テーマ：原子クラスターの理論的モデリング

作者：髙橋 启介

出版者：北海道大学

出所：2014-03-25

URL：http://hdl.handle.net/2115/55650

権利：http://creativecommons.org/licenses/by-nc-sa/2.1/jp/

形態：論文内容の要旨
With recent growth and advances within the science and technology fields, the demand for energy and rare earth metal has dramatically increased. Energy consumption of fossil fuel has gradually increased despite the fact that fossil fuel such as petroleum is limited. However, potential alternative energies such as biofuel and hydrogen economies have shown to be scientifically challenging. Rare earth metal, particularly neodymium, is the primary component of high advanced technology where neodymium is used as a part of magnet. Because the amount of neodymium is limited, alternative solutions are a first priority as magnets support a large part of modern society. Solutions to problems presented by energy and rare earth metal are still unclear and unknown.

Atomic clusters are potential candidates for solving both issues simultaneously as the physical and chemical properties of atomic clusters are different from the bulk state, thereby broadening options for energy and magnet alternatives. In particular, magnetism and hydrogenation of atomic clusters are investigated using the density functional theory. Atomic clusters are expected to have higher magnetic moment than their bulk states due to larger interatomic distance. Additionally, atomic clusters are much more reactive than bulk states due to high surface to volume ratio. In particular, H_2 dissociation, which is a crucial step for hydrogenation process, over atomic clusters is investigated where hydrogenation process is the most important catalytic process for energy related processes, particularly for oil refining and food industries. Thus, atomic clusters should be able to demonstrate the potential solution for replacing as well as further optimizing magnet and energy related technologies.

Group VIII clusters, Fe, Ru, and Os clusters are investigated as such clusters are expected to have high magnetic moments and reactivities. The ground state structures of Fe, Ru, and Os clusters are explored using the basin-hopping algorithm. In particular, Fe clusters shows high magnetic moments that could potentially replace current neodymium magnets. H$_2$ dissociation, which is considered to be first step of hydrogenation, without activation barriers is seen in all of Fe, Ru, and Os clusters upon the adsorption of H$_2$. In particular, Os clusters are predicted be potential catalysts for hydrogenation process as Os clusters show the highest stability within the system upon H$_2$ adsorption. Furthermore, the stability change point change upon H$_2$ adsorption is also revealed for all Group VIII clusters.

Further hydrogenation of gas-phase Fe clusters is investigated where the Fe clusters shows high reactivity against hydrogen. In fact, Fe clusters from chemical bonding with hydrogen although bulk iron and hydrogen do not combine with each other. In order to use gas-phase hydrogenated Fe clusters for commercial applications, clusters must be deposited on a substrate. Deposition of Fe clusters on substrates such as Al$_2$O$_3$, SiO$_2$, and graphene are evaluated where graphene is calculated to preserve the structure and properties of hydrogenated Fe clusters. Because graphene is a single atomic layer
material, Cu is used as a substrate for supporting graphene. Thus, the structure and properties of Fe clusters on graphene/Cu(111) are investigated.

Hydrogenation of Fe clusters was then experimentally performed in order to confirm the theoretical phenomena. Iron clusters are deposited on graphene/Cu substrates using vacuum deposition techniques where transmission electron microscopy was used to confirm the depositon of Fe clusters. Hydrogenation is done under liquid nitrogen. Mass spectrometry confirms the existence of hydrogenated Fe clusters on graphene/Cu.

Hydrogenation of Mg and dehydrogenation of MgH\(_2\) clusters were explored using the aids of atomic clusters as applications of clusters. The kinetic of MgH\(_2\) is slow where H\(_2\) dissociation plays a crucial step. In both of the hydrogenation and dehydrogenation processes, NbO(111) particularly shows a strong catalytic effect for MgH\(_2\) where NbO(111) consists of alternating the Nb and O atomic layers. H\(_2\) dissociation and dehydrogenation of MgH\(_2\) clusters on NbO(111) occurred without encountering activation energy. Dissociated H atoms are stabilized by the long range effect of oxygen without oxidation. In the case of dehydrogenation, dehydrogenated Mg is weakly bonded with NbO(111), predicting potential re-hydrogenation.

This dissertation shows that the atomic clusters theoretically shows outstanding physical and chemical properties in terms of magnetism and hydrogenation. Fe clusters show high magnetism which could potentially replace the neodymium magnet. Os clusters show high catalytic activities towards hydrogenation in comparison to Fe and Ru clusters. Hydrogenation of Fe clusters are stabilized on graphene where the phenomena was experimentally confirmed. As a direct application of atomic clusters, NbO(111) shows outstanding catalytic activities for hydrogenation and dehydrogenation of MgH\(_2\). Thus, the theoretical modeling of atomic clusters and hydrogen shows remarkable properties for the energy and rare earth metal crisis.