω ⊂ Rn be an open set, and let U ⊂ D2n be a complex neighbor-
hood of Ω. Consider the following exact sequence of cohomology groups:

Hn
Rn∩Ω(U, O

exp
D2n)→ Hn

Rn∩Ω(U, O
exp
D2n)→ Hn+1

∂Rn∩Ω(U, O
exp
D2n).

It follows from Theorem 5.12 that we have Hn+1
∂Rn∩Ω(U, O

exp
D2n) = 0. Hence, by

taking inductive limit with respect to Ω ⊂ Rn of the above exact sequence
of cohomology groups, we have the following exact sequence of sheaves

Bexp

Rn → j∗BRn → 0.

This implies that the morphism Bexp

Rn → j∗BRn is surjective.

7 Softness of the sheaf Bexp

Rn

In this section we prove the softness of the sheaf Bexp

Rn . For that purpose we
prepare some propositions.

Lemma 7.1. Let S be a locally closed set in Rn. Then we have

(73) Hk
S(D2n, Oexp

D2n) = 0 (k ̸= n, n+ 1).
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Proof. For 0 ≤ k ≤ n− 1, Theorem 5.11 implies

Hk
S(D2n, Oexp

D2n) = ΓS(D2n, H k
Rn(Oexp

D2n)) = 0.

On the other hand, for k ≥ n+ 2, (73) follows from that flabby dim Oexp
D2n ≤

n+ 1.

We introduce some notations which are needed for the subsequent propo-
sition. For 1 ≤ j ≤ n, we define the holomorphic map Φj : Cn \ {zj = 0} →
C× Cn−1 by

Φj(z1, . . . , zj, . . . , zn) =

(
zj,

z1
zj
, . . . ,

zj−1

zj
,
zj+1

zj
, . . . ,

zn
zj

)
.

Definition 7.2. Let K ⊂ Rn and S ⊂ R be closed sets, and let L1, · · · , Ln−1

be closed sets in C. We say that K is a Φj-closed subset in Rn if Φj gives
a biholomorphic map between K ∩ Rn and (S ∩ R)× L1 × · · · × Ln−1 which
extends to a continuous isomorphism between K and S × L1 × · · · × Ln−1.

Proposition 7.3. Let ∂Rn be a boundary of Rn in D2n. Then we have

(74) Hk
∂Rn(D2n, Oexp

D2n) = 0 (k ̸= n).

Proof. For k ̸= n, n + 1, taking Lemma 7.1 into account, we have (74). Let
us show Hn+1

∂Rn (D2n, Oexp
D2n) = 0. For a sufficiently large ϵ, we set

K+
j := {(z1, . . . , zn) ∈ Cn; | arg zj| ≤ ϵ, Rezj ≥ ϵ, |zk| ≤ ϵ|zj| (k ̸= j)} ,

K−
j := {(z1, . . . , zn) ∈ Cn; | arg zj − π| ≤ ϵ, Rezj ≤ −ϵ, |zk| ≤ ϵ|zj| (k ̸= j)} ,

L∗
j := K∗

j ∩ ∂Rn (∗ = +, −, 1 ≤ j ≤ n).

Here the closer K∗
j is taken in D2n. Then the family of those closed sets

{L+
1 , L

−
1 , . . . , L

+
n , L

−
n } gives a closed covering of ∂Rn. As Φj gives a con-

tinuous isomorphism between L±
j and {±∞} × {|x1| ≤ ϵ} × · · · × {|xj−1| ≤

ϵ} × {|xj+1| ≤ ϵ} × · · · × {|xn| ≤ ϵ}, we have

(75) Hk
L±
j
(D2n, Oexp

D2n) = Hk
{±∞}×{|x1|≤ϵ}×···×{|xn|≤ϵ}(D

2 × Cn−1, Oexp
D2×Cn−1)

(1 ≤ j ≤ n, k ∈ Z).

Then the right hand side of (75) vanishes for k ≥ n + 1 by Lemma 5.1.
In particular, we obtain Hn+1

L±
j

(D2n, Oexp
D2n) = 0. So we use induction on the

number 2n of closed sets L∗
j comprising ∂Rn to see Hn+1

∂Rn (D2n, Oexp
D2n) = 0.

It suffices to prove that Hn+1

L+
1 ∪L+

2

(D2n, Oexp
D2n) = 0 from Hn+1

L+
1

(D2n, Oexp
D2n) = 0
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and Hn+1

L+
2

(D2n, Oexp
D2n) = 0. We consider the following exact sequence of

cohomology groups

(76)

· · · → Hn+1

L+
1

(D2n, Oexp
D2n)⊕Hn+1

L+
2

(D2n, Oexp
D2n)

→ Hn+1

L+
1 ∪L+

2

(D2n, Oexp
D2n)

→ Hn+2

L+
1 ∩L+

2

(D2n, Oexp
D2n)→ · · · .

As L+
1 ∩ L+

2 is Φ1-closed or Φ2-closed, we obtain Hn+2

L+
1 ∩L+

2

(D2n, Oexp
D2n) = 0 by

Lemma 5.1 . This implies Hn+1

L+
1 ∪L+

2

(D2n, Oexp
D2n) = 0.

As an immediate consequence of the proposition, we obtain the following
corollary.

Corollary 7.4. Let L be a finite union of Φj-closed subsets in Rn. Then
we have

(77) Hk
L(D2n, Oexp

D2n) = 0 (k ̸= n).

By Theorem 5.12 given in the previous section, we obtain the following
proposition.

Proposition 7.5. The sheaf H n
∂Rn(Oexp

D2n) is soft on ∂Rn.

Proof. Let us show that every section on an arbitrary closed setK ⊂ ∂Rn can
be extended to the whole space, i.e., the restriction map Γ(∂Rn, H n

∂Rn(Oexp
D2n))

→ Γ(K, H n
∂Rn(Oexp

D2n)) is surjective. As ∂Rn is a paracompact Hausdorff
topological space, we have

Γ(K, H n
∂Rn(Oexp

D2n)) = lim−→
Ω⊃K

Γ(Ω, H n
∂Rn(Oexp

D2n)).

Here the limit is taken with respect to all open subsets on ∂Rn containing
K. Therefore every element of Γ(K, H n

∂Rn(Oexp
D2n)) can be first extended to

an open neighborhood Ω of K on ∂Rn. Let us take a finite closed covering
of ∂Rn \ Ω which satisfies the condition of Corollary 7.4. Note that, by
Theorem 5.12, we have the following representation of the global sections of
H n

∂Rn(Oexp
D2n) on an open set Ω :

Γ(Ω, H n
∂Rn(Oexp

D2n)) = Hn
Ω(U, O

exp
D2n),

where U is an arbitrary open neighborhood of Ω in D2n. Let us consider the
long exact sequence of cohomology groups

(78) · · · → Hn
∂Rn(D2n, Oexp

D2n)→ Hn
Ω(U, O

exp
D2n)→ Hn+1

∂Rn\Ω(D
2n, Oexp

D2n)→ · · · .

Then Hn+1
∂Rn\Ω(D

2n, Oexp
D2n) vanishes by Corollary 7.4. This implies that the

sheaf H n
∂Rn(Oexp

D2n) is soft on ∂Rn.
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Theorem 7.6. The sheaf H n
Rn(O

exp
D2n) is soft on Rn.

Proof. Let j : Rn → Rn be the embedding. For an open set Ω ⊂ Rn and
a complex neighborhood U ⊂ D2n, we consider the long exact sequence of
cohomology groups

· · · → Hk
∂Rn∩Ω(U, O

exp
D2n)→ Hk

Rn∩Ω(U, O
exp
D2n)→ Hk

Rn∩Ω(U, O
exp
D2n)→ · · ·

for the pair ∂Rn ∩Ω ⊂ Rn ∩Ω. It follows from the flabbiness of the sheaf of
usually hyperfunctions and Theorem 5.12 that we have

Hn−1
Rn∩Ω(U, O

exp
D2n) = 0, Hn+1

∂Rn∩Ω(U, O
exp
D2n) = 0.

Hence, by taking inductive limit with respect to Ω ⊂ Rn of the above long
exact sequence of cohomology groups, we have the following exact sequence
of sheaves

0→H n
∂Rn(Oexp

D2n)→ Bexp

Rn → j∗BRn → 0.

Since the sheaves H n
∂Rn(Oexp

D2n) and j∗BRn are soft, the softness of Bexp

Rn

follows from the above exact sequence.
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1987; B. Stanković, editor), Plenum Press, New York (1988), 57-70.

[9] , Operational calculus, hyperfunctions and ultradistributions, Al-
gebraic Analysis (M. Sato Sixtieth Birthday Vols.), Vol. I, Academic
Press, New York (1988), 357-372.

[10] , Operational calculus and semi-groups of operators, Functional
Analysis and Related Topics (Proc. Internat. Conf. in Memory of K.
Yoshida, kyoto, 1991), Lecture Notes in Math., vol. 1540, Springer-
Verlag, Berlin (1993), 213-234.

[11] , Multipliers for Laplace hyperfunctions - A Justification of Heav-
iside’s rules, Proceedings of the Steklov Institute of Mathematics, 203
(1994), 323-333.

[12] , Solution of differential equations by means of Laplace hyperfunc-
tions, in Structure of Solutions of Differential Equations, World Scien-
tific, Singapore, (1996), 227-252.

[13] , An introduction to ultra-distributions, Iwanami Kiso Sûgaku
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