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Free vibration of unsymmetrically joined shell structures 
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(Received 9 September 1985; accepted for publication 2 March 1987) 

Free vibration is analyzed for unsymmetrieal joined plate or shell structures with a closed 
member by means of the transfer matrix method. For this purpose, the continuity and 
equilibrium relations for the displacements and forces at the joints are written with use of the 
joint matrices. The connection matrix between the closed member and other members at the 
joints is derived by introducing the structure matrix of the closed member, and the entire 
structure matrix is obtained by the product of the connection matrix of the closed member and 
the transfer matrices of other members. This method is applied to a plate structure with an 
unsymmetrically sited duet and a box-type structure with an aslant interior plate, and the 
natural frequencies are calculated numerically together with the mode shapes of vibration 
giving the results. 

PACS numbers: 43.40.Ey, 43.40.Dx 

INTRODUCTION 

This article presents an analysis of the free vibration of 
unsymmetrieal joined plate or shell structures with a closed 
member which are simply supported at the axial edges. The 
vibration problems of these joined structures have great im- 
portance in many engineering applications, such as in design 
of machines and structures, and have been studied by many 
rescarehers. Hu and Raney, • Lashkari and Weingarten, 2 
Trompette and Lalanne, 3 and Irie et aL n studied the free 
vibration of joined conical-cylindrical shells, and Rose et aL • 
studied the elastic-wave propagation in a joined shell struc- 
ture. Smith and Haft, 6 Hirano and Takahashi, ?-9 and Wu 
and Cory lø analyzed the vibration of cylindrical shells with 
circular plates at the edge or in the intermediate section, and 
Suzuki et al. 1J analyzed a cylindrical vessel. Abrahamsone2 
studied the free vibration of a rectangular prismatic shell, 
Hooker and O'Brien •3 and Ueng and Nickels TM studied box- 
type structures, and Irie et al. •'•6 studied a three- or a four- 
lobed cross-sectional shell and also an oblique prismatic 
shell. Peterson and Boyd •7 analyzed a cylindrical shell parti- 
tioned by an interior plate, and Irie et al. •a'•9 analyzed an 
interiorly partitioned noncircular cylindrical shell and a lon- 
gitudinally stiflened prismatic shell. However, all of these 
articles have been confined to the studies of symmetrical 
shell structures with respect to one or more central planes, 
and none has been presented for the unsymmetrical struc- 
tures reported here. 

For the purpose of this study, the continuity relation of 
the displacements and the. equilibrium relation of the forces 
at the joints are written by using the joining point matrices 
(joint matrices). The connection matrix between the closed 
member and other members at the joints is derived by intro- 
ducing the structure matrix of the closed member. The entire 
structure matrix is obtained by the product of the connection 
matrix of the closed member and the transfer matrices of 
other members, and the frquency equation is derived in 
terms of the elements of the entire structure matrix. 

This method is applied to a joined plate structure with 
an unsymmetrically sited duct and a rectangular prismatic 
shell (box-type structure) with an aslant interior plate. 
Here, the equations of free vibration of a plate are written in 
a matrix differential equation by using the transfer matrix, 
the elements of which are determined numerically by qua- 
drature of the equation. The natural frequencies (the eigen- 
values of vibration) and the mode shapes are calculated nu- 
merically, and the results are presented in some figures. 

I. TRANSFER MATRIX AND STRUCTURE MATRIX 

Figure l shows an unsymmetrical shell structure with a 
closed member. The Cartesian coordinates (xi,y•,z •) 
(i = 1,2,3,4) are taken in each member as shown in the fig- 
ure. For the free vibration of the shell structure simply sup- 
ported at the axial edges, one can separate variables (see Sec. 
II). Consequently, the state vector {zi (y)} of each member 
is generally expressed as 

{z,(y)} = [T(ø(y)]{z,(O)}, (1) 

by using the transfer matrix [ T • (y) ] in the yi direction. 19 
The state vector {z• (y) } at an endy• = Bi can be convenient- 
ly partitioned into the displacement vector {dr (B)} and the 
force vector {f, (B)} as follows: 

FIG. 1. Joined shell structure with a clo•.xl member. 
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where the super or subscript i is omitted except when neces- 
sary. At the joints (the joining lines), the continuity relation 
of the displacements and the equilibrium relation of the 
forces, respectively, are expressed as 

{de(O)} = [D,2I{d,(B)}, {d3(0)}: [Dn]{d•(B)), 
{a4(0)} = [O2al{d2(B)}, {as(0)} = [D3•I(d3(B)}, (3) 
and 

{f,(B)} = [V:,l{f2(0)} + [F3,l{f3(0)), 
(4) 

(f4(0)} = [F24](fa(B)} + [F34I{f,(B)}, 

by using the joint matrices [D O ] and [F•t ] . 
The substitution of Eqs. (2) and (3) into the first equa- 

tion of (4) gives the expression 

{fz(0)} = [G ]{d,(B)} + [H ]{f•(B)}, (5) 
where 

[GI = [P]-'lel, [HI = [P]-'[F:,]-', 

[e] [I] + [F:,]-'[F3i] [Tc•] -' 

X [D•]-'[D2•] [T•2'], (6) 
[Q ] = -- IF2,]-' IF31] [ T•}'] -'( lanai -' [D:4] 

X [T?][an] -- [T•]'][Du]). 
The substitution of Eqs. (2) and (5) into the second equa- 
tion of (3) yields 

{d4(0)} = [S,,]{d,(B)} + [S12]{f•(B)), (7) 
where 

[$.1 = [D,al ( [TII'] [D.21 + [TII'I [a l), 
(8) 

and the substitution of Eqs. (2)-(5) into the second equa- 
tion of (4) also gives 

{A(0)} = [&,]{d,(B)} + [&2l{fg•t)), (9) 
where 

[&d = [/54] 

+ [F•n][T•'][D•3] + [R ][G], 
• • + [R ] [H ], (10) 

[a ] = [F:41 [T,(• '1 [Faa] -- --:: ] [Fa,I-'[F:,I ß 
Therefore, the state vector {zn (0) } can be written as 

{zn(0)} = [Sl{z,(n)}, (11) 
by using the connection matrix of the closed member 

IS,, S,2 l 

The state vector {zn (y)• is expressed as 

{z•kv) } = [ r•4•(y) ] IS 1 [Tm(B) ]œz,(0)} 

= [ •]'](Zl(0)}, (13) 

by using the entire structure matrix [ T-•-•-] obtained by the 
product of the connection matrix of the closed member and 
the transfer matrices of the exterior members. 
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II. MATRIX EQUATION OF PLATE 

In this article, the present method is applied to joined 
plate structures with closed plate members. For a rectangu- 
lar plate simply supported at the axial edges, one can take 

u = H-• cos(rn•r/L)x, (o,w) = H(•,•)sin(m•r/L)x, 

•b = (H /a)• sin(m•r/L )x, 

M•, = (K /a)M• sin(mrr/L )x, (14) 
( Ny, $• ) = (K/a:) ( N•, S•, )sin ( mrr/L )x, 
Nv,, = (K/a2)•,• cos(mrr/L)x (m = 1,2,...). 

Here, u, o, and w are the deflection displacements in the 
axial, tangential, and normal directions, respectively, ½ is 
the bending slope, M• is the bending moment, $•, is the Kel- 
vin-Kirchhoff shearing force, and N• and Nv• are the com- 
ponents of the membrane force. The overbarred quantities 
•,• .... are the respective dimensionless variables, H is the 
plate thickness, a is the reference length ofthe structure, L is 
the axial length, m is the axial half-wavenumber, and 
K = EH 3/12 ( 1 -- v:) (E: Young's modulus; v: Poisson's ra- 
tio) is the flexural rigidity. 

The equations of vibration for a rectangular plate simply 
supported at the axial edges are expressed in a matfix ditfer- 
ential equation 

d {z(r/)}= [U]{z(•/)}, (15) 
by use of the state vector 

{z(r/)) = {d(r/) f(•/))r, 
{d(v)) = {• • •}5 (16) 

= - , 
which was conveniently employed by Irie et al. •½ For simpli- 
city of the analysis, the following dimensionless parameters 
have been introduced: 

(h,l, rl) = (a)-•(H,L,y), X: =pHa2co:/D. (17) 
Here, the symbol A denotes a dimensionless frequency pa- 
rameter expressed in terms of the mass density p, the radian 
frequency o, and the extensional rigidity D ---- Eli / ( 1 -- v • ) . 
The nonzero elements of the coefficient matrix [ UI of Eq. 
(15) are given by 

U• = -- ( rnrr/l), U•8 = -- h/6( 1 -- ¾), 

U2• = v( mrr/1), U•? • h/12, 

U•a = -- 1, Usa = -- v(msr/l) 2, 

U•s= l/h, Us4=2(1 -- v)h(rmr/l) 2, (18) 
Ura = -- (1 -- v2)h(mn'/l) 4 + (12/h)A 2, 
Ilv2 = -- ( 12/h )A z, 

Ua• = -- 12( 1 -- v a) (l/h) (rnrr/l): + ( 12/h)A 2. 

The substitution of Eq. ( 1 ) into Eq. (15) yields 
d 

[T(r/) ] = [UI[T(r/)]. (19) 

The matrix [ T(;?) ] is obtained by integrating Eq. (19) nu- 
merically with the starting value IT(0)] = [I] (the unit 
matrix) which is given by taking •/= 0 in Eq. ( 1 ). In the 
numerical calculation, the elements of the transfer matrix 
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are conveniently determined by using the Runge-Kutta- 
Gill integration method. 

III. NUMERICAL EXAMPLES AND DISCUSSION 

By the application of the method, two examples are pre- 
sented for joined plate structures. 

A. Example 1: Plate structure with an unsymmetrlcally 
sited duct 

Figure 2 shows a joined plate structure with an unsym- 
metrically sited duct which is clamped at the edges of the 
exterior members. With the breadths or heights of each 
member denoted by B i (i = 1,2,3,4), the numbers i = 1,3,4 
and/j = 21,22,23 are taken for each member as shown in the 
figure. With the radius a of a circle with the same circumfer- 
ential length as the closed member length taken as the refer- 
ence length, the breadth ratio bi = B•/a is introduced here. 
The state vector {z2./+ • (0)} is written as 

{z2.•+ , (0)} = [J]{zz•(b)} (j= 1,2), (20) 
by using the point matrix [J] between two plates perpendic- 
ular to each other 

[J]= ' 0 1 o . (21) 
0 o 0 

Therefore, the structure matrix [ T <z) (b) ] is obtained by the 
product of the transfer matrices of the closed members 
(•7 = 21,22,23) and the point matrix as follows: 

[T•2)(b)] --_ [T•23'(b)]iJ][T•)(b)][J][T•m(b)]. 
(22) 

In this case, the joint matrices [D o ] and [F 0 ] are given by 
JR!2 ] = [D24 ] = [F•] = [A ]-', [F•] = [A 1, 
[D,31 = [D341 = [Fs,] = [F•41 = [11. (23) 
The boundary conditions at the clamped edges of the 

exterior members are expressed as 

u=v=w=½=O, at r]!-=0 and •4=b4 . (24) 

The substitution of Eq. (24) into Eq. (13) derives,the fie- 
quency equation of the system 

=o. (25) 

(•.j-22) 

(•,j-21) t (•,$=2]) 
FIG. 2. Joined plate structure with an unsymmetrically sited duct. 
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FIG. 3. Eigenvalues of vibration A versus breadth ratio b 4 for joined plate 
structures with an unaymmetrically sited duct, for which bs = •r/2, 
b• = 2•'/5, b3 = 3n'/5, h = 0.02,1 = 4, • = 0.3, rn =- 1. 

The natural frequencies of the system are determined by cal- 
culating the eigenvalues •[ of Eq. (25), and the mode shapes 
of vibration are determined by calculating the eigenvectors 
corresponding to the eigenvalues. 

Figure 3 shows the eigenvalues of vibration A versus the 
breadth ratio b4 ( = B,/a) for the structures. With an in- 
crease of the ratio b4, the eigenvalues of lower mode vibra- 
tions decrease slightly, while the values of higher mode vi- 
brations decrease remarkably, changing the mode shapes 
within the range orb4 = rr/4 -- 3rr/8. When the structure is 
symmetrical with respect to the central plane (bn = rr/2), 
symmetrical (S-type) and antisymmetrical (A-type) vibra- 
tions arise in the system. The eigenvalues of these vibrations 
are shown by the circled points on the ordinate at bn = rr/2. 

Figure 4 shows the eigenvalues of vibration/t versus the 
breadth ratio b•/b• ( = B3/BO of the closed members. 
With the variation of the ratio b•/b•, the eigencurves come 
close to each other changing in a wavelike manner. In this 
case, the mode shapes change each other, but any frequency 
crossings do not occur. 

For verification of the method, the eigenvalues of corre- 
sponding modes of the system, which has the free edges of 
the exterior members, are compared with those of a square 
duct (b• = bn = 0) of Azimi et al., •ø which are obtained by 
the receptance method in Table I. In this case, the frequency 
equation of the system is derived as follows: 

T,, T,, T,, T,, 1 'l' 

T?i r?2 r?, r,, / (26) 
T4.1{.,LCJo, 
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FIG. 4. Eigenvalues of vibration 2. versus breadth ratio b3/b, for joined 
plate structures with an unsymmetrieaily sited duct, for which b• = •r/2, 
b3 + b3=•r,b•=n'/4, h =O.02,1=4, v=0.3, m = i. 

The values of b] ---- b 4 = •r/20 are in good agreement with the 
results of other authors. 

B. Example 2: Rectangular prismatic shell with an aslant 
interior plate 

Figure 5 shows a rectangular prismatic shell (box-type 
structure) with an aslant interior plate. With the breadths or 
heights of the members denoted by B, (i ---- 1,2,3,4), and the 
slant angle by a, the numbers i = 3,4 and •7 = 11,12,21,22,23 
are taken in each member as shown in the figure. In this case, 
the radius a of a circle with the same circumferential length 
as the tangential one of the box is conveniently taken as the 
reference length. The structure matrix [ T a) (b) ] is also giv- 
en by Eq. (22), and the structure matrix [Tø)(b)] is de- 
rived in the same manner. The joint matrices are written as 

[Daz] = [D•] = [Fz,] = [F24] = [I], 

[DIal -•- ['•,l, [Fa,] = [/t,l-], 

[Ds4] = [Fs4] = [Az] , 
where 

TABLE I. Comparison of eigenvalues of vibration A of joined plate struc- 
ture, for which b2 = b3 = •r/2, h = 0.02, 1 = rr/2, v = 0.3, m = 1. 

bl = b4 S-I A-I S-2 A-2 S-3 

•r/4 0.0428 0.0590 0.0677 0.1203 0.1395 
•r/20 0.0468 0.0558 0.0677 0.1159 0.1372 

0" 0.0462 0.0553 0.0677 0.1155 0.1372 

See Reft 20. 
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Bz 

FIG. 5. Rectangular prismatic shell with an aslant interior plate. 

[•/'] = c s ' 
o o 

[zl2 ] = -- S -- C . 
C 

0 0 

Here, the symbols s and c denote sin a and cos ct, respective- 
ly. The joining relation between the first (i = 1) and the 
fourth (i = 4) members is written as 

s'-q 

A'-q 
0.10 

0 I I 
1.0 2.0 3.0 q.0 

b2/b, 

FIG. 6. Eigenvalues of vibration A versus breadth ratio b:/b• for rectangu- 
lar prismatic shells with a diagonal interior plate, for which b m + b 2 = •r, 
h=O.(Y2,1=4, ¾--O.3, m= 1. 
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{z,(O)} = [J]{z4(b)}, (29) 
by using the point matrix [J]. The substitution of Eq. (29) 
into Ex]. (13) derives the frequency equation of the system 

([ r-•b-•4) ] - [J]-]){z,(0)} =0. (30) 
Figure 6 shows the eigenvalues of vibration A versus the 

aspect ratio b2/b• ( -- B2/B] ) of the box with a diagonal 
interior plate. With an increase of the ratio b2/b], the eigen- 
values of lower mode vibrations decrease monotonically, 
while the eigencurves of higher mode vibrations change in a 
wavelike manner. The box ofb2/b• = 1 is symmetrical with 
respect to a central plane perpendicular to the interior plate. 
In this case, symmetrical (S'-type) and antisymmetrical 
(A'-type) v!brations also arise in the structure, for which the 
mode types are shown on the ordinate at b2/b• = 1. 

Figure 7 shows the eigcnvalucs of vibration g versus the 
breadth ratio b•2 --- b23 ( B•:/a = B23/a ). With an increase 
of the ratio b•: = b2•, the eigenvalues of lower mode vibra- 
tions increase monotonically, while those of higher mode 
vibrations take maximum values near b•2 = b23 = 2•r/10. 
When the ratio b•: = b23 is equal to 3•r/10, the interior plate 
is parallel to two plates of the box, and the structure becomes 
symmetrical with respect to the central plane perpendicular 
to the interior plate. The eigenvalues of symmetrical and 
antisymmetrical vibrations arising in the system are shown 
by the circled points on the ordinate at b•2 = b23 = 3rf/10. 

Figure 8 shows the mode shapes of the box-type struc- 
ture with an aslant interior plate. The thick lines show the 

0.15 

O. 10 

0.05 

i i 

S-q 
A-2 

A-1 

S-3 

S-2 

S-1 

0 I I 
0 •[/10 2nil0 

FIG. 7. F, igenvalues of vibration A versus breadth ratio b•z = b• for rectan- 
gular prismatic shells with an aslant interior plate, for which b, = 2•r/5, 
bz= 3n'/5, h=O. O2,1=4, v=O.•,m= 1. 

X -o. o218 

A 0.058g 

0.0263 

0.0•90 

0.0316 

0.0886 

0.056• 

0.0962 

FIG. 8. Mode shapes of vibration of a rectangular prismatic shell with a 
diagonal interior plate, for which bm= 2zr/5, b3 = 3•'/5, h = 0.02, 1 = 4, 
• = 0.3, rn ----- 1. 

composition of the tangential and normal displacements, 
where the maximum normal displacements are taken to have 
unit value. Though coupled vibrations usually arise in the 
box and interior plate, a few weakly coupled vibrations arise 
there. 

IV. CONCLUSIONS 

The free vibration of unsymmetricaljoined plate or shell 
structures with a dosed member has been studied by use of 
the transfer matrix integration method. By the introduction 
of the connection matrix of a closed member, the entire 
structure matrix has been obtained by the product of the 
connection matrix of the dosed member and the transfer 

matrices of other members. This method has been applied to 
a plate structure with an unsymmetrically sited duct and a 
box-type structure with an aslant interior plate, and the vi- 
bration characteristics of them have been clarified quantita- 
tively. 
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