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A Study on Robust SEM Photometric Stereo Using Two

BSE Detectors∗

Deshan Chen

Abstract

This thesis presents a novel robust SEM photometric stereo method using two backscat-
tered electron detectors. Robustness is one of the most important factors for practical
applications. Although SEM photometric stereo has gained a lot of attention and been
extensively studied, the robustness remains a very interesting challenge. Among ill
factors, we realize that shadowing and noise problems are almost inherent in SEM pho-
tometric stereo. In particular, the shadowing effects generally give rise to significant
errors in the reconstructed shapes. The present work is thereby devoted to developing
SEM photometric stereo so that it can automatically handle such ill factors.

For dealing with shadowing effects, we introduce a shadowing compensation model
though modeling image intensities in both cases of absence and presence of shadow-
ing based mainly on angle distribution of backscattered electrons. This model relates
the underlying shadowless image to the observed one by the corresponding detection
ratio. The detection ratio has modeled the shadowing generation process by means of
shadowing angles, which reflects the amount of occluded backscattered electrons. One
advantage of the shadowing compensation model is that it is no need for us to treat the
regions with shadowing errors separately from those without such errors, because the
shadowless case is the special case of shadowing. Therefore, in contrast to some other
approaches, the proposed method does not require an image segmentation process to
extract shadowing regions, which is substantially difficult to implement automatically.
The model has already provided an important cue to eliminate shadowing errors by
means of inferring the shadowless images from the observed one if the shadowing angles
can be obtained.

With the shadowing compensation model and gradient estimation equation, we for-
mulate the proposed robust shape reconstruction into a constrained optimization prob-
lem via a variational approach. The objective functional consists of two terms. One
is the fidelity term that is to guarantee the gradient of reconstructed shape should be
consistent with the gradient data. In particular, the gradient data are evaluated from
shadowless images so as to eliminate shadowing errors. In addition, shadowless images
are related to the corresponding observed ones through our shadowing compensation
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model, which forms the constraints. The second term is total variation prior to penalize
the roughness of the solution and consequently make our method be robust to noise
influence arising in the data term. We adopt an iterative scheme to solve the problem,
which performs commutatively between the compensation of image intensities and the
modification of the corresponding 3D shape, can effectively provide both an accurate 3D
shape and compensated shadowless images after convergence.

We present an extension to the shadowing compensation model in order to improve
the model accuracy in the shadowing regions on the general curved surfaces. The ex-
tended model removes the earlier restrictive assumption that the shadowing effects exist
only on horizontal surfaces. This model is developed in an analogous way through mod-
eling image intensities in both the absence and presence of shadowing. A numerical
solution is proposed to resolve the implicit expressions for double integrals in the model.
Compared to the previous shadowing compensation model, the extended model can be
more accurate when applied to shadowing regions on surfaces having large inclinations.

Experimental results demonstrate the robustness and effectiveness of our proposed
methods. Compared to the traditional methods, reconstructed 3D shapes can achieve
higher accuracy. Furthermore, the resulting compensated images provide a potential
opportunity for improving the imaging performance of SEM devices.

Keywords: Scanning Electron Microscope (SEM), Shape Reconstruction, Shadowing
Compensation model, Backscattering Electron, Variational Method
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Chapter 1. Introduction

The scanning electron microscope (SEM) is a very important tool for observing micro-
structures ranging from millimeters to nanometers and has been widely used in the
areas of medical observation, semiconductors, material analysis, etc. Compared with
other common microscopies, SEM offers a unique combination of imaging characteristics
including high lateral resolution, broad magnification range, and large depth of field.
As the working mechanism of SEM, a focused electron beam, named primary beam
(PE), scans across the surface of a specimen rectilinearly, and the generated electrons
(secondary or backscattered electrons) from the beam-specimen interaction are detected
synchronically from pixel to pixel with various intensities resulting in the image contrast.

Currently, the need for three-dimensional (3D) surface measurements is significantly
increasing. In particular, quantitative measurements of specimen at micro- and nano-
scales by a truly three dimensional characterization technique are highly demanded in a
variety of applications such as high aspect ratio MEMS structures [33], surface roughness
determination [34], nano-materials and nano-devices, life sciences, fracture analysis [35],
and many others. As a representative instance, 3D shape information can provide valu-
able clues for inspecting and analyzing defects in products of semiconductor manufac-
turing processes, such as recognition of device patterns and defect regions, classification
of defects in terms of the processes responsible for their generation (surface/embedded
defects [1]) and the impact on electric properties (volume or shorting/disconnection
defect), and specification and control of the issue process, etc.

1.1 Scanning process and image formation

Figure 1.1 shows a schematic diagram of SEM. In a typical SEM, an electron beam
is thermionically emitted from an electron gun fitted with a tungsten filament cathode.
Tungsten is normally used in thermionic electron guns because it has the highest melting
point and lowest vapour pressure of all metals, thereby allowing it to be heated for
electron emission, and because of its low cost. Other types of electron emitters include
lanthanum hexaboride cathodes, which can be used in a standard tungsten filament SEM
if the vacuum system is upgraded and FEG, which may be of the cold-cathode type using
tungsten single crystal emitters or the thermally assisted Schottky type, using emitters
of zirconium oxide.

The electron beam, which typically has an energy ranging from 0.2 keV to 40 keV, is
focused by one or two condenser lenses to a spot about 0.4 nm to 5 nm in diameter. The

1



1.1. Scanning process and image formation Chapter 1. Introduction

Figure 1.1: Schematic diagram of SEM.

beam passes through pairs of scanning coils or pairs of deflector plates in the electron
column, typically in the final lens, which deflect the beam in the x and y axes so that it
scans in a raster fashion over a rectangular area of the sample surface.

When the primary electron beam interacts with the sample, the electrons lose energy
by repeated random scattering and absorption within a teardrop-shaped volume of the
specimen known as the interaction volume, which extends from less than 100 nm to
approximately 5 µm into the surface. The size of the interaction volume depends on
the electron’s landing energy, the atomic number of the specimen and the specimen’s
density. The energy exchange between the electron beam and the sample results in the
reflection of high-energy electrons by elastic scattering, emission of secondary electrons
by inelastic scattering and the emission of electromagnetic radiation, each of which
can be detected by specialized detectors. The beam current absorbed by the specimen
can also be detected and used to create images of the distribution of specimen current.
Electronic amplifiers of various types are used to amplify the signals, which are displayed
as variations in brightness on a computer monitor (or, for vintage models, on a cathode
ray tube). Each pixel of computer videomemory is synchronized with the position of
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1.2. Overview of 3D Reconstruction in SEM Chapter 1. Introduction

the beam on the specimen in the microscope, and the resulting image is therefore a
distribution map of the intensity of the signal being emitted from the scanned area of
the specimen. In older microscopes image may be captured by photography from a
high-resolution cathode ray tube, but in modern machines image is saved to a computer
data storage.

1.2 Overview of 3D Reconstruction in SEM

In fact, SEM can only produce 2D images rather than 3D shape directly. Attempts
have been made to transform SEM into a 3D measuring tool for over 30 years, and
scientific research on 3D surface reconstruction in SEM continues to be intensively stud-
ied. Different approaches, which can be broadly classified into two groups, have been
utilized. One group is generally referred to as the photogrammetry method, the other
is the so-called SEM photometric stereo method.

1.2.1 Photogrammetry Approaches

Photogrammetry method [2, 3, 4, 26, 27, 28], in which a pair of stereo images of a
specimen at different inclination angles are taken, and the shape or depth is determined
by measuring the deviations of corresponding points on the two images. However, this
method can only be applied to the measurements of surface points where recognizable
fine structures exist. In general, it cannot be used on smooth surfaces or to reconstruct
a continuous surface profile at high magnification.

1.2.2 Photometric Stereo Approaches

An alternative approach, that can applicable to smooth shape as well, is the so-called
SEM photometric stereo method, in which multiple secondary or backscattered electron
detectors (generally two or four) are symmetrically positioned about the beam axis,
so that the gradient information on the surface being observed can be estimated from
multiple images that are measured simultaneously by multiple detectors [5, 6, 7, 8, 9, 10].
The 3D surface is consequently obtained from the gradient information.

1.2.3 General Problems

Most of previous studies on SEM photometric stereo have focused almost exclusively
on deriving accurate gradient measurement formulas, i.e., expressions of the relationships
between the gradient component of target objects and the measured SEM signals from
multiple detectors at the points of observation. Despite of extensive studies, robustness
remains a very interesting challenge to make the technique be more practically applicable.
As SEM photometric stereo making use of shading cues to infer 3D shapes, it is clear that

3



1.2. Overview of 3D Reconstruction in SEM Chapter 1. Introduction
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Figure 1.2: Noise effect. (a) Original left image of a sphere pattern, (b) intensity profile
of the center section marked on (a), (c) 3D shape reconstructed via numerical integration
and (d) 3D shape reconstructed via our proposed variational method.

the accuracy of images intensity dramatically affects the reconstruction results. There
are a number of factors that may influence the image intensity. We here review some
typical ill-factors.

• Noise. Noise may be one of the most common ill-factors in a variety of imaging
devices, including SEM. Noise makes the image intensity from multiple scans at
a given position (pixel) be different. It is generally be modeled as a Gaussian
distribution. As shown in Fig. 1.2 (b), the intensity profile of the center section of
the sphere pattern does display smooth but randomly oscillating.

• Shadowing. Shadowing phenomena can frequently occur in imaging processes ow-
ing to the exceptional features of sample topography. As shown in Fig. 1.3, a por-
tion of the electrons below the tangent line is screened out because of the occlusion,
causing fewer electrons to be collected by the BSE detector, which consequently
gives rise to smaller observed image intensity than the underlying shadowless one.
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Figure 1.3: Schematic illustration of shadowing effect. BSEs emitted in a direction below
the tangent line are generally absorbed by the occlusion region and consequently are not
collected by the detector.

One can imagine that shadowing effects can contribute significantly to the final
error of a reconstructed 3D surface

• Charging. Charging is the condition when a material cannot effectively conduct
the beam energy imparted to it. A large fraction of the probe current remains in
the specimen as the beam electrons lose all of their initial energy and are captured
by the specimen. This charge flows to ground if the specimen is a conductor
and a suitable connection exists. If the ground path is broken, even a conducting
specimen quickly accumulate charge. The ensuing image will grow or cause streaks
or general distortion in the image as electron production is artificially enhanced
and the beam is unintentionally deflected.

• Blurring. Blurring occurs on account of out of focus leading the lose of image
details. Imaging that an inclined flat specimen will make it difficult to be focused
over the whole area, although the depth of focus of SEM is relatively large in
general.

Among these ill-factors, noise and shadowing are generally unavoidable, because they
are almost inherent in imaging processes. In particular, shadowing effect is caused
by the exceptional features of specimen topography itself, which is considerably hard
to avoid or eliminated. Moreover, as shown in Fig. 1.4 (c), it generally give rise to
significant distortions to the final reconstructed shape. Nevertheless, charing problem
can be relieved via specimen coating so as to increase the conductivity. Blurring may be
resolved through such as dynamic focusing [32], where the focal length being changed
during the scanning process.
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(a) (b)

(c) (d)

Figure 1.4: Shadowing effects in a line pattern: (a) original left image, (b) original
right image, (c) reconstructed shape via the proposed variational method without de-
shadowing, and (d) reconstructed shape via our proposed method with de-shadowing.

1.3 Scope of Our Work

Robustness is essential for real applications. In this work, we aim to develop a
highly robust and automatic SEM photometric stereo. Our main focus is on noise
and shadowing effects. In particular, the majority work is devoted to handling shadow
problem.

1.3.1 Dealing with Noise

As discussed in the previous section, noise is almost inherent in the imaging processes,
which gives rise to contamination to gradient estimations. In almost all the previous
SEM photometric stereo studies, an numerical integration method was adopted to obtain
the 3D shape from gradients. Such method is very simple, however, it has a drawback in
that it performs poorly when the data are noisy, as the error can accumulate during the
integration. A remedy is to reduce the level of noise, for instance, by averaging multiple
images from the same static “scene” over time. However, it is generally expensive to
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obtain the large number of images required for this process.
In contrast to acquire less noisy data, we alternatively pursue to allow a reconstruc-

tion algorithm to deal with noise issue. To this end, we implement an optimization
technique, named variational method, to find the best-fit shape through minimization
of the proposed energy functional. The functional is consist of two terms. One is the fi-
delity term that is to guarantee the gradient of reconstructed shape should be consistent
with the gradient data. The second term is total variation regularizer to penalize the
roughness of the solution and consequently make our method be robust to noise influence
arising in the data term. In a statistical point of view, the minimization of the functional
is equivalent to a maximum a-posteriori, where the fidelity term and TV regularizer are
corresponding to likelihood and prior, respectively. We minimize the variational prob-
lem by solving the corresponding Euler-Lagrange equation, which is a partial differential
equation (PDE). We resolve the PDE by first discretizing it through the finite difference
method and adopting a fixed point method to solve the resulted Quasi-linear system
after the discretization. Fig. 1.2 (c) and (d) are the reconstructed 3D shape of a sphere
pattern via traditional integration method and our proposed variational method, respec-
tively. It is vivid that 3D shape via our proposed method is considerably smooth and
reliable, while significant distortions exist in the 3D shape via the integration method,
which indicates that the proposed method can handling noise issue well compared to the
integration method that is sensitive to noise effect.

1.3.2 Dealing with Shadowing

Fig. 1.4 (c) shows the reconstruction result of a line pattern via our proposed varia-
tional method. We can clearly observe that the marked region contains large deviation
which display as rounding slope effects. Such error is in fact caused by shadowing effects,
which can not been simply eliminated by the variational method.

Paluszyński and Slówko [11] introduced several techniques for reconstructing the
shape in the shadowed region that utilize two or three unshadowed detectors under a
setting of four secondary electron (SE) detectors. However, this method requires exact
geometric parameters for the detector system, which are generally difficult to obtain.
In addition, shadowed regions must be manually identified from the SE images each
time. Such interactivity bring several shortcomings. Firstly, it is generally difficult
to segment out the shadowed region precisely. As shown in Fig. 1.4 (a) and (b), it
is difficult is determine the boundary between shadowed and non-shadowed regions.
Secondly, the reproducibility of the results can hardly be guaranteed. Thirdly, the
interactive implementation is generally time-consuming and restrictive for some actual
applications.

In this work, we aim to a explore an algorithm that can automatically eliminate
shadowing effects. To deal with shadowing effects, we need mathematically model the
shadowing generation process. Unlike the noise effect, the modeling of shadowing ef-
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fects needs a bit more elaboration. We thus introduce a novel shadowing compensation
model, which is deduced by modeling image intensities in both cases of absence and
presence of shadowing based on the angle distribution of signal electrons. In chapter 3,
we deduce our first shadowing compensation model with a restrictive assumption that
the shadowing effects occurs only on the horizontal surface. Benefit from such assump-
tion, the shadowing compensation model gets a lot simplification and takes a compact
and implicit form, that is convenient for applications. For instance, the assumed situ-
ation is generally common for measuring man-made structures such as semiconductors,
whose height or shape need to be controlled precisely in manufacturing processes. We
further make an extension to the model in chapter 5 where the restrictive assumption is
abandoned and derive a general model called extended shadowing compensation model.
The shadowing compensation model related the underlying shadowless image intensity
to the observed one via detection ratio, which provides an essential cue to infer shadow-
less images. One advantage of the shadowing compensation model is that it is no need
for us to treat the regions with shadowing errors separately from those without such
errors, because the shadowless case is special case of shadowing with detection ratio
being one. This does not require an image segmentation process to extract shadowing
regions, which is substantially difficult to implement automatically.

With the shadowing compensation model, our proposed robust SEM photometric
stereo is finally formulated as a constrained variational problem. In the fidelity term of
the objective functional, the gradient data is evaluated from the underlying shadowless
images, and the shadowless images are related to the observed ones via our shadowing
compensation model which forms the constraints. We adopt an iterative scheme to solve
the problem, which performs commutatively between the compensation of image intensi-
ties and the modification of the corresponding 3D shape, can effectively provide both an
accurate 3D shape and compensated shadowless images after convergence. Fig. 1.4 (d)
shows the reconstructed 3D shape of the line pattern which indicate that our proposed
SEM photometric stereo is robust to noise and shadowing effects in an automatic and
effective way.

1.4 Advantages and Contributions

The advantages of the proposed robust SEM photometric stereo are summarized as
follows:

• Robustness. Surprisingly, the previous SEM photometric stereo research studies
have exploited robustness to a very limited extent. In this work, we focus on two
ill-factors, i.e., noise and shadowing effects, because both are almost inherently
occur in imaging processes. In particular, the shadowing effects is caused by the
specimen itself and thus impossible be avoided once exists. Utilizing our shadowing
compensation model and variational method, the SEM photometric stereo can
simultaneously deal with the both issues.
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• Shadowless Images. One interesting advantage of our method is that we obtain
not only 3D shape, but shadowless images. As previously mentioned, shadowing
effects, once exists, can hardly be avoided. Therefore, it is difficult to directly ob-
tain the shadowless images in SEM. Our method provides a potential opportunity
for improving the imaging performance of SEM devices.

• Full-automatic. In contrast to a literature example [11], there is no human inter-
activity required in the reconstruction and de-shadowing process. This is benefit
from our shadowing compensation model where the shadowless case is just a special
condition of shadowing.

This thesis has several novel contributions which are summarized as follows:

• Validation the gradient equation. We analyze the applicability of the gradient
equation via an experimental validation, as the equation is not theoretically de-
duced but experimentally found.

• Shadowing Compensation Model. We model the shadowing generation process and
introduce a novel shadowing compensation model by modeling the image intensi-
ties in both cases of absence and presence of shadowing. The model related the
underlying shadowless image intensity to the observed one and provide a essential
cue for de-shadowing.

• Reconstruction with De-shadowing. The formulated our reconstruction as a con-
strained variational problem. We also propose an efficient numerical solution to
the problem, which can produce a 3D shape and shadowless images.

• Extended Shadowing Compensation Model. We extended the shadowing compen-
sation model from the horizontal case to general inclined cases. The model tends to
be more applicable and has a higher model accuracy when applied to a shadowed
region with a large inclination.

1.5 Organization of the Thesis

In this chapter, we have briefly described the imaging process in SEM and the
overview of previous studies in the fields of SEM 3D reconstruction. We have high-
lighted the typical problems and difficulties in SEM photometric stereo. We have also
briefly described the concepts of our proposed robust SEM photometric stereo. The
remainder of the thesis is organized as follows:

• Chapter 2 briefly describes the measuring system for SEM photometric stereo and
gradient estimation equation. We also design an experiment for the validation of
the equation, as the equation is experimental found.
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• Chapter 3 introduces the shadowing compensation model. Our modeling is divided
into two steps. We firstly model the image intensities in both cases of absence
and presence of shadowing under some ideal assumptions and deduce the primary
model. We further incorporate the practical factor into the model and derive the
final modified model.

• Chapter 4 presents our proposed SEM photometric stereo. In this chapter, we
utilize the shadowing compensation model and formulate our robust reconstruc-
tion through a variational method, which can robust against noise and shadowing
effects. We further propose the numerical implementation for minimizing the prob-
lem. At the end of the chapter, we present several experiments on real image data
with different conditions of shadowing as well as noise.

• Chapter 5 extends the shadowing compensation model to a more general one. In
this chapter, we abandoned the previous restrictive assumptions and extend the
model to general curved surfaces. We also present a numerical method for solve
the extend model. Finally we evaluate the performance of the extended model
by comparisons with the previous model and absence of de-shadowing cases under
different shadowing conditions.

• Chapter 6 concludes the main points of our work and discusses the future works.
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Chapter 2. Gradient Estimation

This chapter briefly describes our measuring system and the gradient estimation equa-
tion. As the gradient equation is experimentally found, we therefore design an experi-
ment to validate the effectiveness of the equation in our system setting. The basic idea
is to check whether the gradients estimated by the equation are kept unchanged on the
locus with an identical gradient. We realize that measurements are influenced by noise
and the hypothesis can not hold exactly. We thus present an method to estimate the
noise level from just a single image and estimate the standard deviation of the gradient
measurements caused by image noise.

2.1 Gradient Estimation Equation

The SEM photometric stereo method is substantially related to the photometric
techniques used with an optical camera as measuring device [15, 16, 17] in that both are
used to estimate gradient information for an object being observed from shading cues in
the image data (The special case, in which the data is a single image, is generally known
as shape from shading [18, 19, 20, 54, 55, 56]). However, because of different imaging
principles, the gradient estimation formulas are derived in different ways.

As schematically illustrated in Fig. 2.1 [7], in our SEM measurement system, two
BSE detectors are symmetrically positioned along a direction. It is convenient for us to
define this direction as an x-axis. Such a system can simultaneously provide two BSE
images from the two detectors, denoted as BL and BR, respectively. In general, we use

Primary Beam

BLn BRn

Substrate

Primary Beam

α

BL BR

α

BSE 

Detector 1

BSE 

Detector 2

Figure 2.1: Schematic diagram of measuring system with two BSE detectors.
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(a) (b)

Figure 2.2: Image coordinate shown on the left image (a) of the sphere pattern. (b)
Right image of the sphere pattern.

BL and BR to refer to the left and right image and detector 1 and 2 to designate the
left and right detector, respectively. Suganuma [7] proposed an experimentally derived
equation that could measure the gradient component in the direction of the x-axis (i.e.,
the slope tan α):

∂Z

∂x
= k

BL2 − BR2

(BLn + BRn)2
, (2.1)

where k is a constant and BLn and BRn are signal outputs from two detectors on the
horizontal specimen surface. 3D shape can be obtained from gradient measurements
though either straightforward numerical integration [7] or advanced optimization tech-
niques [14, 30, 13].

2.2 Experimental Validation

As Suganuma’s equation (2.1) is experimentally derived, we thus design an experi-
ment to validate the accuracy and effectiveness. To this end, we choose a sphere pattern,
and check whether value G = BL2−BR2 keeps a constant for the positions on the sphere
with a identical gradient. Here we utilize numerator G = BL2−BR2 instead of the whole
right hand side of (2.1) for computational efficiency, because both parameter k and de-
nominator (BLn + BRn)2 are kept unchanged in each individual measurement. There
are two considerations for the choice of the sphere pattern in our experiment. For one
thing, the 3D shape of the sphere can easily be constructed making the ground truth
of gradients be effortlessly obtained. For another, the sphere contains all the cases of
inclination leading the validation be more reasonable and reliable. Because the mea-
surements (BL and BR) are inevitably contaminated by noise in our experiments, the
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Figure 2.3: Locus with C = 0.5 shown on the left image.

hypothesis that G remains constantly can never hold exactly in practice. Therefore, we
have to take the noise influence into consideration. We thus present an estimation of
noise level in images and the corresponding error in G caused by noise.

2.2.1 Locus with Identical Gradient

Left and right images of the sphere pattern are shown in Fig. 2.2. The images are
rotated and truncated from original images (refer also to Fig. 2.5 (a) and Fig. 2.6 (a))
so that the image coordinate is coincident to horizontal and vertical directions and the
origin is at the center of the sphere.

The shape of the sphere pattern takes

Z =
√

r2 − x2 − y2, (2.2)

where r is the radius of the sphere which is 193 (in pixel) in our experiment. It is thus
straightforward that the gradient is

∂Z

∂x
= − x√

r2 − x2 − y2
. (2.3)

The locus of the points with the same absolute gradient value C (where C ≥ 0), i.e.,
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Figure 2.4: Mean and standard deviation of image blocks constitute the noise level
function.

|∂Z
∂x | = C , should satisfy

y = ±

√
r2 − x2

(
1 +

1
C2

)
, (2.4)

or equivalently

x = ±

√
r2 − y2

1 + 1/C2
. (2.5)

Fig. 2.3 shows the locus in the four quadrants with C = 0.5.

2.2.2 Noise Level Estimation

In this section, we present the estimation of noise level from a single image (BL or
BR), which is further used for the estimation of error in G caused by noise.

Noise Model

We take the following additive noise model

I(i, j) = Ī(i, j) + n(i, j), (2.6)

where I denotes the observed noise image, Ī is the underlying noise-free image, n is
random variable denoting noise, and i and j denote row and column indices of image
pixels, respectively.

Assumptions

Noise at each pixel is independent and identically from a gaussian distribution with
expectation zero. Such assumption implies
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• ε{n(i, j)} = 0 for all (i, j), i.e. Ī = ε{I}.

• ε{n(k, l) + n(p, q)} = ε{n(k, l)} + ε{n(p, q)} for (k, l) ̸= (p, q).

• ε{n(k, l) · n(p, q)} = ε{n(k, l)} · ε{n(p, q)} for (k, l) ̸= (p, q).

Where ε{·} denotes the expectation operator.

Estimation of Noise Level Function

since there is no prior knowledge about noise, we have to estimate the noise level
from a single image. To this end, we define the following noise level function

fNL =
√

ε{n2} =
√

ε{(I − Ī)2}. (2.7)

With the previous assumption, we have Ī = ε{I}.
As illustrated in Fig. 2.4, the procedure for estimation of the noise function fNL is

as follows:

• Noise image I is divided into blocks of size N × N .

• For each block, the mean and standard deviation are calculated via

µb =
1

N2
ΣI(i,j)∈blockI(i, j),

σb =

√
1

N2 − 1
ΣI(i,j)∈block(I(i, j) − µb)2.

Where the subscript b implies block.

Experimental Estimation Results

The experiments are implemented on the original left and right images. Fig. 2.5 and
2.6 show the estimation results with block size being 4×4, 8×8 and 16×16. As we can
observe, the standard deviations for all the block sizes are around 10 and the functions
are very near to a uniform distribution. Therefore, as a reasonable approximation, we
calculate the standard derivation for each block size by averaging fNL. Table 2.1 shows
averaged standard deviations of left and right images. We further observe that standard
deviation for both images are quite close to each other. We thus take the average of the
both average over different sizes as the noise level in images. The estimated noise level
σ = 10.5508+10.8757

2 = 10.7133.
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Table 2.1: Standard deviations of left and right images

N = 4 N = 8 N = 16 Average

Left image 9.9665 10.5312 11.1548 10.5508
Right image 10.2168 10.8321 11.5783 10.8757
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Figure 2.5: Noise level function of the left image BL (a) with different block sizes. (b)
size 4 × 4, (c) size 8 × 8 and (d) size 16 × 16.

2.2.3 Error in G Caused by Noise

In this section, we deduce the standard deviation of G = BL2−BR2, i.e., expectation
of error caused by image noise. According to the previous noise model,

BL = BL + n1,

BR = BR + n2,

where BL and BR denote observed left and right images, respectively, BL and BR
represent noise-free images and n1,n2 denote noise. The measurement of G we observe
is G = BL2 − BR2, while the underlying noise-free one should be Ḡ = BL2 − BR2. The
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Figure 2.6: Noise level function of the right image BL (a) with different block sizes. (b)
size 4 × 4, (c) size 8 × 8 and (d) size 16 × 16.

the standard deviation of G = BL2 − BR2 can be estimated as follows:

σ(G) = ε
{∣∣G − Ḡ

∣∣} = ε
{∣∣∣(BL2 − BR2) − (BL2 − BR2)

∣∣∣}
= ε

{∣∣n2
1 − n2

2 + 2BL · n1 − 2BR · n2

∣∣}
= ε

{∣∣2BL · n1 − 2BR · n2

∣∣} = 2ε

{√(
BL · n1 − BR · n2

)2
}

= 2ε

{√
BL2 · n2

1 + BR2 · n2
2 − 2BL BR · n1 · n2

}
= 2σε

{√
BL2 + BR2

}
= 2σ

√
ε {BL}2 + ε {BR}2

(2.8)

Here we have employed the assumption that ε{n2
1} = ε{n2

2}, ε{n1·n2} = ε{n1}·ε{n2} = 0
and BL = ε {BL}, BR = ε {BR}. σ is the standard deviation of image noise that has
been estimated in the previous section.

2.2.4 Experimental Validation Results

In this section, we provide the numerical validation results. The idea is to check
whether the values of G = BL2 − BR2 keep unchanged on the locus with a identical
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Figure 2.7: Plot arrangement.
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Figure 2.8: Distribution of G with xi = 0.

gradient C. As previously mentioned, on account of noise influence, the hypothesis can
not strictly hold. We thus design the experiment as follows,

• Find the locus with C = ∂Z
∂xi

, where xi is the sampling point along x-axis.

• For each locus, check whether G evaluated on all the points mainly located in the
range [Ḡ − σ(G), Ḡ + σ(G)].

We check the locus in the four quadrants, and the plot layout is illustrated in Fig. 2.7.
Fig. 2.9 - 2.13 show the plots with {xi|1, 10, 20, ·, 140, 150} with a sampling step 10
(in pixel). As we can observe, the majority of the points are with the range [Ḡ −
σ(G), Ḡ+σ(G)], which indicates that the Suganuma’s equation can hold well under our
experiment settings.
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Figure 2.9: Distribution of G with xi = 1.
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Figure 2.10: Distribution of G with xi = 10.
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Figure 2.11: Distribution of G with xi = 50.
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Figure 2.12: Distribution of G with xi = 100.
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Figure 2.13: Distribution of G with xi = 150.

2.3 Conclusion Remarks

In this chapter, we have numerically validated the effectiveness of Sugunama’s equa-
tion in our system setting. Suganuma’s fitting model (2.1) can be effective provided the
image intensities of both BL and BR are reliable.

It is obvious that the accuracy of gradient greatly influence the reconstruction results
in SEM photometric stereo. However, practical measurements of image intensity are
generally influenced by numerous ill-factors, including shadowing and noise effects. It is
thus that the reconstructed 3D shape contains significant distortion when the gradient
measurements are inaccurate that is generally on account of ill-factors.

As previously shown in Fig. 1.2 and Fig. 1.4, it is a vivid comparison between the
traditional and proposed reconstruction results. In particular, the shadowing effects gives
significant distortions in the reconstructed shape. As we can observe in Fig. 1.4, both left
and right images contain shadowing effects in the marked regions. Such shadowing effects
give rise to significant distortions in the reconstructed shape as marked in Fig. 1.4 (c).
As a motivation of the following chapters, our proposed SEM photometric stereo method
seeks to be robust against noise effects and eliminate shadowing errors automatically so
as to achieve a high accurate reconstruction.
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2.3.1 Overview of Proposed SEM Photometric Stereo

For dealing with shadowing errors as well as noise effects, we develop the robust
photometric stereo method by applying the following general ideas.

(1) Shadowing Compensation Model
For eliminating shadowing errors, it is necessary to model the mechanism of gen-
eration of shadowing effects. To this end, we considered the angle distribution
of backscattered electrons (BSEs) as a modified Lambert’s cosine law. Using the
angle distribution of BSEs, we explore how the BSE intensity (signal output) with
shadowing errors is related to the underlying BSE intensity without shadowing
errors. As a result, a shadowing compensation model is introduced, that can de-
rive shadowless BSE intensities from shadowed measurements provided that the
corresponding shadowing angles are known. The shadowing compensation model
is further modified by updating the BSE detection model. Three practical fac-
tors in the BSE detection process are in turn considered and further modeled by
incorporating the corresponding three parameters, with which the accuracy and
flexibility of the shadowing compensation model can be improved.

(2) Estimating the 3D Surface and Shadowless Images
With a true 3D surface, we can calculate the shadowing angles and derive the
underlying shadowless images from the original measured shadowed images using
the shadowing compensation model. On the other hand, if shadowless images
are provided, gradient measurements derived via Suganuma’s equation could be
accurate enough to estimate a reliable 3D surface. However, both these situations
are the targets we are striving toward, and the problem essentially boils down to
something such as a “chicken-and-egg” dilemma. We propose an iterative solution
to the problem, that operates commutatively between shadowing compensation of
the BSE images using the shadowing compensation model and reconstruction of the
3D surface from the compensated BSE images based on Suganuma’s equation for
calculating the gradient and a proposed noise-robust regularization optimization
method for estimating depth from the gradient. After convergence of the iterative
process, both a reliable 3D surface and shadowless images are provided.
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Chapter 3. Shadowing Compensation

Model

In the chapter, we introduce a novel shadowing compensation model (SCM) for math-
ematically modeling the shadowing effects. The derivation of SCM is divided into two
steps. In the first step, for the convenience of the modeling, we deduce a primary model
with some temporary assumptions, though modeling the image intensities in both cases
of absence and presence of shadowing effects. In the second step, we modified the model
by incorporating certain practical factors.

3.1 Assumptions

We introduce the shadowing compensation model under the following two assump-
tions:

1. The BSE image intensity is proportional to the amount of backscattered electrons
(BSEs) collected by the detector.

2. The angle distribution of BSEs can be expressed as follows:

dη

dω
=

η0

π
cosn ξ, (3.1)

where ξ describes the angle between the surface normal and the direction of the
electron emission; η0 is a coefficient; η and ω denote the quantity of BSEs and
the solid angle, respectively; and the parameter n ensures more flexibility while
describing the angular distribution in terms of the Lambert’s cosine law, in which
the parameter is equal to one [12].

In the following discussion, we restrict our problem domain to a situation in which
the shadowing effect exists only in the horizontal region, in part, because the situation
is generally common for measuring man-made structures such as semiconductors, whose
height or shape need to be controlled precisely in manufacturing processes. In such
restricted situation, the shadowing compensation model can be derived in a closed form.
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Figure 3.1: Detectable region of a BSE detector.

3.2 Primary SCM

3.2.1 BSE Intensity in the Absence of Shadowing

For convenience, we temporally assume the occlusion phenomena and detecting abil-
ity of the detectors are ideal, i.e., the BSEs below the shadowing tangent line are totally
absorbed and all the unshadowed BSEs are collected by the corresponding detectors.

Based on the ideal detecting ability assumption on the detectors, in the case of no
shadowing, a BSE detector (the right detector for consideration) ideally collects BSEs
in a quarter sphere region,

Ω :

 − π

2
≤ ϕ ≤ π

2
,

0 ≤ ξ ≤ π

2
.

(3.2)

Here ϕ and ξ denote the azimuth and zenith angles, respectively (see Fig. 3.1). It is
convenient for us to just assume the intensity of a single BSE image (left or right) at a
point of observation reflects the amount of BSEs collected by the corresponding detector.
Therefore, the BSE intensity without shadowing can be derived as follows:

BSEshadowless =
∫

Ω

dη

dω
dω =

∫
Ω

η0

π
cosn ξdω

=
η0

π

∫ π/2

−π/2
dϕ

∫ π/2

0
cosn ξ sin ξdξ

=
η0

n + 1
.

(3.3)

Here we employed the fact that dω = sin ξdϕdξ in the calculation of the integral.
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3.2.2 BSE Intensity in the Presence of Shadowing

In the shadowing case, the BSE detectable region should be Ω minus the occluded
region. Without introducing a loss of generality, we assume that the right detector
is shadowed (see Fig. 3.1). We denote such a detectable region under the shadowing
condition as

ΩS :

 − π

2
≤ ϕ ≤ π

2
,

0 ≤ ξ ≤ π

2
− θ(ϕ).

(3.4)

Here, θ(ϕ) is the shadowing angle along the ϕ direction, which generally varies for
different values of ϕ. Similar to the case with no shadowing, the intensity can be derived
by

BSE =
∫

ΩS

dη

dω
dω =

∫
ΩS

η0

π
cosn ξdω

=
η0

π

∫ π/2

−π/2
dϕ

∫ π/2−θ(ϕ)

0
cosn ξ sin ξdξ.

(3.5)

A problem here, however, is that an analytical expression for θ(ϕ) is unlikely to be
accessible. This issue can be resolved by dividing the detectable region ΩS into small
segment regions:

ΩS =
K∪

i=1

ΩS
i , (3.6)

where,

ΩS :

 ϕi−1 ≤ ϕ ≤ ϕi,

0 ≤ ξ ≤ π

2
− θi

(3.7)

It is reasonable to assume that the shadowing angle within each small region ΩS
i remains

approximately constant, that is, θ(ϕ) ≈ θi for ϕi−1 ≤ ϕ ≤ ϕi, 1 ≤ i ≤ K. Hence, we can
calculate the BSE intensity under these circumstances as follows:

BSE =
∫

ΩS

η0

π
cosn ξdω =

K∑
i=1

∫
ΩS

i

η0

π
cosn ξdω

=
η0

π

K∑
i=1

∫ ϕi

ϕi−1

dϕ

∫ π/2−θ(ϕ)

0
cosn ξ sin ξdξ

≈ η0

π

K∑
i=1

∫ ϕi

ϕi−1

dϕ

∫ π/2−θi

0
cosn ξ sin ξdξ

=
η0

n + 1
·

K∑
i=1

1 − sinn+1 θi

K
.

(3.8)

In (3.8), it is obvious that the larger the segment K number, the greater the accuracy
of the intensity value. Moreover, the derived intensity would achieve the actual value in
the limiting case where K → +∞.

25



3.3. Improvements to SCM Chapter 3. Shadowing Compensation Model

0

2
φ

π
=−

2

π
φ =
K

min
φ

m in
φ

min0
φφ +

min
φφ −

K

Figure 3.2: Geometric representations of practical factors ϕmin.

3.2.3 Primary SCM

Equations (3.8) model the BSE intensity under the shadowing condition. In fact, the
shadowless case can be considered as a special shadowing case in which all the shadowing
angles are zero, which can be verified by setting θi = 0 in Equations (3.8). Generalizing
this observation, we can deduce the following primary SCM by combining (3.3) and
(3.8).

BSEshadowless = BSE/

(
K∑

i=1

1 − sinn+1 θi

K

)
. (3.9)

This model provides an important cue for estimating the underlying shadowless BSE
intensity from an observed BSE intensity constrained by shadowing effects.

3.3 Improvements to SCM

In the previous section, we have derived the shadowing compensation model under the
ideal setting on occlusion and detection of BSEs. To optimize the process for modeling
shadowing effects, however, some practical factors must be considered.

3.3.1 Practical Modeling of Parameters

The Parameter ϕmin

When calculating the BSE intensity using (3.3) and (3.8), in both case it was assumed
that the range of ϕ was from −π

2 to π
2 . Nonetheless, BSEs in the region where ϕ is near

±π
2 generally cannot be detected owing to the practical limitations of the detector. To

circumvent this shortfall, we introduce the parameter ϕmin. As shown in Fig. 3.2, the
range of the azimuth angle ϕ in a practical detectable region becomes −π

2 + ϕmin ≤ ϕ ≤
π
2 − ϕmin. Since ∆ϕ = π/K is chosen to be very small (for sufficient accuracy of (3.8)),

we can simply approximate ϕmin: ϕmin = S∆ϕ, where S =
[

ϕmin
∆ϕ

]
. Here, “[ ]” denotes

the rounding operator. With such an approximation, the range of the azimuth angle ϕ

in the practical detectable region (for both cases of absence and presence of shadowing)
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is ϕS ≤ ϕ ≤ ϕK−S .

The Parameter θmin

On account of the finite size of practical detectors, electrons with an emission direc-
tion near the horizontal plane may not be collected. We therefore introduce another
parameter θmin to model the lowest detectable direction. In the case of absence of shad-
owing, the range of ξ can only be up to the lowest detectable direction. In the some
cases of presence of shadowing, such as the case in Fig. 3.3, when the shadowing tangent
line is below the lowest detectable direction, i.e., π

2 − θ(ϕ) > π
2 − θmin, there is in fact

no shadowing in the ϕ direction and the range of ξ is only up to the lowest detectable
direction as well.
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The Parameter θmax

We previously gave the ideal assumption on occlusion phenomena, that the BSEs
below the shadowing tangent line were totally absorbed. However, as illustrated in
Fig. 3.4, when the emission direction of the BSEs is nearly parallel to the slope of the
shadowing object (considerably large incident angle), the electrons are likely to be re-
scattered rather than absorbed into the shadowing objects. Such reflected portion of
BSEs is consequently detectable, which gives rise to increasing the corresponding image
intensity and decreasing shadowing effects. While this phenomenon is generally difficult
to model exactly due to the complicated dependence on the structure of the occlusion
part, we thus approximately model it in a simple yet practically useful way by setting
another threshold, θmax, for the shadowing angle. When the shadowing angle is larger
than θmax, it is set to θmax to eliminate false shadowing effects resulted from unshadowed
portion (reflected portion) of BSEs.

3.3.2 Modified SCM

Summarizing these practical factors, we can modify the detectable regions for both
cases of absence and presence of shadowing, which take the following forms:

Ω :

 ϕS+1 ≤ ϕ ≤ ϕK−S ,

0 ≤ ξ ≤ π

2
− θmin,

(3.10)

and

ΩS =
K−S∪

i=S+1

ΩS
i , (3.11)

where,

ΩS
i :

 ϕi−1 ≤ ϕ ≤ ϕi,

0 ≤ ξ ≤ π

2
− θi, (θi = θmin if θi < θmin; θmaxif θi > θmax).

(3.12)

It is quite straightforward to derive new BSE intensity formulas from (3.3) and (3.8),
which take the following forms:

BSEshadowless =
η0

K(n + 1)
· (K − 2S)(1 − sinn+1 θmin), (3.13)

BSE =
η0

K(n + 1)
·

K−S∑
i=S+1

1 − sinn+1 θi. (3.14)

Combing the image intensity of both cases of absence (3.13) and presence (3.14) of
shadowing, we ultimately obtain a modified shadowing compensation model that can be
expressed as follows:

BSEshadowless =
1

RSCM
· BSE, (3.15)
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where the detection ratio

RSCM =
∑K−S

i=S+1 1 − sinn+1 θi

(K − 2S)(1 − sinn+1 θmin)
, (3.16)

with the thresholding operation

θi =


θmin θi ≤ θmin,

θmax θi ≥ θmax,

θi otherwise,

for S + 1 ≤ i ≤ K − S.
The detection ratio R (where may utilize R to refer to RSCM for convenience that can

be distinguished from the context.) describes the mechanism of generation of shadowing
via shadowing angles which imply occlusion amount. In fact, shadowing angles are
determined by the 3D shape. Therefore the each shadowing angle should be the function
of the 3D shape, i.e., θi = θi(Z). The range of detection ratio is R ∈ (0, 1], where R = 1
indicates absence of shadowing with all shadowing angles being zero. It is less likely
that the detection ratio is zero, which implies the surrounding height is infinity. It is
different from the shadowing in optic photometric stereo [36, 17, 37, 38, 39], in which
shadowing means a point is unobservable from some camera and the intensity is ideally
zero.

One advantage of the shadowing compensation model is that it is no need for us
to treat the regions with shadowing errors separately from those without such errors,
because the shadowless case is special case of shadowing with detection ration R = 1
(shadowing angles should be zero after implementation of the thresholding operator).
Therefore, in contrast to a literature example [11], this case does not require an image
segmentation process to extract shadowing regions, which is substantially difficult to
implement automatically.

In comparison with the primitive model (3.9), the modified one should be more
accurate and flexible. Applying model (3.15) to a measured BSE image (BL or BR)
at each point (pixel), we could estimate the underlying corresponding shadowless BSE
image intensities from the measured ones, provided the shadowing angles for each point
are known.

3.4 Concluding Remarks

In this chapter, we have introduced a shadowing compensation model though model-
ing the image intensities in both cases of absence and presence of shadowing. The main
difference of the both cases lies in the detectable region. For convenience of modeling, we
model the detectable regions in two steps. In the first step, the modeling is done under
the ideal setting. In the second step, we take the practical factors into consideration and
modify the shadowing compensation model.
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SCM have modeled the shadowing generation process and related the underlying
shadowless image intensity to the corresponding observed one though shadowing angles.
It is thus make it possible to infer underlying shadowing images and consequently elim-
inate shadowing errors in both images and reconstructions, once shadowing angles can
be obtained. This, in fact, will turn out to be the key idea for de-shadowing in the
following chapter.
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Chapter 4. Variational Reconstruction

with De-shadowing

In this chapter, we present our robust SEM photometric stereo. The reconstruction
and de-shadowing (eliminate shadowing errors) together are formulated as a constrained
optimization problem via a variational approach, which is equivalent to maximum-a-
posteriori problem in the point of view of statistics. We adopt an iterative scheme to
solve the optimization problem, which performs commutatively between the compen-
sation of image intensities and the modification of the corresponding 3D shape, can
effectively provide both an accurate 3D shape and compensated shadowless images after
convergence.

4.1 Conceptualization

With a true 3D shape, we can calculate the shadowing angles and derive the underly-
ing shadowless images from the original measured shadowed images using SCM. On the
other hand, if shadowless images are provided, gradient measurements derived via Sug-
anuma’s equation could be accurate enough to estimate a reliable 3D shape. However,
both these situations are the targets we are striving toward, and the problem essentially
boils down to something such as a “chicken-and-egg” dilemma.

We formulate reconstruction and de-shadowing as a constraint optimization problem.
As shown in Fig. 4.1, we propose an iterative solution to the problem, that operates
commutatively between shadowing compensation of the BSE images using the shadowing
compensation model and reconstruction of the 3D shape from the compensated BSE
images based on Suganuma’s equation for calculating the gradient and a proposed noise-
robust regularization optimization method for estimating shape from the gradient. After
convergence of the iterative process, both a reliable 3D shape and shadowless images are
provided.

4.2 Variational formulation

With the gradient measurement model (2.1) and shadowing compensation model (3.15),
we formulate the reconstruction problem as following: minimize
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Figure 4.1: Framework of our proposed SEM photometric stereo. Given observed im-
ages (BL and BR), the method iteratively eliminates shadowing errors in images and
modifies 3D shape. The algorithm will finally output the reconstructed 3D shape (Z)
and underlying shadowless images (BL∗ and BR∗).

E =
∫∫

D

[(
∂Z

∂x
− k

BL∗2 − BR∗2

(BLn + BRn)2

)2

+ λ |∇Z|

]
dxdy, (4.1)

s.t.


BL∗ =

BL
RL

,

BR∗ =
BR
RR

,

(4.2)

over some domain of interest D in the plane, where BL∗ and BR∗ are underlying shad-
owless left and right images, RL and RR denote corresponding detection ratio, λ is a
parameter and |∇Z| =

√
(∂Z

∂x )2 + (∂Z
∂y )2.

The first term in (4.1), named fidelity term, is to guarantee the gradient of recon-
structed shape should be consistent with the gradient measurement. For eliminating
shadowing effects in reconstruction, gradient should be evaluated from shadowless im-
ages (BL∗ and BR∗). As constraints, shadowless images are related to the corresponding
observed ones (BL and BR) through our shadowing compensation model. The second
term is total variation (TV) regularizer to penalize the roughness of the solution and
consequently make our method be robust to noise influence in the data term. TV model
can preserve edges well while removing noise effects, which has proven an effective prior
for a range of problems in image processing and computer vision, such as reconstruction,
motion estimation, denoising, and deblurring [25, 43, 44, 45, 46, 47, 48]. λ is a positive
scalar factor that weights the relative contributions of these two terms. Note that λ de-
pends upon the noise level of the gradient measurements; the noisier the measurements,
the larger the value of λ should be. This can be obvious by the statistical interpretation
as follows.
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4.3 Statistical Interpretation

We may formulate (4.1) into maximum a-posteriori (MAP) problem1

Z = arg maxP(Z|p), (4.3)

where p is the short-hand notation of the gradient measurement, i.e.,

p(x, y) = k
BL∗2 − BR∗2

(BLn + BRn)2

. Bayesian formula indicates that

P(Z|p) ∝ P(p|Z)P(Z), (4.4)

where P(p|Z) and P(Z) denote the likelihood and prior, respectively, as follows.

P(p|Z) ∝
∏

(x,y)∈D

exp

(
−

∣∣∂Z
∂x − p(x, y)

∣∣2
2σ2

)

P(Z) ∝
∏

(x,y)∈D

exp
(
−|∇Z|

b

) (4.5)

where b is the variance of the Laplacian prior on ∇Z and σ2 is the variance of the noise
assumed on the gradient measurement p(x, y). Taking the negative log likelihood to
posteriori in (4.4) leads to

− logP(Z|p) =
∫∫

D

∣∣∂Z
∂x − p(x, y)

∣∣2
2σ2

dxdy +
∫∫

D

|∇Z|
b

dxdy + constant. (4.6)

We can thus observe that MAP (4.3) lead to exact optimization problem (4.1), with
λ = 2σ2/b, and the fidelity term and TV regularizer are corresponding to likelihood and
prior, respectively. Suppose the Laplacian variance b is fixed, the more noisy of the data
(σ2 is large), the larger of the value should be.

4.4 Numerical Implementation

4.4.1 Iterative Reconstruction and De-shadowing

Solving such constrained optimization problem is not trivial. As mentioned in the
previous section, shadowing angles arising in detection ratio (3.16) is the function of
3D shape Z, i.e. θi = θi(Z). Therefore, substituting (4.2) into (4.1) results in E as a
functional of Z. However, the dependence of shadowing angles on Z is very complicated.
It is hopeless to have θi(Z) in an analytic form. Therefore, it is hard to minimize it
directly. We adopt the alternating minimization scheme which performs commutatively
between the following two steps:

1A systematic derivation of probability distributions on infinite-dimensional spaces requires a more
formal derivation (introduction of measures etc). This may be beyond the scope of this paper.
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Figure 4.2: Iterative scheme for our proposed SEM photometric stereo.

1) 3D Shape reconstruction
Fixing BL∗ and BR∗ in (4.1), we can recover Z through solving the resulting
unconstrained optimization problem (refer also as shape from gradient).

2) Shadowing Compensation
Given Z, shadowing angles can be obtained. BL∗ and BR∗ can be updated
with (3.16).

The algorithm (refer also to Fig. 4.2) of iterative reconstruction and de-shadowing is
summarized as follows,

S1. Reconstruction of the 3D shape z0 from the original images BL and BR.

S2. At the kth iteration, the compensation ratios are calculated from the reconstructed
shape Zk−1 from the previous iteration. Using extended shadowing compensation
model to estimate shadowless images BL∗

k and BR∗
k.

S3. A new approximation of the real shape Zk is reconstructed from BL∗
k and BR∗

k.

S4. If the difference between Zk and Zk−1 is smaller than the given threshold, the
algorithm will be terminated; otherwise, the iteration will be repeated.
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The calculated compensation ratios in S2 are not the actual ones, but approximations,
which can modified the images at some extent.

After convergence of the algorithm, both the reconstructed 3D shape and compen-
sated shadowless images are obtained.

4.4.2 Shape from Gradient

In this section, the numerical implementation of shape reconstruction (minimiz-
ing (4.1)) is presented.

In the shape reconstruction procedure, we have assumed BL∗ and BR∗ is known.
Therefore, the optimization problem is reformulated as the following functional mini-
mization,

Z∗ = arg min
Z

∫∫
D

[(
∂Z

∂x
− p(x, y)

)2

+ λ |∇Z|

]
dxdy, (4.7)

where

p(x, y) = k
BL∗2 − BR∗2

(BLn + BRn)2
. (4.8)

This optimization is also known as variational problem in the calculus of varia-
tions [42, 29, 50]. A fundamental result of the the calculus of variations is that the
extremum of functional must satisfy the associated Euler-Lagrange equation [21]. Note
that local minimum and global minimum are both examples of the extrema. It is thus
that Euler-Lagrange equation is a necessary condition rather than a sufficient condition.
However, the convexity of (4.7) guarantees that any local minimum must be a global min-
imum. Therefore, addressing (4.7) is equivalent to solve the associated Euler-Lagrange
equation

2
(

∂2Z

∂x2
− ∂p

∂x

)
+ λdiv

(
∇Z

|∇Z|

)
= 0, (4.9)

where div is the divergence operator.
For numerical implementation, we adopt the finite difference method to discretize

(4.9) according to the coordinate system x − y. Note that the x − y coordinate system
is 45◦ rotated from the commonly used x′ − y′ coordinate system on account of our
particular imaging setting. We regard that the x′ − y′ coordinate system is generally
more suitable for finite deference operator. Therefore we transform the Euler-Lagrange
equation (4.9) into the representation in the x′ − y′ coordinate system. As the second
term div(∇Z/|∇Z|) is rotational invariant, it will remain the same form in the x′ − y′

coordinate system. Therefore, substitute ∂2Z
∂x2 and ∂p

∂x , which takes

∂2Z

∂x2
=

1
2

(
∂2Z

∂x′2 + 2
∂2Z

∂x′∂y′
+

∂2Z

∂y′2

)
,

and
∂p

∂x
=

1√
2

(
∂p

∂x′ +
∂p

∂y′

)
,
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Figure 4.3: Image coordinates.

into (4.9), the Euler-Lagrange equation in the x′ − y′ coordinate system takes the fol-
lowing form:(

∂2Z

∂x′2 + 2
∂2Z

∂x′∂y′
+

∂2Z

∂y′2

)
+ λdiv

(
∇Z

|∇Z|

)
=

√
2

(
∂p

∂x′ +
∂p

∂y′

)
. (4.10)

Moreover, we adopt the commonly used Neumann boundary conditions (also known as
natural boundary conditions).

Let h denote the spatial grid size. Utilizing central difference for the first term in the
lefthand side and the righthand side leads to

∂2Zi,j

∂x′2 =
Zi,j+1 − 2Zi,j + Zi,j−1

h2

∂2Zi,j

∂x′∂y′
=

Zi+1,j+1 + Zi−1,j−1 − Zi+1,j−1 + Zi−1,j+1

4h2

∂2Zi,j

∂y′2
=

Zi+1,j − 2Zi,j + Zi−1,j

h2

∂pi,j

∂x′ =
pi,j+1 − pi,j−1

2h
∂pi,j

∂y′
=

pi+1,j − pi−1,j

2h

(4.11)

The discretization of the second term in the lefthand side is a bit more elaboration.
In order to have a high accuracy, we take

div
(

∇Zi,j

|∇Zi,j |

)
=

1
h2

[
gi+ 1

2
,j · (Zi+1,j − Zi,j) − gi− 1

2
,j · (Zi,j − Zi−1,j)

+ gi,j+ 1
2
· (Zi,j+1 − Zi,j) − gi,j− 1

2
· (Zi,j − Zi,j−1)

]
,

(4.12)
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where the function

g(|∇Z|) =
1

|∇Z|
≈ 1√(

∂Z
∂x′

)2
+

(
∂Z
∂y′

)2
+ ϵ2

. (4.13)

Here the small positive parameter ϵ is for stabilization. One can imagine that in the case
of piecewise constant result, g can be unbounded. In our experiments, we set ϵ = 0.0001.
In the discretization scheme, gi+ 1

2
,j , gi− 1

2
,j , gi,j+ 1

2
and gi,j− 1

2
can be evaluated with the

following discretization scheme.

|∇Zi+ 1
2
,j | =

√(
Zi+1,j−Zi,j

h

)2
+

(
Zi,j+1−Zi,j−1+Zi+1,j+1−Zi+1,j−1

4h

)2

|∇Zi− 1
2
,j | =

√(
Zi,j−Zi−1,j

h

)2
+

(
Zi−1,j+1−Zi−1,j−1+Zi,j+1−Zi,j−1

4h

)2

|∇Zi,j+ 1
2
| =

√(
Zi,j+1−Zi,j

h

)2
+

(
Zi+1,j−Zi−1,j+Zi+1,j+1−Zi−1,j+1

4h

)2

|∇Zi,j− 1
2
| =

√(
Zi,j−Zi,j−1

h

)2
+

(
Zi+1,j−1−Zi−1,j−1+Zi+1,j−Zi−1,j

4h

)2

(4.14)

The finite difference operators result in a large nonlinear system. The nonlinearity
is on account of g. Let Z denote the vector obtained from discretization of Z(x, y).
Treat g (gi+ 1

2
,j , gi− 1

2
,j , gi,j+ 1

2
and gi,j− 1

2
) as coefficient, the nonlinear system can take

the following Quasi-linear matrix from:

A(Z)Z = b, (4.15)

where A(Z) is large but sparse.
We adopt a so-called fixed point method [24, 51]to solve the Quasi-linear system

(4.15). The key idea is to address the nonlinear problem by solving a sequence of linear
systems with the nonlinear part arising in A(Z) being fixed. The method is summarized
as follows:

1) Initialize Z with a guess Z(0).

2) At mth iteration, fix A(Z) with A(Z(m−1)).

3) Obtain Z(m) by solving resulting linear system

A(Z(m−1))Z(m) = b,

which can be solved effectively through such as Jacobi method, Gauss-Seidel
method, Successive over-relaxation, etc [49].

4) Iterate between 2) and 3) until convergence.

Note that the linear system need not be solved exactly in each iteration to yield fast
convergence [24, 51].
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4.5 Experimental Results

In this section, we present the results of experiments on real image data and examine
the robustness and effectiveness of the proposed method under shadowing conditions.

4.5.1 Details of System Setting

The SEM used in our experiment has a general electron optics system except that
the two BSE detectors are located 45◦ from the x′−axis (Fig. 4.3). Three different pat-
terns with strong shadowing effects are used for evaluating the proposed reconstruction
method, which include a standard particle with a “sphere” pattern, a semiconductor de-
vice with a “line” pattern, and a semiconductor device with a “concave” pattern having
an embedded defect. The parameters used in the experiments are shown in Table 4.1.
From a computational perspective, the calibration of parameters should be theoretically
designed based on the information of corresponding physical processes, such as electron
scattering characteristics, detectable ranges of detectors, signal conversion characteris-
tics (conversion from the amount of detected BSEs to image intensity), etc. However,
it is difficult to accurately know such information in practice. We therefore manually
determine the parameters by observing that the reconstructed shape do not have dis-
tortions. As the experiments of the three patterns share the one set of parameters, we
consider that it should not be overfitting for each individual case. However, in the field of
SEM photometric stereo method, one set of universally utilized parameters might not be
sufficient owing to the use of different materials, imaging conditions, and so on. There-
fore, we recognize this as a problem for future investigation requiring some data-wise
optimization of the parameters.

Table 4.1: Experimental parameters.

k 1.98
n 1.30
ϕmin 16.9◦

θmin 17.5◦

θmax 55.0◦

λ 0.15

4.5.2 Evaluation on Real Image Data

Figs. 4.4 and 4.5 show experimental results for the “sphere” pattern. In this case,
the sphere particle plays the role of the occlusion. As described in the previous section,
the existence of a shadowing effect results in an image intensity that is smaller than the
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(a) (b)

(c) (d)

Figure 4.4: Comparison between the original and compensated images of the “sphere”
pattern: (a) original BL image, (b) original BR image, (c) compensated BL image, and
(d) compensated BR image.

underlying shadowless one. As mentioned before, the detectors are set along the diagonal
direction with respect to the image plane. Therefore, the shadowing effects of the sphere
pattern occur mainly in the area of the diagonal, (i.e., the lower-right flat region in the
left image and the upper-left flat region in the right image). As shown in Fig. 4.4 (a)
and (b), the brightness in the shadowing regions is less intense than that in the flat
regions without shadowing. Whereas, as shown in Fig. 4.4 (c) and (d), the brightness
of the flat region around the spherical particle in both the left and right compensated
image demonstrates a certain uniformity, which in turn implies good compensation of
the image intensities. As shown in Fig. 4.5, shape distortion in the flat region resulting
from shadowing errors, i.e., a rising-slope toward the sphere, can be effectively reduced
by compensation.

Figs. 4.6 and 4.7 show reconstruction results for the “line” pattern. The original
left and right images (BL and BR) are shown in Fig. 4.6 (a) and (b). It is obvious
that the right side of the left image and the left side of the right image are notably
dark, which is, in fact, due to shadowing effects. In this case, the “line” plays the
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Figure 4.5: 3D surface and section profiles of “sphere” pattern before and after shadowing
compensation. (a) 3D surface before compensation, (b) 3D surface after compensation,
(c) diagonal section profiles.
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(a) (b)

(c) (d)

Figure 4.6: Comparison between the original and compensated images of the “line”
pattern: (a) original BL image, (b) original BR image, (c) compensated BL image, and
(d) compensated BR image. The plot of every image shows average column intensities.

role of the occluding object. Such shadowing errors in image intensities give rise to
significant departures of the gradient measurements from true ones (zeros at ideally
flat regions), which is consequently reflected in the reconstructed 3D surface as a rising
slope toward the “line” (see Fig. 4.7). As shown in Fig. 4.6 (c) and (d), these dark
shadowing regions in the original left and right images are effectively eliminated in the
compensated images. The corresponding average intensity plots (the average is used to
avoid submersion of the plot into noise) also highlight suitably compensated shadowing
errors. Moreover, the reconstructed 3D surface shape and section profile also show large
modifications (Fig. 4.7) in that the rising slope regions on both sides of the “line” are
properly corrected to a nearly flat level.

Figs. 4.9 and 4.10 show experimental results for the “concave” pattern with an em-
bedded defect. The topography of the pattern is much more complicated than that of
the previous two cases. As observed in the original left and right images in Fig. 4.9
(a) and (b), the image brightness near the sloping region is much lower, which is ob-
viously due to the corresponding shadowing effect. This feature is also demonstrated
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Figure 4.7: 3D surface and section profiles of “line” pattern before and after shadowing
compensation. (a) 3D surface before compensation, (b) 3D surface after compensation,
(c) center horizontal section profiles.
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(a) (b)

Figure 4.8: Over-compensated images of the “line” pattern: (a) over-compensated BL
image and (b) over-compensated BR image.

more clearly by the average intensity plots (near positions (2) and (3) in Fig. 4.10 (c)).
The shadowing effect on both sides of the defect “peak” is also strong, and although it is
not readily distinguishable by the image brightness, it can be clearly observed in the 3D
shape. The compensated shadowless images are shown in Fig. 4.9 (c) and (d). As seen
in the figure, the regions that were dark in the original left and right images now show
an appropriate level of brightness. The modification is highlighted by the corresponding
average intensity plots, although they are not perfectly flat. Fig. 4.10 (a) and (b) show
the reconstructed 3D shape before and after shadowing compensation, respectively. As
the “concave” pattern is substantially complicated to give a vivid view of the 3D surface
modification afforded by the shadowing compensation process, we selected three repre-
sentative section profiles, whose positions are marked in Fig. 4.10 (c). The first one is a
vertical section crossing the “peak” shown in Fig. 4.10 (d). Because the “peak” is high,
the shadowing effect on both sides is strong, which has a certain similarity to the “line”
pattern where the “peak” plays the role of the “bar”. Such shadowing errors result in a
rising slope effect, as shown by the dashed line profile (before compensation), and this
effect is reduced by shadowing compensation, as shown by the solid line. The other two
section profiles, shown in Fig. 4.10 (e) and (f), have a similar shadowing effect. The
shadowing error in the “concave” region results in a falling slope effect, leading to a
deeper cavity, as shown by the dashed lines. After the shadowing compensation process,
such falling slope effects are eliminated to a certain degree, as shown by the solid lines.
The result implies the possibility that the shadowing compensation model is applica-
ble to not only horizontal surfaces but mildly inclined surfaces, although our model is
derived from the horizontal case.
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(a) (b)

(c) (d)

Figure 4.9: Comparison between the original and compensated images of the “concave”
pattern: (a) original BL image, (b) original BR image, (c) compensated BL image, and
(d) compensated BR image.

4.5.3 Analysis of θmax

On account of the good illustrative property of the “line” pattern (the average inten-
sity plot was easily drawn to demonstrate the shadowing and compensation conditions),
we designed an additional experiment using the “line” pattern to demonstrate the sig-
nificance of the parameter θmax, which is introduced for improving the accuracy and
flexibility of the shadowing compensation model (Section 3.3.1). To this end, the same
computational process is implemented except that the value of θmax was set to π

2 , which
is equivalent to omitting the thresholding operation with θmax. The resulting compen-
sated shadowless image pair is shown in Fig. 4.8. Compared to the result in Fig. 4.6
(c) and (d), the average intensity plots show that shadowing regions very near to the
“bar” are overcompensated resulting in much higher intensities, which indicates that
the underlying true shadowing angels in that region should be smaller. The threshold-
ing operation with θmax could generally overcome this problem well and consequently
contribute greater accuracy to the shadowing compensation model.
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Table 4.2: Quantitative comparison (mean absolute error in horizontal regions).

Before compensation After compensation
Sphere 0.0862µm 0.0307µm

Line 0.0412µm 0.0229µm

4.5.4 Quantitative Analysis

In older to quantitatively assess the de-shadowing performance of our method, we
choose the “sphere” and “line” patterns on account of their good illustrative property.
As the shadowing effects only exist on the background areas, the reconstruction of the
sphere part and line part (no shadowing) is not affected. We thus only need to focus
on the background parts. The background regions can be effectively segmented out
manually from left and right images. Based on the assumption that the background
parts are even, the true height can be set to zero. In order to eliminate translation
of the reconstructed height Z (the shape of Z + c should be identical to that of Z,
where c is a constant), the reconstructed surfaces are registrated at the origin point,
i.e., to translate the surfaces Z vertically to (0,0,0). We use the mean absolute error of
measured height (list in Table 4.2) in background parts to evaluate the reconstruction
performance. The proposed method shows much smaller deviation compared to the
traditional method with no shadowing compensation.

4.6 Concluding Remarks

In this chapter, we have proposed a robust SEM photometric stereo method. The
shadowing effect, a frequent occurrence in SEM imaging processes, can be effectively
eliminated by the iterative scheme associated with the shadowing compensation model.
The reconstructed 3D shape can be robustly and automatically obtained under an exist-
ing shadowing condition. Furthermore, the resulting left and right compensated images
provide a potential opportunity for improving the imaging performance of SEM devices.
The proposed method has also been verified by our experimental results, which show its
robustness and effectiveness.
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Figure 4.10: Three-dimensional surface and section profiles of the “concave” pattern
before and after shadowing compensation: (a) 3D surface before compensation, (b) 3D
surface after compensation, (c) selected section profile positions marked on the left image
BL, (d) vertical section profiles crossing the defect at position (1), (e) horizontal section
profiles at position (2), and (f) vertical section profiles at position (3).
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Chapter 5. Extended Shadowing

Compensation Model

This chapter presents an extension to the shadowing compensation model in order to
improve the model accuracy in the shadowing regions on the general curved surfaces.
The extended model removes the earlier restrictive assumption that the shadowing effects
exist only on horizontal surfaces. This model is developed in an analogous way through
modeling image intensities in both the absence and presence of shadowing. A numerical
solution is proposed to resolve the implicit expressions for double integrals in the model.

5.1 Conceptualization

We have introduced the shadowing compensation model in Chapter 3. In the the-
oretical derivation of the model, we assumed that shadowing effects exist only in the
horizontal region. This assumption simplifies the model and introduces certain benefits,
such as compact explicit solutions, convenient calculations. However, when the model is
applied to shadowing regions on surfaces with sufficiently large inclinations, the resulting
errors are large.

To increase accuracy and expand the scope of the shadowing compensation model,
we extend the model from horizontal surfaces to general inclined surfaces (as shown in
Fig. 5.1). Analogous to the previous scenario in the horizontal case, the extended shad-
owing compensation model is derived by modeling the shadowing generation process,
i.e., the image intensity in both the absence and presence of shadowing, while abandon-
ing the restrictive assumption that shadowing effects exist only on horizontal surfaces.
Unlike the previous model, the extended shadowing compensation model does not have
a closed-form solution. Hence, we explore a numerical approach that is also computa-
tionally efficient. The two main contributions of this study are as follows: (1) We extend
the shadowing compensation model from horizontal surfaces to general inclined surfaces.
(2) We present numerical solutions for the extended shadowing compensation model.

5.2 Improvement

To increase the accuracy on general inclined surfaces and extend the scope of the
model, we abandon the restrictive assumption and extend the model from horizontal
surfaces to more general inclined surfaces. Although the modeling procedure of the
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(a) Shadowing on the horizontal surface.
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(b) Shadowing on the inclined surface.

Figure 5.1: Shadowing effects. BSEs emitted in a direction below the shadowing tangent
line are generally absorbed by the occlusion region and consequently are not collected
by the detector.

extended shadowing compensation model is analogous to that of the previous model,
the mathematical derivation can be much more complicated.

5.2.1 Coordinate System

Figure 5.2 shows the coordinate system for 3D measurements. The Z-axis is co-
incident with the incident primary electron (PE) beam, the x-axis is the direction
along which two detectors are positioned, and the y-axis is perpendicular to both
the x and z axes according to the right-hand rule. The surface of the measuring
specimen can be represented as Z(x, y). The normal to the tangent plane of the
surface is m⃗ =

(
−∂Z

∂x ,−∂Z
∂y , 1

)
. For an arbitrary emitting direction of BSEs v⃗ =
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Figure 5.2: Coordinate system.

(cos ϕ sin γ, sinϕ sin γ, cos γ), the angle distribution takes the following form:

dη

dω
=

η0

π

cos γ − ∂Z
∂x cos ϕ sin γ − ∂Z

∂y sinϕ sin γ√
1 +

(
∂Z
∂x

)2
+

(
∂Z
∂y

)2


n

, (5.1)

where γ and ϕ denote the zenith and azimuth angles, respectively.

5.2.2 BSE Intensity in the Absence of Shadowing

In the non-shadowing case, the detectable range of the azimuth angle ϕ for detectors
should ideally be −π

2 ≤ ϕ ≤ π
2 . Nonetheless, BSEs in the region where ϕ is near

±π
2 generally cannot be detected owing to the practical limitations of the detector.

Therefore, we introduce the parameter ϕmin to model this shortfall (same in Chapter 3);
then the range of the azimuth angle in the practical detectable region should be −π

2 +
ϕmin ≤ ϕ ≤ π

2 − ϕmin.
The range of the zenith angle γ is more complicated. As shown in Fig. 5.3, different

inclination conditions of the surface give rise to different expressions for the upper limit.
In the case of Fig. 5.3 (a), the upper limit of the zenith angle γ is up to the surface tangent
direction t⃗ =

(
cos ϕ, sinϕ, cos ϕ∂Z

∂x + sinϕ∂Z
∂y

)
, i.e., the intersection of the tangent plane

and the zenith integration plane (see also Fig. 5.4), which takes the following form:

γt⃗(ϕ) = arccos
(

M√
1 + M2

)
, (5.2)

where M = cos ϕ∂Z
∂x + sinϕ∂Z

∂y .
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Figure 5.3: Zenith ranges in the absence of shadowing. (a) The upper limit of the zenith
angle is up to the surface tangent direction. (b) The upper limit of the zenith angle
can be only up to the lowest detectable emission direction, electrons below this direction
generally cannot be collected by a detector.
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In the case of Fig. 5.3 (b), the surface tangent direction is below the horizontal di-
rection. However, the BSE detector can only ideally collect BSEs above the horizontal
direction. The electrons with emission angles below the horizontal direction generally
cannot be detected. Furthermore, because of the finite size of practical detectors, elec-
trons with an emission direction near the horizontal plane may not be collected. Another
parameter θmin is introduced to model such practical factors (same in Chapter 3). There-
fore, in this case, the upper limit of the zenith angle cannot be up to the surface tangent
direction, but only up to π

2 − θmin.
Summarizing the different cases, the upper limit of the zenith angle should be γ(ϕ) =

min
{

π
2 − θmin, γt⃗(ϕ)

}
, and the detectable region Ω in the case of non-shadowing can

take the following form:

Ω :

 − π

2
+ ϕmin ≤ ϕ ≤ π

2
− ϕmin

0 ≤ γ ≤ min
{π

2
− θmin, γt⃗(ϕ)

} (5.3)

The image intensity (signal output) on each detector is proportional to the number of
collected electrons, which can be modeled by the following double integral:

BSEshadowless =
∫∫

Ω

η0

π
(cos ξ)ndω =

η0

π

∫∫
Ω
I(ϕ, γ)dϕdγ, (5.4)
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where the integrand1

I(ϕ, γ) =

cos γ − ∂Z
∂x cos ϕ sin γ − ∂Z

∂y sinϕ sin γ√
1 +

(
∂Z
∂x

)2
+

(
∂Z
∂y

)2


n

sin γ. (5.5)

Unfortunately, this integral cannot be evaluated via elementary functions.

5.2.3 BSE Intensity in the Presence of Shadowing

In the shadowing case, the azimuth range of the detectable region should be identical
to that of the non-shadowing case. However, the zenith range is generally smaller because
of occlusion. As shown in Fig. 5.5, the portion of the BSEs from the shadowing tangent
line to the local surface tangent direction is occluded and generally cannot be collected by
the corresponding detector. The range of the zenith angle should be 0 ≤ γ ≤ γt⃗(ϕ)−θ(ϕ),
where θ(ϕ) is the shadowing angle defined as the angle between the shadowing tangent
line and surface tangent direction. Nevertheless, it is likely that the shadowing tangent
direction is below the lowest detectable emission direction, i.e., γt⃗(ϕ)− θ(ϕ) > π

2 − θ(ϕ).
So, in fact, there is no shadowing in the ϕ direction (see also Fig. 5.5 (b)). Including
both cases for the zenith range, the upper limit of the zenith angle should be γ(ϕ) =
min

{
π
2 − θmin, γt⃗(ϕ) − θ(ϕ)

}
. Therefore, the detectable region should take the following

form:

ΩS :

 − π

2
+ ϕmin ≤ ϕ ≤ π

2
− ϕmin

0 ≤ γ ≤ min
{π

2
− θmin, γt⃗(ϕ) − θ(ϕ)

} (5.6)

However, to optimize the process for modeling shadowing effects, a practical factor
must be considered. As illustrated in Fig. 5.6, when the emission direction of the BSEs
is nearly parallel to the slope of the shadowing object, electrons are likely to be reflected
rather than absorbed. We therefore simply set a threshold, θmax, for the shadowing
angle. When the shadowing angle is larger than θmax, it is set to θmax.

Similar to the case of absence of shadowing, the observed image intensity can also be
modeled by the following double integral:

BSE =
∫∫

ΩS

η0

π
(cos ξ)ndω =

η0

π

∫∫
ΩS

I(ϕ, γ)dϕdγ. (5.7)

Here the integrand I(ϕ, γ) takes the same form as (5.5). This integral cannot be evalu-
ated via elementary functions.

1More rigorously, the integrand should be represented as I(ϕ, γ, ∂z
∂x

, ∂z
∂y

), and consequently the image

intensity in the non-shadowing case would be BSEshadowless(
∂z
∂x

, ∂z
∂y

), which would be differing corre-
sponding to the inclination condition of the local tangent plane.
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Figure 5.5: Zenith ranges in the presence of shadowing. (a) The upper limit of the zenith
angle is up to the shadowing tangent line. (b) The upper limit of the zenith angle can
only be up to the lowest detectable emission direction; electrons below this direction
generally cannot be collected by a detector, which indicates no shadowing in fact.
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Figure 5.6: Illustration of the practical factor modeled by θmax.

5.2.4 Extended Shadowing Compensation Model

Equation (5.7) models the observed image intensity that may include the presence
of shadowing effects. In fact, the shadowless case can be considered to be a special
shadowing case in which the shadowing angle θ(ϕ) = 0. Generalizing this observation,
we can deduce the following extended shadowing compensation model by combining
(5.4) and (5.7).

BSEshadowless =
1

RESCM
· BSE. (5.8)

Here the detection ratio R can be expressed as

RESCM =

∫∫
ΩS I(ϕ, γ)dϕdγ∫∫
Ω I(ϕ, γ)dϕdγ

. (5.9)

Unlike the horizontal case, the compensation ratio (5.9) cannot be evaluated explic-
itly.

5.3 Numerical solution

Since the two integral in (5.9) cannot be evaluated explicitly, the extended shadow-
ing compensation model cannot take an explicit form. Therefore, we must explore a
numerical solution for the model.

For a uniform discretization of the domain of integration (detectable region), we
can simply merge the two detectable regions Ω and Ωs into a quarter sphere ΩQ :
−π

2 ≤ ϕ ≤ π
2 , 0 ≤ γ ≤ π

2 , as both are subsets of ΩQ, i.e., Ω, Ωs ⊆ ΩQ. ΩQ can be
discretized into K ×L elementary regions with the azimuth step ∆ϕ and the zenith step
∆γ, see Fig. 5.7. The step sizes of ∆ϕ and ∆γ should be set sufficiently small to ensure
accuracy. The detectable region (Ω or Ωs) can be regularized in the following way:
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Figure 5.7: Discretization of the detectable region. (a) Illustration of discretization of
ΩQ shown in 3D space. (b) Illustration of discretization of ΩQ shown in 2D space and
regularization of detectable region.
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(1) ϕmin ≈ S · ∆ϕ, where S =
[

ϕmin
∆ϕ

]
. The azimuth range can be approximated as

ϕS ≤ ϕ ≤ ϕK−S .

(2) γ(ϕ) ≈ Ji · ∆γ for ϕi−1 ≤ ϕ ≤ ϕi, S + 1 ≤ i ≤ K − S. Here Ji =
[

γ(ϕi−1+∆ϕ/2)
∆γ

]
.

The zenith range can be approximated as 0 = γ0 ≤ γ ≤ γJi , for S +1 ≤ i ≤ K−S,
see Fig. 5.7 (b).

Therefore, the regularized detectable region (Ω or Ωs) can be expressed as follows:

Ω/ΩS :

{
ϕS ≤ ϕ ≤ ϕK−S

γ0 ≤ γ ≤ γJi , S + 1 ≤ i ≤ K − S
(5.10)

The integrand within each elementary rectangular region (ϕi−1 ≤ ϕ ≤ ϕi, γj−1 ≤
γ ≤ γj for S + 1 ≤ i ≤ K − S, 1 ≤ j ≤ Ji) can be approximated as I(ϕ, γ) ≈ Iij =
I(ϕi−1 + ∆ϕ/2, γj−1 + ∆γ/2).

With these approximations, we can ultimately achieve numerical solutions for the
two double integrals: ∫∫

Ω/ΩS

I(ϕ, γ)dϕdγ ≈
K−S∑

i=S+1

Ji∑
j=1

Iij∆ϕ∆γ. (5.11)

Consequently, the compensation ratio (5.9) can be numerically calculated with this nu-
merical method.

5.4 Experimental Results

In this section, we present the results of experiments on real image data and examine
the robustness and effectiveness of the proposed method under shadowing conditions.
Two different patterns of semiconductor devices with strong shadowing effects existing
on both flat regions and inclined regions were used for evaluating the performance of the
proposed extended shadowing compensation model (ESCM) and the previous shadow-
ing compensation model (SCM). Both devices had embedded defects, which included a
“semi-line” pattern and a “concave” pattern. The SEM used in our experiment performs
raster scanning along the direction located 45◦ from the x-axis. (The x-axis is defined as
the direction along which the detectors are positioned.) Therefore, the x′-axis and the
y′-axis consistent with the image array are defined for convenience in displaying results.

5.4.1 Comparison on Real Image Data

Fig. 5.8 and Fig. 5.9 show the experimental results for the “semi-line” pattern.
Fig. 5.8 (a) shows the original left and right images. It is obvious that the lower part
near the “semi-line” in the original left image and the upper and upper left part near
the “semi-line” in the original right image are notably dark, which is, in fact, owing
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(a)

(b)

(c)

Figure 5.8: Comparison between the original and compensated images of the “semi-line”
pattern: (a) original left and right images, (b) compensated left and right images via
SCM, and (c) compensated left and right images via ESCM.
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Figure 5.9: Comparison of three-dimensional surfaces and section profiles of the “semi-
line” pattern: (a) 3D surface before compensation, (b) 3D surface after compensation via
SCM, (c) 3D surface after compensation via ESCM, (d) selected section profile position
marked on the original left image and (e) section profiles at position marked in (d).
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(a)

(b)

(c)

Figure 5.10: Comparison between the original and compensated images of the “concave”
pattern: (a) original left (upper) and right (lower) images, marked region of interest
(ROI) for quantitative analysis, (b) compensated left (upper) and right (lower) images
via SCM, and (c) compensated left (upper) and right (lower) images via ESCM.
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Figure 5.11: Comparison of three-dimensional surfaces and section profiles of the “con-
cave” pattern: (a) 3D surface before compensation, (b) 3D surface after compensation
via SCM, (c) 3D surface after compensation via ESCM, (d) selected section profile po-
sition marked on the original left image and (e) section profiles at position marked in
(d).
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to shadowing effects. Such shadowing effects can be more clearly demonstrated using
average image intensity plots (the average is used to avoid submersion of the plot into
noise). In this case, the “semi-line” part plays the role of an occlusion part. Such
shadowing errors in image intensities give rise to significant departures of the gradient
measurements from the true ones (zeros at ideally flat regions); this is reflected in the
reconstructed 3D surface as a “rising slope” toward the “semi-line” part (see the 3D
surface in Fig. 5.9 (a) and section profiles in Fig. 5.9 (e)). Besides shadowing effects in
the horizontal area around the “semi-line” part, strong shadowing effects are also present
in the dimple regions inside the “semi-line” part, where the surface is not horizontal but
inclined.

Fig. 5.8 (b) and Fig. 5.9 (b) show the compensated images and the 3D surface of the
“semi-line” pattern via SCM, and Fig. 5.8 (c) and Fig. 5.9 (c) show the compensated
images and 3D surface of the “semi-line” pattern via ESCM, respectively. Both ESCM
and SCM achieve proper performance of shadowing compensation in the horizontal shad-
owing region around the ‘semi-line” part. In the compensated left and right images, the
brightness of the flat regions around the “semi-line” part demonstrates a certain unifor-
mity with that in the other flat regions without shadowing effects. The corresponding
average intensity plots also highlight suitabe compensation of the shadowing errors in
the flat regions. Moreover, the reconstructed 3D surface shape and section profiles also
show large modifications (see Fig. 5.9 (b), (c), and (e)) in the “rising slope” regions on
both sides of the “semi-line, ”where the shape is properly corrected to a nearly flat level,
as it should be.

However, ESCM can perform even better in the shadowing region of inclined surfaces,
as shown in the dimple regions. As shown in Fig. 5.9 (e) (since the dimple part is too
small to give a vivid view, the figure in that part is magnified), the compensated section
profile within the dimple part via SCM shows little modification, which nearly coincides
with the profile before compensation. But the compensation profile of ESCM reveals
large modifications, indicating that ESCM may perform better on surfaces having large
inclinations.

Fig. 5.10 and Fig. 5.11 show experimental results for the “concave” pattern. The
embedded defect caused a very high “peak” part in the semiconductor device. Therefore,
the shadowing effects on both sides of the defect “peak” are quite strong. Since the
“peak” part is very high and plays the significant role of an occluding part, it causes
a “rising slope” effect, that is analogous to the previous “semi-line” case. Note that
the shadowing regions are not horizontal, but have large inclinations. Although the
inclinations are not readily distinguishable by the image brightness, they can be clearly
observed in the 3D shape and the corresponding section profile.

Fig. 5.10 (b) and Fig. 5.11 (b) show the compensated images and 3D surface of the
“concave” pattern via SCM, and Fig. 5.10 (c) and Fig. 5.11 (c) show the compensated
images and 3D surface of the “concave” pattern via ESCM. As vividly demonstrated
in Fig. 5.11 (e), the compensated shape of the defect part (shadowing effect on the
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inclined surface) via ESCM reveals better modification than that via SCM, although
SCM also shows large modifications. The defect part in the compensated 3D shape in
Fig. 5.11 (c) becomes more distinguishable and recognizable. The experimental results
in turn indicate that compared with SEM, ESCM can generally achieve comparative
performance in horizontal regions and even better performance on inclined surfaces.

5.4.2 Convergence Analysis

In the experiments, we use the difference of reconstructed surface between two succes-
sive iterations to reflect the convergence property of the iterative shadowing compensa-

tion algorithm, given by ek =
1

MN

√√√√ M∑
i=1

N∑
j=1

(
zk(i, j) − zk−1(i, j)

h

)2

. Here k represents

iterative step index, i and j refer to image row and column indices, M and N denote im-
age height and width, and h is pixel size to make the metric ek dimensionless. Fig. 5.12
(a) and (b) show the convergence processes of semi-line pattern and concave pattern,
respectively, where the iteration number is set to 20. As observed in both cases, the
method can converge quickly. In practice, we will set a threshold value T , say T = 10−3,
to terminate the algorithm earlier if ek < T at some step k.

A high speed implementation of our method has not yet been examined. The average
computing time per each step with image size 512×512 is, currently, about 67.3 seconds
in C++ on a 2.93GHz PC with 4G memory. However, we realize that it should be as
a future work to improve the computational efficiency by means of exploring efficient
numerical methods (such as multigrid method [31, 40, 41, 52, 53]) or parallel computing
(GPU implementation, for instance).

5.4.3 Quantitative Analysis

For a quantitative assessment of our method, the most straightforward way should
be comparing reconstruction results to the corresponding actual ones. However, it is
generally difficult to obtained the height of defect parts. Because of lack of ground truth
data, we alternatively adopt a somewhat indirect evaluation method. We manually select
a region of interest (ROI) in the right image of the “concave” pattern marked in Fig. 5.10
(a), where the region contains strong shadow on the curved surface. Ideally, the image
intensity in the ROI should have a one-to-one mapping to the corresponding gradient
value of the surface if the intensity is ideally correct (without noise or shadowing errors).
Because, from the physical imaging point of view, each point with a distinct inclination
(gradient) on the surface gives rise to the corresponding unique and distinct intensity
value. However, as shown in Fig. 5.13 (a) (Here we scale the gradient value by ignoring
the constant parts in Suganuma’s equation (2.1) for convenience.), such uniqueness will
not hold when the intensity is polluted by random signal noise or shadowing errors. Our
idea is that the data should be more compact to be closer to the one-to-one mapping
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Figure 5.12: Convergence processes of the iterative shadowing compensation algorithm.
(a) “Semi-line” pattern. (b) “Concave” pattern.
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Figure 5.13: Quantitative evaluation of shadowing compensation by compactness be-
tween image intensity and gradient within the ROI marked in Fig. 5.10 (a): (a) before
compensation, (b) compensation via SCM, and (c) compensation via ESCM.
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if the shadowing errors are properly eliminated or reduced. The difficulty is that the
mapping is related to the shape of the surface and thus unknown. We ultimate employ
the linear model based on the observation that the data seemly obey a linear relationship.
Moreover, on account of high noise level, we prefer a simpler model in general. The
straight lines in Fig. 5.13 are the linear regression results and R2 denotes the square of
correlation coefficient which indicates the compactness. Compared with Fig. 5.13 (b)
(compensated data via SCM), the data in Fig. 5.13 (c) (compensated data via ESCM)
tend to be more compact which implies the shadowing errors are reduced in a more
proper way via ESCM.

5.5 Conclusion Remarks

In this chapter, we have described an extension of the shadowing compensation model
from restricted horizontal surfaces to more general inclined surfaces. The new model is
derived by modeling image intensities in both the absence and presence of shadowing on
general inclined surfaces. The new model does not include the restrictive assumption that
shadowing effects exist only on horizontal surfaces. The experimental results show that
the extended model, compared to the previous one, can achieve comparable performance
on horizontal regions and even better performance on inclined surfaces.
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Chapter 6. Conclusion and Future

Works

In this thesis, we proposed a robust SEM photometric stereo using two BSE detectors,
which can automatically produce a 3D shape and shadowless images under shadowing
and noise conditions.

6.1 Summary

Validation of Gradient Equation

As SEM photometric stereo needs to compute gradient data from image pair before
obtaining a 3D shape. The accuracy of gradient estimation is of essence for the final
shape. As the Suganuma’s gradient equation is experimentally found rather than the-
oretically deduced, we therefore design an experiment, in Chapter 2, to validate the
effectiveness of the equation in our system setting. The basic idea is to check whether
the gradients estimated by the equation are kept unchanged on the locus with an iden-
tical gradient. We realize that measurements are influenced by noise and the hypothesis
can not hold exactly. We thus present an method to estimate the noise level from just a
single image and estimate the standard deviation of the gradient measurements caused
by image noise. The experiment has validated the effectiveness of Suganuma’s equation.

SCM and ESCM

For eliminating shadowing errors, we model the physical process of shadowing gen-
eration. We have proposed two models in Chapter 3 and Chapter 5, respectively. One
is SCM and the other is ESCM. Both are deduced in a analogous way by mathemat-
ically modeling image intensities in both cases of absence and presence of shadowing.
These models relate the underlying shadowless image intensity to the observed one and
provide a essential cue for de-shadowing. An advantage of SCM is that it takes a com-
pact and implicit form. The simplicity makes it convenient for applications, when the
assumption that the shadowing effects occur only on the horizontal surface holds approx-
imately. As a typical instance, the assumed situation is generally common for measuring
man-made structures such as semiconductors. Compared with SCM, ESCM is a more
general model, where the shadowing can also occur on the inclined surfaces, i.e., the
model accuracy is generally higher in a shadowed region with a considerably large sur-
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face inclination. However, the numerical solution is required for ESCM, which makes it
less computational efficient than SCM.

Variational Reconstruction and De-shadowing

Our proposed robust SEM photometric stereo is formulated as a constrained opti-
mization problem via a variational approach. The objective functional consists of two
terms. One is the fidelity term that is to guarantee the gradient of reconstructed shape
should be consistent with the gradient data. In particular, the gradient data are evalu-
ated from shadowless images so as to eliminate shadowing errors. In addition, shadowless
images are related to the corresponding observed ones through our shadowing compen-
sation model, which forms the constraints. The second term is total variation prior to
penalize the roughness of the solution and consequently make our method be robust
to noise influence arising in the data term. We adopt an iterative scheme to solve the
problem, which performs commutatively between the compensation of image intensities
and the modification of the corresponding 3D shape, can effectively provide both an
accurate 3D shape and compensated shadowless images after convergence.

Advantages

There are several advantages of our proposed robust SEM photometric stereo. Firstly,
the method can simultaneously handling shadowing and noise effects, which are most
frequently occur or even inherent in imaging process. Secondly, the method is fully
automatic with no need of human interactions. Finally, the method produces not only
3D shape, but shadowless images, which provides a potential opportunity for improving
the imaging performance of SEM devices.

6.2 Discussions and Future Works

This thesis has established novel methods for robust SEM photometric stereo that
can be used to solve problems with ill-conditions. In particular, the majority work is
devoted to handling the shadowing problem, a considerably remaining challenge. The
main contents discussed in this thesis are the establishment and utilization of SCM and
ESCM. Listed below are further research possibilities that are identified during this
study.

• A high speed implementation of our method has not yet been examined. We
realize that it should be as a future work to improve the computational efficiency
by means of exploring efficient numerical methods or parallel computing (GPU
implementation, for instance).

• In the current study, we just simply choose the parameters in a manual manner.
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However, we recognize this as a problem for future investigation requiring certain
self-calibration techniques.

• Future studies designed to validate the feasibility of this approach in real applica-
tions are under consideration as well. For example, the proposed method should be
evaluated on various semiconductor patterns in actual production lines with differ-
ent processes and layouts. Moreover, we aim to utilize volume data from the esti-
mated 3D surface as features for Automatic defect classification (ADC) [1, 22, 23],
which may diversify the classification categories and improve the accuracy of the
classification process. As yield prediction and specification of process issues in a
production line are still very difficult, the proposed technology is expected to en-
hance quick and highly precise process control capabilities via synthetic analysis of
a combination of information, in addition to ADC, including defect distribution,
defect composition, equipment history, etc.
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