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THE NOETHERIAN PROPERTIES OF THE RINGS OF
DIFFERENTIAL OPERATORS ON CENTRAL

2-ARRANGEMENTS

NORIHIRO NAKASHIMA

Abstract. Whereas Holm proved that the ring of differential operators on a
generic hyperplane arrangement is finitely generated as an algebra, the problem
of its Noetherian properties is still open. In this article, after proving that the
ring of differential operators on a central arrangement is right Noetherian if and
only if it is left Noetherian, we prove that the ring of differential operators on a
central 2-arrangement is Noetherian. In addition, we prove that its graded ring
associated to the order filtration is not Noetherian when the number of the con-
sistuent hyperplanes is greater than 1.

Key Words: Ring of differential operators;Noetherian property; Hyperplane ar-
rangement.
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1. Introduction

Let K be a field of characteristic zero. For a commutative K-algebra R, we
inductively define K-vector spaces of linear differential operators by

D0(R) := {θ ∈ EndK(R) | a ∈ R, θa− aθ = 0},
Dm(R) :=

{
θ ∈ EndK(R) | a ∈ R, θa− aθ ∈ Dm−1(R)

}
(m ≥ 1).

We set D(R) :=
∪

m≥0 Dm(R), and we call D(R) the ring of differential operators of
R. Let S := K[x1, . . . , xn] denote the polynomial ring. It is well known that the ring
D(S) of differential operators of S is the n-th Weyl algebra K[x1, . . . , xn]⟨∂1, . . . , ∂n⟩
where ∂i :=

∂
∂xi

(see for example [5, Example 15.1.15] and [5, Corollaty 15.5.6]). We

use the multi-index notations, for example, ∂α := ∂α1
1 · · · ∂αn

n and |α| := α1+· · ·+αn

for α = (α1, . . . , αn) ∈ Nn. We set D (m)(S) :=
⊕

|α|=m S∂α for m ≥ 0. We regard

D (m)(S) as a left S-module by the left product in the Weyl algebra. Then the
Weyl algebra D(S) is decomposed into the direct sum of left S-modules D (m)(S) of
homogeneous differential operators: D(S) =

⊕
m≥0 D (m)(S).

There has been a lot of research on finiteness properties of the rings of differential
operators. It is well known that D(R) is Noetherian, if R is a regular domain (see
[5, Theorem 15.1.20] and [5, Corollary 15.5.6]). There are some other important
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classes of algebras such that D(R) are Noetherian. For example, if R is an integral
domain of Krull dimension one, then D(R) is Noetherian (Muhasky [6] and Smith-
Stafford [11]). Saito-Takahashi [10] showed that D(R) is right Noetherian if R is an
affine semigroup algebra. However, D(R) is not Noetherian in general. Bernstein-
Gel’fand-Gel’fand [1] gave an example of a ring of differential operators that is
neither Noetherian nor finitely generated.

Let A = {Hi | i = 1, . . . , r} be a central (hyperplane) arrangement (i.e., every
hyperplane in A contains the origin) in Kn. Let I be the defining ideal of A.
We consider the left S-module D (m)(I) of differential operators homogeneous of
order m that preserve the ideal I. We call D (m)(I) the modules of A-differential
operators. We find many results about the module D (1)(I) of A-derivations in a rich
literature (see for example [8]). In contrast, there are only a few literatures about
the modules of A-differential operators of a higher order. Holm [4] proved that the
ring of differential operators of the coordinate ring S/I is finitely generated when I
is the ideal defining a generic hyperplane arrangement. In this paper, we will prove
that D(S/I) is Noetherian if n = 2.

In Section 3, we prove that D(S/I) is right Noetherian if and only if it is left
Noetherian. Thus the Noetherian property of D(S/I) can be proved by the right or
left Noetherian property.

In Section 4, we prove that D(S/I) is right Noetherian in the case n = 2. This is
the main result of this article. Let R be a filtered ring, and F the filtration. If the
graded ring associated to the filtration F of R is right (left) Noetherian, then R is
right (left) Noetherian. However, the graded ring associated to the order filtration
of D(S/I) is not Noetherian if r ≥ 2 (Example 4.17). Hence we cannot take this
convenient approach to prove the Noetherian property of D(S/I). The keys of the
proof of the main result are Corollary 4.11 and Lemma 4.14.

There is a well-known basis for the module D (1)(I) ofA-derivation (see for example
[8]). Holm [3] studied the module D (m)(I), and gave its basis for any order m. Let
D(J) denote the subring of D(S) consisting of the operators preserving an ideal J .
Holm [3],[4] showed that D(I) decomposes into the direct sum of D (m)(I). For an
ideal J , there is a ring isomorphism:

D(S/J) ≃ D(J)/JD(S)

(see [5, Theorem 15.5.13]). Using these facts, we can write any element of D(S/I)
as a linear combination of bases of the modules of A-differential operators. This
expression is useful to prove Corollary 4.11.

We consider a sequence of two-sided ideals of D(I):

ID(S) = Lr ⊆ Lr−1 ⊆ · · · ⊆ L1 ⊆ L0 = D(I).

We prove that D(I)/ID(S) is right Noetherian by proving that each Li−1/Li is
right Noetherian D(I)-module. To show the right Noetherian property of Li−1/Li,
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we study a module of lower order operators in Li−1/Li and that of higher order
operators separately.

We prove that the right D(I)-module generated by the higher order operators
in Li−1/Li is Noetherian in Corollary 4.11, and that the module of lower order
operators in Li−1/Li is right Noetherian as a right S-module in Lemma 4.14. In this
way, we see that D(S/I) is Noetherian.

2. Differential operators on a central arrangement

In this section, we fix some notation, and we refer to some facts used in Section
4. Let A = {Hi | i = 1, . . . , r} be a central arrangement in Kn. Fix a polynomial
pi defining Hi, and put Q := p1 · · · pr. Thus Q is a product of certain homogeneous
polynomials of degree 1. We call Q a defining polynomial of A. Let I denote the
principal ideal of S generated by Q.

For any ideal J of S, we define an S-submodule D (m)(J) of D (m)(S) and a subring
D(J) of D(S) by

D (m)(J) := {θ ∈ D (m)(S) | θ(J) ⊆ J},
D(J) := {θ ∈ D(S) | θ(J) ⊆ J}.

Among others, Holm [4] proved the following two propositions.

Proposition 2.1 (Proposition 4.3 in [4]). We have a direct sum

D(I) =
⊕
m≥0

D (m)(I)

as a left S-module.

Proposition 2.2 (Proposition 2.4 in [4]). Suppose that f1, . . . , fk ∈ S are coprime
to one another. Then

D(⟨f1 · · · fk⟩) =
k∩

i=1

D(⟨fi⟩).

The following is well known (e.g., see [4, Proposition 2.3]).

Proposition 2.3. Let J be the ideal of S generated by f1, . . . , fk, and let θ ∈ D(S)
be an operator of order m ≥ 1. Then θ ∈ D(J) if and only if θ(xαfj) ∈ J for
|α| ≤ m− 1 and j = 1, . . . , k.

We use the following lemma in Section 4.



4 NORIHIRO NAKASHIMA

Lemma 2.4. Let δ ∈
∑n

i=1 K∂i, and let f1, . . . , fk be polynomials of degree 1. If
k ≤ m, then

δmf1 . . . fk =
k∑

i=0

[m]i(
∑

Λ⊆{1,...,k}
♯Λ=i

∏
j∈Λ

δ(fj)
∏
j /∈Λ

fj)δ
m−i

=
k∑

i=0

[m]i(
1

i!(k − i)!

∑
σ∈Sk

δ(fσ(1)) . . . δ(fσ(i))fσ(i+1) · · · fσ(k))δm−i,

where [m]0 := 1 and [m]i := m(m− 1) · · · (m− i+ 1) for i ≥ 1.

Proof. For any f ∈ S, we see δℓf = fδℓ + ℓδ(f)δℓ−1. We can prove the assertion by
induction on k. �

For a monomial xα∂β in D(S), we define its total degree by

totdeg(xα∂β) = |α| − |β|.(2.1)

For θ ∈ D(S), we define the total degree of θ as the largest total degree of monomials
in θ. We consider D(S) a graded ring by the total degree.

The operator

εm :=
∑

|α|=m

m!

α!
xα∂α

is called the Euler operator of orderm whereα! = (α1!) · · · (αn!) forα = (α1, . . . , αn).
Then ε1 is the Euler derivation, and εm = ε1(ε1− 1) · · · (ε1−m+1) [4, Lemma 4.9].

3. Right Noetherian property and left Noetherian property

Let Q = p1 · · · pr be a defining polynomial of a central arrangement A, and let
I = QS. In this section, we will prove that the ring D(S/I) of differential operators
is right Noetherian if and only if D(S/I) is left Noetherian. Recall that we have
a ring isomorphism D(S/I) ≃ D(I)/ID(S) (see [5, Proposition 15.5.9 (ii)] and [5,
Theorem 15.5.13]).

Let 0 ̸= h ∈ S, and set J := hS. We denote by K(x1, . . . , xn) the field of fractions
of S. Then D(S) ∩ hD(S)h−1 ⊆ K(x1, . . . , xn)⟨∂1, . . . , ∂n⟩.

Lemma 3.1. As a ring,

D(J) = D(S) ∩ hD(S)h−1.

Proof. Assume that hθh−1 ∈ D(S) with θ ∈ D(S). For any f ∈ S,

hθh−1(hf) = hθ(f) ∈ hS,

which means hθh−1 ∈ D(J).
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Next we will prove the converse inclusion. Let θ ∈ D(J). Since h−1θh ∈
K(x1, . . . , xn)⟨∂1, . . . , ∂n⟩, we can write

h−1θh =
∑
α

fα∂
α

with fα ∈ K(x1, . . . , xn). We show that fα ∈ S for all α by induction on |α|.
Since

f0 = h−1θh(1) = h−1θ(h) ∈ h−1hS = S,

we have f0 ∈ S.
Assume that fα ∈ S for all α with |α| < m. For |β| = m,

h−1θh(xβ) = β!fβ +
∑

|α|<m

fα∂
α(xβ).

Since θ ∈ D(J), we obtain

h−1θh(xβ) = h−1θ(hxβ) ∈ h−1hS = S.

Then fβ ∈ S by the induction hypothesis. Therefore we conclude that h−1θh =∑
α fα∂

α ∈ D(S). �
Define an anti-automorphism t : D(S) −→ D(S) by txi = xi,

t∂i = −∂i for
i = 1, . . . , n (we say that t is an anti-automorphism if t is an automorphism as a
linear map, and if t(θη) = tηtθ for any θ, η ∈ D(S)). It is clear that t(tθ) = θ for
any θ ∈ D(S).

For θ ∈ D(J), put θ∗ := h tθh−1. Then

(D(J))∗ = (D(S) ∩ hD(S)h−1)∗

= h t(D(S) ∩ hD(S)h−1)h−1

= h tD(S)h−1 ∩ tD(S)

= hD(S)h−1 ∩ D(S)

= D(J)

by Lemma 3.1. Thus

∗ : D(J) −→ D(J)(3.1)

is an anti-automorphism. If hθ ∈ JD(S), then

(hθ)∗ = h t(hθ)h−1 = h tθhh−1 = h tθ ∈ JD(S).

It is clear that θ = (θ∗)∗ for any θ ∈ D(J). Hence we have (JD(S))∗ = JD(S).
Therefore the anti-automorphism ∗ induces an anti-automorphism

∗ : D(J)/JD(S) −→ D(J)/JD(S).

The following is clear from the existence of the anti-automorphism ∗.
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Theorem 3.2. The ring D(J)/JD(S) is right Noetherian if and only if D(J)/JD(S)
is left Noetherian.

Corollary 3.3. Let I be the defining ideal of a central arrangement. Then the ring
D(I)/ID(S) is right Noetherian if and only if D(I)/ID(S) is left Noetherian.

Remark 3.4. By the anti-isomorphism (3.1), it is also true that the ring D(J)
(also D(I)) is right Noetherian if and only if is left Noetherian.

It is known that some finiteness properties of rings of differential operators on
irreducible affine algebraic varieties over an algebraically closed field (see [11, The-
orem 2.5], [11, Proposition 7.3] and [11, Theorem 7.5]), whereas varieties of central
hyperplane arrangements are reducible. Thus we cannot apply the results in [11].

4. The case n = 2

In this section, let n = 2 and S = K[x, y]. We will prove that the ring D(S/I) ≃
D(I)/ID(S) of differential operators is Noetherian. We will also prove that, in con-
trast, the graded ring GrD(S/I) associated to the order filtration is not Noetherian
when r ≥ 2.

Put Pi :=
Q
pi

for i = 1, . . . , r, and define

δi :=

{
∂y if pi = ax (a ∈ K×)

∂x + ai∂y if pi = a(y − aix) (a ∈ K×).

Then δi(pj) = 0 if and only if i = j.

Proposition 4.1 (Paper III, Proposition 6.7 in [3], Proposition 4.14 in [12]). For
any m ≥ 1, D (m)(I) is a free left S-module with basis

{εm, P1δ
m
1 , . . . , Pmδ

m
m} if m < r − 1,

{P1δ
m
1 , . . . , Prδ

m
r } if m = r − 1,

{P1δ
m
1 , . . . , Prδ

m
r , Qη

(m)
r+1, . . . , Qη

(m)
m+1} if m > r − 1,

where the set {δm1 , . . . , δmr , η
(m)
r+1, . . . , η

(m)
m+1} forms a K-basis for

∑
|α|=mK∂α if m >

r − 1.

By Proposition 2.1, we have

D(I) = S ⊕
( r−2⊕

m=1

(
Sεm ⊕ SP1δ

m
1 ⊕ · · · ⊕ SPmδ

m
m

))
⊕
( ⊕

m≥r−1

(
SP1δ

m
1 ⊕ · · · ⊕ SPrδ

m
r ⊕ SQη

(m)
r+1 ⊕ · · · ⊕ SQη

(m)
m+1

))
.

For i = 1, . . . , r, define an additive group

Li := D(I) ∩ (p1 · · · pi)D(S).
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Proposition 4.2. For i = 1, . . . , r, the additive group Li is a two-sided ideal of
D(I).

Proof. It is clear that Li is a right ideal of D(I).
To prove that Li is a left ideal of D(I), by Proposition 2.1, we only need to prove

that D (m)(I)Li ⊆ Li for m ≥ 0. Fix θm ∈ D (m)(I). For any j = 1, . . . , i, there exist
ηℓ ∈ D(ℓ)(S) such that

θmpj = η0 + · · ·+ ηm.(4.1)

We prove that ηℓ ∈ pj
∩

i′ ̸=j D (ℓ)(pi′S) ⊆ D (ℓ)(I) for 0 ≤ ℓ ≤ m by induction on ℓ.

In the case ℓ = 0, let (4.1) act on 1. Then

pjS ∋ θm(pj) = η0

because θm ∈ D (ℓ)(pjS) by Proposition 2.2. If ℓ ≥ 1, then it follows from the
induction hypothesis that ηℓ(x

α) ∈ pjS for any α with |α| = ℓ since

pjS ∋ θm(pjx
α) = η0(x

α) + · · ·+ ηℓ−1(x
α) + ηℓ(x

α).

Therefore ηℓ ∈ pjD (ℓ)(S). Write ηℓ = pjη
′
ℓ. For any i′ ̸= j and |α| = ℓ − 1, it also

follows from the induction hypothesis that pjη
′
ℓ(pi′x

α) = ηℓ(pi′x
α) ∈ pi′S since

pi′S ∋ θm(pjpi′x
α) = η0(pi′x

α) + · · ·+ ηℓ−1(pi′x
α) + ηℓ(pi′x

α).

Since pj and pi′ are coprime, we see that η′ℓ(pi′x
α) ∈ pi′S. So η′ℓ ∈ D(pi′S) by

Proposition 2.3, and ηℓ ∈ pj
∩

i′ ̸=j D (ℓ)(pi′S). Thus θmpj ∈ pj
∩

i′ ̸=j D(pi′S). Then
we conclude that

D(I)p1 · · · piD(S) ⊆ p1 · · · piD(S).

�

By Proposition 2.1, Li is decomposed as follows:

Li =
⊕
m≥0

L
(m)
i ,

where L
(m)
i := D (m)(I) ∩ (p1 · · · pi)D (m)(S). We consider a sequence

ID(S) = Lr ⊆ Lr−1 ⊆ · · · ⊆ L1 ⊆ L0 = D(I)(4.2)

of two-sided ideals of D(I). If a right D(I)-module Li−1/Li is Noetherian for any i,
then D(I)/ID(S) is a right Noetherian ring. Now we fix i, and we will prove that
Li−1/Li is right Noetherian.

As a left S-module,

Li−1/Li =
⊕
m≥0

(
L
(m)
i−1 + Li/Li

)
≃
⊕
m≥0

(
L
(m)
i−1/L

(m)
i

)
.
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Put (
Li−1/Li

)<r−1
:=

⊕
m<r−1

(
L
(m)
i−1/L

(m)
i

)
,

(
Li−1/Li

)≥r−1
:=

⊕
m≥r−1

(
L
(m)
i−1/L

(m)
i

)
.

Then Li−1/Li is decomposed as a left S-module:

Li−1/Li =
(
Li−1/Li

)<r−1 ⊕
(
Li−1/Li

)≥r−1
.(4.3)

We will study
(
Li−1/Li

)<r−1
and

(
Li−1/Li

)≥r−1
separately.

First we argue the part of order ≥ r − 1.

Lemma 4.3. Assume that m ≥ r − 1. As a left S-module,

L
(m)
i = SQδm1 ⊕ · · · ⊕ SQδmi ⊕SPi+1δ

m
i+1 ⊕ · · · ⊕ SPrδ

m
r

⊕ SQη
(m)
r+1 ⊕ · · · ⊕ SQη

(m)
m+1.

Proof. Recall that Pi =
Q
pi
. We see the assertion by Proposition 4.1 and the definition

of Li. �
Proposition 4.4. For m ≥ 0, we have

L
(m)
i ∩ SPiδ

m
i = SQδmi ⊆ L

(m)
i−1

as a left S-module. Hence(
Li−1/Li

)≥r−1
=
⊕

m≥r−1

(
SPiδ

m
i + L

(m)
i /L

(m)
i

)
≃
⊕

m≥r−1

(
SPiδ

m
i /SQδmi

)
as a left S-module.

Proof. By Lemma 4.3, L
(m)
i−1 = SPiδ

m
i +L

(m)
i for m ≥ r− 1. Then as a left S-module(

Li−1/Li

)≥r−1
=
⊕

m≥r−1

(
SPiδ

m
i + L

(m)
i /L

(m)
i

)
≃
⊕

m≥r−1

(
SPiδ

m
i /L

(m)
i ∩ SPiδ

m
i

)
.

It remains to prove that

L
(m)
i ∩ SPiδ

m
i = SQδmi ⊆ L

(m)
i−1

for m ≥ 0. It is clear that SQδmi ⊆ L
(m)
i ∩SPiδ

m
i . Conversely, suppose that fPiδ

m
i ∈

L
(m)
i with f ∈ S. Then fPiδ

m
i ∈ p1 · · · piD (m)(S). Since the polynomials pi, . . . , pr

are coprime to one another, we have f ∈ piS. Thus L
(m)
i ∩ SPiδ

m
i ⊆ SQδmi . �

We define a left S-module

Ei :=
⊕
m≥0

(
SPiδ

m
i + L

(m)
i /L

(m)
i

)
≃
⊕
m≥0

(
SPiδ

m
i /SQδmi

)
.(4.4)
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Note that (SPi + L
(0)
i )/L

(0)
i ≃ SPi/SPi ∩ L

(0)
i = SPi/SQ. By Proposition 4.4, we

may identify
(
Li−1/Li

)≥r−1
with the S-submodule of Ei of order m ≥ r − 1. It is

clear that δipi = piδi for i = 1, . . . , r. For g ∈ S, we have

Piδ
m
i (Qg) = Qδmi (

Q

pi
g) ∈ QS.

Proposition 4.1 says already that Piδ
m
i ∈ D (m)(I). Since there is so much notation,

we should remind us that Piδ
m
i ∈ (p1 · · · pi−1)D(S), and so Piδ

m
i ∈ Li−1. Hence Ei

is a left S-submodule of Li−1/Li. Moreover, the following proposition is true:

Proposition 4.5. The module Ei is a right D(I)-submodule of Li−1/Li.

Proof. We only need to check the right multiplication by the elements of S and the
bases for D(I) in Proposition 4.1.

Let m ≥ 1. For g ∈ S, we have

δmi · g ∈ S +
m∑
ℓ=1

Sδℓi ,

and hence Piδ
m
i · S ⊆ Ei.

We show that Ei is closed under the right action of the elements of bases for
D(I). We only need to check the right multiplication by the elements Piδ

ℓ
i , Pjδ

m
j (j ̸=

i), εℓ, Qη
(ℓ)
j . For m ≥ 1, we have

Piδ
m
i · Piδ

ℓ
i = Pi(δ

m
i · Pi)δ

ℓ
i ∈

⊕
m≥0

(
SPiδ

m
i + L

(m)
i

)
,

Piδ
m
i · Pjδ

ℓ
j = Qδmi · Pj

pi
δlj ∈ D(I) ∩ (p1 · · · pi)D(S) = Li,

Piδ
m
i ·Qη

(ℓ)
j = Qδmi · Q

pi
η
(ℓ)
j ∈ D(I) ∩ (p1 · · · pi)D(S) = Li

from the inclusion Piδ
m
i ·S ⊆ Ei. It remains to show that Ei is closed under the right

multiplication by εℓ = ε1(ε1 − 1) · · · (ε1 − ℓ + 1). We consider the Euler derivation
ε1. We may assume pi = y − ax (a ∈ K×). Recall δi = a−1∂x + ∂y. Since

ε1 = x∂x + y∂y

= a−1ax∂x + y∂y + a−1y∂x − a−1y∂x

= a−1(ax− y)∂x + y(∂y + a−1∂x)

= −a−1pi∂x + yδi,

we have, for any m ≥ 0,

Piδ
m
i · ε1 = Piδ

m
i · (−a−1pi∂x + yδi) = −a−1Qδmi ∂x + yPiδ

m+1
i +mPiδ

m
i .
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We see that −a−1Qδmi ∂x ∈ Li, and that the remaining terms belong to SPiδ
m+1
i and

SPiδ
m
i , respectively. It follows that

Piδ
m
i · εℓ ∈

⊕
m≥0

(
SPiδ

m
i + L

(m)
i

)
.

Hence Ei · εℓ ⊆ Ei. This completes the assertion. �
As a left S-module, (

Li−1/Li

)≥r−1 ⊆ Ei.

The right D(I)-module generated by
(
Li−1/Li

)≥r−1
is a D(I)-submodule of Ei by

Proposition 4.5: (
Li−1/Li

)≥r−1 · D(I) ⊆ Ei.

If we prove that Ei is a right Noetherian D(I)-module, then
(
Li−1/Li

)≥r−1 · D(I)
is Noetherian as a D(I)-module. We will prove that Ei is a right Noetherian D(I)-
module.

We define a left action of S/piS on Ei by

f · θ = fθ

for f ∈ S/piS and θ ∈ Ei. This is well-defined, since

fθ − gθ′ =
(f − g)(θ + θ′)

2
+

(f + g)(θ − θ′)

2
∈ Li

for f, g ∈ S and θ, θ′ ∈
⊕

m≥0

(
SPiδ

m
i + L

(m)
i

)
with f − g ∈ piS and θ − θ′ ∈ Li.

Thus Ei is a left S/piS-module. We may assume that pi = y− ax with a ̸= 0. Then
Ei is a K-vector space with a basis

{
yα · Piδmi | α ∈ N,m ≥ 0

}
.

Define an exponent by

exp(yα · Piδmi ) := (α + r − 1,m)

for an element of the basis above. We call yα ·Piδmi a monomial of Ei. Let θ1 and θ2
be two monomials of Ei with exp(θ1) = (α1,m1) and exp(θ2) = (α2,m2). We define
a total order in the set of exponents of monomials by

exp(θ1) < exp(θ2),

ifm1 < m2, or ifm1 = m2 and α1 < α2. For θ ∈ Ei, write θ as a linear combination of
monomials. Then we define an exponent of θ as the largest exponent of a monomial
in θ with a nonzero coefficient, and we denote it by exp(θ). For a subset X of Ei,
set

Exp(X) :=
{
exp(θ) | θ ∈ X

}
.

Throughout the remaining of this section, we write θ ∈ Ei instead of θ for sim-
plicity.
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Lemma 4.6. LetM1,M2 be right D(I)-submodules of Ei. IfM1 ⊆ M2 and Exp(M1) =
Exp(M2), then

M1 = M2.

Proof. Suppose that M1 ( M2. We can take an element θ ∈ M2 \ M1 such that
exp(θ) is the smallest exponent in M2 \M1.

Since exp(θ) ∈ Exp(M2) = Exp(M1), there exists η ∈ M1 such that exp(η) =
exp(θ). Then

exp(θ − cη) < exp(θ)

for some c ∈ K×. We have θ − cη ∈ M2 \M1 since θ ̸∈ M1. This is a contradiction
to the minimality. �

Lemma 4.7. Let M ̸= 0 be a right D(I)-submodule of Ei. If (k,m) ∈ Exp(M),
then

{(k + a,m), (k + b,m+m′) | a ≥ 0, b ≥ r − 1,m′ ≥ 1} ⊂ Exp(M).

Proof. By the assumption, there exists θ ∈ M such that exp(θ) = (k,m). Put α :=
k−r+1, and write θ = yαPiδ

m
i +θ′ with exp(θ′) < exp (yαPiδ

m
i ). The multiplication

θ · ya belongs to M , since S ⊆ D(I). Thus we see that (k + a,m) ∈ Exp(M) for all
a ≥ 0.

Fix 1 ≤ j ̸= i ≤ r, b ≥ r − 1, and m′ ≥ 1. We can write

yαPiδ
m
i · pb−r+1

j Piδ
m′

i = yα(pb−r+1
j Pi)Piδ

m+m′

i + η.

for some η ∈ Ei with exp(η) < exp
(
yα(pb−r+1

j Pi)Piδ
m+m′

i

)
. Since pb−r+1

j Pi ̸∈ piS,

we see that exp(θ·pb−r+1
j Piδ

m′
i ) = (k+b,m+m′). Therefore (k+b,m+m′) ∈ Exp(M)

since θ · pb−r+1
j Piδ

m′
i ∈ M . �

Now we induce the total degree (2.1) of D(S) to those of D(I) and Ei. Then Ei

becomes a graded D(I)-module by the total degree. For monomials of Ei, we denote
the total degree by

totdeg(yα) = α, totdeg(yα
′ · Piδ

m
i ) = α′ + r − 1−m.

Let M be a right graded D(I)-submodule of Ei. Set Xj := {ℓ | (j, ℓ) ∈ Exp(M)}.
From Lemma 4.7, there exists the smallest integer j with ♯Xj = ∞. Put s := sM :=
min{j | ♯Xj = ∞}, and set Ms := {θ ∈ M | exp(θ) = (s, ℓ) for some ℓ}. Then it is
clear that s ≥ r − 1.

Let θm ∈ M be a homogeneous operator satisfying exp(θm) = (s,m) with m ≥ s.
Since m− s+ r − 1 > 0, we can write

θm =
s−r+1∑
ℓ=0

aℓy
s−r+1−ℓPiδ

m−ℓ
i (aℓ ∈ K).(4.5)
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We may assume that a0 = 1. Set Ω := {1, . . . , i−1, i+1, . . . , r}. For 0 ≤ ℓ ≤ s−r+1,
we write

δm−ℓ
i Pi

=
r−1∑
ℓ′=0

[m− ℓ]ℓ′

(
1

ℓ′!(r − 1− ℓ′)!

∑
σ∈SΩ

δ(pσ(1)) · · · δ(pσ(ℓ′))pσ(ℓ′+1) · · · pσ(r)

)
δm−ℓ−ℓ′

i

≡
r−1∑
ℓ′=0

[m− ℓ]ℓ′dℓ′y
r−1−ℓ′δm−ℓ−ℓ′

i (mod piD(S)),

for some dℓ′ ∈ K by Lemma 2.4. It should be argued that d0 ̸= 0 and dr−1 ̸= 0. We
can write

δm−ℓ
i Pi =

r−1∑
ℓ′=0

fℓ′δ
m−ℓ−ℓ′

i

in the Weyl algebra.
First we argue d0 ̸= 0. The polynomial coefficient f0 of δ

m−ℓ
i is the polynomial Pi,

and Pi ̸≡ 0 (mod pi) since p1, . . . , pr are coprime to one another. By the definition
d0, we have Pi ≡ d0y

r−1 (mod pi). This implies d0 ̸= 0. Next we argue dr−1 ̸= 0,

The coefficient fr−1 of δ
m−ℓ−r+1
i is equal to δi(p1) · · · ˆδi(pi) · · · δi(pr). Since δi(pj) = 0

if and only if i = j, we have δi(p1) · · · ˆδi(pi) · · · δi(pr) ̸= 0. This means dr−1 ̸= 0.
Therefore we obtain d0 ̸= 0 and dr−1 ̸= 0. Then

θm · Piδ
m′

i =
s−r+1∑
ℓ=0

aℓy
s−r+1−ℓPi(δ

m−ℓ
i Pi)δ

m′

i

=
s−r+1∑
ℓ=0

r−1∑
ℓ′=0

aℓ[m− ℓ]ℓ′dℓ′y
k−ℓ−ℓ′Piδ

m−ℓ−ℓ′

i

=
s∑

t=0

cty
s−tPiδ

m+m′−t
i ,(4.6)

where

ct :=
∑

0≤ℓ≤s−r+1
0≤ℓ′≤r−1
ℓ+ℓ′=t

aℓ[m− ℓ]ℓ′dℓ′(4.7)

for 0 ≤ t ≤ s. We remark that ct does not depend on m′. Put m0 := max{ℓ |
(s− 1, ℓ) ∈ Exp(M)}+ s.
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Lemma 4.8. For 1 ≤ j ≤ r, there exist operators θm1 , . . . , θmj
∈ Ms such that

rank

 c
(1)
0 · · · c

(j)
0

...
...

c
(1)
r−1 · · · c

(j)
r−1

 = j,(4.8)

and m0 < m1 < · · · < mj, where c
(j)
t for θmj

has been defined in (4.7).

Proof. We prove the assertion by induction. It is clear in the case j = 1.
Let 1 < j < r. Assume that there exist θm1 , . . . , θmj

∈ Ms (m1 < · · · < mj)
satisfying the condition (4.8).

For m > mj, put a vector

w :=
(
ysPiδ

m+m′

i , ys−1Piδ
m+m′−1
i , . . . , Piδ

m+m′−s
i

)
,

and put an (s+ 1)× (s− r + j + 2) matrix

A :=



c
(1)
0 · · · c

(j)
0 d0 0 0 · · · 0

c
(1)
1 · · · c

(j)
1 [m]1d1 d0 0 · · · 0

c
(1)
2 · · · c

(r−1)
2 [m]2d2 [m− 1]1d1 d0

. . . 0
...

...
...

. . .
. . .

...

c
(1)
r−2 · · · c

(j)
r−2 [m]r−2dr−2 0

c
(1)
r−1 · · · c

(j)
r−1 [m]r−1dr−1 [m− 1]r−2dr−2 d0

...
... 0 [m− 1]r−1dr−1

...
...

... 0 0
. . .

...
...

...
...

. . .
. . .

...

c
(1)
s · · · c

(j)
s 0 · · · · · · 0 [m− s+ r − 1]r−1dr−1


.

We consider m as a variable. By the induction hypothesis, there exists a nonzero
j-minor of the matrix in (4.8). We denote by B the matrix of this j-minor. We
take the lowest s − r rows of A and j rows from the remaining r − 1 rows of A so
that we get the (s− r + j + 2)-minor C whose matrix contains the matrix B. The
coefficient of the leading term of C is the determinant of B. Thus C is not zero as
a polynomial in variable m, and hence the solutions of C = 0 is finite. Because of
this, the number of m with rank(A) < s − r + j + 2 is finite. Hence we can take a
positive integer m > mj such that exp(θm) ∈ Ms, and rank(A) = s− r + j + 2.

We write θm =
∑s−r+1

ℓ=0 aℓy
s−r+1−ℓPiδ

m−ℓ
i in the same way as in (4.5). Put

v := (λ1, . . . , λj, λj+1a0, . . . , λj+1as−r+1) .

Then

wA tv = λ1θm1 · Piδ
m′

1
i + · · ·+ λjθmj

· Piδ
m′

j

i + λj+1θm · Piδ
m′

i
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with m1 + m′
1 = · · · = mj + m′

j = m + m′. If wA tv = 0, then v = 0 since

rank(A) = s−r+ j+2. Therefore {θm1 ·Piδ
m′

1
i , . . . , θmj

·Piδ
m′

j

i , θm ·Piδ
m′
i } is linearly

independent over K.
Put θmj+1

:= θm, and suppose that

rank

 c
(1)
0 · · · c

(j+1)
0

...
...

c
(1)
r−1 · · · c

(j+1)
r−1

 < j + 1.

Then there exists (λ1, . . . , λj+1) ∈ Kj+1 \ {0} such that

λ1
t(c

(1)
0 , . . . , c

(1)
r−1) + · · ·+ λj+1

t(c
(j+1)
0 , . . . , c

(j+1)
r−1 ) = 0.(4.9)

Since {θm1 · Piδ
m′

1
i , . . . , θmj+1

· Piδ
m′

j+1

i } is linearly independent, we have

j+1∑
k=0

λkθmk
· Piδ

m′
k

i ̸= 0.(4.10)

Hence we can write exp
(∑j+1

k=0 λkθmk
· Piδ

m′
k

i

)
= (α, β) for some α < s and β >

mj+1+m′
j+1− s > m0− s = max{ℓ | (s−1, ℓ) ∈ Exp(M)} by (4.9) and (4.10). This

is a contradiction. �
Let M be a right graded D(I)-submodule of Ei. For a nonnegative integer ℓ with

(k, ℓ) ∈ Exp(M) for some k, we define an integer tℓ by

tℓ := min{k | (k, ℓ) ∈ Exp(M)}.
By Lemma 4.8, there exist operators θm1 , . . . , θmr ∈ Ms satisfying the condition

(4.8). We denote by N the right submodule of M generated by the operators
θm1 , . . . , θmr .

Lemma 4.9. There exists a positive integer n0 such that, for any m ≥ n0,

(s,m) ∈ Exp(N) and tm = s.

Proof. By Lemma 4.8, there exist θm1 , . . . , θmr ∈ Ms such that

rank

 c
(1)
0 · · · c

(r)
0

...
...

c
(1)
r−1 · · · c

(r)
r−1

 = r, and rank

 c
(1)
0 · · · c

(r)
0

...
...

c
(1)
r−2 · · · c

(r)
r−2

 < r.

Then there exists a nonzero vector (λ1, . . . , λr) ∈ Kr \ {0} such that

λ1
t(c

(1)
0 , . . . , c

(1)
r−2) + · · ·+ λr

t(c
(r)
0 , . . . , c

(r)
r−2) = 0,

and
λ1c

(1)
r−1 + · · ·+ λrc

(r)
r−1 ̸= 0.
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Put θ :=
∑r

k=0 λkθmk
· Piδ

m′
k

i ∈ N with m1 +m′
1 = · · · = mr +m′

r. It follows that
exp(θ) = (s,mr +m′

r − r + 1). Put n0 = mr − r + 1, and put m′
r = m− n0 for any

m ≥ n0. Thus

(s,m) = (s,mr +m′
r − r + 1) = exp(θ) ∈ Exp(N).

It remains to prove that tm = s. We have tm ≥ s since m ≥ n0 ≥ m0 − s =
max{ℓ | (s − 1, ℓ) ∈ Exp(M)}. Conversely we have tm ≤ s since (s,m) ∈ Exp(M),
as required. �

Let R be a graded ring. A right graded R-module M is said to be right gr-
Noetherian, if M satisfies the ascending chain condition for graded submodules of
M . It is straightforward to verify that M is right gr-Noetherian if and only if each
graded submodule of M is finitely generated.

Proposition 4.10. The right D(I)-module Ei is right Noetherian.

Proof. Recall that D(I) is a graded ring by the total degree, and that Ei is a graded
D(I)-module. By [7, Theorem II.3.5], it is enough to prove that Ei is right gr-
Noetherian. Let M be a right graded D(I)-submodule of Ei. We will prove that M
is finitely generated.

Let n0 be the integer satsfying Lemma 4.9. Set

G := {(tℓ, ℓ) | ℓ < n0 and (k, ℓ) ∈ Exp(M) for some k} .
Then G is a finite set. Fix an operator θ(tℓ,ℓ) ∈ M for (tℓ, ℓ) ∈ G, and set

G :=
{
θ(tℓ,ℓ) ∈ M | (tℓ, ℓ) ∈ G

}
.

Then G is also a finite set. We denote by M ′ the right D(I)-module generated by
G and N . Then M ′ is finitely generated and M ′ ⊆ M .

Let (k,m) ∈ Exp(M), then k ≥ tm. If m < n0, then (tm,m) ∈ G ⊆ Exp(M ′)
by the definitions of tm and G. We have (k,m) = (tm + k − tm,m) ∈ Exp(M ′) by
Lemma 4.7.

If m ≥ n0, then (s,m) ∈ Exp(M ′) by Lemma 4.9. It follows from Lemma 4.7
that (k,m) = (s+ k − s,m) ∈ Exp(M ′). Hence Exp(M ′) = Exp(M). The assertion
follows from Lemma 4.6. �
Corollary 4.11. The right D(I)-module

(Li−1/Li)
≥r−1 · D(I) =

(
L≥r−1
i−1 · D(I) + Li/Li

)
is right Noetherian.

Next we study the S-module
(
Li−1/Li

)<r−1
.

Lemma 4.12. The K-vector space

L<r−1
i :=

⊕
m<r−1

L
(m)
i
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is a right S-module.

Proof. Suppose that 0 ≤ m < r − 1. Let θ ∈ L
(m)
i ⊆ D(I). For f ∈ S,

θf(QS) = θ(QfS) ⊆ I.

Thus θf ∈ D(I). It follows from Proposition 2.1 that θf ∈
⊕m

ℓ=0 D (ℓ)(I). The
operator θf is divisible by the polynomial p1 · · · pi since θ ∈ p1 · · · piD (m)(S). Thus
each homogeneous component of θf is divisible by p1 · · · pi. It follows that

θf ∈
m⊕
ℓ=0

(
D (ℓ)(I) ∩ (p1 · · · pi)D (ℓ)(S)

)
=

m⊕
ℓ=0

L
(ℓ)
i .

Hence L<r−1
i · S ⊆ L<r−1

i . �
The following holds in general.

Proposition 4.13. As a vector space,⊕
|α|<r−1

S∂α =
⊕

|α|<r−1

∂αS.

Define a right S-module D(S)<r−1 :=
⊕

|α|<r−1 ∂
αS. Then D(S)<r−1 is the mod-

ule of differential operators of order less than r− 1 by Proposition 4.13. By Lemma
4.12, we have the inclusion of right S-modules:

L<r−1
i ⊆ D(S)<r−1.

Lemma 4.14. The right S-module
(
Li−1/Li

)<r−1
is Noetherian.

Proof. Since D(S)<r−1 is a finitely generated right S-module, D(S)<r−1 is Noether-

ian as a right S-module. Hence the subquotient
(
Li−1/Li

)<r−1
=
(
L<r−1

i−1 + Li/Li

)
of D(S)<r−1 is Noetherian as a right S-module. �
Lemma 4.15. The right D(I)-module Li−1/Li is Noetherian.

Proof. By Corollary 4.11, N := (Li−1/Li)
≥r−1 · D(I) is Noetherian as a right D(I)-

module. Consider the factorN ′ := (Li−1/Li) /N . It is clear that as a right S-module,
N ′ is a factor of (Li−1/Li)

<r−1. Thus N ′ is Noetherian as a right S-module as so
certainly as a right D(I)-module. By [2, Proposition 1.2], Li−1/Li is Noetherian as
a right D(I)-module. �
Theorem 4.16. The ring D(S/I) ≃ D(I)/ID(S) is Noetherian (i.e., D(S/I) is
right Noetherian and left Noetherian).

Proof. By Lemma 4.15 and by considering the sequence (4.2), we see that the ring
D(I)/ID(S) is right Noetherian. Therefore, by Corollary 3.3, we conclude that the
ring D(S/I) ≃ D(I)/ID(S) is Noetherian. �
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It is known that idealisers in the second Wely algebra may or may not be Noe-
therian ([9, Theorem 2]). However, the ideal I dose not satisfy the hypothesis of [9,
Theorem 2]. The Noetherian property of the idealiser D(I) is still open.

In the rest of this section, we give an example of a family of Noetherian rings
whose graded rings associated to the order filtration are not Noetherian.

By Proposition 2.1, we can decompose D(I)/ID(S) into the direct sum

D(I)/ID(S) =
⊕
m≥0

(
D (m)(I)/ID (m)(S)

)
as a left S-module. The order filtration of D(I)/ID(S) is the filtration F =
{Fm}m≥0 defined by

Fm =
⊕
ℓ≤m

(
D (ℓ)(I)/ID (ℓ)(S)

)
.

We denote by Sj the K-vector subspace of S spanned by the monomials of degree
j. An element θ =

∑
α fα∂

α ∈ D(S) is of polynomial degree k, if k is the smallest

integer such that fα ∈
⊕k

j=0 Sj for all α with nonzero fα.

Example 4.17. Let S = k[x, y] be the polynomial ring, and let I be the ideal gen-
erated by the polynomial Q = p1 · · · pr (r ≥ 2) defining a central arrangement.

The graded ring GrD(S/I) associated to the order filtration is a commutative
ring. Let θ be the image of θ ∈ D(S/I) in GrD(S/I). We consider the ideal
M := ⟨P1δm1 | m ≥ 1⟩ of GrD(S/I).

Assume that M is finitely generated with generators η1, . . . , ηℓ. Then there exists
a positive integer m such that

M = ⟨η1, . . . , ηℓ⟩ ⊆ ⟨P1δ1, . . . , P1δ
m−1
1 ⟩.

Since P1δm1 ∈ M , we can write

P1δm1 = P1δ1 · θ1 + · · ·+ P1δ
m−1
1 · θm−1(4.11)

for some θ1, . . . , θm−1 ∈ D(I).
If θ ∈ D(I) with ord(θ) ≤ 1, then the polynomial degree of θ is greater than or

equal to 1 by Proposition 4.1. Since the order of the LHS of (4.11) equals m, there
exists at least one θj such that the order of θj is greater than or equal to 1. Thus
the polynomial degree of the RHS of (4.11) is greater than r − 1. However, the
polynomial degree of the LHS of (4.11) is exactly r − 1. This is a contradiction.

Therefore M is not finitely generated, and thus we have proved that GrD(S/I) is
not Noetherian.
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