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THE NOETHERIAN PROPERTIES OF THE RINGS OF
DIFFERENTIAL OPERATORS ON CENTRAL
2-ARRANGEMENTS

NORIHIRO NAKASHIMA

ABSTRACT. Whereas Holm proved that the ring of differential operators on a
generic hyperplane arrangement is finitely generated as an algebra, the problem
of its Noetherian properties is still open. In this article, after proving that the
ring of differential operators on a central arrangement is right Noetherian if and
only if it is left Noetherian, we prove that the ring of differential operators on a
central 2-arrangement is Noetherian. In addition, we prove that its graded ring
associated to the order filtration is not Noetherian when the number of the con-
sistuent hyperplanes is greater than 1.

Key Words: Ring of differential operators;Noetherian property; Hyperplane ar-
rangement.

2010 Mathematics Subject Classification: Primary 13N10; Secondary
32522.

1. INTRODUCTION

Let K be a field of characteristic zero. For a commutative K-algebra R, we
inductively define K-vector spaces of linear differential operators by

2°(R) := {6 € Endg(R) | a € R,0a — af = 0},
2™(R):= {0 € Endg(R) |a € R,6a—ab € 2" "(R)} (m>1).

We set Z(R) == J,,59 Z™(R), and we call Z(R) the ring of differential operators of
R. Let S := K[zy,...,z,] denote the polynomial ring. It is well known that the ring
2(5) of differential operators of S is the n-th Weyl algebra K[z1,...,2,]{(0,...,0,)
where 0; := 8%1- (see for example [5, Example 15.1.15] and [5, Corollaty 15.5.6]). We
use the multi-index notations, for example, 0% := 07 - -- 99~ and |a| := ay+- - -+,
for a = (aq,...,,) € N". We set 20 (S) = D)= SO for m > 0. We regard
2™ (S) as a left S-module by the left product in the Weyl algebra. Then the
Weyl algebra 2(S) is decomposed into the direct sum of left S-modules 2™ (S) of
homogeneous differential operators: 2(5) = @,,~, 2™ (S).

There has been a lot of research on finiteness properties of the rings of differential
operators. It is well known that Z(R) is Noetherian, if R is a regular domain (see
[5, Theorem 15.1.20] and [5, Corollary 15.5.6]). There are some other important
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classes of algebras such that Z(R) are Noetherian. For example, if R is an integral
domain of Krull dimension one, then Z(R) is Noetherian (Muhasky [6] and Smith-
Stafford [11]). Saito-Takahashi [10] showed that Z(R) is right Noetherian if R is an
affine semigroup algebra. However, Z(R) is not Noetherian in general. Bernstein-
Gel'fand-Gel’'fand [1] gave an example of a ring of differential operators that is
neither Noetherian nor finitely generated.

Let A = {H;|i=1,...,r} be a central (hyperplane) arrangement (i.e., every
hyperplane in A contains the origin) in K™. Let I be the defining ideal of .A.
We consider the left S-module 2™ (I) of differential operators homogeneous of
order m that preserve the ideal I. We call 2™ (I) the modules of A-differential
operators. We find many results about the module 2" (I) of A-derivations in a rich
literature (see for example [8]). In contrast, there are only a few literatures about
the modules of A-differential operators of a higher order. Holm [4] proved that the
ring of differential operators of the coordinate ring S/I is finitely generated when [
is the ideal defining a generic hyperplane arrangement. In this paper, we will prove
that 2(S/1) is Noetherian if n = 2.

In Section 3, we prove that Z(S/I) is right Noetherian if and only if it is left
Noetherian. Thus the Noetherian property of Z(S/I) can be proved by the right or
left Noetherian property.

In Section 4, we prove that Z(S/I) is right Noetherian in the case n = 2. This is
the main result of this article. Let R be a filtered ring, and F the filtration. If the
graded ring associated to the filtration F of R is right (left) Noetherian, then R is
right (left) Noetherian. However, the graded ring associated to the order filtration
of 2(S/I) is not Noetherian if » > 2 (Example 4.17). Hence we cannot take this
convenient approach to prove the Noetherian property of Z(S/I). The keys of the
proof of the main result are Corollary 4.11 and Lemma 4.14.

There is a well-known basis for the module 2™ (1) of A-derivation (see for example
[8]). Holm [3] studied the module 2™ (I), and gave its basis for any order m. Let
2(J) denote the subring of Z(S) consisting of the operators preserving an ideal J.
Holm [3],[4] showed that Z(I) decomposes into the direct sum of 2™ (I). For an
ideal J, there is a ring isomorphism:

2(8)J) =~ D(J)]TD(S)

(see [5, Theorem 15.5.13]). Using these facts, we can write any element of Z(S/I)
as a linear combination of bases of the modules of A-differential operators. This
expression is useful to prove Corollary 4.11.

We consider a sequence of two-sided ideals of Z(I):

I9(8) =L, C L.y C---C L C Lo=2(I).

We prove that 2(1)/I2(S) is right Noetherian by proving that each L; 1/L; is
right Noetherian 2(I)-module. To show the right Noetherian property of L;_;/L;,
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we study a module of lower order operators in L; 1/L; and that of higher order
operators separately.

We prove that the right Z(I)-module generated by the higher order operators
in L; 1/L; is Noetherian in Corollary 4.11, and that the module of lower order
operators in L;_1/L; is right Noetherian as a right S-module in Lemma 4.14. In this
way, we see that 2(S/I) is Noetherian.

2. DIFFERENTIAL OPERATORS ON A CENTRAL ARRANGEMENT

In this section, we fix some notation, and we refer to some facts used in Section
4. Let A ={H;|i=1,...,r} be a central arrangement in K". Fix a polynomial
p; defining H;, and put ) := p;---p,.. Thus @ is a product of certain homogeneous
polynomials of degree 1. We call @ a defining polynomial of 4. Let I denote the
principal ideal of S generated by Q).

For any ideal J of S, we define an S-submodule 2™ (.J) of 2™ (S) and a subring
2(J) of 2(S) by

2'™(J) == {0 € 2"(S) | 6(J) C J},
2(J):={0€2(S)|0(J) CJ}

Among others, Holm [4] proved the following two propositions.

Proposition 2.1 (Proposition 4.3 in [4]). We have a direct sum

(1) =P 2 (1)

m>0
as a left S-module.
Proposition 2.2 (Proposition 2.4 in [4]). Suppose that fi,..., fx € S are coprime
to one another. Then

k

D((fr--- 1)) = [ 2((f:))-

i=1
The following is well known (e.g., see [4, Proposition 2.3]).

Proposition 2.3. Let J be the ideal of S generated by fi,..., fi, and let § € 2(S)
be an operator of order m > 1. Then 0 € Z(J) if and only if (x> f;) € J for
lal| <m—1andj=1,... k.

We use the following lemma in Section 4.
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Lemma 2.4. Let 6 € Y, K0;, and let fi,..., f be polynomials of degree 1. If

k <m, then
k
i fe= 3 mkC >0 TLat [Tapam
=0 Agﬁ{/{;{k} jen Jén

k
Z 1 Z .
1=0

oESk
where [mlo :=1 and [m]; :=m(m —1)---(m—i+1) fori>1.

Proof. For any f € S, we see 6°f = f6° + £5(f)5* L. We can prove the assertion by
induction on k. [

For a monomial 2*9% in 2(S), we define its total degree by
(2.1) totdeg(z*0°) = |a| — |3

For 0 € 2(S), we define the total degree of 6 as the largest total degree of monomials
in . We consider Z(95) a graded ring by the total degree.

The operator
m!
Em 1= E —*o0”
a!l
|o|=m

is called the Euler operator of order m where a! = (aq!) -+ - (a,!) for e = (g, . .., ).
Then ¢, is the Euler derivation, and €, = €1(ey — 1) -+ (61 —m+1) [4, Lemma 4.9].

3. RIGHT NOETHERIAN PROPERTY AND LEFT NOETHERIAN PROPERTY

Let @ = p1---p. be a defining polynomial of a central arrangement A, and let
I = @S. In this section, we will prove that the ring Z(S5/I) of differential operators
is right Noetherian if and only if Z(S/I) is left Noetherian. Recall that we have
a ring isomorphism 2(S/1) ~ 2(1)/1%(S) (see [5, Proposition 15.5.9 (ii)] and [5,
Theorem 15.5.13]).

Let 0 # h € S, and set J := hS. We denote by K (x1,...,z,) the field of fractions
of S. Then 2(S)Nh2(S)h™ C K(x1,...,2,){01,...,0n).

Lemma 3.1. As a ring,
2(J) = D(S) NhD(S)h".

Proof. Assume that h6h™' € 2(S) with 6 € 9(S). For any f € S,
hoh~' (hf) = hO(f) € hS,

which means hoh™' € 2(J).
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Next we will prove the converse inclusion. Let 6 € 2(J). Since h™'0h €
K(xy,...,2,){01,...,0,), we can write

h7'0h =" fad™

with fo € K(z1,...,2,). We show that f, € S for all a by induction on |«.
Since

fo=h"t0n(1) =h*0(h) € h"'hS = S,
we have fy € S.
Assume that f, € S for all @ with |a| < m. For |3| =

h'0n(a?) = Blfa+ Y fad*(z?)

|| <m

Since 0§ € Z(J), we obtain
h=0n(zP) = h'0(haP) € h*hS = S.
Then fg € S by the induction hypothesis. Therefore we conclude that h™10h =

Yoo fa0* € D(5). O
Define an anti-automorphism * : 2(S) — 2(S) by 'z; = x;,'0; = —0; for
i =1,...,n (we say that ! is an anti-automorphism if * is an automorphism as a

linear map, and if “(6n) = ''6 for any 6,7 € 2(S)). It is clear that *(*d) = 6 for
any 6 € 7(9).
For 0 € 9(J), put 6% := h'0h~'. Then

(2(1))" = (2(S) Nh2(S)h™)"
=h"(2(S)NhD(S)h~")h~
=h'9(S)h ' N'P(9)
=hP(S)h ' N 2(9)
=92(J)
by Lemma 3.1. Thus
(3.1) 2 9(J) — 2(J)
is an anti-automorphism. If hf € JZ(5), then
(hO)* = h'(hO)h~" = h'Ohh™' = h'0 € J2(8S).

It is clear that 6 = (0*)* for any 6 € 2(J). Hence we have (JZ2(S))* = JZ(9).
Therefore the anti-automorphism * induces an anti-automorphism

()] TD(S) — D()/TD(S).

The following is clear from the existence of the anti-automorphism *.
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Theorem 3.2. The ring 2(J)/JP(S) is right Noetherian if and only if 2(J)/J2(S)
1s left Noetherian.

Corollary 3.3. Let I be the defining ideal of a central arrangement. Then the ring
2(1)]12(S) is right Noetherian if and only if 2(1)/12(S) is left Noetherian.

Remark 3.4. By the anti-isomorphism (3.1), it is also true that the ring 2(J)
(also (1)) is right Noetherian if and only if is left Noetherian.

It is known that some finiteness properties of rings of differential operators on
irreducible affine algebraic varieties over an algebraically closed field (see [11, The-
orem 2.5, [11, Proposition 7.3] and [11, Theorem 7.5]), whereas varieties of central
hyperplane arrangements are reducible. Thus we cannot apply the results in [11].

4. THE CASE n = 2

In this section, let n =2 and S = K|z, y]. We will prove that the ring 2(S/1I) ~
P(1)/12(9) of differential operators is Noetherian. We will also prove that, in con-
trast, the graded ring Gr Z(S/1) associated to the order filtration is not Noetherian
when r > 2.

Put P, := }% fori=1,...,r, and define

5 Oy if pp=ax (a€ K*)
’ Op + a0y if p;=0aly—ax) (aec K*).
Then §;(p;) = 0 if and only if ¢ = j.

Proposition 4.1 (Paper III, Proposition 6.7 in [3], Proposition 4.14 in [12]). For
any m > 1, 2"(I) is a free left S-module with basis

{em, PLOT", ..., Pt it m <r—1,
{Po7, ..., PO if m=r—1,
{P15T,,Pr5;n>@77ﬂ?a>@nﬁ1 ifm>r—1,
wheqe the set {7", ... ,(5?,77&2, . ,nﬁnni)l} forms a K-basis for 3, _,, KO if m >
r—1.

By Proposition 2.1, we have

r—2
2(I)=5® <€B (Sem ® SPOT ® -+ ® SPmag;;))

m=1
® ( P (sPsy e @SSP SQ @ @ SQn,SI”fﬁl)).
m>r—1
Fori=1,...,r, define an additive group

L= 2() N (1) 2(S).
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Proposition 4.2. For i = 1,...,r, the additive group L; is a two-sided ideal of
2(1).

Proof. 1t is clear that L; is a right ideal of 2(I).

To prove that L; is a left ideal of Z(I), by Proposition 2.1, we only need to prove
that 2™(I)L; C L; for m > 0. Fix 0, € 2™ (I). For any j = 1,...,i, there exist
N € D(e)(S) such that
(4.1) Ompj =10+ + N
We prove that n, € p; [, P9 (pyS) € 2U(I) for 0 < ¢ < m by induction on .

In the case £ =0, let (4.1) act on 1. Then

p;iS 2 On(pj) = no

because 0,, € 2" (p;S) by Proposition 2.2. If £ > 1, then it follows from the
induction hypothesis that n,(x®) € p;S for any o with |a| = ¢ since

PiS 3 Om(pjz®) = no(z®) + -+ + ne1 (%) + 7o (z).
Therefore n, € p; 29 (S). Write 1, = p;n,. For any ¢’ # j and |a| = £ — 1, it also
follows from the induction hypothesis that p,n,(pyx®) = ne(pyx®) € py S since
pirS 3 O (pipra®) = mo(pya®) + -+ - + o1 (prx®) + nelpra®).

Since p; and p; are coprime, we see that ny(pyx®) € pyS. So n, € P(psS) by
Proposition 2.3, and 7, € p, ﬂi,# 29 (pyS). Thus b,,p; € p; ﬂi,;ﬁj P(piS). Then
we conclude that

P(Dpr---pi2(S) Cpi--pi2(S).

By Proposition 2.1, L; is decomposed as follows:

L= L,

m>0
where LE’") = PN (py---pi) 2™ (S). We consider a sequence

of two-sided ideals of Z(I). If a right Z(I)-module L,;_,/L; is Noetherian for any i,
then 2(1)/12(S) is a right Noetherian ring. Now we fix ¢, and we will prove that
L;_1/L; is right Noetherian.

As a left S-module,

Lia/Li = €D (L2 + Li/Ls) = €D (LZ/L™).

m>0 m>0
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Put
(Lis/ L)~ = €D (LML),
m<r—1
(Lin/L)™ = @D (LML),
m>r—1

Then L; 1/L; is decomposed as a left S-module:

(4.3) Liy/Li= (Lio /L) T @ (L /L)

We will study (Li_l/Li)G_l and (Li_l/Li)Zr_l separately.
First we argue the part of order > r — 1.

Lemma 4.3. Assume that m > r — 1. As a left S-module,
=9Q" ® -+ B SQO"DSPi110y, ®--- D SP0,"
D SQm+1 S---D SQan

Proof. Recall that P, = ;% We see the assertion by Proposition 4.1 and the definition

Proposition 4.4. For m > 0, we have
L™ A SPom = SQsm < L™
as a left S-module. Hence
(Lio/L)™ = €D (SPer + LI /L™) ~ € (SPer/SQar)
m>r—1 m>r—1
as a left S-module.
Proof. By Lemma 4.3, LZ | = SPo" —|—L ) for m > r—1. Then as a left S-module
(Lin/Li)™ = @ (SPor+ L™ /L™ ~ @ (SR /L™ N SPar).
m>r—1 m>r—1

It remains to prove that

LM N SPer = SQor C L)
for m > 0. It is clear that SQd" C L ﬂSP 0/". Conversely, suppose that fP;0;" €
L™ with f € S. Then fPOT € pr---pi 2™ (S). Since the polynomials p;, ..., p,

(2

are coprime to one another, we have f € p;S. Thus LZ(-m) N SP0" C SQo;". O
We define a left S-module
(4.4) B =@ (SPoy + L™ /L™ ~ P (SR /SQer).

m>0 m>0
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Note that (SP; + LEO))/LZ(.O) ~ SP,/SP,N LEO) = SP;/SQ. By Proposition 4.4, we
may identify (Li,l / LZ-)ZT_1 with the S-submodule of E; of order m > r — 1. It is
clear that d;,p; = p;0; fort =1,...,r. For g € S, we have

Par(Qg) = @5;"(%) € 0s.

7

Proposition 4.1 says already that P;6* € 2™)(I). Since there is so much notation,
we should remind us that P,0™ € (py---pi—1)Z(S), and so P,0/* € L;_;. Hence E;
is a left S-submodule of L;_/L;. Moreover, the following proposition is true:

Proposition 4.5. The module E; is a right Z(1I)-submodule of L;_1/L;.

Proof. We only need to check the right multiplication by the elements of S and the
bases for Z(I) in Proposition 4.1.
Let m > 1. For g € S, we have

ot ge S+ S,
/=1

and hence P;0]" - S C E;.
We show that E; is closed under the right action of the elements of bases for
9(I). We only need to check the right multiplication by the elements P, Py (j #

i),€0, an(-e). For m > 1, we have

PAT- P! = BT P)3f € D (P + L"),

m>0
P.
H5T'E5f=Q57'j5§ € 2(I)N(p1---p)2(S) = L,

P - Qu = Qor gnf’ € D) N (pr---p)A(S) = L

)

from the inclusion P;0;"-S C E;. It remains to show that E; is closed under the right
multiplication by e, = e1(e; — 1) --- (e1 — £+ 1). We consider the Euler derivation
e1. We may assume p; =y — ax (a € K*). Recall §; = a0, + 9,. Since

g1 = 20, + Y0,

Yazd, + y0, + a”'yd, — a”'yo,
=a Yaz — )0, +y(9, +a '0,)

= —a 'Oy + Yo,

:ai

we have, for any m > 0,

Bof e = Bol" - (—a” ' pi0y +yd;) = —a” Q6" 0y + y P + mPo;".
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We see that —a~'Q0"d, € L;, and that the remaining terms belong to Sl’:’iéi”“rl and
SP;6™, respectively. It follows that

Por -2 € P (SR + LIM).
m>0

Hence E; - ¢, C F;. This completes the assertion. O

As a left S-module,
E

’L"
>r—1

(Liy/L)="

The right Z(I)-module generated by (L;_1/L
Proposition 4.5:

-
i) is a Z(I)-submodule of E; by

(Liy /L))" 2(1) C E..

>r—1

If we prove that E; is a right Noetherian 2(I)-module, then (L;_1/L;) 2(1)
is Noetherian as a Z(I)-module. We will prove that E; is a right Noetherian 2(I)-
module.

We define a left action of S/p;S on E; by

78=70
for 7 € S/p;S and 0 € E;. This is well-defined, since
_ / _ /

L
5 + : €
for f,g € S and 0,0’ € @, (SR + L{™) with f — g € p;S and 6 — ' € L;.
Thus E; is a left S/p;S-module. We may assume that p; = y — ax with a # 0. Then
E; is a K-vector space with a basis {y“ - PoM™ | o e Nym > 0}.

Define an exponent by

exp(y® - Bo") == (a+r—1,m)

for an element of the basis above. We call y*- P,o™ a mon(Enial of F;. Let 0; and 0,
be two monomials of E; with exp(6;) = (ay, m;) and exp(6s) = (g, ms). We define
a total order in the set of exponents of monomials by

exp (0_1) < exp (6_2) ,

if mi; < mo, orif m; = my and a1 < an. Foré € E;, write 6 as a linear combination of
monomials. Then we define an exponent of  as the largest exponent of a monomial
in # with a nonzero coefficient, and we denote it by exp(#). For a subset X of E;,
set

Exp(X) := {exp(6) |6 € X}.

Throughout the remaining of this section, we write § € E; instead of @ for sim-
plicity.
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Lemma 4.6. Let My, My be right Z(1)-submodules of E;. If My C My and Exp(M;) =
Exp(M;), then
My, = Ms.

Proof. Suppose that M; C M,. We can take an element 6 € My \ M; such that
exp(#) is the smallest exponent in My \ M.

Since exp(#) € Exp(My) = Exp(M;), there exists n € M; such that exp(n) =
exp(#). Then

exp(0 — ¢en) < exp(6)
for some ¢ € K*. We have 6 — cn € My \ M since 6 ¢ M;. This is a contradiction

to the minimality. 0
Lemma 4.7. Let M # 0 be a right 2(I)-submodule of E;. If (k,m) € Exp(M),
then

{(k+a,m),(k+bm+m')|a>0,b>r—1m">1} C Exp(M).

Proof. By the assumption, there exists 6 € M such that exp() = (k,m). Put a :=
k—r+1, and write 6 = y*P,0!" +0" with exp(0) < exp (y*P;0!"). The multiplication
6 - y* belongs to M, since S C Z(I). Thus we see that (k + a,m) € Exp(M) for all
a > 0.

Fix1<j#i<r,b>r—1,and m' > 1. We can write

yaPZ(S:n . p;)'—’r’-‘rlpiégn’ _ ya(p?—T+1R)PL§:n+m/ i n.

for some n € E; with exp(n) < exp (yo‘(p?_’““]%)}’ié?*m/). Since p?_THPi Z 1S,

we see that exp(é’-p?_”lf’iéﬁl) = (k+b,m+m’). Therefore (k+b, m+m') € Exp(M)

since 0 -p?_T’HPiéZm/ e M. O

Now we induce the total degree (2.1) of Z(S) to those of Z(I) and E;. Then FE;
becomes a graded Z(I)-module by the total degree. For monomials of E;, we denote
the total degree by

totdeg(y®) = o, totdeg(y® - P,0™) = o/ +r—1—m.

Let M be a right graded Z(I)-submodule of E;. Set X; :={¢ | (j,¢) € Exp(M)}.
From Lemma 4.7, there exists the smallest integer j with §X; = co. Put s := s) :=
min{j | §X; = oo}, and set M, := {6 € M | exp(#) = (s,¢) for some ¢}. Then it is
clear that s > r — 1.

Let 0,, € M be a homogeneous operator satisfying exp(6,,) = (s, m) with m > s.
Since m — s +r — 1 > 0, we can write

s—r+1
(4.5) 0,, = Z agys_r“_KPié;”_E (a € K).
=0
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We may assume that ap = 1. Set Q :={1,...,i—1,i+1,...,r}. For0 < ¢ < s—r+1,
we write

SR,
r—1 1
= [m - f]g/ <£/|(7, —1- g/)| Z 5(pa(1)) T 5(po(€/))pa(£/+1) e 'pa(r)> 5Zm—€—€
=0 ’ " oese
r—1
= [m — E]Z,dZ,yr—l—Z’a;(n—f—é’ (mod pZD(S)),
=0

for some dy € K by Lemma 2.4. It should be argued that dy # 0 and d,_; # 0. We
can write

r—1
— o
5:71 ZPZZE :fﬁf(slm =4
2'=0

in the Weyl algebra.

First we argue dy # 0. The polynomial coefficient fo of 57~ is the polynomial P;,
and P; Z 0 (mod p;) since py, ..., p, are coprime to one another. By the definition
do, we have P; = dyy"~! (mod p;). This implies dy # 0. Next we argue d,_; # 0,
The coefficient f._; of 5™+ is equal to &;(py) - - - J; (Ap,) -+ 9;(pr). Since 6;(p;) =0
if and only if ¢ = j, we have 0;(p1) - -+ 0;(p;) - - - 8 (pr) # 0. This means d,_; # 0.

Therefore we obtain dy # 0 and d,_; # 0. Then

s—r+1
0,, - Pldzml — Z azysfrJrlffPi((szm—fPi)(sim’
=0
s—r+1 r—1
= D D alm = udey* RO
(=0 ¢'=0
(4.6) = ay R
t=0
where
(47) Ct 1= Z Ay [m — g]gld@/
0<t<s—r+1
0<t/ <r—1
40 =t

for 0 <t < s. We remark that ¢; does not depend on m'. Put mgy := max{/ |
(s —1,0) € Exp(M)} + s.
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Lemma 4.8. For 1 < j <r, there exist operators Op,, . ..,0n, € M, such that
A0

(4.8) rank | : =7,
Cf«ljl Cijf)l

and mog < my < --- < m;, where cgj) for 0., has been defined in (4.7).

Proof. We prove the assertion by induction. It is clear in the case j = 1.

Let 1 < j < r. Assume that there exist Op,,,...,0,, € M, (my < --- < my)
satisfying the condition (4.8).

For m > m;, put a vector

wi= (y Ry TP L P )

and put an (s + 1) x (s —r + j + 2) matrix

o C(()J? do 0 0 - 0
M @ [m]1ds do 0 0
M frY [m]ads [m — 1]1d1 do 0
A= C%)z T 0922 [m];—2dr—2 0
T CE«_)l et Ci‘]_)l [m]'rfldrfl [m - 1]7‘*2d7‘72 dO
0 [m - 1]’7‘*1d7‘71
0 0
cg” cgj) 0 0 m-—s+r—1]r—1dr—1

We consider m as a variable. By the induction hypothesis, there exists a nonzero
j-minor of the matrix in (4.8). We denote by B the matrix of this j-minor. We
take the lowest s — r rows of A and j rows from the remaining » — 1 rows of A so
that we get the (s —r + j 4+ 2)-minor C' whose matrix contains the matrix B. The
coefficient of the leading term of C' is the determinant of B. Thus C' is not zero as
a polynomial in variable m, and hence the solutions of C' = 0 is finite. Because of
this, the number of m with rank(A) < s —r 4 j + 2 is finite. Hence we can take a
positive integer m > m; such that exp(f,,) € M, and rank(A) = s —r+j+ 2.
We write 6, = E;SH apy* "1 P0™ ¢ in the same way as in (4.5). Put

V= (/\1, ) >\j, /\j+1a0, ) /\j+1as—r+1) .

Then
WA = Ay, - P0™ o A, PO+ Ay, - POT

)
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with my +mj = --- = m; + mj = m +m'. If wA'v = 0, then v = 0 since

rank(A) = s—r+j+2. Therefore {6,,, ~Pi(5;n/1, oy O, P67 0, - P,0™} is linearly
independent over K.

Put 0,,,,, := 0,,,, and suppose that
Vo Ut
rank : : <j+1

D, e
Then there exists (A1, ..., A\j+1) € K71\ {0} such that
(4.9) MDA ) e A (ST )y = 0.
Since {0y, - Piézﬂll, o O Pidznj“} is linearly independent, we have

J+1 ,
(4.10) > Ml - B0 0.

k=0

Hence we can write exp <Z]+1 Ay, - P5m’“> = (a,p) for some a < s and >
Mjy1+mi —s>mo—s=max{{ | (s—1,¢) € Exp(M)} by (4.9) and (4.10). This
is a contradiction. O

Let M be a right graded Z(I)-submodule of E;. For a nonnegative integer ¢ with
(k,?¢) € Exp(M) for some k, we define an integer t, by

to = min{k | (k,¢) € Exp(M)}.

By Lemma 4.8, there exist operators 0,,,,...,60,, € M satisfying the condition
(4.8). We denote by N the right submodule of M generated by the operators
9m17 s 79mr'

Lemma 4.9. There exists a positive integer ng such that, for any m > ng,
(s,m) € Exp(N) and t,, =
Proof. By Lemma 4.8, there exist 0,,,,...,60,, € M such that
(1) (r) (1) ()

CO DR CO CO . .. CO
rank : : =r, and rank : : <.
Cfﬂl—)l T 057;)1 CgQ T 07@2
Then there exists a nonzero vector (Ay,..., A.) € K"\ {0} such that
)\1t<Cél),._.7C£,1_)2) +)\ (CO 7"'767(" )2) O

and
)\lcq(nl_)l +o N c(r) # 0.
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Put 0 := ") A, -PZ-(S;n;“ € N with my +m} = --- = m, + m.. It follows that
exp(f) = (s,m, +m, —r+1). Put no = m, —r + 1, and put m, = m — ny for any
m > ng. Thus

(s,m) = (s,m, +m, —r+1) =exp(d) € Exp(N).

It remains to prove that ¢,, = s. We have t,, > s since m > ng > mg— s =
max{/ | (s —1,¢) € Exp(M)}. Conversely we have t,, < s since (s,m) € Exp(M),
as required. O

Let R be a graded ring. A right graded R-module M is said to be right gr-
Noetherian, if M satisfies the ascending chain condition for graded submodules of
M. Tt is straightforward to verify that M is right gr-Noetherian if and only if each
graded submodule of M is finitely generated.

Proposition 4.10. The right Z(1)-module E; is right Noetherian.

Proof. Recall that (1) is a graded ring by the total degree, and that E; is a graded
2(I)-module. By [7, Theorem II.3.5], it is enough to prove that E; is right gr-
Noetherian. Let M be a right graded Z(I)-submodule of E;. We will prove that M
is finitely generated.
Let ng be the integer satsfying Lemma 4.9. Set
G :={(ty,0) | { <np and (k,¢) € Exp(M) for some k}.
Then G is a finite set. Fix an operator 6, € M for (t,,¢) € G, and set
G .= {Q(te,g) eM | (tg,ﬁ) € G} .

Then G is also a finite set. We denote by M’ the right 2(I)-module generated by
G and N. Then M’ is finitely generated and M’ C M.

Let (k,m) € Exp(M), then k > t,,. If m < ng, then (t,,,m) € G C Exp(M’)
by the definitions of ¢,, and G. We have (k,m) = (t,, + k — t,,, m) € Exp(M’) by
Lemma 4.7.

If m > ng, then (s,m) € Exp(M’) by Lemma 4.9. It follows from Lemma 4.7
that (k,m) = (s +k —s,m) € Exp(M’). Hence Exp(M') = Exp(M). The assertion
follows from Lemma 4.6. OJ
Corollary 4.11. The right Z(I)-module

(Li/L)™ - 2(1) = (LT 2(1) + L/ L)
1s right Noetherian.
<r—1

Next we study the S-module (Lz-_l/L,-)
Lemma 4.12. The K -vector space

Ly t= P L

m<r—1
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1s a right S-module.
Proof. Suppose that 0 < m <r — 1. Let 0 € Lgm) C (). For f €S,

6£(QS) = 6(QfS) C I.

Thus 6f € 2(I). It follows from Proposition 2.1 that 6f € @, 29(I). The
operator f is divisible by the polynomial p; - - - p; since § € p; ---p; 2™ (S). Thus
each homogeneous component of 6 f is divisible by p; - - - p;. It follows that

0F € @ (291 1 (- p)2(5) = D LO.
=0

Hence L;""!1. S C L7 O
The following holds in general.

Proposition 4.13. As a vector space,

P sor= @ o°s.
laf<r—1 lo<r—1
Define a right S-module ()<~ := @, ,_, 9*S. Then 2(S)<"! is the mod-
ule of differential operators of order less than r» — 1 by Proposition 4.13. By Lemma
4.12, we have the inclusion of right S-modules:

Li<7“—1 g 9(5)<7"—1.

<r—

Lemma 4.14. The right S-module (Li_l/Li) ' is Noetherian.

Proof. Since 2(S)<""! is a finitely generated right S-module, 2(S)<""! is Noether-
ian as a right S-module. Hence the subquotient (Li_l/Li)qfl = (Lf_rl_1 + Li/Li)
of 2(S5)<"~! is Noetherian as a right S-module. O

Lemma 4.15. The right 2(I)-module L;_1/L; is Noetherian.

Proof. By Corollary 4.11, N := (L;_y/L;)”™""" - 2(I) is Noetherian as a right 2(I)-
module. Consider the factor N’ := (L;_1/L;) /N. It is clear that as a right S-module,
N’ is a factor of (L;_1/L;)<"~". Thus N’ is Noetherian as a right S-module as so

certainly as a right Z(I)-module. By [2, Proposition 1.2], L;_1/L; is Noetherian as
a right Z(I)-module. O

Theorem 4.16. The ring 2(S/1) ~ 2(1)/12(S) is Noetherian (i.e., 2(S/I) is
right Noetherian and left Noetherian).

Proof. By Lemma 4.15 and by considering the sequence (4.2), we see that the ring
2(1)/12(9) is right Noetherian. Therefore, by Corollary 3.3, we conclude that the
ring 2(S/1) ~ 2(1)/12(S) is Noetherian. O
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It is known that idealisers in the second Wely algebra may or may not be Noe-
therian ([9, Theorem 2]). However, the ideal I dose not satisfy the hypothesis of [9,
Theorem 2]. The Noetherian property of the idealiser Z([) is still open.

In the rest of this section, we give an example of a family of Noetherian rings
whose graded rings associated to the order filtration are not Noetherian.

By Proposition 2.1, we can decompose Z(I)/I12(S) into the direct sum

2()/19(8) = P (2" (1) 12(9))

m>0

as a left S-module. The order filtration of Z(I)/IZ(S) is the filtration F =
{F}m>o0 defined by
Fn=EP (2“(1)/129(9)).
<m
We denote by S; the K-vector subspace of S spanned by the monomials of degree
J. An element 0 = ) fa0* € 2(S) is of polynomial degree k, if k is the smallest
integer such that f, € @;’;0 S; for all o with nonzero fq.

Example 4.17. Let S = k[z,y| be the polynomial ring, and let I be the ideal gen-
erated by the polynomial Q = py---p, (r > 2) defining a central arrangement.

The graded ring Gr 2(S/1I) associated to the order filtration is a commutative
ring. Let 8 be the image of 0 € 2(S/I) in Gr 2(S/I). We consider the ideal
M = (P& | m > 1) of Gr 2(S/I).

Assume that M 1is finitely generated with generators ny,...,ns. Then there exists
a positive integer m such that

M: <7717...,77€> Q <P151,...,P15;n_1>.

Since P17 € M, we can write

(4.11) PP =Py -0+ 4 P60,

for some 0y,...,0,_1 € D(I).

If 0 € 2(1) with ord(9) < 1, then the polynomial degree of 6 is greater than or
equal to 1 by Proposition 4.1. Since the order of the LHS of (4.11) equals m, there
exists at least one 0; such that the order of 0; is greater than or equal to 1. Thus
the polynomial degree of the RHS of (4.11) is greater than r — 1. However, the
polynomial degree of the LHS of (4.11) is exactly r — 1. This is a contradiction.

Therefore M is not finitely generated, and thus we have proved that Gr 2(S/I) is
not Noetherian.
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