HOKKAIDO UNIVERSITY

Title	オキサニッケラサイクル中間体を経由する炭素－炭素結合形成反応の開発研究：環状ケトンとアルキンの分子内環化反応およびアレナミドへの二酸化炭素固定反応
Author（s）	杉村，康行
Citation	北海道大学．博士（薬科学）甲第11417号
Issue Date	20140325
DOI	10．14943／doctoral． k 11417
Doc URL	http：／hdl．handle．net／2115／55770
Type	theses（doctoral）
File Information	Y asuyuki＿Sugimura．pdf

Instructions for use

博士論文

オキサニッケラサイクル中間体を経由する炭素炭素結合形成反応の開発研究
－環状ケトンとアルキンの分子内環化反応およびアレナミドへの二酸化炭素固定反応

北海道大学大学院生命科学院
生命科学専攻生命医薬科学コース
精密合成化学研究室

杉村 康行

謝辞

本研究を行うにあたり，終始御懇篤なる御指導，御鞭撻を賜りました北海道大学大学院薬学研究院 佐藤美洋教授に衷心より感謝致します。

著者の直接の指導者として，終始有益なる御助言，御討論を賜りました北海道大学大学院薬学研究院 齋藤望准教授に心より感謝致します。

常に討論に参加し，貴重な御助言を頂きました北海道大学大学院薬学研究院 大西英博博士に深く感謝致します。

終始有益なる御助言を頂きました北海道大学大学院薬学研究院 美多剛博士に深く感謝致します。

本論文を執筆するにあたり，丁寧な御助言を頂きました北海道大学大学院薬学研究院 周東智教授，阿部洋准教授に厚く御礼申し上げます。

貴重な御意見をお聞かせ下さると共に，様々な形で御支援，御協力下さいました精密合成化学研究室の皆様ならびに卒業生の皆様に心より御礼申し上げます。

各種機器スペクトルデータを測定して下さいました北海道大学創成研究機構共用機器管理セン ター委託分析部門（旧北海道大学機器分析センター）のオペレーターの皆様に深く感謝致します。著者を支え，励ましてくれた友人達に感謝致します。

末筆になりましたが，物心両面にわたり常に著者を支え，励ましてくださいました家族に心より感謝いたします。

略語表

Ac	acetyl
acac	：acetylacetonate
Ar	：aryl
Bn	benzyl
Boc	tert－butoxycarbonyl
bpy	：2，2＇－bipyridyl
Bu	：butyl
cat．	：catalytic
cdt	：1，5，9－cyclododecatriene
cod	：1，5－cyclooctadiene
Cp	cyclopentadienyl
Cy	：cyclohexyl
Cyp	：cyclopentyl
DBU	：1，8－diazabicyo［5．4．0］undec－7－ene
DCPE	：1，2－bis（dicyclohexylphosphino）ethane
DIAD	：diisopropyl azodicarboxylate
DIBAL－H	：diisobutylaluminum hydride
DMF	： N, N－dimethylformamide
equiv	：equivalent（s）
Et	：ethyl
EWG	：electron－withdrawing group
Fc	：ferrocenyl
h	：hour（s）
Hex	：hexane
HRMS	：high resolution mass spectroscopy
i	：iso
L	：ligand
LRMS	：low resolution mass spectroscopy
M	：metal
Me	：methyl
Mes	：mesityl
Ms	：methanesulfonyl
MS	：molecular sieves
NHC	：N－heterocyclic carbene

NMO	$: N$-Methylmorpholine N-oxide
NMR	$:$ nuclear magnetic resonance analysis
NOE	$:$ nuclear Overhauser effect
NOESY	$:$ nuclear Overhauser and exchange spectroscopy
p	$:$ para
PCC	$:$ pyridinium chlorochromate
Ph	$:$ phenyl
Pr	$:$ propyl
quant	$:$ quantitative yield
rec.	$:$ recovery
t	$:$ tertiary
SM	$:$ starting material
TBS	$:$ tert-butyldimethylsilyl
TBDPS	$:$ tert-butyldiphenylsilyl
THF	$:$ tetrahydrofuran
THP	$:$ tetrahydropyranyl
TMEDA	$: N, N, N^{\prime}, N^{\prime}$-tetramethylethylenediamine
TMS	$:$ trimethylsilyl
TPAP	$:$ Tetrapropylammonium perruthenate
Ts	$: p$-toluenesulfonyl

目次

序論 1
本論
第一章 0 価ニッケル触媒を用いた環状ケトンとアルキンの分子内環化反応序節5
第一節 環化反応の条件検討 11
第二節 置換基効果の検討 13
第三節 多様な骨格形成への応用 16
結語 21
第二章 0 価ニッケル錯体を用いたアレナミドへの二酸化炭素固定反応
序節 22
第一節 二酸化炭素固定反応の条件検討 27
第二節 置換基効果の検討 29
第三節 位置および立体選択性の考察 34
結語 36
総括 37
実験の部 38
参考文献 78

序論

私たちは常日頃より農薬，医薬品，香料，染料など多くの有機化合物の恩恵に預かり生活している。これら有機化合物を扱う有機化学の分野の中で，有機合成化学は効率よく目的の有機化合物を合成するための反応や技術を開発する研究分野であり，その発展により現在では複雑な構造をもつ化合物も合成可能となつてきている。有機合成化学における最 も重要な課題の一つに，いかにして目的の炭素骨格を効率的に構築するかという点があり，有機合成化学が進歩した今なお多くの化学者が頭を悩ませている。さらに今日，有機合成化学者に要求される標的化合物の構造の複雑さは増していることから，立体選択性や位置選択性をより精密に制御できる新規反応の開発が必要である。この要求に対し，近年多く の有機化学者が遷移金属錯体を用いた触媒反応に注目し研究を行っている。遷移金属錯体 はその酸化状態や配位子の選択により多様な反応性を示す。このため個々の目的物に合わ せた反応条件の微調整が可能である。遷移金属錯体を用いた反応の研究の結果，クロスカ ップリング反応やメタセシス反応など効率的な合成法が数多く開発され，現在これらの反応は機能性材料の開発や，高度に官能基化された天然物合成の鍵工程にも利用されている。

遷移金属錯体を用いた反応の大きな特徴として，多重結合間で容易に炭素－炭素結合を形成させ得ることが挙げられる。特に，炭素－炭素多重結合が低原子価の遷移金属錯体に酸化的環化付加して生成する「メタラサイクル」は，図1に示すように多様な反応性を示し，様々な化合物へ変換できることから，有機合成化学における有用な中間体である。

Figure 1

2

6

5

例えば，メタラサイクル中間体1から還元的脱離が進行すれば 4 員環化合物 $\mathbf{2}$ が得られ る。一方，一酸化炭素が挿入すれば 5 員環ケトン 3 が得られ，硫黄やセレンと反応させる とチオフェンやセレノフェンといった複素環 4 が得られる。また，さらなる多重結合の挿入が進行すれば 6 員環化合物 $\mathbf{5}$ が得られ，求核剤および求電子剤と反応させることで開環体 6 の合成も可能である ${ }^{1)}$ 。

一方，カルボニル基もヘテロ元素を含む多重結合であり，反応例は少ないものの，遷移金属錯体存在下で炭素－炭素多重結合と反応し，オキサメタラサイクル中間体7を与える （図 2）。この中間体からも，一酸化炭素挿入反応が進行し，ラクトン $\mathbf{8}$ が得られる反応 や，さらなる多重結合の挿入により複素環 9 が得られる反応などが報告されている。

Figure 2

例えば1998年，村井らはアルキニルアルデヒド 11 に対し，一酸化炭素雰囲気下 $\mathrm{Ru}_{3}(\mathrm{CO})_{12}$ 錯体を反応させることで，オキサルテナサイクル $\mathbf{1 2}$ を経由した Pauson－Khand型反応を報告している（スキーム 1）${ }^{2)}$ 。

Shceme 1

11

一方，2009 年に松原，倉橋らは，エノンとアルキンの［4＋2］環化付加反応を報告してい る（スキーム 2）3）。本反応はニッケル錯体に対しエノン $\mathbf{1 4}$ が酸化的環化付加したオキサ ニッケラサイクル中間体 17 を経由して進行すると考えられている。

Scheme 2

16 99\％

17

また，Croweらはオキサチタナサイクル $\mathbf{1 9}$ の開環を経由した 5 員環化合物 $\mathbf{2 0}$ の合成 を報告している（スキーム 3）4）。

Shceme 3

以上の反応以外にもメタラサイクル中間体を経由する反応は多岐にわたる ${ }^{1)}$ 。また，当研究室でも以前から 0 価ニッケル錯体を用いた反応を開発してきた（詳細については後述 する）。著者は新たな炭素－炭素結合形成反応の開発を目指し 0 価ニッケル錯体を用いた反応の検討を行った。その結果，オキサニッケラサイクル中間体の開環を経由する 2 つの新規反応の開発に成功したので以下順に記述する。

まず，第一章ではオキサニッケラサイクル 22 を経由する， 0 価ニッケル触媒によるアル キンと環状ケトンとの分子内環化反応の開発の経緯について述べる（スキーム 4，式1）。

第二章では，ニッケララクトン 25 および 27 を経由した， 0 価ニッケル錯体によるアレナ ミド $\mathbf{2 4}$ への位置選択的二酸化炭素固定反応について記述する（式 2）。

Shceme 4

第一章

0 価ニッケル触媒を用いた環状ケトンとアルキンの分子内環化反応

序節

当研究室ではこれまで，ニッケル触媒を用いた 1，3－ジエンと多重結合としてアルデヒド の反応を検討してきた（スキーム 5）5）。例えば，0価ニッケル触媒存在下，基質29とト リエチルシランを反応させると E 配置の内部オレフィンをもつ環化体 $\mathbf{3 3}$ が得られる （Type I）。本反応ではまずニッケル錯体とシランから生成した 2 価ヒドリドニッケル錯体 $\mathbf{3 0}$ がジエンと反応し，π－アリルニッケル中間体 $\mathbf{3 1}$ が生成する。 $\mathbf{3 1}$ の π－アリルニッケルと アルデヒドが反応し $\mathbf{3 2}$ となり，続く還元的脱離が進行して E オレフィンが得られる。一方，シランの代わりに ${ }^{i} \mathrm{Bu}_{2} \mathrm{Al}(\mathrm{acac})$ 存在下反応を行うと，上記の反応とは異なり末端オレフ インをもつ環化体 $\mathbf{3 6}$ が得られる（Type II）。本反応ではまず 0 価ニッケル錯体に基質 29 が酸化的環化付加によって， 5 員環オキサニッケラサイクル $\mathbf{3 4}$ が生成する。その後 $\mathbf{3 4}$ と アルミニウム試薬とのトランスメタル化及び β 水素脱離を経て $\mathbf{3 5}$ が生成する。 $\mathbf{3 5}$ からの還元的脱離と後処理による加水分解により末端アルケンをもつ閉環体 $\mathbf{3 6}$ が生成したと考 えられる。この 2 つの反応はニッケルホスフィン錯体存在下ほぼ同様の条件で進行するが，用いる還元剤の違いのみで異なった反応経路で進行する興味深い反応である。

第一章

さらに本反応は分子間反応へと展開されている（スキーム 6）。ホスフィン配位子存在下 で 37 と 38 をニッケル錯体と反応させると分子内反応の時と同様に π－アリル中間体を経由してカップリング体 41 が得られるのに対し，配位子に含窒素ヘテロ環カルベン（NHC） を用いた場合には高立体選択的に Z 配置のオレフィンを持つカップリング体 $\mathbf{4 5}$ が得られ る。後者の反応の機構は以下のように考えられる。まずニッケル NHC 錯体がアルデヒド 37 及びジエン 38 と反応し 5 員環オキサニッケラサイクル 42 が生成する。この 42 は 7員環オキサニッケラサイクル 43 と平衡状態にあり，この 43 とシランとの σ 結合メタセシ スが進行し Z 配置のオレフィンを持つヒドリドニッケル中間体 44 となる。最後に還元的脱離により 45 が立体選択的に得られると考えられる。この 2 つの反応はニッケルの配位子の違いのみによって異なる生成物が得られる点で興味深い ${ }^{6,7)}$ 。

一方，アルデヒドと1，3－ジエン以外の多重結合を用いた反応として，Montgomery らによ るニッケル触媒を用いたアルデヒドとアルキンとの分子内還元的カップリング反応の報告 がある ${ }^{8)}$ 。この反応の反応機構は以下のように考えられる。まず基質 46 とニッケル錯体が反応し，5員環オキサニッケラサイクル 47 を形成した後，ジエチル亜鉛とのトランスメタ ル化，続く β 水素脱離によってヒドリドニッケル中間体 49 が生成する。 49 は還元的脱離 によって環化体 50 となり，後処理による加水分解とベンゾイル化によって生成物のエス テル 51 が得られる（スキーム 7）。

Scheme 7

また，Jamison らはトランスメタル化剤としてトリエチルボランを用いたアルデヒドとア ルキンの分子間反応を報告している（スキーム 8）${ }^{9)}$ 。反応機構は分子内環化反応と同様に オキサニッケラサイクル中間体 $\mathbf{5 4}$ を経由し，トリエチルボランとの σ 結合メタセシスと β水素脱離によりヒドリドニッケル中間体 $\mathbf{5 6}$ が生成する。 56 からの還元的脱離と後処理に よる加水分解によりアリルアルコール $\mathbf{5 8}$ が得られる。

Scheme 8

さらに，Montgomery らは本アルキンとアルデヒドとの反応にトリエチルシランを用いる ことで，三成分連結反応へと展開している（スキーム 9）${ }^{10)}$ 。本反応はオキサニッケラサ イクル 61 とシランとの σ 結合メタセシスを経由して進行し，カップリング体 $\mathbf{6 0}$ が生成す る。

Scheme 9

一方，ケトンとアルキンとのカップリング反応の例は少なく，例えば Jamison らによっ て活性の高い1，3－エニン ${ }^{11)}$ を用いた分子間カップリングが報告されている。この反応では アルデヒドを用いた時と同様に，まずニッケル錯体とケトン 62 及び 1，3－エニン 63 からオ キサニッケラサイクル中間体 65 が生成する。 65 は π－アリル錯体 66 との間に平衡があり，反応性の乏しいケトンとも安定なニッケラサイクル中間体を形成するため高い反応性を示 すものと考えられる（スキーム 10）${ }^{12)}$ 。

Scheme 10

また村上らはシクロブタノン 67 を用いた環拡大反応を報告している（スキーム 11$)^{13)}$ 。本反応の反応機構は以下のように考えられている。まず 0 価ニッケル錯体とシクロブタノ ン 67 及びアルキン 68 からオキサニッケラサイクル中間体 69 が形成する。続いて β 炭素脱離により 7 員環ニッケラサイクル中間体 70 となり，還元的脱離を経てシクロヘキセノ ン誘導体 71 が得られる。本反応に用いられるケトンはひずみによる高い反応性をもつシ

クロブタノン誘導体に限られる。

Scheme 11

以上のようにケトンとアルキンの反応は反応性の高い基質を用いた例に限られており，単純アルキンと単純ケトンのカップリング反応の例はほとんど無い ${ }^{* 1}$ 。筆者は，ケトンと アルキンを分子内に配置することで単純ケトンも 0 価ニッケル存在下，アルキンと反応す るのではないかと考えた。さらに，スキーム 12 に示すように分子内にアルキン側鎖をも つ環状ケトン 72 をシラン存在下で 0 価ニッケル錯体と反応させたならば，オキサニッケ ラサイクル中間体 73 とシランとの σ 結合メタセシスを経由して，橋頭位に四置換炭素を もつ多環式化合物 $\mathbf{7 4}$ が合成できる。そこでケトンとアルキンとの本環化反応が多環式骨格構築の新たな方法となることを期待し検討を行うことにした。

74

[^0]第一章

Scheme 13

第一節 環化反応の条件検討
α 位に 3－ペンチニル基をもつシクロペンタノン誘導体 $80^{15)}$ を基質とし，まず PPh_{3} を配位子として環化反応を検討した（スキーム 14）。当研究室で開発されたジエンとアルデヒド の還元的縮合反応の条件に倣い ${ }^{5,6}$ ， $10 \mathrm{~mol} \%$ の $\mathrm{Ni}(\mathrm{cod})_{2}$ 及び $20 \mathrm{~mol} \%$ の PPh_{3} を用いて調製 した $\mathrm{Ni}(0)-\mathrm{PPh}_{3}$ 錯体に， 5 当量の $\mathrm{Et}_{3} \mathrm{SiH}$ 及び基質 $\mathbf{8 0}$ を加え，THF 中室温で 72 時間撹拌 した。その結果，ビシクロ［3．3．0］オクタン骨格をもつ環化体 81 が 44\％と中程度の収率な がら単一の立体異性体として生成した。この環化体 81 の立体化学は以下のように決定し た。オレフィンの幾何異性はメチル基と環上の水素間に NOESY 相関が観測されたことか ら E 体であると決定した。また核間の立体化学については 81 のオレフィンをオゾン分解 により切断した後，トリエチルシリル基をアセトニトリル中，フッ化水素により脱保護す ることで文献既知化合物 $\mathbf{8 2}{ }^{16)}$ に誘導し，${ }^{1} \mathrm{H}$ 及び ${ }^{13} \mathrm{C}$ NMR スペクトルを比較し，$c i s$ であ ると決定した。

Scheme 14

次に配位子の効果について検討を行った（表 1）。まず PBu_{3} を用い同様の条件下 $\mathbf{8 0}$ を反応させたところ，反応時間は 48 時間に短縮し，環化体 $\mathbf{8 1}$ の収率も 72% に向上した（run 1）。本結果より電子豊富な配位子が本反応に良好な結果を与えることが示唆された。そこ で電子供与能が高いことが知られている NHC 配位子を用いて検討を続けることとした。 $10 \mathrm{~mol} \%$ の $\mathrm{Ni}(\mathrm{cod})_{2}$ ， $10 \mathrm{~mol} \%$ の $\mathrm{IMes} \cdot \mathrm{HCl}$ 及び $12 \mathrm{~mol} \%$ の ${ }^{t} \mathrm{BuOK}$ より調製した $\mathrm{Ni}(0)-\mathrm{IMes}$錯体に， 5 等量の $\mathrm{Et}_{3} \mathrm{SiH}$ 及び基質 $\mathbf{8 0}$ を加え，THF 中室温で 8 時間撹拌した。その結果， ホスフィン配位子を用いたときと同様に環化体 81 が単一の立体異性体として得られ収率 は 84% に向上した（run 2）。予想通り本環化反応において NHC 配位子が有効であること がわかったため NHC 配位子の検討を続けることとした。SIMes $\cdot \mathrm{HBF}_{4}, ~ \mathrm{IPr} \cdot \mathrm{HCl}, ~ \mathrm{SIPr} \cdot \mathrm{HCl}$ を用い，先ほどと同様の条件下反応を行ったところ，いずれも良好な結果が得られた（runs 3－5）。イミダゾール環窒素上にかさ高い置換基を持つ $\mathrm{IPr} \cdot \mathrm{HCl}$ や $\mathrm{SIPr} \cdot \mathrm{HCl}$ が本反応に効果

的であり（runs 4 and 5），特に IPr を配位子として用いた場合，環化体 $\mathbf{8 1}$ が定量的に得ら れた（run 4）。

Table 1 Optimization of reaction conditions of intramolecular cycloaddition of alkynylcyclopentane $\mathbf{8 0}$

$$
\begin{aligned}
& \text { (} \\
& \text { *NHC ligands were prepared in situ } \\
& \text { from the corresponding imidazolium } \\
& \text { salts (} 10 \mathrm{~mol} \% \text {) and }{ }^{\text {'BuOK (}} 12 \mathrm{~mol} \% \text {). }
\end{aligned}
$$

$83 \mathrm{IMes} \cdot \mathrm{HCl}$

84 SIMes $\cdot \mathrm{HBF}_{4}$

$85 \mathrm{IPr} \cdot \mathrm{HCl}$

$86 \mathrm{IPr} \cdot \mathrm{HCl}$

本反応の反応機構はアルデヒドを用いたときと同様，以下のように考えられる（スキー ム 15）${ }^{8)}$ 。まずニッケル錯体が基質 $\mathbf{8 0}$ に配位後，酸化的環化付加しオキサニッケラサイ クル中間体 $\mathbf{8 8}$ となる。次にシランとの σ 結合メタセシスによりヒドリドニッケル中間体 $\mathbf{9 0}$ となり続く還元的脱離により生成物 81 を得るとともにニッケル錯体が再生する＊1。

Scheme 15

80

87
87

Ni（0）－L

81

90

[^1]
第二節 置換基効果の検討

次にアルキン上の置換基効果の検討を行った（表 2）。末端アルキン 91 ${ }^{* 1}$ や，アルキン上にフェニル基やシロキシメチル基を持つ基質 92 及び 93 を用いると反応は速やかに進行し，目的の環化体 96－98 が立体選択的かつ高収率で得られた（runs 1－3）。一方，エステ ル基やシリル基を有する基質 94 及び 95 では反応は遅く，目的の環化体 99 及び 100 は低収率でしか得られなかった（runs 4 and 5）。最近 Jamison 及び Houk はニッケル触媒による アルデヒドとアルキンの還元的カップリングにおいて，電子求引性アルキンを用いるとニ ッケル錯体がアルキンに強固に配位し，オキサニッケラサイクル中間体が生成しにくくな ることを報告している ${ }^{12)}$ 。筆者の反応においても同様にオキサニッケラサイクル中間体が生成しにくいため，基質 94 を用いると収率が低下したものと考えられる。基質 95 につい ては，アルキンとアルデヒドの還元的カップリング反応においてアルキン上にかさ高い ${ }^{t} \mathrm{Bu}$ 基がある場合に反応が進行しにくいため ${ }^{12)}$ ，アルキン上に TMS 基が存在すると立体障害により反応の進行が妨げられたと考えられる。

Table 2 Scope of alkyne structure

	$\mathrm{Ni}(\mathrm{cod})_{2}(10 \mathrm{~mol} \%)$ IPr． HCl （10 mol\％） ${ }^{t} \mathrm{BuOK}(12 \mathrm{~mol} \%)$ $\mathrm{Et}_{3} \mathrm{SiH}$（5 equiv） THF（ 0.1 M ），rt			
run	substrate	product	time（h）	yield（\％）
1	91 （ $\mathrm{R}=\mathrm{H}$ ）	96	0.5	83
2	92 （ $\mathrm{R}=\mathrm{CH}_{2} \mathrm{OTBS}$ ）	97	0.5	99
3	93 （ $\mathrm{R}=\mathrm{Ph}$ ）	98	0.5	97
4	94 （ $\mathrm{R}=\mathrm{COOM}$ ）	99	48	26
5	95 （ $\mathrm{R}=\mathrm{TMS}$ ）	100	40	26

次に，核間に二つの四置換炭素を有する環化体を合成すべく α 位にメチル基を有する基質 $\mathbf{1 0 1}$ を用いたところ，環化体 $\mathbf{1 0 2}$ が定量的に得られることが分かった（スキーム 16 ，式 3）。またシロキシメチル基を有する基質 $\mathbf{1 0 3}$ を用いても，やはり目的とする環化体 $\mathbf{1 0 4}$ が高収率で生成した（式 4）。以上の結果よりケトン α 位に置換基が導入された場合におい ても本反応は問題なく進行することがわかった。

Scheme 16

（3）
（4）

以上筆者は 0 価ニッケル錯体存在下，ケトンとアルキンの還元的カップリング反応を検討した。その結果 NHC 配位子を用いることでアルキン上の置換基による制約はあるもの の，ビシクロ［3．3．0］骨格を有する化合物が穏和な条件下で合成できることが明らかとなっ た。

[^2]Figure 3

97

98

[^3]

本節で用いた環化反応の基質のうち基質 91 ${ }^{15)}$ ，93－95 ${ }^{177}$ は文献記載の方法に従い合成し，92 については以下のように合成した（スキーム 18）。文献既知化合物 $\mathbf{1 0 5}^{18}$ を Corey－Fuchs 法によりリチウムアセチリドへ と変換した後，後処理にパラホルムアルデヒドを用い 106 へと誘導化した。続いてアセタールを脱保護後，水酸基を TBS 保護することでシクロペンタノン誘導体 92 を得た。

基質 $\mathbf{1 0 1}$ は以下のように合成した（スキーム 19）。文献既知化合物 $\mathbf{1 0 7} \mathbf{7}^{\mathbf{1 9})}$ のアルコールを酸化し， Corey－Fuchs 法によりリチウムアセチリドへと変換した後，後処理にヨウ化メチルを用い 109 へと誘導化し た。109のアセタールをトシル酸により脱保護することでシクロペンタノン誘導体 101 を得た。

Scheme 19

基質 $\mathbf{1 0 3}$ は以下のように合成した（スキーム 20）。文献既知のアルコール $\mathbf{1 1 0}^{\mathbf{2 0} \text { ）を TBS 保護した後，DIBAL }}$還元によりアルデヒド 111 とした。アルデヒド 111 を Horner－Wadsworth－Emmons 反応を用いて増炭後，オ レフィンを接触水素化し，再び DIBAL 還元によりアルデヒド 112 へと変換した。続いて Corey－Fuchs 法に よりリチウムアセチリドへと変換した後，後処理にヨウ化メチルを用い 113 へと誘導化した。113 のアセタ ールをトシル酸により脱保護することでシクロペンタノン誘導体 103 を得た。

第三節 多様な骨格形成への応用

様々な骨格を有する環化体を合成すべく検討した（表 3）。まずアルキン側鎖の長さを 1 炭素伸張したシクロペンタノン 114 を基質とし反応を行うこととした。最適条件下で基質 114 を THF 中室温で反応させたところ，反応は 30 分で終了し，ヒドリンダン誘導体 $\mathbf{1 1 8}^{* 1}$ が得ら れた。この結果より本反応が 6 員環形成にも利用可能であることがわかった（run 1）。一方，シク ロヘキサノン誘導体 $\mathbf{1 1 5 を}$ を用いても環化反応は円滑に進行しヒドリンダン誘導体 $\mathbf{1 1 9}^{*}{ }^{*}{ }^{1}$ が定量的に得られた（run 2）。さらに基質 $\mathbf{1 1 6}$ 及び $\mathbf{1 1 7} \mathbf{7}^{* 2}$ を用い反応を行うと，対応するデカリン誘導体 $\mathbf{1 2 0}^{* 1}$及び $\mathbf{1 2 1}{ }^{* 3}$ がともに良好な収率で得られた（runs 3 and 4）。

Table 3 Synthesis of hydrindan and decalin derivatives ${ }^{a}$
run
a Reaction procedure：A solution of substrates in THF was added to a solution of $\mathrm{Ni}(\mathrm{cod})_{2}(10 \mathrm{~mol} \%)$ ， $\mathrm{IPr} \cdot \mathrm{HCl}(10 \mathrm{~mol} \%)$ ，${ }^{\text {tBuOK（ }} 12 \mathrm{~mol} \%$ ）and $\mathrm{Et}_{3} \mathrm{SiH}$（5 equiv）in THF．

また，芳香族ケトンも本反応に適用可能であり，α テトラロン誘導体 $\mathbf{1 2 2}^{* 4}$ 及び $\mathbf{1 2 3}^{* 4}$ を基質と して用いた場合にも，目的とする三環式化合物 $\mathbf{1 2 6}{ }^{* 5}$ 及び $\mathbf{1 2 7} 7^{* 3}$ がいずれも良好な収率で得られた （表 4，runs 1 and 2）。さらに環状アセタール構造を持つ基質 $\mathbf{1 2 4}^{* 6}$ を用いた場合も，目的とする環化体 $\mathbf{1 2 8}$ が定量的に得られた（run 3）。また，ケトンの β 位にアルキン側鎖を持つ基質 $\mathbf{1 2 5}^{* 7}$ を用 いても反応は問題なく進行し，ビシクロ［3．3．1］ノナン骨格をもつ 129が 99\％の収率で生成した（run 4）。

Table 4 Reactions of various alkynylcyclohexanones ${ }^{\text {a }}$

run	substrate	product	time（h）	yield（\％）

1

126
122
2

123

127

3

124

0.5

99

4

125

129

[^4]次にヘテロ環の構築を目指し，側鎖にヘテロ原子を導入した基質を用いて反応を行うこととした （表 5）。まず側鎖に酸素原子をもつ基質 $\mathbf{1 3 0}{ }^{* 1}$ を用いて反応を行ったところ，フラン骨格を有する環化体 $\mathbf{1 3 4}$ が高収率で得られた（run 1）。基質 $\mathbf{1 3 1}^{*}{ }^{*}$ を用い同様に反応を行った場合も，オクタヒ ドロベンゾフラン誘導体 $\mathbf{1 3 5}$ が高収率で得られることがわかった（run 2）。また，側鎖にトシルア ミドを導入した基質 $\mathbf{1 3 2}^{* 1}$ を用い同様の条件下反応を行ったところ，対応する二環式化合物 $\mathbf{1 3 6}$ が高収率で得られた（run 3）。さらに，基質 $\mathbf{1 3 3}$ を用いたところインドリン骨格をもつ環化体 $\mathbf{1 3 7}$ が高収率で得られることがわかった（run 4）。

Table 5 Reactions of various alkenylcyclohexanones with heteroatom ${ }^{\text {a }}$
run
${ }^{\text {a }}$ Reaction procedure：A solution of substrates in THF was added to a solution of $\mathrm{Ni}(\mathrm{cod})_{2}$（ $10 \mathrm{~mol} \%$ ）， $\mathrm{IPr} \cdot \mathrm{HCl}$（ $10 \mathrm{~mol} \%$ ），${ }^{\text {t BuOK（ } 12 \mathrm{~mol} \% \text { ）and }}$ $\mathrm{Et}_{3} \mathrm{SiH}$（5 equiv）in THF．

以上，筆者は様々な炭化水素骨格やへテロ環骨格の合成を行い，本環化反応が広く二環式化合物 の合成に適用可能であることを明らかとした。
${ }^{* 1}$ 環化体 118－120 の核間の立体化学は以下のようにして決定した（スキーム 21）。環化体 118－120をオゾン分解によりケ トンとした後，トリエチルシリル基をアセトニトリル中，フッ化水素により脱保護し，文献既知のヒドロキシケトン 138－140 ${ }^{19}$ へと誘導化し，${ }^{1} \mathrm{H}$ 及び ${ }^{13} \mathrm{CNMR}$ を比較することで cis であると決定した。その他の環化体については立体構造 の決定は行っていないが，環化体 118－120 同様 cis であると考えている。

$$
\begin{gathered}
\text { Scheme } 21
\end{gathered}
$$

${ }^{* 2}$ 表 3 に用いた基質のうち $\mathbf{1 1 4 - 1 1 6 ~} \mathbf{6}^{21)}$ は文献記載の方法に従い合成した。基質 $\mathbf{1 1 7}$ は2－オキソシクロヘキサ ンカルボン酸エチルエステル 141 と 6－ヨード－2－ヘキシンをカップリングさせて合成した（スキーム 22）。

Scheme 22

${ }^{* 3}$ 環化体 121 の IRスペクトルにおいてカルボニル伸縮のピークが二本観測さており，また ${ }^{1} \mathrm{H}$ NMRスペクト ルを室温で測定を行うとピークがブロードニングしていた。また，昇温測定することでブロードニングが解消された。この結果から化合物 $\mathbf{1 2 1}$ のエステル基の自由回転が遅いことがわかり，立体障害により環化体 121 の収率が若干低下したと考えられる。また環化体 127 についても同様の理由で収率が低下したと考えている。 ${ }^{* 4}$ 表 4 で用いた基質は以下のように合成した。基質 123 は β ケトエステル $142^{22)}$ と 6 －ヨード－2－ヘキシン をカップリングさせて合成し，また，基質123をDMF中，ヨウ化リチウムにより脱炭酸することで基質122 を合成した（スキーム 23）。

＊5環化体126はシリカゲルカラム中に容易に分解されるため単離が困難であった。このため 1，1，2，2－テトラ クロロエタンを内部標準物質として用い，積分値の比較により NMR から収率を計算した。
＊6基質 124 はアセトナイド $143{ }^{23)}$ のケトンをシクロヘキシルアミンによりイミン 144 とした後，リチウムジ イソプロピルアミド及び 6－ヨード－2－ヘキシンを用い，リチオエナミンをアルキル化することで合成した（ス キーム 24）。

Scheme 24

＊7基質125はDBUを用いマロン酸エステル $\mathbf{1 4 5} \mathbf{5}^{24)}$ とシクロヘキセノン $\mathbf{1 4 6}$ との Michael付加により合成し た（スキーム 25）。

＊1 表 5 に用いた基質 $\mathbf{1 3 3}^{25}$ は文献記載の方法に従い合成した。その他の基質については以下の方法により合成した。基質 130 の合成はまずアルキン 147 にシクロペンタノール 148 を求核付加させた後，THPを脱保護し，アルコール 149 を得た。得られたアルコールを PCC 酸化することで基質 130 を合成した（スキーム 26）。基質 131 はシクロヘキセンオキシド 150 と 2 －ブチン－1－オールを塩化第二鉄触媒存在下求核付加させた後，PCC により酸化することで合成した。基質 132 はトシルアミド $152^{26)}$ とシクロペンタノール 148 を光延反応によりカップリングさせた後，THP を脱保護しアルコール体 153 とした。得られたアルコールを PCC酸化することで基質 132 を合成した。

Scheme 26

この他にもアルキン側鎖中にエステル構造を有する化合物 154 及び 155 を合成し同様の条件下検討を行 ったがそれぞれ 70% 及び 78% の原料を回収するのみであった（図 4）。プロパルギルエステルの活性化は Pd触媒による報告例が知られているため ${ }^{27}$ ，側鎖がニッケル触媒により切断されるとともにニッケルが失活し ている可能性や，エステル基の平面性によって側鎖の自由度が低く，アルキンがケトン部位に近付きにくく なっている可能性が考えられる。

Figure 4

SM rec．70\％

SM rec．78\％

結語

以上第一章をまとめると，著者はシラン存在下 0 価ニッケル触媒によるアルキンと環状 ケトンとの分子内環化反応の開発を目指し検討した。その結果，本反応において電子豊富 な配位子である NHC が有効な配位子であることを見いだし，ヒドリンダン骨格やデカリ ン骨格を始めとする様々な縮合多環性骨格が立体選択的かつ高収率で構築できることが明 らかになった。

本環化反応は温和な条件下進行し，環サイズやへテロ原子による影響を受けにくいこと から複雑な二環式化合物を合成するための新たな方法になり得ると期待される。

第二章

0 価ニッケル錯体を用いたアレナミドへの二酸化炭素固定反応

序節

二酸化炭素は地球上に膨大に存在し，安価で毒性が低いことから有機合成化学において魅力的な 1 炭素源と考えられる。しかしながら比較的反応性に乏しく，その利用は限られ ている。1975 年に Aresta らは，炭素－炭素多重結合に対して高い反応性を示す低原子価ニ ッケルが，炭素－酸素二重結合を有する二酸化炭素とも容易に反応し，二酸化炭素－ニッケ ル錯体 $\mathbf{1 5 8}$ が生成することを見出した（スキーム 27）${ }^{29)}$ 。

Scheme 27

その後，ニッケル錯体を用いた二酸化炭素固定反応について様々な検討がなされてきた。 1982年，Hoberg らは 0 価ニッケル錯体にアルキンと二酸化炭素が酸化的環化付加し，ニ ッケララクトン 160 が生成することを初めて報告している。ニッケララクトン 160 の加水分解によりチグリン酸（161）が得られる（スキーム 28）${ }^{30)}$ 。

Scheme 28

その後，アルケン $162^{31)}$ ， 1,3 －ジエン $165^{32)}$ ，アレン $169^{33)}$ が同様に二酸化炭素及び 0価ニッケル触媒と反応し，ニッケラサイクル 163，166並びに170を生成することが報告 されている。これらの中間体からも対応するカルボン酸 164，ソルビン酸（168）又はメタ クリル酸メチル（171）への変換が可能である（スキーム 29）。以上のようにニッケララク トンは加水分解によって容易にカルボン酸へと変換できることから，有機合成において

様々なカルボン酸誘導体合成の有用な中間体と考えることができる。

Scheme 29

1，3－Diene（1982）

Allene（1984）

一方，津田らはジイン 172 を基質とした触媒的二酸化炭素固定反応を報告している。こ の反応ではまずジイン 172 の片方のアルキンと二酸化炭素がニッケル触媒に酸化的環化付加し，ニッケララクトン中間体 $\mathbf{1 7 3}$ が生成する。続いてもう片方のアルキンが挿入し 7員環ニッケラサイクル $\mathbf{1 7 4}$ となった後，還元的脱離によりピロン誘導体 $\mathbf{1 7 5}$ が得られると ともにニッケル触媒が再生すると考えられる（スキーム 30）${ }^{34)}$ 。

Shceme 30

また 2004 年に，森らは，トリメチルシリルアレン 176 を基質とした位置選択的な二酸化炭素固定反応を報告した（スキーム 31，式 5）${ }^{35)}$ 。さらに，トランスメタル化剤として ジメチル亜鉛存在下で本反応を行った場合，二酸化炭素が 2 分子取り込まれた，ジエステ ル 178 が得られる（式 6）${ }^{36)}$ 。

ところで，アレンに窒素原子が直結した構造を持つアレナミド 179 は，窒素原子上の非共有電子対を二重結合に非局在化できることから，分極したアレンとしてその反応性に興味が持たれる化合物であり，近年，有機合成への利用が盛んに研究されている（図 5）${ }^{37}$ ）。

2002年に Hsung らは，アレナミド $\mathbf{1 8 1}$ と Oxone ${ }^{\circledR}$ の反応を報告している。この反応では，窒素が結合した二重結合へのエポキシ化が進行し，エポキシド $\mathbf{1 8 2}$ の開環と，分子内 1，4付加反応により，8員環化合物 $\mathbf{1 8 4}$ が得られる（スキーム 32，式 7）${ }^{38) ~ 。 ~}$

一方，アレナミド 185 を用いた分子内 Deals－Alder 反応では，アレナミドの末端側二重結合が選択的に反応し，対応する三環式化合物 $\mathbf{1 8 6}$ を高い収率で与える（式 8）${ }^{39)}$ 。

Scheme 32

（8）

一方，遷移金属錯体を用いたアレナミドの変換反応は少なく，Hsung らによるモリブデ ン錯体を用いたアレナミド $\mathbf{1 8 7}$ への Pauson－Khand 型反応や（スキーム 33，式 9）${ }^{40}$ ），Kriche らによるルテニウム触媒を用いたアレナミド $\mathbf{1 8 9}$ へのアルデヒド 59 の付加反応（式 10） ${ }^{41)}$ など，数例が報告されているのみである。従って，アレナミドを基質とした遷移金属錯体との反応について，さらなる検討を加えることにより，新しい変換反応を開発できるこ とが期待される。

Scheme 33

188 59\％

このような背景から著者はアレナミドの興味深い電子的性質に着目し，ニッケル錯体を用いたアレナミドへの二酸化炭素固定化反応について検討することにした（スキーム 34）。 すなわち，二酸化炭素雰囲気下，0価ニッケル錯体とアレナミド 179 との反応が進行する

ならば，負の部分電荷を持つアレナミドの sp 炭素が二酸化炭素の sp 炭素原子と新たな炭素－炭素結合を形成するように酸化的環化付加が進行し，ニッケララクトン 191 または 193 のいずれかが形成されると予想される。続いて酸性条件下ニッケララクトンを切断するこ とで，対応する β アミノ酸誘導体 192 もしくは 194 が合成できるのではないかと考え，研究に着手した。

第一節 二酸化炭素固定反応の条件検討

まず，森らのトリメチルシリルアレンを基質とした二酸化炭素固定反応の条件に従い ${ }^{35)}$ ， 1 気圧の二酸化炭素雰囲気下， 1 当量の $\mathrm{Ni}(\mathrm{cod})_{2}$ 及び 2 当量の DBU と，窒素原子上にト シル基をもつアレナミド $\mathbf{1 9 5} \mathbf{5}^{42)}$ を THF 中， $0{ }^{\circ} \mathrm{C}$ にて反応させた。反応終了後， 10% 塩酸を用いた後処理とジアゾメタン処理によるメチル化を行ったところ，二酸化炭素付加体 196 が 76% の収率で単一の立体異性体として生成した（スキーム 35）。オレフィンの幾何異性 については 2 つのメチル基の間に NOE相関が観測されたことから E 体であると決定した。

Scheme 35

続いて収率の向上を目指し，配位子の検討を行った（表 6）。まず，DBUを4当量に増 やしたところ，目的とする二酸化炭素付加体 196 の収率は 89% に向上した（run 2）。一方， 1，10－phenanthroline や DCPE を用いた場合，目的物の収率は大きく低下した（runs 3 and 4）。

Table 6 Ligand screening

run	ligand（x）	time（h）	yield
1	DBU（2）	2	76%
2	DBU（4）	1	89%
3	1，10－phenanthroline（1）	1	4%
4	DCPE（1）	1	trace
5	TMEDA（1）	1	82%
6	TMEDA（2）	1	88%

また，1 当量の TMEDAを用いた場合，目的物は 82% の収率で得られた（run 5）。さらに TMEDAを 2 当量に増やしたところ，収率は 88% まで向上した（run 6）。以上の結果より， 4 等量の DBU を用いた条件を最適条件とし，以降の検討を続けることにした＊1。

[^5]
第二節 置換基効果の検討

続いて窒素原子の保護基の効果について検討を行った（スキーム 36）。オキサゾリジノ ン由来のアレナミド $197^{* 1}$ を用い最適条件下でカルボキシル化を行ったところ，目的の二酸化炭素付加体 $\mathbf{1 9 8}^{* 2}$ が 51% の収率で得られた（式 11）。一方，メチルカルバメート体 $\mathbf{1 9 9}$ を用いたところ，予想された β アミノ酸誘導体 $\mathbf{2 0 0}^{* 2}$ が 21% 得られるとともに，二重結合の位置異性体 201 も 6% の収率で得られることが分かった（式 12）。

Scheme 36

次に置換基をもつアレナミドを用いて二酸化炭素固定化の検討を行った（スキーム 37）。最適条件下，${ }^{t} \mathrm{Bu}$ 基を有する基質 $\mathbf{2 0 2}^{* 3}$ と二酸化炭素を反応させたところ，末端アレンの場合と異なり，予想された生成物 204 は全く得られず，二重結合の位置異性体 203 のみが $E: Z=91: 9$ の幾何異性体混合物として， 88% の収率で得られた ${ }^{* 4}$ 。この結果より，アレン部位の置換基が，酸化的環化付加の位置選択性に大きく影響すると考えられた。

Scheme 37

次に様々な基質を用いて二酸化炭素固定化の検討を行った（表 7）。Boc 保護されたアレ ナミド $\mathbf{2 0 5} \mathbf{5}^{* 5}$ を用いカルボキシル化を行うと，対応する β アミノ酸誘導体 $\mathbf{2 1 3}^{* 6}$ が $E: Z=$

89：11 の幾何異性体混合物として，91\％の収率で得られた（run 1）。オキサゾリジノン由来 の基質 206 を用い同条件下反応させたところ，E 体のみが単一立体異性体として 88% の収率で得られた（run 2）。ピリドン誘導体 207 を用いても反応は円滑に進行し，対応する β アミノ酸誘導体 215 が 60% の収率で得られた（run 3）。 ${ }^{t} \mathrm{Bu}$ 基の代わりにシロキシエチル基

Table 7 Reactions of various allenamides ${ }^{\text {a }}$
run
${ }^{a}$ The reaction was carried out in the presence of $\mathrm{Ni}(\operatorname{cod})_{2}$（1 equiv）and DBU（4 equiv）in THF at $0{ }^{\circ} \mathrm{C}$ under CO_{2}（1 atm）．After acidic work－up with $10 \% \mathrm{HCl}$ ，the crude product was treated with $\mathrm{CH}_{2} \mathrm{~N}_{2}$ generated from N －methyl－ N －nitro－ N^{\prime}－nitrosoguanidine and aqueous KOH ．

を持つ基質 208 を用い，最適条件下反応を行ったところ，対応する β アミノ酸誘導体 216 が 68% の収率で得られた（run 4）。一方，置換基としてベンジロキシ基やシロキシ基を持 つ基質 209 および 210 を用いた場合，目的とする二酸化炭素付加体とともに，アルコキシ基が脱離したジエン体 $\mathbf{2 2 1}{ }^{* 7}$ が得られた（runs 5 and 6）。メチル基を有するアレナミド 211 を用いた場合にも ${ }^{t} \mathrm{Bu}$ 基の場合と同様の位置選択性で，対応する二酸化炭素固定体 219 が 44\％の収率で得られた（run 7）。三置換アレナミド 212 も本反応に適用可能であり，四置換オレフィン 220 が 59\％の収率で得られた（run 8）。

[^6]
＊2化合物 198，200の立体化学は図 5 に示す位置にNOE相関が観測されたことから，E 体であると決定した。

Figure 5

NOE
198

NOE
200
＊3 基質 202 は文献記載のメシル酸エステル $224 \mathbf{4}^{\mathbf{4 4})}$ にベンジルアミンを求核付加させた後，カルバメート保護，塩基性条件下異性化により合成した（スキーム 39）。

Scheme 39

＊4化合物 203 の立体化学は図 6 に示す位置にNOE相関が観測されたことから主生成物を E 体と決定した。 また，幾何異性体混合物を還元することで，単一の還元体 227 を与えることを確認している（スキーム 40）。

Figure 6

E－203

Z－203

Scheme 40

$203(E: Z=91: 9)$
＊5 表 7 に用いた基質 $\mathbf{2 1 1}$ および $\mathbf{2 1 2} \mathbf{2}^{45}$ は文献記載の方法に従い合成した。その他の基質については以下の方法により合成した。基質 205 はプロパルギルアミン 225 を Boc 保護した後，塩基性条件下異性化させて合成した（スキーム 41）。

Scheme 41

基質 206 および 207 はメシル酸エステル 224 に対し2－オキサゾリドン 229 又は 2－ヒドロキシルピリジン 231 を求核付加させた後，塩基性条件下異性化させて合成した（スキーム 42）。

Scheme 42

基質208の合成は，まず文献記載のアルコール $\mathbf{2 3 3}^{46)}$ を酸化し，Corey－Fuchs 法によりリチウムアセチリド へと変換した後，後処理にパラホルムアルデヒドを用いアルコール 236 へと誘導化した。得られたアルコー ル 236 をメシル化し，2－オキサゾリドン 229 を求核付加させた後，塩基性条件下異性化させて基質 208 を合成した（スキーム 43）。

Scheme 43

基質209の合成はまず，プロパルギルアルコール 239 をベンジル保護し，BuLi とパラホルムアルデヒド を用いてアルコール 241 を合成した。アルコール 241 をメシル化し，2－オキサゾリドン 229 を求核付加させ た後，塩基性条件下異性化させて基質 209 を合成した（スキーム 44）。

基質210は文献記載のアルコール 244 ${ }^{47)}$ をメシル化し，2－オキサゾリドン 229 を求核付加させた後，塩基性条件下異性化させて基質 210 を合成した（スキーム 45）。

＊6表7で得られた二酸化炭素付加体の立体化学は図7に示す位置にそれぞれ NOE相関が観測されたことか ら決定した。

Figure 7

E－213

Z－213

214

215

216

217

218

219

E－221

Z－221
＊7 ジエン 221 が得られた理由としては，酸加水分解を行った際に酸素原子が脱離した可能性や（スキーム 46，式 13），酸素原子が配向性置換基として働き，ニッケラサイクルの生成位置が制御できなかつた可能性が考 えられる（式 14）。

この他にも窒素上の保護基が異なる基質 247－250を合成し類似の条件下検討を行ったが，いずれも複雑な混合物が得られ，目的物を単離するには至らなかつた（図 8）。

Figure 8

247

Bn
248

249

250

第三節 位置および立体選択性の考察

本反応の反応機構に関する知見を得るべく，重水素化実験を行った（スキーム 47）。ト シル基を有する末端型アレナミド 195 と二酸化炭素を最適条件下反応させた後，重塩酸に よる後処理と引き続くジアゾメタン処理を行った。その結果，メチル基にのみ重水素が導入された目的物 196－D が 90\％の収率で得られた（式 15 ）。また，${ }^{t} \mathrm{Bu}$ 基を有するメチルカ ルバメート由来のアレナミド 202 を用いて同様に二酸化炭素と反応させた後，重塩酸で加水分解を行ったところ，アリル位に重水素が導入された目的物 203－D が $E: Z=87: 13$ の幾何異性体混合物として，84\％の収率で得られた（式 16）。

Scheme 47

195

D-content: >95\%

202

1） $\mathrm{Ni}(\operatorname{cod})_{2}(1 \mathrm{eq})$
DBU（4 eq）

2） $10 \% \mathrm{DCl} / \mathrm{D}_{2} \mathrm{O}$
3） $\mathrm{CH}_{2} \mathrm{~N}_{2}$
203－D 84\％（ $E: Z=87: 13$ ）
D－content：＞95\％

以上の結果をもとに，本反応の位置選択性の発現について考察した（スキーム 48）。ま ず，末端アレナミド $\mathbf{2 5 1}$ を基質とした場合，立体的により空いている末端の二重結合と二酸化炭素が反応すると考えられる。またこのとき，二酸化炭素は窒素原子との立体障害を避ける方向から反応し，ニッケララクトン中間体 252 を形成するため，E 体のみが選択的 に得られると考えられる（式 17）。

次に，置換基をもつアレナミド $\mathbf{2 5 4}$ を用いた場合，まずニッケルへの配位は，かさ高い アルキル基との立体反発を避けるように，より立体障害の小さいアミド基側の二重結合で起きると考えられる。またこのとき，二重結合のどちらの面と配位するかによって 2 種類 の配位錯体が考えられる。すなわち，窒素原子が結合した二重結合の $s i$ 面と二酸化炭素が配位した後に酸化的環化付加が進行すれば，ニッケララクトン $\mathbf{2 5 5}$ が，一方二重結合のre

面と反応すればニッケララクトン 257 が生成すると予想される。この際，si面と反応する経路ではアルキル基と二酸化炭素との立体反発が生じ，re面との反応が有利となると考え られる。従ってニッケララクトン中間体 $\mathbf{2 5 7}$ が選択的に形成され，E体が優先的に得られ たと考えられる（式 18）。

Scheme 48

\qquad

258 （major）

結語

第二章をまとめると，著者はアレナミドへの二酸化炭素の位置選択的固定反応の開発を目指し検討を行った。その結果，反応は 1 気圧の二酸化炭素雰囲気下にて進行し，目的と する β アミノ酸エステルが良好な収率かつ立体選択的に得られることわかった。また，反応の位置選択性はアレン上の置換基効果によって制御されることが明らかになった ${ }^{48)}$ 。

遷移金属錯体を用いたアレナミドの反応は，ほとんどが末端アレナミドを用いた検討に留まっており，未だに報告数も少ない。本研究により，アレナミドの窒素側二重結合もま た遷移金属錯体に対し十分な反応性をもつことが明らかとなったことから，遷移金属錯体 を用いたアレナミドの利用が進展することに期待したい。

総括

本研究は以下のように要約できる。

第一章：シラン存在下 0 価ニッケル触媒によるアルキンと環状ケトンとの分子内環化反応 の開発を目指し検討した。その結果，温和な条件下ヒドリンダン骨格やデカリン骨格を始めとする様々な骨格が立体選択的かつ高収率で構築できることを明らか にした。

第二章：0価ニッケル錯体によるアレナミドへの二酸化炭素固定反応の開発を行った。そ の結果，反応は温和な条件下で進行し，目的とする二酸化炭素付加体が良好な収率で位置選択的に得られることを見出した。また，反応の位置選択性はアレン上 の置換基によって大きく影響を受けることが明らかとなった。

Experimental Section

All manipulations were performed under an argon atmosphere unless stated otherwise. Solvents were purified under argon using The Ultimate Solvent System (Glass Counter Inc.) (THF, $\mathrm{Et}_{2} \mathrm{O}$, toluene, DMF, and $\mathrm{CH}_{3} \mathrm{CN}$). All other solvents and reagents were purified when necessary by standard procedures. Column chromatography was performed on silica gel 60 N (Kanto, 40-50 $\mu \mathrm{m}$) with the indicated solvent as eluent. IR spectra were obtained on a JASCO FT/IR 460 Plus spectrometer, and ${ }^{1} \mathrm{H}$ NMR (500 MHz or 400 MHz) and ${ }^{13} \mathrm{C}$ NMR (125 MHz or 100 MHz) spectroscopy were carried out on a Jeol ECA500 or a ECX400P NMR spectrometer. Mass spectra were obtained on a Jeol JMS-700TZ or a Jeol JMS-FAB mate mass spectrometer for LRMS and HRMS.

- Chapter 1 -

General Procedure for Ni(0)-Catalyzed Cyclization Using NHC Ligand

$\mathrm{Ni}(\operatorname{cod})_{2}\left(10 \mathrm{~mol} \%\right.$ to a substrate), imidazolium salt ($10 \mathrm{~mol} \%$ to the substrate), and ${ }^{t} \mathrm{BuOK}$ (12 $\mathrm{mol} \%$ to the substrate) were weighed into a flame-dried flask, and THF ($5 \mathrm{~mL} / \mathrm{mmol}$) was added to the flask at $0^{\circ} \mathrm{C}$ for 10 min . After the mixture was stirred at the same temperature for 10 min , $\mathrm{Et}_{3} \mathrm{SiH}$ (5.0 equiv to the substrate) was added to the mixture. After stirring for 10 min , to the mixture was added a solution of the substrate in THF ($5 \mathrm{~mL} / \mathrm{mmol}$) at the same temperature, and the mixture was stirred at room temperature. The mixture was concentrated in vacuo, and the residue was purified by flash column chromatography on silica gel to give the cyclized product.

Chapter 1, Section 1

<Scheme 14>

$\left.\mathbf{(3 a} \boldsymbol{R}^{*}, \mathbf{6} \mathbf{a S}^{\boldsymbol{*}}, \boldsymbol{E}\right)$-1-Ethylidene-6a-triethylsiloxyoctahydropentalene (81). $\mathrm{Ni}(\operatorname{cod})_{2} \quad(13.7 \mathrm{mg}$, $0.0498 \mathrm{mmol})$ and $\mathrm{PPh}_{3}(27.0 \mathrm{mg}, 0.103 \mathrm{mmol})$ were weighed into a flame-dried flask, and THF $(2.5 \mathrm{~mL})$ was added to the flask at $0{ }^{\circ} \mathrm{C}$ for 10 min . After the mixture was stirred at the same temperature for $10 \mathrm{~min}, \mathrm{Et}_{3} \mathrm{SiH}(0.4 \mathrm{~mL}, 2.5 \mathrm{mmol})$ was added to the mixture. After stirring for 10 min , a solution of $\mathbf{8 0}{ }^{25}$ ($74.3 \mathrm{mg}, 0.495 \mathrm{mmol}$) in THF (2.5 mL) was added to the mixture at the same temperature, and the mixture was stirred at room temperature for 72 h . The mixture was concentrated in vacuo, and the residue was purified by flash column chromatography on silica gel (hexane $/ \mathrm{Et}_{2} \mathrm{O}=500 / 1$) to give $81(58.5 \mathrm{mg}, 44 \%$) as a colorless oil. IR (neat) $1681,1175,1093$, $1060,1012 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 0.53(\mathrm{q}, J=8.0 \mathrm{~Hz}, 6 \mathrm{H}), 0.91(\mathrm{t}, J=8.0 \mathrm{~Hz}, 9 \mathrm{H})$, $1.17-1.30(\mathrm{~m}, 2 \mathrm{H}), 1.54(\mathrm{~m}, 1 \mathrm{H}), 1.58-1.62(\mathrm{~m}, 3 \mathrm{H}), 1.67-1.78(\mathrm{~m}, 3 \mathrm{H}), 1.87-1.96(\mathrm{~m}, 2 \mathrm{H})$, 2.24-2.36 (m, 3 H), $5.48(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 6.3,7.1,14.5,24.7,28.0,29.5$, 31.0, 41.2, 52.0, 91.9, 116.3, 148.3; EI-LRMS $m / z 266\left(\mathrm{M}^{+}\right), 251\left[(\mathrm{M}-\mathrm{Me})^{+}\right], 237\left[(\mathrm{M}-\mathrm{Bu})^{+}\right]$; EI-HRMS calcd for $\mathrm{C}_{17} \mathrm{H}_{27} \mathrm{O}_{3} \mathrm{Si}$ 266.2069, found 266.2065.
$\mathbf{(3 a} \mathbf{R}^{*}, \mathbf{6} \mathbf{S}^{*}$)-6a-Hydroxyhexahydropentalen-1(2H)-one (82)${ }^{16)}$. A solution of $\mathbf{8 1}(43.9 \mathrm{mg}, 0.165$ $\mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \mathrm{~mL})$ was cooled to $-78{ }^{\circ} \mathrm{C}$. Ozone gas was bubbled into the reaction mixture until color of the solution turned to blue. After argon gas was bubbled into the reaction mixture until the blue color disappeared, $\mathrm{PPh}_{3}(50.7 \mathrm{mg}, 0.193 \mathrm{mmol})$ was added to the mixture. The
reaction mixture was slowly allowed to warm to room temperature. The mixture was concentrated in vacuo, and the residue was roughly purified by short column chromatography on silica gel (AcOEt) to give the crude ketone. To a solution of the ketone in $\mathrm{CH}_{3} \mathrm{CN}(1 \mathrm{~mL})$ was added a 10% solution of HF (46% aqueous solution, commercially available) in $\mathrm{CH}_{3} \mathrm{CN}(1 \mathrm{~mL})$ at room temperature, and the resulting mixture was stirred 2 h the same temperature. To the mixture was added saturated NaHCO_{3} aqueous solution at $0{ }^{\circ} \mathrm{C}$, and the aqueous layer was extracted with AcOEt. The organic layer was washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated. The residue was purified by column chromatography on silica gel (hexane/ $\mathrm{AcOEt}=1 / 1$) to give $82(16.9 \mathrm{mg}, 73 \%)$ as a colorless oil. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 1.45(\mathrm{~m}, 1 \mathrm{H}), 1.63(\mathrm{~m}, 1 \mathrm{H}), 1.70(\mathrm{~m}, 1 \mathrm{H})$, 1.75-2.00 (m, 3 H), 2.06-2.21 (m, 2 H), 2.34 (m, 1 H$), 2.47-2.56(\mathrm{~m}, 2 \mathrm{H}), 2.55(\mathrm{~s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 24.0,24.4,32.0,35.0,37.4,48.2,88.2,220.0$.

$$
<\text { Table 1> }
$$

<run 1>
$\mathrm{Ni}(\operatorname{cod})_{2}(13.5 \mathrm{mg}, 0.0491 \mathrm{mmol})$ was weighed into a flame-dried flask, and THF $(2.5 \mathrm{~mL})$ and $\mathrm{PBu}_{3}(25 \mathrm{~mL}, 0.100 \mathrm{mmol})$ were added to the flask at $0^{\circ} \mathrm{C}$ for 10 min . After the mixture was stirred at the same temperature for $10 \mathrm{~min}, \mathrm{Et}_{3} \mathrm{SiH}(0.4 \mathrm{~mL}, 2.5 \mathrm{mmol})$ was added to the mixture. After stirring for 10 min , to the mixture was added a solution of $\mathbf{8 0}(74.8 \mathrm{mg}, 0.498 \mathrm{mmol})$ in THF (2.5 mL) at the same temperature, and the mixture was stirred at the room temperature for 48 h . The mixture was concentrated in vacuo, and the residue was purified by flash column chromatography on silica gel (hexane/ $\mathrm{Et}_{2} \mathrm{O}=500 / 1$) to give $\mathbf{8 1}(95.6 \mathrm{mg}, 72 \%)$ as a colorless oil.
<run 2>
According to the general procedure, a crude product, which was obtained from $\mathbf{8 0}$ ($74.7 \mathrm{mg}, 0.497$ $\mathrm{mmol}), \mathrm{Ni}(\mathrm{cod})_{2}(13.8 \mathrm{mg}, 0.0502 \mathrm{mmol}), \mathrm{IMes} \cdot \mathrm{HCl}(16.8 \mathrm{mg}, 0.0493 \mathrm{mmol}),{ }^{t} \mathrm{BuOK}(6.4 \mathrm{mg}$, $0.0570 \mathrm{mmol})$, and $\mathrm{Et}_{3} \mathrm{SiH}(0.40 \mathrm{~mL}, 2.50 \mathrm{mmol})$ in THF $(5.0 \mathrm{~mL})$ for 30 min , was purified by flash column chromatography on silica gel (hexane $/ \mathrm{Et}_{2} \mathrm{O}=500 / 1$) to give $\mathbf{8 1}(111.2 \mathrm{mg}, 84 \%)$ as a colorless oil.
<run 3>
According to the general procedure, a crude product, which was obtained from $\mathbf{8 0}(74.6 \mathrm{mg}, 0.497$ $\mathrm{mmol}), \mathrm{Ni}(\mathrm{cod})_{2}(13.7 \mathrm{mg}, 0.0498 \mathrm{mmol}),{\mathrm{SIMes} \cdot \mathrm{HBF}_{4}(20.0 \mathrm{mg}, 0.0506 \mathrm{mmol}),{ }^{t} \mathrm{BuOK}(6.8 \mathrm{mg},}$
$0.0606 \mathrm{mmol})$, and $\mathrm{Et}_{3} \mathrm{SiH}(0.40 \mathrm{~mL}, 2.50 \mathrm{mmol})$ in THF (5.0 mL) for 30 min , was purified by flash column chromatography on silica gel (hexane $/ \mathrm{Et}_{2} \mathrm{O}=500 / 1$) to give $\mathbf{8 1}(104.2 \mathrm{mg}, 79 \%)$ as a colorless oil.
<run 4>
According to the general procedure, a crude product, which was obtained from $\mathbf{8 0}(75.4 \mathrm{mg}, 0.502$ $\mathrm{mmol}), \mathrm{Ni}(\mathrm{cod})_{2}(13.7 \mathrm{mg}, 0.0498 \mathrm{mmol}), \mathrm{IPr} \cdot \mathrm{HCl}(21.8 \mathrm{mg}, 0.0513 \mathrm{mmol}),{ }^{t} \mathrm{BuOK}(6.9 \mathrm{mg}$, $0.0615 \mathrm{mmol})$, and $\mathrm{Et}_{3} \mathrm{SiH}(0.40 \mathrm{~mL}, 2.50 \mathrm{mmol})$ in THF (5.0 mL) for 30 min , was purified by flash column chromatography on silica gel (hexane $/ \mathrm{Et}_{2} \mathrm{O}=500 / 1$) to give $\mathbf{8 1}$ (135.1 mg , quant) as a colorless oil.
<run 5>
According to the general procedure, a crude product, which was obtained from $\mathbf{8 0}(74.8 \mathrm{mg}, 0.498$ $\mathrm{mmol}), \mathrm{Ni}(\mathrm{cod})_{2}(13.9 \mathrm{mg}, 0.0505 \mathrm{mmol}), \mathrm{SIPr} \cdot \mathrm{HCl}(21.7 \mathrm{mg}, 0.0508 \mathrm{mmol}),{ }^{t} \mathrm{BuOK}(6.6 \mathrm{mg}$, $0.0588 \mathrm{mmol})$, and $\mathrm{Et}_{3} \mathrm{SiH}(0.40 \mathrm{~mL}, 2.50 \mathrm{mmol})$ in THF (5.0 mL) for 30 min , was purified by flash column chromatography on silica gel (hexane $/ \mathrm{Et}_{2} \mathrm{O}=500 / 1$) to give $\mathbf{8 1}(123.2 \mathrm{mg}, 93 \%)$ as a colorless oil.

Chapter 1, Section 2

<Table 2>

<run 1>

($\mathbf{3 a} \mathbf{R}^{*}, \mathbf{6 a} \mathbf{S}^{*}$)-1-Methylene-6a-triethylsiloxyoctahydropentalene (96). According to the general procedure, a crude product, which was obtained from $91(67.5 \mathrm{mg}, 0.496 \mathrm{mmol}), \mathrm{Ni}(\mathrm{cod})_{2}(13.5 \mathrm{mg}$, 0.0491 mmol), $\mathrm{IPr} \cdot \mathrm{HCl}(21.2 \mathrm{mg}, 0.0499 \mathrm{mmol}),{ }^{t} \mathrm{BuOK}(6.7 \mathrm{mg}, 0.0597 \mathrm{mmol})$, and $\mathrm{Et}_{3} \mathrm{SiH}(0.40$ $\mathrm{mL}, 2.50 \mathrm{mmol}$) in THF (5.0 mL) for 30 min , was purified by flash column chromatography on silica gel (hexane/Et $2 \mathrm{O}=500 / 1$) to give $96(103.8 \mathrm{mg}, 83 \%)$ as a colorless oil. IR (neat) 3075, 2359, $1659,1458,1098 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 0.57(\mathrm{q}, J=8.3 \mathrm{~Hz}, 6 \mathrm{H}), 0.93(\mathrm{t}, J=8.3 \mathrm{~Hz}$, $9 \mathrm{H}), 1.18(\mathrm{~m}, 1 \mathrm{H}), 1.30(\mathrm{~m}, 1 \mathrm{H}), 1.56(\mathrm{~m}, 1 \mathrm{H}), 1.67-1.73(\mathrm{~m}, 3 \mathrm{H}), 1.88-2.01(\mathrm{~m}, 2 \mathrm{H}), 2.27-2.39$ (m, 2 H), $2.45(\mathrm{~m}, 1 \mathrm{H}), 4.88(\mathrm{~d}, J=1.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.02(\mathrm{~d}, J=1.7 \mathrm{~Hz}, 1 \mathrm{H}){ }^{13} \mathrm{C}$ NMR (125 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 6.3,7.1,25.2,29.8,32.2,32.4,41.8,51.7,91.4,105.6,157.9$; EI-LRMS $m / z 252\left(\mathrm{M}^{+}\right)$, $237\left[(\mathrm{M}-\mathrm{Me})^{+}\right], 223\left[(\mathrm{M}-\mathrm{Et})^{+}\right]$; EI-HRMS calcd for $\mathrm{C}_{15} \mathrm{H}_{28} \mathrm{OSi} 252.1916$, found 252.1908.
<run 2>
($3 \mathrm{a} \mathbf{R}^{*}, 6 \mathrm{a} S^{*}, E$)-1-(2-tert-Buthyldimethylsilyoxyethylidene)-6a-triethylsiloxyoctahydropentalen e (97). According to the general procedure, a crude product, which was obtained from 114 (136.3 $\mathrm{mg}, 0.486 \mathrm{mmol}), \mathrm{Ni}(\mathrm{cod})_{2}(13.5 \mathrm{mg}, 0.0491 \mathrm{mmol}), \mathrm{IPr} \cdot \mathrm{HCl}(21.3 \mathrm{mg}, 0.0501 \mathrm{mmol}),{ }^{t} \mathrm{BuOK}(6.7$ $\mathrm{mg}, 0.0597 \mathrm{mmol})$, and $\mathrm{Et}_{3} \mathrm{SiH}(0.40 \mathrm{~mL}, 2.50 \mathrm{mmol})$ in THF (5.0 mL) for 30 min , was purified by flash column chromatography on silica gel (hexane $/ \mathrm{Et}_{2} \mathrm{O}=500 / 1$) to give 92 ($190.9 \mathrm{mg}, 99 \%$) as a colorless oil. IR (neat) 1462, 1254, $1097 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 0.06(\mathrm{~s}, 6 \mathrm{H}), 0.55(\mathrm{q}$, $J=7.9 \mathrm{~Hz}, 6 \mathrm{H}), 0.90(\mathrm{~s}, 9 \mathrm{H}), 0.92(\mathrm{t}, J=7.9 \mathrm{~Hz}, 9 \mathrm{H}), 1.15-1.32(\mathrm{~m}, 2 \mathrm{H}), 1.57(\mathrm{~m}, 1 \mathrm{H})$, 1.69-1.71 (m, 3 H), 1.88-1.97 (m, 2 H), 2.23-2.40 (m, 3 H), 4.13-4.24 (m, 2 H), $5.56(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (125 MHz, CDCl_{3}) $\delta-5.2,-5.1,6.3,7.1,18.3,24.7,25.9,28.1,29.7,31.1,41.2,51.4,61.5$, 92.0, 121.7, 148.4; EI-LRMS m/z $396\left(\mathrm{M}^{+}, 381\left[(\mathrm{M}-\mathrm{Me})^{+}\right], 367\left[(\mathrm{M}-\mathrm{Et})^{+}\right], 339\left[(\mathrm{M}-\mathrm{Bu})^{+}\right]\right.$; EI-HRMS calcd for $\mathrm{C}_{22} \mathrm{H}_{44} \mathrm{O}_{2} \mathrm{Si}_{2} 396.28799$ found 396.28752.
<run 3>
($\mathbf{3 a} \boldsymbol{R}^{*}, \mathbf{6 a} \boldsymbol{S}^{*}, \boldsymbol{E}$)-1-Benzylidene-6a-triethylsiloxyoctahydropentalene (98). According to the general procedure, a crude product, which was obtained from $93(108.1 \mathrm{mg}, 0.510 \mathrm{mmol}), \mathrm{Ni}(\operatorname{cod})_{2}$ $(13.5 \mathrm{mg}, 0.0491 \mathrm{mmol}), \mathrm{IPr} \cdot \mathrm{HCl}(21.2 \mathrm{mg}, 0.0499 \mathrm{mmol}),{ }^{t} \mathrm{BuOK}(6.5 \mathrm{mg}, 0.0579 \mathrm{mmol})$, and $\mathrm{Et}_{3} \mathrm{SiH}(0.40 \mathrm{~mL}, 2.50 \mathrm{mmol})$ in THF $(5.0 \mathrm{~mL})$ for 30 min , was purified by flash column chromatography on silica gel (hexane $/ \mathrm{Et}_{2} \mathrm{O}=500 / 1$) to give $\mathbf{9 8}(162.5 \mathrm{mg}, 97 \%)$ as a colorless oil. IR (neat) $1457,1237,1094 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 0.59(\mathrm{q}, J=7.9 \mathrm{~Hz}, 6 \mathrm{H}), 0.95(\mathrm{t}, J$ $=7.9 \mathrm{~Hz}, 9 \mathrm{H}), 1.30(\mathrm{~m}, 1 \mathrm{H}), 1.38(\mathrm{~m}, 1 \mathrm{H}), 1.66(\mathrm{~m}, 1 \mathrm{H}), 1.73-1.83(\mathrm{~m}, 3 \mathrm{H}), 1.97-2.06(\mathrm{~m}, 2 \mathrm{H})$, $2.37(\mathrm{~m}, 1 \mathrm{H}), 2.65-2.79(\mathrm{~m}, 2 \mathrm{H}), 6.50(\mathrm{~m}, 1 \mathrm{H}), 7.20(\mathrm{~m}, 1 \mathrm{H}), 7.30-7.37(\mathrm{~m}, 4 \mathrm{H}),{ }^{13} \mathrm{C}$ NMR (125 $\mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 6.4,7.1,25.0,30.4,30.5,31.3,42.1,50.8,93.6,121.8,126.1,128.2,128.4,138.4$, 150.8; EI-LRMS m/z $328(\mathrm{M})^{+}, 313\left[(\mathrm{M}-\mathrm{Me})^{+}\right], 299\left[(\mathrm{M}-\mathrm{Et})^{+}\right]$; EI-HRMS calcd for $\mathrm{C}_{21} \mathrm{H}_{32} \mathrm{OSi}$ 328.22225 found 328.22239 .
<run 4>
($3 \mathrm{a} R^{*}, 6 \mathrm{a} S^{*}, E$)-1-(2-Methoxy-2-oxoethylidene)-6a-tryethylsiloxyoctahydropentalene (99). According to the general procedure, a crude product, which was obtained from $94(97.6 \mathrm{mg}, 0.502$ $\mathrm{mmol}), \mathrm{Ni}(\mathrm{cod})_{2}(14.1 \mathrm{mg}, 0.0513 \mathrm{mmol}), \mathrm{IPr} \cdot \mathrm{HCl}(20.9 \mathrm{mg}, 0.0492 \mathrm{mmol}),{ }^{t} \mathrm{BuOK}(6.4 \mathrm{mg}$, 0.0570 mmol), and $\mathrm{Et}_{3} \mathrm{SiH}(0.40 \mathrm{~mL}, 2.50 \mathrm{mmol})$ in THF (5.0 mL) for 48 h , was purified by flash column chromatography on silica gel (hexane/ $\mathrm{AcOEt}=20 / 1$) to give $99(41.1 \mathrm{mg}, 0.132 \mathrm{mmol})$ as a colorless oil. IR (neat) $1719,1661,1434,1353,1099 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 0.56(\mathrm{q}, J$
$=8.0 \mathrm{~Hz}, 6 \mathrm{H}), 0.92(\mathrm{t}, J=8.0 \mathrm{~Hz}, 9 \mathrm{H}), 1.28(\mathrm{~m}, 1 \mathrm{H}), 1.46(\mathrm{~m}, 1 \mathrm{H}), 1.76-1.93(\mathrm{~m}, 4 \mathrm{H}), 1.96-2.05$ (m, 2 H), $2.36(\mathrm{~m}, 1 \mathrm{H}), 2.89-2.95(\mathrm{~m}, 2 \mathrm{H}), 3.71(\mathrm{~s}, 3 \mathrm{H}), 5.91(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (125 MHz , CDCl_{3}) $\delta 6.3,7.0,24.6,30.0,30.6,30.9,42.0,50.5,51.0,93.4,111.6,167.8,172.3$; ESI-LRMS m / z $333\left[(\mathrm{M}+\mathrm{Na})^{+}\right]$; ESI-HRMS calcd for $\mathrm{C}_{17} \mathrm{H}_{30} \mathrm{O}_{3} \mathrm{NaSi} 333.18564$ found 333.18594.
<Run 5>
($\left.3 \mathrm{a} R^{*}, 6 \mathrm{a} S^{*}, E\right)$-1-(Trimethylsilylmethylidene)-6a-triethylsiloxyoctahydropentalene (100). According to the general procedure, a crude product, which was obtained from 95 ($105.7 \mathrm{mg}, 0.507$ $\mathrm{mmol}), \mathrm{Ni}(\mathrm{cod})_{2}(13.7 \mathrm{mg}, 0.0498 \mathrm{mmol}), \mathrm{IPr} \cdot \mathrm{HCl}(20.3 \mathrm{mg}, 0.0478 \mathrm{mmol}),{ }^{t} \mathrm{BuOK}(6.7 \mathrm{mg}$, $0.0597 \mathrm{mmol})$, and $\mathrm{Et}_{3} \mathrm{SiH}(0.40 \mathrm{~mL}, 2.50 \mathrm{mmol})$ in THF $(5.0 \mathrm{~mL})$ for 30 min , was purified by flash column chromatography on silica gel (hexane $/ \mathrm{Et}_{2} \mathrm{O}=500 / 1$) to give $\mathbf{1 0 0}(42.7 \mathrm{mg}, 26 \%)$ as a colorless oil. IR (neat), 1630, 1458, 1247, $1060 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 0.09(\mathrm{~s}, 9 \mathrm{H})$, $0.54(\mathrm{q}, J=7.9 \mathrm{~Hz}, 6 \mathrm{H}), 0.92(\mathrm{t}, J=7.9 \mathrm{~Hz}, 9 \mathrm{H}), 1.19(\mathrm{~m}, 1 \mathrm{H}), 1.33(\mathrm{~m}, 1 \mathrm{H}), 1.53-1.80(\mathrm{~m}, 5 \mathrm{H})$, 1.85-2.01 (m, 2 H), $2.25(\mathrm{~m}, 1 \mathrm{H}), 2.35-2.50(\mathrm{~m}, 2 \mathrm{H}), 5.55(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-0.4,6.4,7.1,24.9,29.8,31.4,31.7,42.0,50.6,91.4,118.2,166.4$; ESI-LRMS $m / z 347\left[(\mathrm{M}+\mathrm{Na})^{+}\right]$, 193 [(M-OTBS) ${ }^{+}$]; ESI-HRMS calcd for $\mathrm{C}_{18} \mathrm{H}_{36} \mathrm{ONaSi}_{2} 347.22024$ found 347.21971 .
<Scheme 16>
(Eq 1)
($\mathbf{3 a} \boldsymbol{R}^{*}, \mathbf{6 a} \boldsymbol{S}^{*}, \boldsymbol{E}$)-1-Ethylidene-6a-triethylsiloxy-3a-methyloctahydropentalene (102). According to the general procedure, a crude product, which was obtained from $101(80.3 \mathrm{mg}, 0.489 \mathrm{mmol})$, $\mathrm{Ni}(\mathrm{cod})_{2}(13.5 \mathrm{mg}, 0.0491 \mathrm{mmol}), \mathrm{IPr} \cdot \mathrm{HCl}(21.0 \mathrm{mg}, 0.0494 \mathrm{mmol}),{ }^{t} \mathrm{BuOK}(6.4 \mathrm{mg}, 0.0570 \mathrm{mmol})$, and $\mathrm{Et}_{3} \mathrm{SiH}(0.40 \mathrm{~mL}, 2.50 \mathrm{mmol})$ in THF $(5.0 \mathrm{~mL})$ for 30 min , was purified by flash column chromatography on silica gel (hexane/ $\mathrm{Et}_{2} \mathrm{O}=500 / 1$) to give $\mathbf{1 0 2}(138.6 \mathrm{mg}$, quant) as a colorless oil. IR (neat) $1676,1458,1237,1069 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 0.51(\mathrm{q}, J=7.1 \mathrm{~Hz}, 6 \mathrm{H})$, $0.90(\mathrm{t}, J=7.1 \mathrm{~Hz}, 9 \mathrm{H}), 0.95(\mathrm{~s}, 3 \mathrm{H}), 1.24-1.40(\mathrm{~m}, 3 \mathrm{H}), 1.47-1.63(\mathrm{~m}, 6 \mathrm{H}), 1.72(\mathrm{~m}, 1 \mathrm{H}), 2.01$ (m, 1 H), 2.20-2.34 (m, 2 H), $5.50(\mathrm{~m}, 1 \mathrm{H}),{ }^{13} \mathrm{C} \operatorname{NMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 6.3,7.1,14.4,19.8$, 21.1, 25.9, 34.1, 35.26, 35.30, 52.7, 89.7, 117.7, 147.9; EI-LRMS m/z $280(\mathrm{M})^{+}, 265\left[(\mathrm{M}-\mathrm{Me})^{+}\right]$, 251 [(M-Et) $\left.{ }^{+}\right]$; EI-HRMS calcd for $\mathrm{C}_{17} \mathrm{H}_{32} \mathrm{OSi} 280.22225$ found 280.22252 .
(Eq 2)
($\mathbf{3 a} \mathbf{R}^{*}, \mathbf{6 a} \boldsymbol{R}^{*}, E$)-3a-tert-Butyldimethylsilyloxymethyl-1-ethylidene-6a-triethylsilyloxyoctahydro
pentalene (104). According to the general procedure, a crude product, which was obtained from 103 ($108.1 \mathrm{mg}, 0.510 \mathrm{mmol}$), $\mathrm{Ni}(\operatorname{cod})_{2}(5.4 \mathrm{mg}, 0.0196 \mathrm{mmol}), \mathrm{IPr} \cdot \mathrm{HCl}(8.7 \mathrm{mg}, 0.0205 \mathrm{mmol})$, ${ }^{t} \mathrm{BuOK}(2.8 \mathrm{mg}, 0.0250 \mathrm{mmol})$, and $\mathrm{Et}_{3} \mathrm{SiH}(0.17 \mathrm{~mL}, 1.06 \mathrm{mmol})$ in THF (5.0 mL) for 30 min , was purified by flash column chromatography on silica gel (hexane $/ \mathrm{Et}_{2} \mathrm{O}=500 / 1$) to give $\mathbf{1 0 4}(82.5 \mathrm{mg}$, 96%) as a colorless oil. IR (neat) $1676,1462,1254,1105,1089 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 0.03 (s, 6 H), $0.50(\mathrm{q}, ~ J=7.8 \mathrm{~Hz}, 6 \mathrm{H}), 0.89(\mathrm{~s}, 9 \mathrm{H}), 0.90(\mathrm{t}, J=7.8 \mathrm{~Hz}, 9 \mathrm{H}), 1.19(\mathrm{~m}, 1 \mathrm{H})$, $1.55-1.67$ (m, 5 H), 1.75-1.85 (m, 2 H), 2.01 (m, 1 H$), 2.24-2.35(\mathrm{~m}, 2 \mathrm{H}), 3.47(\mathrm{~d}, J=9.5 \mathrm{~Hz}, 1 \mathrm{H})$, $3.61(\mathrm{~d}, J=9.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.49(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-5.5,-5.4,6.3,7.1,14.4$, 18.3, 20.7, 26.0, 26.1, 30.9, 31.3, 36.9, 52.6, 66.9, 90.0, 117.3, 148.2; EI-LRMS $m / z 410\left(\mathrm{M}^{+}\right), 395$ $\left[(\mathrm{M}-\mathrm{Me})^{+}\right], 381\left[(\mathrm{M}-\mathrm{Et})^{+}\right], 353 \quad\left[(\mathrm{M}-t-\mathrm{Bu})^{+}\right], 265 \quad\left[\left(\mathrm{M}-\mathrm{CH}_{2} \mathrm{OTBS}\right)^{+}\right]$; EI-HRMS calcd for $\mathrm{C}_{23} \mathrm{H}_{46} \mathrm{O}_{2} \mathrm{Si}_{2} 410.30363$ found 410.30397 .
$<$ Scheme 17>

Synthesis of $\mathbf{8 2}$ from 96

Similar to synthesis of $\mathbf{8 2}$ from 81, a crude product, which was obtained from ozonization of $\mathbf{9 6}$ ($34.2 \mathrm{mg}, 0.135 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (2 mL) followed by reduction using PPh_{3} ($40.4 \mathrm{mg}, 0.154 \mathrm{mmol}$), was treated with a 5% solution of HF in $\mathrm{CH}_{3} \mathrm{CN}(4 \mathrm{~mL})$. After usual work up, a crude product was purified by column chromatography on silica gel (hexane/ $\mathrm{AcOEt}=1 / 1$) to give $\mathbf{8 2}(7.6 \mathrm{mg}, 2$ steps 40%) as a colorless oil.

Synthesis of $\mathbf{8 2}$ from $\mathbf{9 7}$

Similar to synthesis of $\mathbf{8 2}$ from 81, a crude product, which was obtained from ozonization of $\mathbf{9 7}$ ($59.0 \mathrm{mg}, 0.149 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \mathrm{~mL})$ followed by reduction using $\mathrm{PPh}_{3}(60.1 \mathrm{mg}, 0.229 \mathrm{mmol}$), was treated with a 5% solution of HF in $\mathrm{CH}_{3} \mathrm{CN}(4 \mathrm{~mL})$. After usual work up, a crude product was purified by column chromatography on silica gel (hexane/ $\mathrm{AcOEt}=3 / 2$) to give $\mathbf{8 2}(20.2 \mathrm{mg}, 2$ steps 97%) as a colorless oil.

Synthesis of $\mathbf{8 2}$ from $\mathbf{9 8}$

Similar to synthesis of $\mathbf{8 2}$ from 81, a crude product, which was obtained from ozonization of $\mathbf{9 8}$ ($57.4 \mathrm{mg}, 0.175 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(4 \mathrm{~mL})$ followed by reduction using PPh_{3} ($53.2 \mathrm{mg}, 0.203 \mathrm{mmol}$), was treated with a 5% solution of HF in $\mathrm{CH}_{3} \mathrm{CN}(4 \mathrm{~mL})$. After usual work up, a crude product purified by column chromatography on silica gel (hexane $/ \mathrm{AcOEt}=1 / 1$) to give $\mathbf{8 2}(19.8 \mathrm{mg}, 2$ steps
81%) as a colorless oil.

Synthesis of $\mathbf{8 2}$ from $\mathbf{9 9}$

Similar to synthesis of $\mathbf{8 2}$ from 81, a crude product, which was obtained from ozonization of $\mathbf{9 9}$ $(26.7 \mathrm{mg}, 0.0860 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(8 \mathrm{~mL})$ followed by reduction using $\mathrm{PPh}_{3}(33.5 \mathrm{mg}, 0.128$ $\mathrm{mmol})$, was treated with a 5% solution of HF in $\mathrm{CH}_{3} \mathrm{CN}(4 \mathrm{~mL})$. After usual work up, a crude product was purified by column chromatography on silica gel (hexane/ $\mathrm{AcOEt}=1 / 1$) to give $\mathbf{8 2}$ (0.8 $\mathrm{mg}, 2$ steps 7%) as a colorless oil.

<Scheme 18>

2-(4,4-Dibromobut-3-enyl)cyclopentanone. To a solution of $\mathrm{PPh}_{3}(152 \mathrm{~g}, 597 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ $(120 \mathrm{~mL})$ was added a solution of $\mathrm{CBr}_{4}(94.8 \mathrm{~g}, 286 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(120 \mathrm{~mL})$ over a period of 15 \min at $0^{\circ} \mathrm{C}$, and the mixture was stirred at the same temperature for 30 min . To the mixture was added a solution of $\mathbf{1 0 5}^{18)}(26.4 \mathrm{~g}, 143 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(60 \mathrm{~mL})$ at $0{ }^{\circ} \mathrm{C}$, and the mixture was stirred at the same temperature for 1.5 h . To the mixture was added hexane at room temperature. The mixture was filtered through Celite ${ }^{\circledR}$ pad, and the filtrate was concentrated. The residue was purified by flash column chromatography on silica gel (hexane/ $\mathrm{AcOEt}=10 / 1$) to give dibromoolefin ($27.2 \mathrm{~g}, 64 \%$) as a yellow oil. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 1.39(\mathrm{~m}, 1 \mathrm{H}), 1.52(\mathrm{~m}$, $1 \mathrm{H}), 1.79(\mathrm{~m}, 1 \mathrm{H}), 1.90(\mathrm{~m}, 1 \mathrm{H}), 1.99-2.21(\mathrm{~m}, 5 \mathrm{H}), 2.23-2.36(\mathrm{~m}, 2 \mathrm{H}), 6.37(\mathrm{~m}, 1 \mathrm{H})$.

6-(4,4-Dibromobut-3-enyl)-1,4-dioxaspiro[4.4]nonane. To a suspension of ethylene glycol (54 $\mathrm{mL}, 968 \mathrm{mmol})$ in benzene (180 mL) was added the above dibromoolefin ($27.2 \mathrm{~g}, 91.8 \mathrm{mmol}$) and PPTS ($2.25 \mathrm{~g}, 8.95 \mathrm{mmol}$) at room temperature, and the mixture was refluxed with a Dean-Stark system for 5 h . To the mixture was added saturated NaHCO_{3} aqueous solution at $0{ }^{\circ} \mathrm{C}$, and the aqueous layer was extracted with AcOEt. The organic layer was washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated. The residue was purified by column chromatography on silica gel (hexane/ $\mathrm{AcOEt}=20 / 1$) to give acetal $(29.0 \mathrm{~g}, 93 \%)$ as a yellow oil. ${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ 1.28-1.40 (m, 2 H), 1.57-1.80 (m, 5 H), 1.86-1.95 (m, 2 H), 2.03-2.18 (m, 2 H), 3.84-3.96 (m, 4 H), 6.39 (m, 1 H).

5-(1,4-Dioxaspiro[4.4]nonan-6-yl)pent-2-yn-1-ol (106). To a solution of the above acetal (1.71g, $5.04 \mathrm{mmol})$ in THF (15 mL) was added a solution of BuLi in hexane ($1.61 \mathrm{M}, 7 \mathrm{~mL}, 11.3 \mathrm{mmol}$) at
$-78^{\circ} \mathrm{C}$, and the mixture was stirred at the same temperature for 1 h . After additional stirring for 1 h at room temperature, the reaction mixture was recooled to $-78{ }^{\circ} \mathrm{C}$. To the mixture was added paraformaldehyde ($1.48 \mathrm{~g}, 49.3 \mathrm{mmol}$), and the reaction mixture was slowly warmed to room temperature overnight. To the mixture was added saturated $\mathrm{NH}_{4} \mathrm{Cl}$ aqueous solution at $0{ }^{\circ} \mathrm{C}$, and the aqueous layer was extracted with $\mathrm{Et}_{2} \mathrm{O}$. The organic layer was washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated. The residue was purified by column chromatography on silica gel (hexane/ $\mathrm{AcOEt}=4 / 1$) to give $106(746 \mathrm{mg}, 70 \%)$ as a colorless oil. ${ }^{1} \mathrm{H} \mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $1.32(\mathrm{~m}, 1 \mathrm{H}), 1.45(\mathrm{~m}, 1 \mathrm{H}), 1.52-1.81(\mathrm{~m}, 6 \mathrm{H}), 1.92(\mathrm{~m}, 1 \mathrm{H}), 2.03(\mathrm{~m}, 1 \mathrm{H}), 2.19(\mathrm{~m}, 1 \mathrm{H}), 2.31$ (m, 1 H), 3.85-3.96 (m, 4 H), 4.23-4.27 (m, 2 H).

2-(5-Hydroxypent-3-ynyl)cyclopentanone. To a solution of $\mathbf{1 0 6}(679 \mathrm{mg}, 3.23 \mathrm{mmol})$ in acetone $(65 \mathrm{~mL})$ was added $p-\mathrm{TsOH} \cdot \mathrm{H}_{2} \mathrm{O}(1.26 \mathrm{~g}, 6.62 \mathrm{mmol})$ at room temperature, and the mixture was stirred at the same temperature for 12.5 h . To the mixture was added saturated NaHCO_{3} aqueous solution at $0^{\circ} \mathrm{C}$, and the aqueous layer was extracted with $\mathrm{Et}_{2} \mathrm{O}$. The organic layer was washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated. The residue was purified by column chromatography on silica gel (hexane/AcOEt $=1 / 1$) to ketone ($521 \mathrm{mg}, 95 \%$) as a yellow oil. ${ }^{1} \mathrm{H}$ NMR $(500 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 1.43-1.62(\mathrm{~m}, 3 \mathrm{H}), 1.80(\mathrm{~m}, 1 \mathrm{H}), 1.96-2.43(\mathrm{~m}, 8 \mathrm{H}), 4.21-4.26(\mathrm{~m}, 2 \mathrm{H})$.

2-[5-(tert-Butyldimethylsilyloxy)pent-3-ynyl]cyclopentanone (92). To a solution of the above ketone ($476 \mathrm{mg}, 2.86 \mathrm{mmol}$) and imidazole ($598 \mathrm{mg}, 8.78 \mathrm{mmol}$) in DMF (2.8 mL) was added TBSCl ($655 \mathrm{mg}, 4.34 \mathrm{mmol}$) at $0^{\circ} \mathrm{C}$, and the mixture was stirred at room temperature for 1 h . To the mixture was added saturated $\mathrm{NH}_{4} \mathrm{Cl}$ aqueous solution at $0{ }^{\circ} \mathrm{C}$, and the aqueous layer was extracted with $\mathrm{Et}_{2} \mathrm{O}$. The organic layer was washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated. The residue was purified by column chromatography on silica gel (hexane/ $\mathrm{AcOEt}=20 / 1$) to give $92(675 \mathrm{mg}, 84 \%)$ as a colorless oil. IR (neat) $1739,1463,1078 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 0.10(\mathrm{~s}, 6 \mathrm{H}), 0.90(\mathrm{~s}, 9 \mathrm{H}), 1.49-1.55(\mathrm{~m}, 2 \mathrm{H}), 1.73-1.83(\mathrm{~m}, 1 \mathrm{H}), 1.95-2.05(\mathrm{~m}, 2 \mathrm{H}), 2.07-2.16$ (m, 1 H), 2.18-2.40 (m, 5 H), 4.26-4.28 (m, 2 H); ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl} 3$) δ-5.1, 17.1, 18.3, 20.7, 25.8, 28.5, 29.5, 38.0, 48.1, 51.9, 79.4, 84.3, 220.8; EI-LRMS $m / z 223\left[\left(\mathrm{M}^{t} \mathrm{Bu}\right)^{+}\right], 181,167$, 143; EI-HRMS calcd for $\mathrm{C}_{12} \mathrm{H}_{19} \mathrm{O}_{2} \mathrm{Si} 223.11543$ found 223.11493.
<Scheme 19>

3-(6-Methyl-1,4-dioxaspiro[4.4]nonan-6-yl)propanal (108). To a solution of $\mathbf{1 0 7}^{19)}$ ($685 \mathrm{mg}, 3.42$
$\mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(17 \mathrm{~mL})$ was added $\operatorname{PCC}(1.21 \mathrm{~g}, 5.14 \mathrm{mmol})$ at $0^{\circ} \mathrm{C}$, and the mixture was stirred at room temperature for 4 h . To the mixture was added hexane at room temperature. The reaction mixture was filtered through Florisil ${ }^{\circledR}$ column (hexane), and the filtrate was concentrated. The residue was purified by short column chromatography on silica gel (AcOEt) to give $\mathbf{1 0 8}$ (390 mg) as a yellow oil. IR (neat) $1725,1465,1417,1313,950 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 0.96$ (s, $3 \mathrm{H}), 1.49(\mathrm{~m}, 1 \mathrm{H}), 1.56-1.88(\mathrm{~m}, 7 \mathrm{H}), 2.35-2.52(\mathrm{~m}, 2 \mathrm{H}), 3.87-3.93(\mathrm{~m}, 4 \mathrm{H}), 9.77(\mathrm{t}, J=1.9,1$ H); ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 17.8,20.2,27.2,33.3,35.7,40.0,45.1,64.4,64.7,119.3,203.3$; EI-LRMS m/z $198(\mathrm{M})^{+}, 169\left[(\mathrm{M}-\mathrm{CHO})^{+}\right], 155\left[\left(\mathrm{M}-\mathrm{CH}_{2} \mathrm{CHO}\right)^{+}\right], 141\left[\left(\mathrm{M}_{-} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CHO}\right)^{+}\right]$; EI-HRMS calcd for $\mathrm{C}_{11} \mathrm{H}_{18} \mathrm{O}_{3} 198.1255$ found 198.1250.

6-(4,4-Dibromobut-3-enyl)-6-methyl-1,4-dioxaspiro[4.4]nonane. To a solution of $\mathrm{PPh}_{3}(1.06 \mathrm{~g}$, $4.04 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(4 \mathrm{~mL})$ was added a solution of $\mathrm{CBr}_{4}(993 \mathrm{mg}, 2.99 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(4 \mathrm{~mL})$ at $0{ }^{\circ} \mathrm{C}$, and the mixture was stirred at the same temperature for 30 min . To the mixture was added a solution of $108(26.4 \mathrm{~g}, 143 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \mathrm{~mL})$ at $0{ }^{\circ} \mathrm{C}$, and the mixture was stirred at same temperature for 10 min . To the mixture was added hexane at room temperature. The mixture was filtered through Celite ${ }^{\circledR}$ pad, and the filtrate was concentrated. The residue was purified by flash column chromatography on silica gel (hexane/AcOEt $=10 / 1$) and purified by flash column chromatography on silica gel (toluene) to dibromoolefin ($436 \mathrm{mg}, 2$ steps 36%) as a yellow oil. IR (neat) 1627, 1463, 1376, 1313, $948 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 0.98(\mathrm{~s}, 3 \mathrm{H}$), 1.43-1.54 (m, $3 \mathrm{H})$, 1.59-1.62 (m, 3 H), 1.75-1.90 (m, 2 H), 1.99-2.17 (m, 2 H), 3.87-3.93 (m, 4 H$), 6.39(\mathrm{t}, \mathrm{J}=$ $7.3,1 \mathrm{H}$); ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 17.9,20.0,28.9,32.9,33.3,35.3,45.6,64.5,64.8,88.2$, 119.4, 139.5; EI-LRMS $m / z 354(M)^{+}, 273$ [(M-Br) $\left.{ }^{+}\right]$; EI-HRMS calcd for $\mathrm{C}_{12} \mathrm{H}_{18} \mathrm{Br}_{2} \mathrm{O}_{2} 351.96731$ found 351.96710 .

6-Methyl-6-(pent-3-ynyl)-1,4-dioxaspiro[4.4]nonane (109). To a solution of the above dibromoolefin ($436 \mathrm{mg}, 1.23 \mathrm{mmol}$) in THF (6 mL) was added a solution of BuLi in hexane (1.61 $\mathrm{M}, 1.6 \mathrm{~mL}, 2.58 \mathrm{mmol}$) at $-78^{\circ} \mathrm{C}$, and the mixture was stirred at the same temperature for 30 min . To the mixture was added $\mathrm{MeI}(0.4 \mathrm{~mL}, 6.43 \mathrm{mmol})$ at $-78^{\circ} \mathrm{C}$, the mixture was stirred at the same temperature for 1.5 h , and was slowly warmed to room temperature overnight. To the mixture was added saturated $\mathrm{NH}_{4} \mathrm{Cl}$ aqueous solution at $0{ }^{\circ} \mathrm{C}$, and the aqueous layer was extracted with $\mathrm{Et}_{2} \mathrm{O}$. The organic layer was washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated. The residue was roughly purified by short column chromatography on silica gel (AcOEt) to give $\mathbf{1 0 9}(260 \mathrm{mg})$ as a yellow oil. ${ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 0.94(\mathrm{~s}, 3 \mathrm{H}), 1.49(\mathrm{~m}, 1 \mathrm{H}), 1.58-1.68(\mathrm{~m}, 5 \mathrm{H})$,
$1.75-1.87(\mathrm{~m}, 5 \mathrm{H}), 2.02-2.20(\mathrm{~m}, 2 \mathrm{H}), 3.86-3.95(\mathrm{~m}, 4 \mathrm{H})$.

2-Methyl-2-(pent-3-ynyl)cyclopentanone (101). To a solution of $\mathbf{1 0 9}(260 \mathrm{mg})$ in acetone (12 mL) was added $\mathrm{TsOH} \cdot \mathrm{H}_{2} \mathrm{O}(487 \mathrm{mg}, 2.56 \mathrm{mmol})$ at room temperature, and the mixture was stirred at the same temperature for 12.5 h . To the mixture was added saturated NaHCO_{3} aqueous solution at $0{ }^{\circ} \mathrm{C}$, and the aqueous layer was extracted with $\mathrm{Et}_{2} \mathrm{O}$. The organic layer was washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated. The residue was purified by column chromatography on silica gel (hexane/AcOEt = 20/1) to give $101(168.7 \mathrm{mg}, 2$ steps $84 \%)$ as a yellow oil. IR (neat) 1736, 1457, 1409, 1374, $948 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 0.99(\mathrm{~s}, 3 \mathrm{H}), 1.65(\mathrm{~m}, 1 \mathrm{H}), 1.70-1.77(\mathrm{~m}, 4$ H), 1.80-1.97 (m, 3 H), 2.02-2.33 (m, 4 H); ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 3.4,14.2,18.6,21.5$, 35.5, 35.8, 37.5, 47.9, 75.9, 78.8, 222.8; EI-LRMS m/z $164(\mathrm{M})^{+}, 149\left[(\mathrm{M}-\mathrm{Me})^{+}\right], 98$ [(M-CH2CCMe) $\left.{ }^{+}\right]$; EI-HRMS calcd for $\mathrm{C}_{11} \mathrm{H}_{16} \mathrm{O} 164.1196$ found 164.1199.

$<$ Scheme 20>

6-(tert-Butyldimethylsilyloxy)methyl-1,4-dioxaspiro[4.4]nonane-6-carbaldehyde (111). To a solution of $\mathbf{1 1 0}^{\mathbf{2 0})}$ ($172 \mathrm{mg}, 0.747 \mathrm{mmol}$) and imidazole ($157 \mathrm{mg}, 2.31 \mathrm{mmol}$) in DMF (0.75 mL) were added $\mathrm{TBSCl}(168 \mathrm{mg}, 1.11 \mathrm{mmol})$ at $0^{\circ} \mathrm{C}$, and the mixture was stirred at room temperature for 30 min . To the mixture was added saturated $\mathrm{NH}_{4} \mathrm{Cl}$ aqueous solution at $0^{\circ} \mathrm{C}$, and the aqueous layer was extracted with $\mathrm{Et}_{2} \mathrm{O}$. The organic layer was washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated. The residue was roughly purified by short column chromatography on silica gel (AcOEt) to give a crude TBS ether (286 mg) as a colorless oil. To the TBS ether (286 mg) in toluene (3.7 mL) was added a solution of DIBAL-H in toluene ($0.99 \mathrm{M}, 1.6 \mathrm{~mL}, 1.58 \mathrm{mmol}$) at $-78{ }^{\circ} \mathrm{C}$, and the mixture was stirred at the same temperature for 30 min . After the mixture was diluted with $\mathrm{Et}_{2} \mathrm{O}$, to the mixture was added saturated potassium sodium tartrate aqueous solution at $-78^{\circ} \mathrm{C}$, and the resulting mixture was stirred at room temperature overnight. The aqueous layer was extracted with $\mathrm{Et}_{2} \mathrm{O}$. The organic layer was washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated. The residue was purified by column chromatography on silica gel (hexane/ $\mathrm{AcOEt}=4 / 1$) to give 111 (133 mg , 2 steps 59\%) as a colorless oil. IR (neat) 1731, 1472, 1254, $1092 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (500 $\mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-0.029(\mathrm{~s}, 3 \mathrm{H}), 0.032(\mathrm{~s}, 3 \mathrm{H}), 0.84(\mathrm{~s}, 9 \mathrm{H}), 1.61-1.81(\mathrm{~m}, 5 \mathrm{H}), 2.27(\mathrm{~m}, 1 \mathrm{H}), 3.63$ (d, $J=10.2 \mathrm{~Hz}, 1 \mathrm{H}$), $3.80-3.94(\mathrm{~m}, 4 \mathrm{H}), 4.12(\mathrm{~d}, J=10.2 \mathrm{~Hz}, 1 \mathrm{H}), 9.62(\mathrm{~s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (125 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta-5.62,-5.58,18.2,20.0,25.8,27.3,36.8,62.6,63.1,64.5,65.1,118.7,203.3$.
(E)-Ethyl 3-[6-(tert-butyldimethylsilyloxy)methyl-1,4-dioxaspiro[4.4]nonan-6-yl]acrylate. To a suspension of $\mathrm{NaH}(60 \%$ dispersion in mineral oil, $36.4 \mathrm{mg}, 0.910 \mathrm{mmol})$ in THF $(1.5 \mathrm{~mL})$ was added a solution of diethylphosphonoacetic acid ethyl ester ($0.2 \mathrm{~mL}, 1.01 \mathrm{mmol}$) in THF (1 mL) at $0^{\circ} \mathrm{C}$, and the mixture was stirred at the same temperature for 10 min . To the mixture was added a solution of $111(133 \mathrm{mg}, 0.444 \mathrm{mmol})$ in THF $(2 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$, and the mixture was stirred at room temperature for 2 h . To the mixture was added saturated $\mathrm{NH}_{4} \mathrm{Cl}$ aqueous solution at $0{ }^{\circ} \mathrm{C}$, and the aqueous layer was extracted with $\mathrm{Et}_{2} \mathrm{O}$. The organic layer was washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated. The residue was roughly purified by column chromatography on silica gel (hexane/ $\mathrm{AcOEt}=10 / 1$) to give acrylate $(175 \mathrm{mg})$ as a colorless oil. ${ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ $\delta 0.01(\mathrm{~s}, 3 \mathrm{H}), 0.02(\mathrm{~s}, 3 \mathrm{H}), 0.86(\mathrm{~s}, 9 \mathrm{H}), 1.27(\mathrm{dd}, J=7.0,7.0 \mathrm{~Hz}, 3 \mathrm{H}), 1.65-1.73(\mathrm{~m}, 2 \mathrm{H})$, $1.79-1.87(\mathrm{~m}, 3 \mathrm{H}), 1.96(\mathrm{~m}, 1 \mathrm{H}), 3.59(\mathrm{~d}, J=10.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.66(\mathrm{~d}, J=10.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.85-3.95$ $(\mathrm{m}, 4 \mathrm{H}), 4.18(\mathrm{dq}, J=2.9,7.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.19(\mathrm{dq}, J=2.9,7.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.87(\mathrm{~d}, J=16.6 \mathrm{~Hz}, 1 \mathrm{H})$, $7.05(\mathrm{~d}, J=16.6 \mathrm{~Hz}, 1 \mathrm{H})$.

Ethyl 3-[6-(tert-butyldimethylsilyloxy)methyl-1,4-dioxaspiro[4.4]nonan-6-yl]propanoate. To a solution of the above acrylate (175 mg) in AcOEt $(4.4 \mathrm{~mL})$ was added Pd-C $(10 \% \mathrm{Pd}, 3.5 \mathrm{mg}, 0.74$ mmol) at room temperature, and the mixture was stirred at same temperature under H_{2} atmosphere for 6 h . The mixture was roughly purified by short column chromatography on silica gel (AcOEt) to give crude ester $(162 \mathrm{mg})$ as a colorless oil. ${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 0.04(\mathrm{~s}, 6 \mathrm{H}), 0.89(\mathrm{~s}, 9$ H), $1.24(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}), 1.47(\mathrm{~m}, 1 \mathrm{H}), 1.56-1.64(\mathrm{~m}, 2 \mathrm{H}), 1.70-1.92(\mathrm{~m}, 5 \mathrm{H}), 2.29(\mathrm{~m}, 1 \mathrm{H})$, $2.42(\mathrm{~m}, 1 \mathrm{H}), 3.43(\mathrm{~d}, J=9.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.61(\mathrm{~d}, J=9.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.81-3.95(\mathrm{~m}, 4 \mathrm{H}), 4.11(\mathrm{q}, J=$ $7.2 \mathrm{~Hz}, 2 \mathrm{H}), 5.87(\mathrm{~d}, J=16.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.05(\mathrm{~d}, J=16.6 \mathrm{~Hz}, 1 \mathrm{H})$.

3-[6-(tert-Butyldimethylsilyloxy)methyl-1,4-dioxaspiro[4.4]nonan-6-yl]propanal (112). To a solution of the above crude ester (162 mg) in toluene (2.2 mL) a solution of DIBAL-H in toluene $(0.99 \mathrm{M}, 0.45 \mathrm{~mL}, 0.446 \mathrm{mmol})$ at $-78^{\circ} \mathrm{C}$, and the mixture was stirred at the same temperature for 30 min . After the mixture was diluted with $\mathrm{Et}_{2} \mathrm{O}$, saturated potassium sodium tartrate aqueous solution was added to the mixture at $-78{ }^{\circ} \mathrm{C}$, and the resulting mixture was stirred at room temperature overnight. The aqueous layer was extracted with $\mathrm{Et}_{2} \mathrm{O}$. The organic layer was washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated. The residue was roughly purified by short column chromatography on silica gel (hexane $/ \mathrm{AcOEt}=10 / 1$) to give crude $\mathbf{1 1 2}(137 \mathrm{mg})$ as a colorless oil. ${ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 0.036(\mathrm{~s}, 3 \mathrm{H}), 0.041(\mathrm{~s}, 3 \mathrm{H}), 0.88(\mathrm{~s}, 9 \mathrm{H}), 1.47(\mathrm{~m}, 1 \mathrm{H}), 1.57-1.65$ (m, 2 H), 1.73-1.92 (m, 5 H$), 2.52(\mathrm{~m}, 1 \mathrm{H}), 2.54(\mathrm{~m}, 1 \mathrm{H}), 3.44(\mathrm{~d}, J=9.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.62(\mathrm{~d}, J=9.7$ $\mathrm{Hz}, 1 \mathrm{H}), 3.81-3.93(\mathrm{~m}, 4 \mathrm{H}), 9.74(\mathrm{~m}, 1 \mathrm{H})$.

6-(4,4-Dibromobut-3-enyl)-6-(tert-butyldimethylsiloxy)methyl-1,4-dioxaspiro[4.4]nonane. To a solution of $\mathrm{PPh}_{3}(445 \mathrm{mg}, 1.70 \mathrm{mmol})$ and $\mathrm{CBr}_{4}(278 \mathrm{mg}, 0.837 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3.1 \mathrm{~mL})$ was $\mathrm{Et}_{3} \mathrm{~N}(0.46 \mathrm{~mL}, 3.30 \mathrm{mmol})$ at room temperature, and the mixture was stirred at the same temperature for 15 min . To the mixture was added a solution of $\mathbf{1 1 2}(137 \mathrm{mg})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1 \mathrm{~mL})$ at $-78{ }^{\circ} \mathrm{C}$, and the mixture was stirred at room temperature for 4 h . The mixture was filtered through silica gel pad, and the filtrate was concentrated. The residue was roughly purified by flash column chromatography on silica gel (hexane $/ \mathrm{AcOEt}=4 / 1$) to give crude dibromoolefin (191 mg) as a colorless oil. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 0.05(\mathrm{~s}, 6 \mathrm{H}), 0.89(\mathrm{~s}, 9 \mathrm{H}), 1.43-1.87(\mathrm{~m}, 8 \mathrm{H})$, 2.03-2.21 (m, 2 H), $3.43(\mathrm{~d}, ~ J=10.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.65(\mathrm{~d}, J=10.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.82-3.95(\mathrm{~m}, 4 \mathrm{H}), 6.38$ (m, 1 H).

6-(tert-Butyldimethylsiloxy)methyl-6-(pent-3-ynyl)-1,4-dioxaspiro[4.4]nonane (113). Similar to synthesis of $\mathbf{1 3 6}$ from 6-(4,4-dibromobut-3-enyl)-6-methyl-1,4-dioxaspiro[4.4]nonane, a crude product, which was obtained from above dibromoolefin (191 mg), BuLi in hexane solution (1.55 M , $0.55 \mathrm{~mL}, 0.835 \mathrm{mmol})$, MeI $(0.12 \mathrm{~mL}, 1.93 \mathrm{mmol})$ in THF $(4 \mathrm{~mL})$ at $-78{ }^{\circ} \mathrm{C}$ to $0^{\circ} \mathrm{C}$ for 2 h , was roughly purified by flash column chromatography on silica gel (AcOEt) to give crude $\mathbf{1 1 3}$ (123 mg) as a colorless oil. ${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 0.04(\mathrm{~s}, 6 \mathrm{H}), 0.89(\mathrm{~s}, 9 \mathrm{H}), 1.48(\mathrm{~m}, 1 \mathrm{H})$, $1.56-1.86(\mathrm{~m}, 9 \mathrm{H}), 2.04-2.25(\mathrm{~m}, 2 \mathrm{H}), 3.41(\mathrm{~d}, J=10.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.59(\mathrm{~d}, J=10.3 \mathrm{~Hz}, 1 \mathrm{H})$, 3.80-3.95 (m, 4 H).

2-(tert-Butyldimethylsilyloxy)methyl-2-(pent-3-ynyl)cyclopentanone (103). Similar to synthesis of $\mathbf{1 0 1}$ from $\mathbf{1 0 9}$, a crude product, which was obtained from $113(123 \mathrm{mg}), \mathrm{TsOH} \cdot \mathrm{H}_{2} \mathrm{O}(137 \mathrm{mg}$, 0.721 mmol) in acetone (8 mL) at room temperature for 30 min , was purified by flash column chromatography on silica gel (hexane/ $\mathrm{AcOEt}=10 / 1$) to give $103(75.9 \mathrm{mg}, 6$ steps $58 \%)$ as a colorless oil. IR (neat) $1739,1471,1256,1097,839,778 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta-0.01$ (s, 3 H), $0.01(\mathrm{~s}, 3 \mathrm{H}), 0.85(\mathrm{~s}, 9 \mathrm{H}), 1.53-1.68(\mathrm{~m}, 2 \mathrm{H}), 1.74(\mathrm{t}, J=2.6 \mathrm{~Hz}, 3 \mathrm{H}), 1.79-1.99(\mathrm{~m}, 3$ H), 2.01-2.27 (m, 5 H$), 3.40(\mathrm{~d}, J=9.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.63(\mathrm{~d}, J=9.2 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (125 MHz , CDCl_{3}) $\delta-5.72,-5.68,3.4,14.2,18.2,19.3,25.8,30.5,32.8,39.3,53.6,67.1,222.2$; EI-LRMS m / z $279\left[(\mathrm{M}-\mathrm{Me})^{+}\right], 237\left[(\mathrm{M}-t-\mathrm{Bu})^{+}\right]$; EI-HRMS calcd for $\mathrm{C}_{13} \mathrm{H}_{21} \mathrm{O}_{2} \mathrm{Si} 237.13108$ found 237.13143.

Chapter 1, Section 3

<Table 3>

<run 1>
($3 \mathrm{a} S^{*}, 7 \mathrm{aS}^{*}, \boldsymbol{E}$)-4-Ethylidene-3a-triethylsiloxyoctahydro-1H-indene (118). According to the general procedure, a crude product, which was obtained from $114(80.4 \mathrm{mg}, 0.490 \mathrm{mmol}), \mathrm{Ni}(\operatorname{cod})_{2}$ ($13.7 \mathrm{mg}, 0.0498 \mathrm{mmol}$), $\mathrm{IPr} \cdot \mathrm{HCl}(21.3 \mathrm{mg}, 0.0501 \mathrm{mmol}),{ }^{t} \mathrm{BuOK}(6.9 \mathrm{mg}, 0.0615 \mathrm{mmol})$, and $\mathrm{Et}_{3} \mathrm{SiH}(0.40 \mathrm{~mL}, 2.50 \mathrm{mmol}$) in THF (5.0 mL) for 30 min , was purified by flash column chromatography on silica gel (hexane/ $\mathrm{Et}_{2} \mathrm{O}=500 / 1$) to give $\mathbf{1 1 8}(143.3 \mathrm{mg}$, quant) as a colorless oil. IR (neat) $1665,1457,1237,1114,1075,894 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 0.55(\mathrm{q}, J=8.0$ Hz, 6 H$), 0.92$ (t, $J=8.0 \mathrm{~Hz}, 9 \mathrm{H}$), 1.24-1.37 (m, 2 H$), 1.38-1.57$ (m, 4 H), 1.61 (m, $J=6.7 \mathrm{~Hz}, 3 \mathrm{H}$), $1.63-1.80(\mathrm{~m}, 3 \mathrm{H}), 1.94(\mathrm{~m}, 1 \mathrm{H}), 2.05(\mathrm{~m}, 1 \mathrm{H}), 2.13(\mathrm{~m}, 1 \mathrm{H}), 2.26(\mathrm{~m}, 1 \mathrm{H}), 5.46(\mathrm{q}, J=6.7 \mathrm{~Hz}$, 1 H); ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 6.4,7.2,12.9,20.1,23.7,25.0,26.6,27.2,36.9,48.6,84.0$, 116.1, 140.3; EI-LRMS $m / z 280\left(\mathrm{M}^{+}\right), 265,251,224,209,147,115$; EI-HRMS calcd for $\mathrm{C}_{17} \mathrm{H}_{32} \mathrm{OSi}$ 280.22225 , found 280.22229 .
<run 2>
($\mathbf{3 a} \boldsymbol{R}^{*}, 7 \mathrm{aS}^{*}, \boldsymbol{E}$)-1-Ethylidene-7a-methoxyoctahydro-1H-indene (119). According to the general procedure, a crude product, which was obtained from $115(81.8 \mathrm{mg}, 0.498 \mathrm{mmol}), \mathrm{Ni}(\operatorname{cod})_{2}(13.7$ $\mathrm{mg}, 0.0498 \mathrm{mmol}), \mathrm{IPr} \cdot \mathrm{HCl}(21.1 \mathrm{mg}, 0.0496 \mathrm{mmol})$, ${ }^{t} \mathrm{BuOK}(6.6 \mathrm{mg}, 0.0588 \mathrm{mmol})$, and $\mathrm{Et}_{3} \mathrm{SiH}$ $(0.40 \mathrm{~mL}, 2.50 \mathrm{mmol})$ in THF (5.0 mL) for 30 min , was purified by flash column chromatography on silica gel (hexane $/ \mathrm{Et}_{2} \mathrm{O} / \mathrm{Et}_{3} \mathrm{~N}=500 / 1 / 5$) to give $\mathbf{1 1 9}$ (140.6 mg , quant) as a colorless oil. IR (neat) $1679,1448,1260,1237,1078,1009 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 0.51(\mathrm{q}, J=7.8 \mathrm{~Hz}$, 6 H), $0.90(\mathrm{t}, J=7.8 \mathrm{~Hz}, 9 \mathrm{H}), 1.10-1.30(\mathrm{~m}, 3 \mathrm{H}), 1.43-1.62(\mathrm{~m}, 8 \mathrm{H}), 1.83(\mathrm{~m}, 1 \mathrm{H}), 1.93-2.01(\mathrm{~m}$, 2 H), 2.23-2.28 (m, 2 H), $5.38(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 6.4,7.1,14.3,23.7,24.5$, 25.7, 26.6, 28.5, 34.4, 48.5, 82.1, 116.9, 144.8; EI-LRMS $m / z 280\left(\mathrm{M}^{+}\right), 251\left[(\mathrm{M}-\mathrm{Et})^{+}\right]$; EI-HRMS calcd for $\mathrm{C}_{17} \mathrm{H}_{32} \mathrm{OSi} 280.22225$, found 280.22235 .
<run 3>
$\left(4 a R^{*}, 8 a S^{*}, E\right)$-1-Ethylidene-8a-triethylsiloxydecahydronaphthalene (120). According to the general procedure, a crude product, which was obtained from 116 ($89.0 \mathrm{mg}, 0.499 \mathrm{mmol}), \mathrm{Ni}(\operatorname{cod})_{2}$ ($13.9 \mathrm{mg}, 0.0505 \mathrm{mmol}$), $\mathrm{IPr} \cdot \mathrm{HCl}\left(21.7 \mathrm{mg}, 0.0511 \mathrm{mmol}\right.$), ${ }^{t} \mathrm{BuOK}(6.9 \mathrm{mg}, 0.0615 \mathrm{mmol}$), and $\mathrm{Et}_{3} \mathrm{SiH}(0.40 \mathrm{~mL}, 2.50 \mathrm{mmol})$ in THF $(5.0 \mathrm{~mL})$ for 30 min , was purified by flash column
chromatography on silica gel (hexane $/ \mathrm{Et}_{2} \mathrm{O}=500 / 1$) to give $\mathbf{1 2 0}(147.4 \mathrm{mg}$, quant) as a colorless oil. IR (neat) 1663, 1457, 1237, $1071 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 0.54(\mathrm{q}, J=8.0 \mathrm{~Hz}, 6 \mathrm{H})$, $0.92(\mathrm{t}, J=8.0 \mathrm{~Hz}, 9 \mathrm{H}), 1.20-1.50(\mathrm{~m}, 8 \mathrm{H}), 1.57-1.68(\mathrm{~m}, 6 \mathrm{H}), 2.07-2.23(\mathrm{~m}, 3 \mathrm{H}), 2.35(\mathrm{~m}, 1 \mathrm{H})$, $5.39(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 6.8,7.3,12.9,21.8,24.6,24.9,26.3,27.9,28.5,37.7$, 46.2, 77.3, 117.6, 139.6; EI-LRMS m/z $294\left(\mathrm{M}^{+}\right)$, 279, 265, 251, 237, 223, 209, 161, 103; EI-HRMS calcd for $\mathrm{C}_{18} \mathrm{H}_{34} \mathrm{OSi}$ 294.2383, found 294.2377.
<run 4>
($4 \mathrm{a} \boldsymbol{S}^{*}, \mathbf{8 a} R^{*}, E$)-1-Ethylidene-4a-ethoxycarbonyl-8a-triethylsiloxydecahydronaphthalene (121). According to the general procedure, a crude product, which was obtained from 117 (131.0 mg , $0.523 \mathrm{mmol}), \mathrm{Ni}(\mathrm{cod})_{2}(13.8 \mathrm{mg}, 0.0502 \mathrm{mmol}), \mathrm{IPr} \cdot \mathrm{HCl}(21.2 \mathrm{mg}, 0.0502 \mathrm{mmol}),{ }^{t} \mathrm{BuOK}(6.8 \mathrm{mg}$, 0.0606 mmol), and $\mathrm{Et}_{3} \mathrm{SiH}(0.40 \mathrm{~mL}, 2.50 \mathrm{mmol})$ in THF (5.0 mL) for 30 min , was purified by flash column chromatography on silica gel (hexane/AcOEt $=20 / 1$) to give $\mathbf{1 2 1}(145.1 \mathrm{mg}, 76 \%)$ as a colorless oil. IR (neat) 1737, 1723, 1458, 1239, 1181, 1131, $1074 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (500 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 0.55(\mathrm{dq}, J=3.2,7.9 \mathrm{~Hz}, 3 \mathrm{H}), 0.55(\mathrm{dq}, J=3.2,7.9 \mathrm{~Hz}, 3 \mathrm{H}), 0.91(\mathrm{t}, J=7.9 \mathrm{~Hz}, 9 \mathrm{H})$, 1.23-1.26 (m, 3 H), 1.35-1.68 (m, 13 H), 2.02 (m, 1 H), 2.10-2.50 (m, 4 H$), ~ 4.05-4.15(\mathrm{~m}, 2 \mathrm{H})$, 5.53 (m, 1 H); ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) d 6.8, 7.1, 13.2, 14.2, 21.3, 21.9, 23.9, 24.3, 30.1, 31.5, 32.4, 53.4, 59.5, 78.3, 118.5, 139.6; EI-LRMS m/z $366\left(\mathrm{M}^{+}\right), 337$ [(M-Et) ${ }^{+}$; EI-HRMS calcd for $\mathrm{C}_{21} \mathrm{H}_{38} \mathrm{O}_{3} \mathrm{Si} 366.25902$, found 366.25902 .

$<$ Table 4>

<run 1>
$\left(4 \mathrm{a} S^{*}, \mathbf{1 0 a S}{ }^{*}, \boldsymbol{E}\right)$-4-Ethylidene-4a-triethylsiloxy-1,2,3,4,4a,9,10,10a-octahydrophenanthrene
(126). According to the general procedure, a crude product, which was obtained from 122 (109.6 $\mathrm{mg}, 0.484 \mathrm{mmol}), \mathrm{Ni}(\operatorname{cod})_{2}(13.6 \mathrm{mg}, 0.0494 \mathrm{mmol}), \mathrm{IPr} \cdot \mathrm{HCl}(21.6 \mathrm{mg}, 0.0508 \mathrm{mmol}),{ }^{t} \mathrm{BuOK}(6.6$ $\mathrm{mg}, 0.0588 \mathrm{mmol})$, and $\mathrm{Et}_{3} \mathrm{SiH}(0.40 \mathrm{~mL}, 2.50 \mathrm{mmol})$ in THF $(5.0 \mathrm{~mL})$ for 30 min , was purified by flash column chromatography on silica gel (hexane) to give $\mathbf{1 2 6}$ ($121.3 \mathrm{mg}, 73 \%$) as a colorless oil. IR (neat) 1920, 1603, 1578, 1455, 1235, $1087 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 0.12-0.33(\mathrm{~m}, 6$ H), $0.71(\mathrm{t}, J=8.0 \mathrm{~Hz}, 9 \mathrm{H}), 1.57-1.75(\mathrm{~m}, 3 \mathrm{H}), 1.60(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H}), 1.90-2.08(\mathrm{~m}, 3 \mathrm{H}), 2.41$ (s, 3 H), $3.65(\mathrm{dd}, J=3.4,7.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.78(\mathrm{dt}, J=13.7,2.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.18(\mathrm{~d}, J=13.2 \mathrm{~Hz}, 1 \mathrm{H})$, 5.55 (ddq, $J=2.3,2.3,6.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.32(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.74(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 5.8,6.8,14.6,21.5,24.2,32.8,39.4,51.0,73.0,90.2,119.0,127.9,129.5$,
133.4, 140.3, 143.4; EI-LRMS m/z $342\left(\mathrm{M}^{+}\right)$, 313, 273, 285, 273, 259, 211; EI-HRMS calcd for $\mathrm{C}_{22} \mathrm{H}_{34} \mathrm{OSi} 342.23789$, found 342.23727 .
<run 2>
($4 \mathrm{a} S^{*}, 10 \mathrm{a} R^{*}, E$)-4-Ethylidene-10a-ethoxycarbonyl-4a-triethylsiloxy- $\mathbf{1 , 2 , 3 , 4 , 4 a , 9 , 1 0 , 1 0 a - o c t a}$ hydrophenanthrene (127). According to the general procedure, a crude product, which was obtained from $123(149.0 \mathrm{mg}, 0.499 \mathrm{mmol}), \mathrm{Ni}(\operatorname{cod})_{2}(13.5 \mathrm{mg}, 0.0491 \mathrm{mmol}), \mathrm{IPr} \cdot \mathrm{HCl}(21.6 \mathrm{mg}$, 0.0508 mmol), ${ }^{t} \mathrm{BuOK}(6.3 \mathrm{mg}, 0.0561 \mathrm{mmol})$, and $\mathrm{Et}_{3} \mathrm{SiH}(0.40 \mathrm{~mL}, 2.50 \mathrm{mmol})$ in THF (5.0 mL) for 3 h , was purified by flash column chromatography on silica gel (hexane/ $\mathrm{AcOEt}=20 / 1$) to give 127 ($163.9 \mathrm{mg}, 79 \%$) as a colorless oil. IR (neat) $1725,1602,1455,1251,1096 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (500 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 0.18(\mathrm{dq}, J=15.8,7.7 \mathrm{~Hz}, 3 \mathrm{H}), 0.25(\mathrm{dq}, J=15.8,7.7 \mathrm{~Hz}, 3 \mathrm{H}), 0.76(\mathrm{dd}, J=7.7$, $7.7 \mathrm{~Hz}, 9 \mathrm{H}), 1.21-1.24(\mathrm{~m}, 3 \mathrm{H})$, 1.33-1.45 (m, 2 H$)$, 1.58-1.68 (m, 2 H$)$, 1.73-1.97 (m, 5 H), 2.50-2.64 (m, 2 H), 2.81-2.96 (m, 2 H), 3.98-4.15 (m, 2 H), 5.82 (m, 1 H), 7.05-7.13 (m, 2 H), 7.12 (m, 1 H), $7.31(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 6.1,7.1,12.9,14.1,22.7,25.4,25.5,26.0$, 29.2, 52.6, 59.7, 79.5, 117.6, 126.0, 127.7, 129.0, 129.4, 135.9, 138.1, 139.6, 174.7; EI-LRMS m / z $414\left(\mathrm{M}^{+}\right), 385\left[(\mathrm{M}-\mathrm{Et})^{+}\right]$; EI-HRMS calcd for $\mathrm{C}_{25} \mathrm{H}_{38} \mathrm{O}_{3} \mathrm{Si} 414.25902$, found 414.25902.
<run 3>
$\left(4 \mathrm{a} S^{*}, 8 \mathrm{a} R^{*}, E\right)$-5-Ethylidene-4a-triethylsiloxy-2,2-dimethylhexahydro-4H-benzo $[d][1,3]$ dioxine (128). According to the general procedure, a crude product, which was obtained from 124 (103.0 $\mathrm{mg}, 0.490 \mathrm{mmol}), \mathrm{Ni}(\operatorname{cod})_{2}(13.8 \mathrm{mg}, 0.0502 \mathrm{mmol}), \mathrm{IPr} \cdot \mathrm{HCl}(21.6 \mathrm{mg}, 0.0508 \mathrm{mmol}),{ }^{t} \mathrm{BuOK}(7.0$ $\mathrm{mg}, 0.0624 \mathrm{mmol})$, and $\mathrm{Et}_{3} \mathrm{SiH}(0.40 \mathrm{~mL}, 2.50 \mathrm{mmol})$ in THF $(5.0 \mathrm{~mL})$ for 30 min , was purified by flash column chromatography on silica gel (hexane/ $\mathrm{Et}_{2} \mathrm{O}=500 / 1$) to give $\mathbf{1 2 8}(158.3 \mathrm{mg}, 99 \%)$ as a colorless oil. IR (neat) $1459,1376,1098,1083 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 0.52(\mathrm{q}, J=7.8$ $\mathrm{Hz}, 6 \mathrm{H}$), 0.91 (t, $J=7.8 \mathrm{~Hz}, 9 \mathrm{H}$), 1.33 (s, 3 H), 1.45 (s, 3 H), 1.47-1.60 (m, 3 H), 1.67 (d, $J=6.7$ $\mathrm{Hz}, 3 \mathrm{H}$), 1.93-2.08 (m, 2 H), 2.47 (m, 1 H), 3.62 (d, $J=11.2 \mathrm{~Hz}, 1 \mathrm{H}$), $3.84(\mathrm{t}, J=2.3 \mathrm{~Hz}, 1 \mathrm{H}$), $4.05(\mathrm{~d}, J=11.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.66(\mathrm{dq}, J=2.3,6.7 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 6.5,7.0$, 13.1, 18.9, 21.2, 24.1, 26.9, 29.4, 66.3, 70.4, 74.3, 98.4, 120.2, 136.4; EI-LRMS $m / z 311\left[(\mathrm{M}-\mathrm{Me})^{+}\right]$, $268\left[\left(\mathrm{M}-\mathrm{C}_{3} \mathrm{H}_{6} \mathrm{O}\right)^{+}\right]$.
<run 4>
(E)-2-Ethylidene-4,4-diethoxycarbonyl-1-triethylsiloxybicyclo[3.3.1]nonane (129). According to the general procedure, a crude product, which was obtained from $\mathbf{1 2 5}$ ($147.2 \mathrm{mg}, 0.525 \mathrm{mmol}$),
$\mathrm{Ni}(\mathrm{cod})_{2}(13.7 \mathrm{mg}, 0.0498 \mathrm{mmol}), \mathrm{IPr} \cdot \mathrm{HCl}(22.0 \mathrm{mg}, 0.0518 \mathrm{mmol}),{ }^{t} \mathrm{BuOK}(6.4 \mathrm{mg}, 0.0570 \mathrm{mmol})$, and $\mathrm{Et}_{3} \mathrm{SiH}(0.40 \mathrm{~mL}, 2.50 \mathrm{mmol})$ in THF $(5.0 \mathrm{~mL})$ for 30 min , was purified by flash column chromatography on silica gel (hexane/ $\mathrm{AcOEt}=4 / 1$) to give $\mathbf{1 2 9}(205.2 \mathrm{mg}, 99 \%)$ as a colorless oil. IR (neat) $1737,1461,1240,1122 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$) $\delta 0.65(\mathrm{q}, J=7.9 \mathrm{~Hz}, 6 \mathrm{H}), 1.03$ (t, $J=7.9 \mathrm{~Hz}, 9 \mathrm{H}$), 1.35-1.50 (m, 2 H), 1.57-1.73 (m, 6 H$), 1.82-1.94$ (m, 2 H), 2.36 (d, $J=12.0 \mathrm{~Hz}$, 1 H), 3.14 (s, 1 H), 3.299 (s, 3 H), 3.304 (s, 3 H), 3.33 ($\mathrm{s}, 1 \mathrm{H}$), 3.60 (d, J = $17.2 \mathrm{~Hz}, 1 \mathrm{H}$), 6.07 (m, $1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$) $\delta 5.46,5.51,10.7,20.2,25.5,29.8,34.8,39.8,40.1,50.15,50.21$, 57.0, 63.9, 72.5, 115.7, 137.9, 169.2, 169.6; EI-LRMS m/z $396\left(\mathrm{M}^{+}\right), 353$ [(M-Et) ${ }^{+}$; EI-HRMS calcd for $\mathrm{C}_{21} \mathrm{H}_{36} \mathrm{O}_{5} \mathrm{Si} 396.23320$, found 396.23334 .

<Table 5>

<run 1>
($\left.3 \mathrm{a} R^{*}, 6 \mathrm{aS} \mathbf{S}^{*}, E\right)$-3-Ethylidene-3a-triethylsiloxyhexahydro-2H-cyclopenta[b]furan (134). According to the general procedure, a crude product, which was obtained from $\mathbf{1 3 0}$ ($52.2 \mathrm{mg}, 0.343$ $\mathrm{mmol}), \mathrm{Ni}(\mathrm{cod})_{2}(9.0 \mathrm{mg}, 0.0498 \mathrm{mmol}), \mathrm{IPr} \cdot \mathrm{HCl}(14.4 \mathrm{mg}, 0.0339 \mathrm{mmol}),{ }^{t} \mathrm{BuOK}(4.6 \mathrm{mg}, 0.0410$ $\mathrm{mmol})$, and $\mathrm{Et}_{3} \mathrm{SiH}(0.28 \mathrm{~mL}, 1.75 \mathrm{mmol})$ in THF $(3.4 \mathrm{~mL})$ for 30 min , was purified by flash column chromatography on silica gel (hexane/ $\mathrm{AcOEt}=40 / 1$) to give $134(83.8 \mathrm{mg}, 90 \%)$ as a colorless oil. IR (neat) $1692,1460,1241,1106,1058 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 0.55(\mathrm{q}, J$ $=7.9 \mathrm{~Hz}, 6 \mathrm{H}), 0.92(\mathrm{t}, J=7.9 \mathrm{~Hz}, 9 \mathrm{H}), 1.59(\mathrm{~m}, 1 \mathrm{H}), 1.60(\mathrm{dt}, J=6.9,1.6 \mathrm{~Hz}, 3 \mathrm{H}), 1.67-1.89(\mathrm{~m}$, $4 \mathrm{H}), 1.96(\mathrm{~m}, 1 \mathrm{H}), 4.20(\mathrm{~d}, J=5.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.45(\mathrm{dq}, J=2.9,1.6 \mathrm{~Hz}, 2 \mathrm{H}), 5.55(\mathrm{td}, J=2.9,6.9$ $\mathrm{Hz}, 1 \mathrm{H}$); ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 6.2,7.0,14.6,24.1,32.2,41.8,69.5,89.6,90.9,116.3$, 145.6; EI-LRMS $m / z 268\left(\mathrm{M}^{+}\right)$, 253, 239, 225, 197, 115; EI-HRMS calcd for $\mathrm{C}_{15} \mathrm{H}_{28} \mathrm{O}_{2} \mathrm{Si} 268.18586$ found 268.18478 .
<run 2>
($3 \mathrm{a} \mathbf{R}^{*}, 7 \mathrm{aS}^{*}, \boldsymbol{E}$)-3-Ethylidene-3a-triethylsiloxyoctahydrobenzofuran (135). According to the general procedure, a crude product, which was obtained from $131(82.5 \mathrm{mg}, 0.496 \mathrm{mmol}), \mathrm{Ni}(\operatorname{cod})_{2}$ $(13.8 \mathrm{mg}, 0.0502 \mathrm{mmol}), \mathrm{IPr} \cdot \mathrm{HCl}(21.6 \mathrm{mg}, 0.0508 \mathrm{mmol}),{ }^{t} \mathrm{BuOK}(6.9 \mathrm{mg}, 0.0615 \mathrm{mmol})$, and $\mathrm{Et}_{3} \mathrm{SiH}(0.40 \mathrm{~mL}, 2.50 \mathrm{mmol})$ in THF $(5.0 \mathrm{~mL})$ for 30 min , was purified by flash column chromatography on silica gel (hexane/ $\mathrm{AcOEt}=40 / 1$) to give $135(121.7 \mathrm{mg}, 87 \%)$ as a colorless oil. IR (neat) $1697,1459,1223,1089 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 0.55(\mathrm{q}, J=8.0 \mathrm{~Hz}, 6 \mathrm{H})$, $0.93(\mathrm{t}, J=8.0 \mathrm{~Hz}, 9 \mathrm{H}), 1.22-1.36(\mathrm{~m}, 2 \mathrm{H}), 1.45-1.54(\mathrm{~m}, 3 \mathrm{H}), 1.58(\mathrm{~m}, 1 \mathrm{H}), 1.57(\mathrm{dt}, J=7.0,1.6$ $\mathrm{Hz}, 3 \mathrm{H}), 1.71(\mathrm{~m}, 1 \mathrm{H}), 1.79(\mathrm{~m}, 1 \mathrm{H}), 3.75(\mathrm{dd}, J=5.3,5.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.43(\mathrm{q}, J=6.9 \mathrm{~Hz}, 2 \mathrm{H})$,
$5.41(\mathrm{ddq}, J=5.3,5.3,7.0 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 6.5,7.1,14.1,21.6,22.5,27.1$, 35.4, 67.4, 78.9, 83.0, 114.7, 143.8; EI-LRMS m/z $282\left(\mathrm{M}^{+}\right), 253$ [(M-Et) ${ }^{+}$; EI-HRMS calcd for $\mathrm{C}_{16} \mathrm{H}_{30} \mathrm{O}_{2} \mathrm{Si}$ 282.20151, found 282.20154.
<run 3>
($3 \mathrm{a} R^{*}, 6 \mathrm{a} S^{*}, E$)-3-Ethylidene-3a-triethylsiloxy-1-tosyloctahydrocyclopenta[b]pyrrole (136). According to the general procedure, a crude product, which was obtained from 132 (152.4 mg , $0.499 \mathrm{mmol}), \mathrm{Ni}(\operatorname{cod})_{2}(14.0 \mathrm{mg}, 0.0509 \mathrm{mmol}), \mathrm{IPr} \cdot \mathrm{HCl}(21.8 \mathrm{mg}, 0.0513 \mathrm{mmol}),{ }^{t} \mathrm{BuOK}(6.7 \mathrm{mg}$, $0.0597 \mathrm{mmol})$, and $\mathrm{Et}_{3} \mathrm{SiH}(0.40 \mathrm{~mL}, 2.50 \mathrm{mmol})$ in THF (5.0 mL) for 30 min , was purified by flash column chromatography on silica gel (hexane/AcOEt $=10 / 1$) to give $\mathbf{1 3 6}(191.7 \mathrm{mg}, 91 \%)$ as a colorless oil. IR (neat) 1919, 1689, 1459, 1350, 1239, 1163, $1093 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (500 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 0.22(\mathrm{dt}, J=14.4,8.0 \mathrm{~Hz}, 3 \mathrm{H}), 0.28(\mathrm{dt}, J=14.4,8.0 \mathrm{~Hz}, 3 \mathrm{H}), 0.71(\mathrm{dd}, J=8.0,8.0 \mathrm{~Hz}$, 9 H), 1.57-1.75 (m, 3 H), $1.60(\mathrm{~d}, ~ J=6.9 \mathrm{~Hz}, 3 \mathrm{H}), 1.90-2.08(\mathrm{~m}, 3 \mathrm{H}), 2.41(\mathrm{~s}, 3 \mathrm{H}), 3.65(\mathrm{~m}, 1 \mathrm{H})$, 3.78 (dt, $J=13.7,2.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.18(\mathrm{~d}, J=13.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.55(\mathrm{dqm}, J=2.3,6.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.32(\mathrm{~d}$, $J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.74(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 5.8,6.8,14.6,21.5,24.2$, $32.8,39.4,51.0,73.0,90.3,119.0,127.9,129.5,133.4,140.3,143.4 ; 143.4$; EI-LRMS m/z 392 $\left[(\mathrm{M}-\mathrm{Et})^{+}\right], 290,266,237,223,209,115$; EI-HRMS calcd for $\mathrm{C}_{20} \mathrm{H}_{30} \mathrm{NO}_{3} \mathrm{SSi}$ 392.17157, found 392.17051 .
<run 4>
($3 \mathrm{a} R^{*}, 7 \mathrm{aS}^{*}, E$)-3-Ethylidene-3a-triethylsiloxy-1-tosyloctahydro-1H-indole (137). According to the general procedure, a crude product, which was obtained from $133(122.4 \mathrm{mg}, 0.418 \mathrm{mmol})$, $\mathrm{Ni}(\operatorname{cod})_{2}(11.4 \mathrm{mg}, 0.0414 \mathrm{mmol}), \mathrm{IPr} \cdot \mathrm{HCl}(17.9 \mathrm{mg}, 0.0421 \mathrm{mmol}),{ }^{t} \mathrm{BuOK}(5.9 \mathrm{mg}, 0.0526 \mathrm{mmol})$, and $\mathrm{Et}_{3} \mathrm{SiH}(0.34 \mathrm{~mL}, 2.13 \mathrm{mmol})$ in THF $(4.2 \mathrm{~mL})$ for 30 min , was purified by flash column chromatography on silica gel (hexane/ $\mathrm{AcOEt}=10 / 1$) to give $137(173.2 \mathrm{mg}, 95 \%)$ as a colorless oil. IR (neat) 1920, 1599, 1459, 1349, 1239, 1164, $1093 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 0.27$ (qm, $J=7.9 \mathrm{~Hz}, 6 \mathrm{H}), 0.74(\mathrm{t}, J=7.9 \mathrm{~Hz}, 9 \mathrm{H}), 1.05-1.27(\mathrm{~m}, 3 \mathrm{H}), 1.51-1.60(\mathrm{~m}, 3 \mathrm{H}), 1.61(\mathrm{~d}, J=6.9$ $\mathrm{Hz}, 3 \mathrm{H}), 2.07-2.20(\mathrm{~m}, 2 \mathrm{H}), 2.40(\mathrm{~s}, 3 \mathrm{H}), 3.59(\mathrm{~m}, 1 \mathrm{H}), 3.79(\mathrm{dm}, J=13.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.06(\mathrm{~d}, J=$ $13.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.46(\mathrm{qm}, J=6.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.27(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.75(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 6.1,7.0,14.2,21.4,23.1,23.4,31.7,33.4,47.0,68.8,79.8,118.2,127.4$, 129.4, 136.6, 138.1, 142.7; EI-LRMS $m / z 406\left[(\mathrm{M}-E t)^{+}\right], 304,280,256,148$; EI-HRMS calcd for $\mathrm{C}_{21} \mathrm{H}_{32} \mathrm{NO}_{3} \mathrm{SSi} 406.18722$, found 406.18662.
$<$ Scheme 21>
($\mathbf{3 a} S^{*}, 7 \mathrm{aR}^{*}$)-3a-Hydroxyhexahydro- $\mathbf{H} \boldsymbol{H}$-inden- $\mathbf{(2 H} \mathbf{(2 H}$-one (138) ${ }^{16)}$. Similar to synthesis of 82 from 81, a crude product, which was obtained from ozonization of $118(55.7 \mathrm{mg}, 0.199 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5 \mathrm{~mL})$ followed by reduction using $\mathrm{PPh}_{3}(52.1 \mathrm{mg}, 0.199 \mathrm{mmol})$, was treated with a 5% solution of HF in $\mathrm{CH}_{3} \mathrm{CN}(4 \mathrm{~mL})$. After usual work up, a crude product was purified by column chromatography on silica gel (hexane/AcOEt $=3 / 2$) to give $\mathbf{1 3 8}(21.1 \mathrm{mg}, 2$ steps $69 \%)$ as colorless oil. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 1.37(\mathrm{~m}, 1 \mathrm{H}), 1.56(\mathrm{~m}, 1 \mathrm{H}), 1.62-1.77(\mathrm{~m}, 3 \mathrm{H}), 1.85-2.22(\mathrm{~m}, 6$ H), 2.43-2.59 (m, 2 H), $3.92(\mathrm{~s}, 1 \mathrm{H}):{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 21.4,26.2,30.1,30.7,37.3$, 37.4, 52.7, 86.5, 214.5.
($3 \mathrm{a} \mathbf{R}^{*}, 7 \mathrm{aS}^{*}$)-7a-Hydroxyoctahydro-1H-inden-1-one (139) ${ }^{16)}$. Similar to synthesis of $\mathbf{8 2}$ from 81, a crude product, which was obtained from ozonization of $\mathbf{1 1 9}(119.5 \mathrm{mg}, 0.426 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (5 $\mathrm{mL})$ followed by reduction using $\mathrm{PPh}_{3}(112 \mathrm{mg}, 0.427 \mathrm{mmol})$, was treated with a 5% solution of HF in $\mathrm{CH}_{3} \mathrm{CN}(8 \mathrm{~mL})$. After usual work up, a crude product was purified by column chromatography on silica gel (hexane/AcOEt $=1 / 1$) to give $\mathbf{1 3 9}(47.8 \mathrm{mg}, 2$ steps $73 \%)$ as colorless oil. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 1.30(\mathrm{~m}, 1 \mathrm{H}), 1.40-1.66(\mathrm{~m}, 6 \mathrm{H}), 1.74-1.93(\mathrm{~m}, 3 \mathrm{H}), 2.10(\mathrm{~m}, 1 \mathrm{H})$, 2.22-2.47 (m, 3 H); ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 20.6,20.7,20.9,24.3,29.4,33.2,40.8,77.8$, 219.8.
$\left.\mathbf{(4 a R ^ { * }}, \mathbf{8 a} \mathbf{S}^{*}\right)$-8a-Hydroxyoctahydronaphthalen- $\mathbf{1 (2 H)}$-one (140) ${ }^{16}$. Similar to synthesis of $\mathbf{8 2}$ from 81, a crude product, which was obtained from ozonization of $120(68.0 \mathrm{mg}, 0.231 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5 \mathrm{~mL})$ followed by reduction using $\mathrm{PPh}_{3}(60.6 \mathrm{mg}, 0.231 \mathrm{mmol})$, was treated with a 5% solution of HF in $\mathrm{CH}_{3} \mathrm{CN}(8 \mathrm{~mL})$. After usual work up, a crude product was purified by column chromatography on silica gel (hexane/AcOEt $=1 / 1)$ to give $\mathbf{1 4 0}(19.3 \mathrm{mg}, 2$ steps $50 \%)$ as colorless needle. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 1.25-2.13(\mathrm{~m}, 13 \mathrm{H}), 2.39-2,62(\mathrm{~m}, 2 \mathrm{H}), 3.87(\mathrm{~s}, 1 \mathrm{H}):{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 20.1, 21.2, 26.1, 26.4, 27.5, 31.4, 37.3, 44.6, 78.1, 214.5.
<Scheme 22>

2-Ethoxycarbonyl-2-(hex-4-ynyl)cyclohexanone (117). To a suspension of NaH (60% dispersion in mineral oil, $1.96 \mathrm{~g}, 48.9 \mathrm{mmol}$) in DMF (40 mL) was added a solution of 6-iodohex-2-yne (9.10 $\mathrm{g}, 43.7 \mathrm{mmol})$ in DMF $(40 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$, and the mixture was stirred at the room temperature for 1 h .

To the mixture was added a solution of $141(6.5 \mathrm{~mL}, 40.6 \mathrm{mmol})$ in DMF $(40 \mathrm{~mL})$ at the same temperature, and the mixture was stirred at room temperature for 13 h . To the mixture was added $10 \% \mathrm{HCl}$ aqueous solution at $0{ }^{\circ} \mathrm{C}$, and the aqueous layer was extracted with $\mathrm{Et}_{2} \mathrm{O}$. The organic layer was washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated. The residue was roughly purified by column chromatography on silica gel (hexane/AcOEt $=10 / 1$) and purified by column chromatography on silica gel (toluene) to give $117(7.42 \mathrm{~g}, 77 \%)$ as a colorless oil. IR (neat) 1713, $1450,1182 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 1.26(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}$), 1.32-1.47 (m, 3 H), 1.60-1.78 (m, 7 H), 1.91 (m, 1 H), 1.99 (m, 1 H), 2.09-2.14 (m, 2 H), 2.40-2.54 (m, 3 H), $4.20(\mathrm{~d}, J$ $=7.1 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (125 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 3.5,14.1,19.1,22.5,23.9,27.6,34.0,36.0,41.1$, 60.7, 61.2, 75.8, 78.6, 171.9, 207.9; EI-LRMS m/z 205 [(M-Et) ${ }^{+}$], 177, 159, 141; EI-HRMS calcd for $\mathrm{C}_{13} \mathrm{H}_{17} \mathrm{O}_{2} 205.12285$, found 205.12263.
<Scheme 23>

2-Ethoxycarbonyl-2-(hex-4-ynyl)-3,4-dihydronaphthalen-1(2H)-one (123). Similar to synthesis of $\mathbf{1 1 7}$ from $\mathbf{1 4 1}$, a crude product, which was obtained from $\mathbf{1 4 2}^{22)}(1.19 \mathrm{~g}, 5.26 \mathrm{mmol}), \mathrm{NaH}(60 \%$ dispersion in mineral oil, $319 \mathrm{mg}, 7.99 \mathrm{mmol}$), 6-iodohex-2-yne ($1.36 \mathrm{~g}, 6.55 \mathrm{mmol}$) in DMF (26 mL) at room temperature for 2 h , was purified by flash column chromatography on silica gel (hexane/ $\mathrm{AcOEt}=10 / 1$) to give $123(540 \mathrm{mg}, 34 \%$) as a yellow oil. IR (neat) $1730,1688,1455$, $1235,1095 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 1.16(\mathrm{t}, J=10.4 \mathrm{~Hz}, 3 \mathrm{H}$), 1.46-1.66 (m, 2 H), 1.77 (t, $J=2.6,3 H$), $1.91-2.20(\mathrm{~m}, 5 \mathrm{H}), 2.57(\mathrm{dt}, J=13.7,5.2,1 \mathrm{H}), 2.90-3.11(\mathrm{~m}, 2 \mathrm{H}), 4.14(\mathrm{dq}, J=$ $1.7,10.4,2 \mathrm{H}), 7.21(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.30(\mathrm{dd}, J=7.4,7.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.46(\mathrm{dd}, J=7.7,7.7 \mathrm{~Hz}, 1$ H), $8.04(\mathrm{~d}, ~ J=8.0 \mathrm{~Hz}, 1 \mathrm{H})$; EI-LRMS m/z $298\left(\mathrm{M}^{+}\right)$, 252, 225; EI-HRMS calcd for $\mathrm{C}_{19} \mathrm{H}_{22} \mathrm{O}_{3}$ 298.15689 , found 298.15690 .

2-(Hex-4-ynyl)-3,4-dihydronaphthalen-1(2H)-one (122). To a solution of $\mathbf{1 2 3}$ ($347 \mathrm{mg}, 1.16$ $\mathrm{mmol})$ in DMF (2.4 mL) was added $\mathrm{LiI}(806 \mathrm{mg}, 6.02 \mathrm{mmol})$ at room temperature, and the mixture was refluxed for 2 h . After the mixture was diluted with $\mathrm{H}_{2} \mathrm{O}$, and the aqueous layer was extracted with $\mathrm{Et}_{2} \mathrm{O}$. The organic layer was washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated. The residue was purified by column chromatography on silica gel (hexane/ $\mathrm{AcOEt}=15 / 1$) to give $\mathbf{1 2 2}$ ($229 \mathrm{mg}, 87 \%$) as a colorless oil. IR (neat) 1946, 1683, 1455, $1290 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (500 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 1.55-1.67(\mathrm{~m}, 3 \mathrm{H}), 1.77(\mathrm{t}, J=2.6 \mathrm{~Hz}, 3 \mathrm{H}), 1.90(\mathrm{~m}, 1 \mathrm{H}), 2.12(\mathrm{~m}, 1 \mathrm{H}), 2.12-2.28(\mathrm{~m}, 3$ H), 2.49 (m, 1 H), 2.94-3.05 (m, 2 H), 7.23 (d, $J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.30(\mathrm{dd}, J=7.8,7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.46$
(dd, $J=7.4,7.4 \mathrm{~Hz}, 1 \mathrm{H}), 8.02$ (d, $J=8.6 \mathrm{~Hz}, 1 \mathrm{H}$); EI-LRMS m/z $226\left(\mathrm{M}^{+}\right), 211,159,145,118 ;$ EI-HRMS calcd for $\mathrm{C}_{16} \mathrm{H}_{18} \mathrm{O}$ 226.13576, found 226.13578.

<Scheme 24>

4-(Hex-4-ynyl)-2,2-dimethyl-1,3-dioxan-5-one (124). To a suspension of $\mathbf{1 4 3}^{23)}$ ($486.3 \mathrm{mg}, 3.74$ $\mathrm{mmol})$ in benzene $(12.5 \mathrm{~mL})$ were added MS4A $(988 \mathrm{mg})$ and cyclohexylamine $(0.86 \mathrm{~mL}, 7.52$ mmol) at room temperature, and the mixture was stirred at the same temperature over night. The mixture was filtered, and the filtrate was concentrated to give crude $\mathbf{1 4 4}$ as a colorless oil. To a solution of diethylamine ($0.46 \mathrm{~mL}, 4.45 \mathrm{mmol}$) in THF (2.5 mL) was added BuLi in hexane (1.65 $\mathrm{M}, 2.5 \mathrm{~mL}, 4.13 \mathrm{mmol}$) at $-35^{\circ} \mathrm{C}$, and stirred at the same temperature for 10 min . To the mixture was added a solution of $\mathbf{1 4 4}$ in THF $(2.5 \mathrm{~mL})$ at $-78^{\circ} \mathrm{C}$, and the reaction mixture was slowly warmed to $-20^{\circ} \mathrm{C}$ for 2 h . To the reaction mixture was added a solution of 6-iodo-2-hexyne (867.5 $\mathrm{mg}, 4.17 \mathrm{mmol})$ in THF $(2.5 \mathrm{~mL})$ at $-78{ }^{\circ} \mathrm{C}$, and the reaction mixture was warmed to room temperature over a period of 3 h . To the mixture was added saturated $\mathrm{NH}_{4} \mathrm{Cl}$ aqueous solution at $0^{\circ} \mathrm{C}$, and the aqueous layer was extracted with AcOEt. The organic layer was washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated. The residue was purified by column chromatography on silica gel (hexane/AcOEt = 10/1) to give 124 ($340 \mathrm{mg}, 43 \%$) as a colorless oil. IR (neat) 1748, 1436, 1225 $\mathrm{cm}-1 ;{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 1.43(\mathrm{~s}, 3 \mathrm{H}), 1.45(\mathrm{~s}, 3 \mathrm{H}), 1.53-1.68(\mathrm{~m}, 3 \mathrm{H}), 1.77(\mathrm{t}, J=2.6$, $3 \mathrm{H}), 1.99(\mathrm{~m}, 1 \mathrm{H}), 2.13-2.19(\mathrm{~m}, 2 \mathrm{H}), 3.99(\mathrm{~d}, J=16.2,1 \mathrm{H}), 4.24(\mathrm{~m}, 1 \mathrm{H}), 4.25(\mathrm{~d}, J=16.2 \mathrm{~Hz}$, 1 H); EI-LRMS $m / z 195\left[(\mathrm{M}-\mathrm{Me})^{+}\right], 152,110$; EI-HRMS calcd for $\mathrm{C}_{11} \mathrm{H}_{15} \mathrm{O}_{3}$ 195.10212, found 195.10171.
<Scheme 25>

Dimethyl 2-(but-2-ynyl)-2-(3-oxocyclohexyl)malonate (125). To a solution of $\mathbf{1 4 5}^{\mathbf{2 4})}$ (301 mg, 1.64 mmol) in THF (3.3 mL) were added cyclohex-2-enone (146) ($0.18 \mathrm{~mL}, 1.86 \mathrm{mmol}$) and DBU ($0.28 \mathrm{~mL}, 1.87 \mathrm{mmol}$) at room temperature, and the reaction mixture was stirred over night. After the mixture was concentrated, the residue was purified by flash column chromatography on silica gel (hexane/ $\mathrm{AcOEt}=2 / 1$) to give $125(242.6 \mathrm{mg}, 53 \%)$ as a colorless oil. IR (neat) 2236, 1731, $1714,1435 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 1.35(\mathrm{~m}, 1 \mathrm{H}), 1.64(\mathrm{~m}, 1 \mathrm{H}), 1.73(\mathrm{t}, J=2.6 \mathrm{~Hz}, 3$ H), 2.04-2.12 (m, 2 H), 2.16-2.26 (m, 2 H), 2.40 (m, 1 H), 2.54-2.68 (m, 2 H), 2.79 (m, 2 H), 3.737 (s, 3 H), 3.741 ($\mathrm{s}, 3 \mathrm{H}$); ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 3.5,23.3,24.7,27.0,40.6,41.1,43.4,52.5$, 52.6, 60.2, 73.0, 79.3, 169.9, 170.0, 210.3; EI-LRMS m/z 249 [(M-OMe) $\left.{ }^{+}\right]$, 221, 183; EI-HRMS
calcd for $\mathrm{C}_{14} \mathrm{H}_{17} \mathrm{O}_{4} 249.11268$, found 249.11259.

<Scheme 26>

2-(But-2-ynyloxy)cyclopentanone (130). To a suspension of NaH (60% dispersion in mineral oil, $186 \mathrm{mg}, 4.66 \mathrm{mmol}$) in THF (3 mL) was added a solution of compound $148(579 \mathrm{mg}, 3.11 \mathrm{mmol}$, prepared from cis-cyclopentane-1,2-diol and 3,4-dihydoro- 2 H -pyrane by using standard procedure) in THF (3 mL) at $0{ }^{\circ} \mathrm{C}$, and the mixture was stirred at the room temperature for 30 min . To the mixture were added a solution of $147(668 \mathrm{mg}, 2.98 \mathrm{mmol}$, prepared by standard tosylation of but-2-yn-1-ol with TsCl) in THF (3 mL) and $\mathrm{NaI}(35.4 \mathrm{mg}, 0.236 \mathrm{mmol})$ at $0{ }^{\circ} \mathrm{C}$, and the mixture was stirred at the room temperature for 13 h . To the mixture was added saturated $\mathrm{NH}_{4} \mathrm{Cl}$ aqueous solution at $0^{\circ} \mathrm{C}$, and the aqueous layer was extracted with AcOEt. The organic layer was washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated. The residue was roughly purified by column chromatography on silica gel to give crude THP ester (735 mg) as a colorless oil. To a solution of the above crude THP ester (735 mg) in $\mathrm{MeOH}(3 \mathrm{~mL})$ was added a 10% aqueous solution of hydrochloric acid (3 mL) at $0^{\circ} \mathrm{C}$, and stirred at room temperature for 30 min . To the mixture was added saturated $\mathrm{Na}_{2} \mathrm{CO}_{3}$ aqueous solution, at $0^{\circ} \mathrm{C}$, and the aqueous layer was extracted with AcOEt. The organic layer was washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated. The residue was roughly purified by column chromatography on silica gel to give an alcohol $149(339 \mathrm{mg})$ as a colorless oil. To a solution of the crude the alcohol $149(339 \mathrm{mg})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(11 \mathrm{~mL})$ were added PCC ($983 \mathrm{mg}, 4.56 \mathrm{mmol}$) and MS4A (2.13 g) at $0^{\circ} \mathrm{C}$, and the mixture was stirred at room temperature for 13 h . The mixture was diluted with AcOEt and filtered through silica gel pad. After the filtrate was concentrated, the residue was purified by column chromatography on silica gel (hexane $/ \mathrm{AcOEt}=10 / 1$) to give $\mathbf{1 3 0}(261 \mathrm{mg}, 3$ steps 55%) as a colorless oil. IR (neat) 1749,1451 , $1050 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 1.75-1.86(\mathrm{~m}, 2 \mathrm{H}), 1.85(\mathrm{t}, J=2.2 \mathrm{~Hz}, 3 \mathrm{H}), 2.05(\mathrm{~m}, 1$ H), 2.18-2.39 (m, 3 H), $3.97(\mathrm{~m}, 1 \mathrm{H}), 4.59(\mathrm{q}, ~ J=2.2 \mathrm{~Hz}, 2 \mathrm{H}),{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 3.6$, 17.2, 29.3, 35.3, 57.9, 74.5, 79.3, 83.0, 216.1; EI-LRMS m/z 124, 99, 84; EI-HRMS calcd for $\mathrm{C}_{8} \mathrm{H}_{12} \mathrm{O} 124.08881$ found 128.08824 .

2-(But-2-ynyloxy)cyclohexanone (131). To a solution of FeCl_{3} ($82.4 \mathrm{mg}, 0.508 \mathrm{mmol}$) in but-2-yn-1-ol (0.75 mL) was added cyclohexene oxide ($0.50 \mathrm{~mL}, 5.04 \mathrm{mmol}$) at $0{ }^{\circ} \mathrm{C}$, and the mixture was stirred at room temperature for 2 h . To the mixture was added $\mathrm{H}_{2} \mathrm{O}$, at same temperature, and the aqueous layer was extracted with $\mathrm{Et}_{2} \mathrm{O}$. The organic layer was washed with
brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated. The residue was roughly purified by column chromatography on silica gel (hexane/AcOEt 4/1) to give crude $151(500 \mathrm{mg})$ as a colorless oil. To a solution of the above $151(500 \mathrm{mg})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(25 \mathrm{~mL})$ were added PCC $(3.26 \mathrm{~g}, 1.51 \mathrm{mmol})$ and MS4A (6.60 g) at $0^{\circ} \mathrm{C}$, and stirred at same temperature over night. The mixture was diluted with AcOEt, filtered, and the filtrate was concentrated. The residue was purified by column chromatography on silica gel (hexane/ $\mathrm{AcOEt}=10 / 1$) to give $131(255 \mathrm{mg}, 2$ steps $30 \%)$ as a colorless oil. IR (neat) 2296, 2240, 1721, 1052, 1143, $1110 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 1.62-1.77 (m, 3 H), 1.85 (dd, $J=2.2,2.2 \mathrm{~Hz}, 3 \mathrm{H}$), 1.90-2.02 (m, 2 H), 2.20-2.35 (m, 2 H), 2.53 (m, $1 \mathrm{H}), 4.07(\mathrm{~m}, 1 \mathrm{H}), 4.18(\mathrm{dq}, J=15.4,2.2 \mathrm{~Hz}, 2 \mathrm{H}), 4.32(\mathrm{dq}, J=15.4,2.2 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (125 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 3.6,23.3,27.6,34.4,40.7,57.5,74.7,80.7,82.8,209.7$; EI-LRMS $m / z 166\left(\mathrm{M}^{+}\right)$, 122, 98; EI-HRMS calcd for $\mathrm{C}_{10} \mathrm{H}_{14} \mathrm{O}_{2} 166.09938$, found 166.09979.
\mathbf{N}-(But-2-ynyl)-4-methyl- \boldsymbol{N}-(2-oxocyclopentyl)benzenesulfonamide (132). To a solution of $\mathbf{1 5 2}^{26)}(742.6 \mathrm{mg}, 3.99 \mathrm{mmol}), 148(228.1 \mathrm{mg}, 1.02 \mathrm{mmol})$ and $\mathrm{PPh}_{3}(1.34 \mathrm{~g}, 5.13 \mathrm{mmol})$ in THF (5 $\mathrm{mL})$ was added DIAD $(1 \mathrm{~mL}, 5.08 \mathrm{mmol})$ at $0{ }^{\circ} \mathrm{C}$. The resulting reaction mixture was stirred at $50^{\circ} \mathrm{C}$ for 20 h and concentrated. The residue was roughly purified by column chromatography on silica gel (hexane/ $\mathrm{AcOEt}=5 / 1$) to give crude tosylamide $(480 \mathrm{mg})$ as a yellow oil. To a solution of the above crude tosylamide (480 mg) in $\mathrm{MeOH}(5 \mathrm{~mL})$ were added $10 \% \mathrm{HCl}$ aqueous solution at room temperature, and stirred at same temperature for 30 min . To the mixture was added saturated NaHCO_{3} aqueous solution at $0{ }^{\circ} \mathrm{C}$, and the aqueous layer was extracted with AcOEt. The organic layer was washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated. The residue was roughly purified by short column chromatography on silica gel (AcOEt) to give crude $\mathbf{1 5 3}$ (400 mg) as a yellow oil. To a solution of the above $153(400 \mathrm{mg})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL})$ were added PCC $(334 \mathrm{mg}$, 1.55 mmol) and MS4A (702 mg) at $0^{\circ} \mathrm{C}$, and stirred at same temperature over night. After usual work up, a crude product was purified by column chromatography on silica gel (toluene $/ \mathrm{AcOEt}=$ 10/1) to give 132 ($190 \mathrm{mg}, 3$ steps 61%) as a colorless oil. IR (neat) 1923, 1754, 1598, 1451, 1092 $\mathrm{cm}^{-1} ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 1.71(\mathrm{dd}, J=2.3,2.3 \mathrm{~Hz}, 3 \mathrm{H}), 1.82(\mathrm{~m}, 1 \mathrm{H}), 2.07(\mathrm{~m}, 1 \mathrm{H})$, 2.17-2.35 (m, 4 H$), 2.42(\mathrm{~s}, 3 \mathrm{H}), 3.81(\mathrm{dq}, J=18.3,2.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.07(\mathrm{dq}, J=18.3,2.3 \mathrm{~Hz}, 1 \mathrm{H})$, $4.21(\mathrm{~m}, 1 \mathrm{H}), 7.30(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.81(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ $3.5,18.4,21.5,27.7,35.6,35.8,64.2,73.8,81.9,127.6,129.5,136.8,143.5,213.2$; ESI-LRMS m / z $633\left[(2 \mathrm{M}+\mathrm{Na})^{+}\right], 328\left[(\mathrm{M}-\mathrm{Na})^{+}\right]$; ESI-HRMS calcd for $\mathrm{C}_{16} \mathrm{H}_{19} \mathrm{NO}_{3} \mathrm{NaS}$ 328.09779, found 328.09720.

- Chapter 2 -

General Procedure for the Carboxylation of Allenamide

$\mathrm{Ni}(\operatorname{cod})_{2}(1$ eq to a substrate) was weighed into a flame-dried flask. To this were added THF (8 $\mathrm{mL} / \mathrm{mmol}$) and ligand at $0{ }^{\circ} \mathrm{C}$, and the flask was immersed in a liquid nitrogen bath. After the mixture had been frozen, the flask was evacuated to 0.05 mmHg . The flask was backfilled with CO_{2} in a plastic balloon and the frozen mixture was slowly thawed at $0^{\circ} \mathrm{C}$. To this suspension was added a solution of the substrate in THF ($8 \mathrm{~mL} / \mathrm{mmol}$) at $0^{\circ} \mathrm{C}$, and the resulting mixture was stirred at the same temperature. To the mixture wad added 10% aqueous HCl at $0{ }^{\circ} \mathrm{C}$, and the aqueous layer was extracted with AcOEt. The organic layer was washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated in vacuo. The residue was treated with diazomethane in $\mathrm{Et}_{2} \mathrm{O}$ or MeOH according to the standard procedure. After the usual work-up, the crude product was purified by flash column chromatography on silica gel to give the corresponding ester.

Chapter 2, Section 1

<Scheme 35>

(E)-Methyl 2-methyl-3-(N-methyl- N-tosylamino)acrylate (196). According to the general procedure, a crude product, which was obtained from $\mathbf{1 9 5}^{42)}$ ($80.8 \mathrm{mg}, 0.362 \mathrm{mmol}$), $\mathrm{Ni}(\operatorname{cod})_{2}(99.8$ $\mathrm{mg}, 0.363 \mathrm{mmol})$, and DBU ($0.11 \mathrm{~mL}, 0.736 \mathrm{mmol}$) in THF (5.8 mL) for 2 h , was purified by flash column chromatography on silica gel (hexane/ $\mathrm{AcOEt}=4 / 1$) to give $196(78.1 \mathrm{mg}, 76 \%)$ as a colorless oil. IR (film, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$) 2952, 2361, 2342, 1710, 1637, 1356, $1164 \mathrm{~cm}-1 ;{ }^{1} \mathrm{H}$ NMR (500 $\mathrm{MHz}, \mathrm{CDCl} 3$) $\delta 1.91$ ($\mathrm{d}, J=1.3 \mathrm{~Hz}, 3 \mathrm{H}$), 2.42 (s, 3 H), 3.08 ($\mathrm{s}, 3 \mathrm{H}$), 3.72 ($\mathrm{s}, 3 \mathrm{H}$), 7.33 (d, $J=8.0$ $\mathrm{Hz}, 2 \mathrm{H}$), $7.53(\mathrm{~d}, J=1.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.69(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 12.5$, $21.5,36.0,51.9,115.4,127.2,129.9,134.2,137.9,144.4,168.6$; EI-LRMS $m / z 283\left(\mathrm{M}^{+}\right), 252,178$, 155, 146, 128, 96, 91; EI-HRMS calcd for $\mathrm{C}_{13} \mathrm{H}_{17} \mathrm{NO}_{4} \mathrm{~S} 283.08783$, found 283.08826.

<Table 6>

<run 2>
According to the general procedure, a crude product, which was obtained from $195(81.2 \mathrm{mg}, 0.364$ $\mathrm{mmol}), \mathrm{Ni}(\mathrm{cod})_{2}(99.7 \mathrm{mg}, 0.362 \mathrm{mmol})$, and DBU ($0.22 \mathrm{~mL}, 1.47 \mathrm{mmol}$) in THF (5.8 mL) for 1 h , was purified by flash column chromatography on silica gel (hexane/AcOEt $=4 / 1$) to give 196 (90.8 $\mathrm{mg}, 89 \%$) as a colorless oil.
<run 3>
$\mathrm{Ni}(\mathrm{cod})_{2}(99.2 \mathrm{mg}, 0.361 \mathrm{mmol})$ and $1,10-\mathrm{phenanthlorine}(65.7 \mathrm{mg}, 0.363 \mathrm{mmol})$ were weighed into a flame-dried flask. To this was added THF $(2.9 \mathrm{~mL})$ at $0{ }^{\circ} \mathrm{C}$, and the flask was immersed in a liquid nitrogen bath. After the mixture had been frozen, the flask was evacuated to 0.05 mmHg . The flask was backfilled with CO_{2} in a plastic balloon and the frozen mixture was slowly thawed at $0^{\circ} \mathrm{C}$. To this suspension was added a solution of $\mathbf{1 9 5}(81.3 \mathrm{mg}, 0.364 \mathrm{mmol})$ in THF $(2.9 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$, and the resulting mixture was stirred at the same temperature. To the mixture wad added 10% aqueous HCl at $0^{\circ} \mathrm{C}$, and the aqueous layer was extracted with AcOEt. The organic layer was washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated in vacuo. The residue was treated with diazomethane in MeOH according to the standard procedure. After the usual work-up, the crude product was purified by flash column chromatography on silica gel (hexane/AcOEt $=4 / 1$) to give 196 ($4.6 \mathrm{mg}, 4 \%$) as a colorless oil.
<run 4>
$\mathrm{Ni}(\operatorname{cod})_{2}(99.7 \mathrm{mg}, 0.365 \mathrm{mmol})$ and $\operatorname{DCPE}(154.5 \mathrm{mg}, 0.366 \mathrm{mmol})$ were weighed into a flame-dried flask. To this was added THF $(2.9 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$, and the flask was immersed in a liquid nitrogen bath. After the mixture had been frozen, the flask was evacuated to 0.05 mmHg . The flask was backfilled with CO_{2} in a plastic balloon and the frozen mixture was slowly thawed at $0{ }^{\circ} \mathrm{C}$. To this suspension was added a solution of $195(81.4 \mathrm{mg}, 0.365 \mathrm{mmol})$ in THF $(2.9 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$, and the resulting mixture was stirred at the same temperature. To the mixture wad added 10% aqueous HCl at $0^{\circ} \mathrm{C}$, and the aqueous layer was extracted with AcOEt. The organic layer was washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated in vacuo. The residue was treated with diazomethane in MeOH according to the standard procedure. After the usual work-up, the crude product was purified by flash column chromatography on silica gel (hexane/AcOEt $=4 / 1$) to give only trace amount of $\mathbf{1 9 6}$.
<run 5>
According to the general procedure, a crude product, which was obtained from 195 ($79.3 \mathrm{mg}, 0.355$ $\mathrm{mmol}), \mathrm{Ni}(\mathrm{cod})_{2}(99.6 \mathrm{mg}, 0.362 \mathrm{mmol})$, and TMEDA ($55 \mu \mathrm{~L}, 0364 \mathrm{mmol}$) in THF (5.8 mL) for 1 h, was purified by flash column chromatography on silica gel (hexane/ $\mathrm{AcOEt}=4 / 1$) to give 196 ($83.8 \mathrm{mg}, 82 \%$) as a colorless oil.
<run 6>
According to the general procedure, a crude product, which was obtained from $195(81.1 \mathrm{mg}, 0.363$ $\mathrm{mmol}), \mathrm{Ni}(\operatorname{cod})_{2}(99.9 \mathrm{mg}, 0.363 \mathrm{mmol})$, and TMEDA ($0.11 \mathrm{~mL}, 0.729 \mathrm{mmol}$) in THF (5.8 mL) for 1 h , was purified by flash column chromatography on silica gel (hexane $/ \mathrm{AcOEt}=4 / 1$) to give 196 ($90.4 \mathrm{mg}, 88 \%$) as a colorless oil.

Chapter 2, Section 2

$<$ Scheme 36>
$<$ Eq. 11>

(E)-Methyl 2-methyl-3-(2-oxazolidon-3-yl)acrylate (198). According to the general procedure, a crude product, which was obtained from $\left.\mathbf{1 9 7}^{43}\right)(45.5 \mathrm{mg}, 0.364 \mathrm{mmol}), \mathrm{Ni}(\operatorname{cod})_{2}(99.3 \mathrm{mg}, 0.361$ $\mathrm{mmol})$, and DBU ($0.22 \mathrm{~mL}, 1.47 \mathrm{mmol}$) in THF (5.8 mL) for 1 h , was purified by flash column chromatography on silica gel (hexane/AcOEt $=1 / 1 \sim \mathrm{AcOEt})$ to give $198(33.9 \mathrm{mg}, 51 \%)$ as a colorless solid. mp 139-140 ${ }^{\circ} \mathrm{C}$ (recrystallized from $\mathrm{CH}_{2} \mathrm{Cl}_{2} /$ hexane); IR (film $\mathrm{CH}_{2} \mathrm{Cl}_{2}$) 2954, 1772, 1703, 1657, 1408, 1203, $748 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 2.02(\mathrm{~s}, 3 \mathrm{H}), 3.75(\mathrm{~s}, 3 \mathrm{H}), 4.18$ $(\mathrm{t}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 4.47(\mathrm{t}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.80(\mathrm{~s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 11.2$, 44.3, 51.7, 62.2, 108.5, 133.4, 155.9, 168.7; EI-LRMS m/z 185 (M ${ }^{+}$), 154, 153, 125, 109, 81; EI-HRMS calcd for $\mathrm{C}_{8} \mathrm{H}_{11} \mathrm{NO}_{4}$ 185.06881, found 185.06883.
$<$ Eq. $12>$

According to the general procedure, a crude product, which was obtained from $199(73.7 \mathrm{mg}$, $0.363 \mathrm{mmol}), \mathrm{Ni}(\mathrm{cod})_{2}(98.8 \mathrm{mg}, 0.359 \mathrm{mmol})$, and $\mathrm{DBU}(0.11 \mathrm{~mL}, 0 . \mathrm{mmol})$ in THF (5.8 mL) for 1 h , was purified by flash column chromatography on silica gel (hexane/ $\mathrm{AcOEt}=4 / 1 \sim 2 / 1$) to give 200 (20.2 mg, 21\%) and $201 \quad(5.7 \quad \mathrm{mg}$, 6\%). (E)-Methyl 3-\{ N-benzyl- N-(methoxycarbonyl)amino\}-2-methylacrylate (200). colorless oil; IR (film $\mathrm{CH}_{2} \mathrm{Cl}_{2}$) 2952, 2361, 2342, 1710, 1637, 1356, $1164 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 1.78-1.80$ (m, 3 H), $3.73(\mathrm{~s}, 3 \mathrm{H}), 3.79(\mathrm{~s}, 1 \mathrm{H}), 4.12(\mathrm{~s}, 1 \mathrm{H}), 7.16-7.35(\mathrm{~m}, 5 \mathrm{H}), 7.69(\mathrm{~s}, 1 \mathrm{H}),{ }^{13} \mathrm{C}$ NMR (125 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 12.7,51.1,51.9,53.7,115.7,126.5,127.4,128.6,137.3,137.9,155.3,168.9$; EI-LRMS $m / z 263\left(\mathrm{M}^{+}\right)$, 231, 204, 172, 91; EI-HRMS calcd for $\mathrm{C}_{14} \mathrm{H}_{17} \mathrm{NO}_{4}$ 263.11576, found 263.11511. Methyl 2-[\{N-benzyl- \boldsymbol{N}-(methoxycarbonyl)amino\}methyl]acrylate (201). colorless oil; IR (film, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$) 2953, 1707, 1472, 1246, 1141, 956, $737 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (500 MHz , DMSO- d_{6}, at $100{ }^{\circ} \mathrm{C}$) $\delta 3.66(\mathrm{~s}, 3 \mathrm{H}), 3.69(\mathrm{~s}, 3 \mathrm{H}), 4.05(\mathrm{~s}, 2 \mathrm{H}), 4.45(\mathrm{~s}, 2 \mathrm{H}), 5.61(\mathrm{~s}, 1 \mathrm{H}), 6.16(\mathrm{~m}, 1 \mathrm{H})$, 7.21-7.36 (m, 5 H); ${ }^{13} \mathrm{C}$ NMR (125 MHz , DMSO- d_{6}, at $100{ }^{\circ} \mathrm{C}$) $\delta 46.5,49.7,51.1,51.9,124.8$, 126.6, 126.9, 127.9, 135.7, 137.3, 155.9, 165.4; EI-LRMS m/z 263 (M^{+}), 232, 204, 172, 164, 91; EI-HRMS calcd for $\mathrm{C}_{14} \mathrm{H}_{17} \mathrm{NO}_{4}$ 263.11576, found 263.11518.
<Scheme 37>

major
$\mathrm{CH}_{2} \rightarrow$ 'Bu: $7.7 \% \mathrm{NOE}$
${ }^{\mathrm{B}} \mathrm{Bu} \rightarrow \mathrm{CH}_{2}$: $10.6 \% \mathrm{NOE}$

minor
$\mathrm{CH}_{2} \rightarrow \mathrm{H}: 12.1 \%$ NOE
$\mathrm{H} \rightarrow \mathrm{CH}_{2}: 6.9 \% \mathrm{NOE}$

Methyl 2-[\{N-benzyl- N-(methoxycarbonyl)amino\}methyl]-4,4-dimethylpent-2-enoate (203).
According to the general procedure, a crude product, which was obtained from $202(94.5 \mathrm{mg}, 0.364$ $\mathrm{mmol}), \mathrm{Ni}(\mathrm{cod})_{2}(98.4 \mathrm{mg}, 0.358 \mathrm{mmol})$, and $\operatorname{DBU}(0.22 \mathrm{~mL}, 1.47 \mathrm{mmol})$ in THF $(5.8 \mathrm{~mL})$ for 13 h , was purified by flash column chromatography on silica gel (hexane/AcOEt $=10 / 1$) to give 203
($100.5 \mathrm{mg}, 88 \%, E: Z=91: 9$) as a colorless oil. \boldsymbol{E}-203. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{DMSO}-d_{6}$, at $100{ }^{\circ} \mathrm{C}$) $\delta 1.09$ (s, 9 H), 3.60 (s, 3 H), 3.64 (s, 3 H), 4.35 (s, 2 H), 4.41 (s, 2 H), 6.63 (s, 1 H), 7.14-7.35 (m, 5 H). Z-203. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, ~ D M S O-d_{6}$, at $100{ }^{\circ} \mathrm{C}$) $\delta 1.04(\mathrm{~s}, 9 \mathrm{H}), 3.64(\mathrm{~s}, 3 \mathrm{H}), 3.66(\mathrm{~s}, 3 \mathrm{H})$, 3.93 (s, 2 H), 4.39 (s, 2 H), 5.49 (s, 1 H), 7.14-7.35 (m, 5 H).

$<$ Table 7>

<run 1>

major
$\mathrm{CH}_{2} \rightarrow{ }^{\text {tBu: }} 8.7 \%$ NOE
${ }^{\mathrm{t}} \mathrm{Bu} \rightarrow \mathrm{CH}_{2}: 5.0 \%$ NOE

minor
$\mathrm{CH}_{2} \rightarrow \mathrm{H}: 12.7 \%$ NOE
$\mathrm{H} \rightarrow \mathrm{CH}_{2}: 5.7 \% \mathrm{NOE}$

Methyl 2-[\{N-benzyl- N-(tert-butoxycarbonyl)amino\}methyl]-4,4-dimethylpent-2-enoate (213). According to the general procedure, a crude product, which was obtained from 205 (109.1 mg , $0.362 \mathrm{mmol}), \mathrm{Ni}(\operatorname{cod})_{2}(99.0 \mathrm{mg}, 0.360 \mathrm{mmol})$, and DBU ($\left.0.22 \mathrm{~mL}, 1.47 \mathrm{mmol}\right)$ in THF (5.8 mL) for 15 h , was purified by flash column chromatography on silica gel (hexane/ $\mathrm{AcOEt}=10 / 1$) to give $213(118.3 \mathrm{mg}, 91 \%, E: Z=89: 11)$ as a colorless oil. $\boldsymbol{E}-213$. colorless oil; IR (neat) 2959, 1721, $1698,1454,1249,1168,881,699 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (500 MHz, DMSO- d_{6}, at $100{ }^{\circ} \mathrm{C}$) $\delta 1.09(\mathrm{~s}, 9 \mathrm{H})$, $1.40(\mathrm{~s}, 9 \mathrm{H}), 3.60(\mathrm{~s}, 3 \mathrm{H}), 4.33(\mathrm{~s}, 2 \mathrm{H}), 4.35(\mathrm{~s}, 2 \mathrm{H}), 6.63(\mathrm{~s}, 1 \mathrm{H}), 7.13-7.34(\mathrm{~m}, 5 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (125 MHz , DMSO-d6, at $100^{\circ} \mathrm{C}$) $\delta 27.6,29.5,32.9,41.8,48.4,50.9,78.7,126.10,126.13,126.9$, 127.8, 138.2, 152.3, 154.5, 167.6; EI-LRMS $m / z 305\left[\left(\mathrm{M}^{-}{ }^{t} \mathrm{Bu}+\mathrm{H}\right)^{+}\right], 260,237,228,214,204,170$, 138, 106, 91; EI-HRMS calcd for $\mathrm{C}_{17} \mathrm{H}_{23} \mathrm{NO}_{4}$ 305.16271, found 305.16200. \boldsymbol{Z}-213. colorless oil; IR (film, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$) 2956, 1733, 1698, 1454, 1244, 1167, 873, $700 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (500 MHz , DMSO- $d_{6}, 100{ }^{\circ} \mathrm{C}$) $\delta 1.05(\mathrm{~s}, 9 \mathrm{H}), 1.41(\mathrm{~s}, 9 \mathrm{H}), 3.67(\mathrm{~s}, 3 \mathrm{H}), 3.90(\mathrm{~s}, 2 \mathrm{H}), 4.34(\mathrm{~s}, 2 \mathrm{H}), 5.48(\mathrm{~s}, 1$ H), 7.20-7.35 (m, 5 H); ${ }^{13} \mathrm{C}$ NMR (125 MHz, DMSO- d_{6} at $100{ }^{\circ} \mathrm{C}$) $\delta 27.5,29.0,32.3,48.5,50.3$, 50.7, 78.8, 126.2, 126.4, 126.9, 127.8, 137.6, 143.2, 154.2, 168.4; EI-LRMS $m / z 305\left[\left(\mathrm{M}^{t} \mathrm{Bu}+\mathrm{H}\right)^{+}\right]$, 274, 260, 248, 214, 204, 182, 170, 150, 138, 106, 91; EI-HRMS calcd for $\mathrm{C}_{17} \mathrm{H}_{23} \mathrm{NO}_{4}$ 305.16271, found 305.16224 .
<run 2>

$\mathrm{CH}_{2} \rightarrow{ }^{\text {t }} \mathrm{Bu}: 8.7 \% \mathrm{NOE}$
${ }^{\mathrm{H}} \mathrm{Bu} \rightarrow \mathrm{CH}_{2}: 6.8 \%$ NOE
(E)-Methyl 4,4-dimethyl-2-\{(2-oxazolidon-3-yl)methyl\}pent-2-enoate (214). According to the general procedure, a crude product, which was obtained from $206(64.8 \mathrm{mg}, 0.358 \mathrm{mmol}), \mathrm{Ni}(\operatorname{cod})_{2}$ ($99.4 \mathrm{mg}, 0.361 \mathrm{mmol}$), and DBU ($0.22 \mathrm{~mL}, 1.47 \mathrm{mmol}$) in THF (5.8 mL) for 16 h , was purified by flash column chromatography on silica gel (hexane/ $\mathrm{AcOEt}=4 / 1 \sim 1 / 1$) to give 214 ($76.7 \mathrm{mg}, 88 \%$) as a colorless oil. IR (film, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$) 2964, 1752, 1714, 1435, 1266, $739 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR (500 MHz , CDCl_{3}) $\delta 1.23(\mathrm{~s}, 9 \mathrm{H}), 3.47-3.52(\mathrm{~m}, 2 \mathrm{H}), 3.76(\mathrm{~s}, 3 \mathrm{H}), 4.24-4.28(\mathrm{~m}, 2 \mathrm{H}), 4.32(\mathrm{~s}, 2 \mathrm{H}), 7.07(\mathrm{~s}$, $1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 30.5,34.0,39.8,44.4,52.2,61.9,124.7,157.4,158.1,168.5$; EI-LRMS $m / z 241\left(\mathrm{M}^{+}\right), 209,184,166,140,122,100$; EI-HRMS calcd for $\mathrm{C}_{12} \mathrm{H}_{19} \mathrm{NO}_{4}$ 241.13141, found 241.13139 .
$<$ run 3>

$\mathrm{CH}_{2} \rightarrow{ }^{\text {tBu: }} 9.1 \%$ NOE
${ }^{\mathrm{t}} \mathrm{Bu} \rightarrow \mathrm{CH}_{2}: 6.8 \% \mathrm{NOE}$
(E)-Methyl 4,4-dimethyl-2-\{(2-pyridon-1-yl)methyl\}pent-2-enoate (215). According to the general procedure, a crude product, which was obtained from $207(38.7 \mathrm{mg}, 0.204 \mathrm{mmol}), \mathrm{Ni}(\operatorname{cod})_{2}$ ($53.6 \mathrm{mg}, 0.195 \mathrm{mmol}$), and DBU ($0.12 \mathrm{~mL}, 0.802 \mathrm{mmol}$) in THF (3.2 mL) for 17 h , was purified by flash column chromatography on silica gel (hexane/ $\mathrm{AcOEt}=4 / 1 \sim 1 / 1$) to give 215 (29.3 mg , 60%) as a brown oil. IR (neat) $3429,2958,1714,1662,1588,1537,1436,1235,767 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 1.19(\mathrm{~s}, 9 \mathrm{H}), 3.67(\mathrm{~s}, 3 \mathrm{H}), 4.91(\mathrm{~s}, 2 \mathrm{H}), 6.11(\mathrm{~m}, 1 \mathrm{H}), 6.53(\mathrm{~m}, 1 \mathrm{H}), 7.20(\mathrm{~s}$, $1 \mathrm{H}), 7.22(\mathrm{~m}, 1 \mathrm{H}), 7.28(\mathrm{~m}, 1 \mathrm{H}),{ }^{13} \mathrm{C} \operatorname{NMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 30.0,34.3,44.0,52.2,105.6$, 120.4, 123.9, 135.6, 139.1, 159.0, 162.8, 167.7; EI-LRMS m/z 249 (M^{+}), 218, 202, 192, 139, 96; EI-HRMS calcd for $\mathrm{C}_{14} \mathrm{H}_{19} \mathrm{NO}_{3} 249.13649$, found 249.13616
<run 4>

(E)-Methyl 6-tert-butyldiphenylsilyloxy-4,4-dimethyl-2-\{(2-oxazolidon-3-yl)methyl\}hex-

2-enoate (216). According to the general procedure, a crude product, which was obtained from 208 ($162.8 \mathrm{mg}, 0.362 \mathrm{mmol}$), $\mathrm{Ni}(\operatorname{cod})_{2}(100.0 \mathrm{mg}, 0.364 \mathrm{mmol})$, and $\mathrm{DBU}(0.22 \mathrm{~mL}, 1.47 \mathrm{mmol})$ in THF (5.8 mL) for 16 h , was purified by flash column chromatography on silica gel (hexane/AcOEt $=2 / 1$) to give 216 ($126.1 \mathrm{mg}, 68 \%$) as a colorless oil. IR (neat) 2954, 2248, 1760, 1719, 1422, 1256, 1038, $775 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 0.13(\mathrm{~s}, 6 \mathrm{H}), 0.87(\mathrm{~s}, 9 \mathrm{H}), 1.47(\mathrm{~s}, 6 \mathrm{H}), 3.47-3.51$ $(\mathrm{m}, 2 \mathrm{H}), 3.74(\mathrm{~s}, 3 \mathrm{H}), 4.22-4.26(\mathrm{~m}, 2 \mathrm{H}), 4.51(\mathrm{~s}, 2 \mathrm{H}), 6.93(\mathrm{~s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (125 MHz , CDCl_{3}) $\delta-1.9,18.1,25.9,30.9,39.4,44.4,52.2,61.7,74.4,125.2,153.7,158.0,168.0$; EI-LRMS $m / z 342\left[(\mathrm{M}-\mathrm{Me})^{+}\right], 300,225,213,144,100$; EI-HRMS calcd for $\mathrm{C}_{16} \mathrm{H}_{28} \mathrm{NO}_{5} \mathrm{Si} 342.17367$, found 342.17322.
<run 5>

$\mathrm{CH}_{2} \rightarrow \mathrm{Me}: 3.6 \% \mathrm{NOE}$
$\mathrm{Me} \rightarrow \mathrm{CH}_{2}: 12.4 \%$ NOE

minor
$\mathrm{H}^{\mathrm{a}} \rightarrow \mathrm{H}^{\mathrm{b}}: 2.5 \% \mathrm{NOE}$
$\mathrm{H}^{\mathrm{b}} \rightarrow \mathrm{H}^{\mathrm{a}}: 2.6 \% \mathrm{NOE}$

major
$\mathrm{CH}_{2} \rightarrow \mathrm{H}^{\mathrm{b}}: 3.4 \% \mathrm{NOE}$
$\mathrm{H}^{\mathrm{b}} \rightarrow \mathrm{CH}_{2}: 1.9 \% \mathrm{NOE}$

According to the general procedure, a crude product, which was obtained from 209 ($99.5 \mathrm{mg}, 0.361$ $\mathrm{mmol}), \mathrm{Ni}(\mathrm{cod})_{2}(98.1 \mathrm{mg}, 0.357 \mathrm{mmol})$, and DBU ($0.22 \mathrm{~mL}, 1.47 \mathrm{mmol}$) in THF (5.8 mL) for 15 h , was purified by flash column chromatography on silica gel (hexane/AcOEt $=4 / 1 \sim 1 / 1$) to give 217 ($32.0 \mathrm{mg}, \quad 27 \%$), $\boldsymbol{E}-\mathbf{2 2 1}(28.4 \mathrm{mg}, 35 \%)$, and $\boldsymbol{Z}-221$ (4.8 mg, 6\%). (E)-Methyl 4-benzyloxy-4-methyl-2-\{(2-oxazolidon-3-yl)methyl\}pent-2-enoate (217). colorless oil. IR (neat) 2978, 2248, 1754, 1719, 1435, 1266, 916, $767 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 1.52(\mathrm{~s}, 6 \mathrm{H})$, 3.27-3.32 (m, 2 H), 3.76 ($\mathrm{s}, 3 \mathrm{H}$), 4.07-4.11 (m, 2 H), 4.45 (s, 2 H), 4.47 ($\mathrm{s}, 2 \mathrm{H}$), 6.95 ($\mathrm{s}, 1 \mathrm{H})$, 7.24-7.36 (m, 5 H); ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 27.0,40.0,44.4,52.2,61.7,65.0,75.8,127.5$, 127.7, 128.4, 138.4, 150.6, 158.0, 167.7; EI-LRMS m/z 318 [(M-Me) $\left.{ }^{+}\right]$, 225, 195, 140, 108, 91 ;

EI-HRMS calcd for $\mathrm{C}_{17} \mathrm{H}_{20} \mathrm{NO}_{5}$ 318.13415, found 318.13436. (E)-Methyl 4-methyl-2-\{(2-oxazolidon-3-yl)methylidene\}pent-3-enoate (E-221). colorless solid; mp. $107-109{ }^{\circ} \mathrm{C}$ (recrystallized from $\mathrm{CH}_{2} \mathrm{Cl}_{2} /$ hexane); IR (film, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$) 2985, 1775, 1704, 1627, 1400, 1201, $740 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 1.52(\mathrm{~m}, 3 \mathrm{H}), 1.86(\mathrm{~m}, 3 \mathrm{H}), 3.72-3.77(\mathrm{~m}, 2 \mathrm{H})$, $3.74(\mathrm{~s}, 3 \mathrm{H}), 4.37-4.43(\mathrm{~m}, 2 \mathrm{H}), 5.81(\mathrm{~s}, 1 \mathrm{H}), 7.88(\mathrm{~s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 19.7$, 25.2, 43.9, 51.9, 63.0, 111.1, 117.1, 134.0, 140.0, 156.2, 168.1; EI-LRMS $m / z 225\left(\mathrm{M}^{+}\right), 225,193$, 166, 149, 138, 120, 106; EI-HRMS calcd for $\mathrm{C}_{11} \mathrm{H}_{15} \mathrm{NO}_{4}$ 225.10011, found 225.10009. (Z)-Methyl 4-methyl-2-\{(2-oxazolidon-3-yl)methylidene\}pent-3-enoate (Z-221). colorless oil; IR (film, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$) 2917, 1767, 1712, 1624, 1401, 1158, $738 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 1.72(\mathrm{~m}, 3$ H), $1.82(\mathrm{~m}, 3 \mathrm{H}), 3.75(\mathrm{~s}, 3 \mathrm{H}), 3.94-3.98(\mathrm{~m}, 2 \mathrm{H}), 4.40-4.46(\mathrm{~m}, 2 \mathrm{H}), 5.78(\mathrm{~m}, 1 \mathrm{H}), 6.84(\mathrm{~s}, 1$ H); ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 19.1,26.4,44.5,51.9,62.8,111.6,120.5,131.9,136.7,156.5$, 167.5; EI-LRMS $m / z 225()^{+}, 225,193,166,149,138,120,106$; EI-HRMS calcd for $\mathrm{C}_{11} \mathrm{H}_{15} \mathrm{NO}_{4}$ 225.10011, found 225.09994 .
<run 6>

According to the general procedure, a crude product, which was obtained from 210 (107.5 mg , $0.361 \mathrm{mmol}), \mathrm{Ni}(\operatorname{cod})_{2}(99.5 \mathrm{mg}, 0.362 \mathrm{mmol})$, and $\mathrm{DBU}(0.22 \mathrm{~mL}, 1.47 \mathrm{mmol})$ in THF (5.8 mL) for 18 h , was purified by flash column chromatography on silica gel (hexane/ $\mathrm{AcOEt}=4 / 1 \sim 1 / 1$) to give $218 \quad(37.6 \quad \mathrm{mg}, \quad 27 \%)$ and $\boldsymbol{E}-\mathbf{2 2 1} \quad(11.0 \quad \mathrm{mg}, \quad 13 \%) . \quad$ (\boldsymbol{E})-Methyl 4-tert-butyldimethylsilyloxy-4-methyl-2-\{(2-oxazolidon-3-yl)methyl\}pent-2-enoate (218). colorless oil; IR (neat) 2956, 1755, 1714, 1428, 1258, 1109, $704 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 1.02(\mathrm{~s}, 9 \mathrm{H}), 1.21(\mathrm{~s}, 9 \mathrm{H}), 1.78(\mathrm{t}, J=6.9 \mathrm{~Hz}, 2 \mathrm{H}), 3.35-3.40(\mathrm{~m}, 2 \mathrm{H}), 3.67(\mathrm{t}, J=6.9 \mathrm{~Hz}, 2 \mathrm{H})$, 3.72 (s, 3 H), 4.13-4.17 (m, 2 H), 4.23 ($\mathrm{s}, 2 \mathrm{H}$), $7.05(\mathrm{~s}, 1 \mathrm{H}), 7.36-7.45$ (m, 6 H$), 7.62-7.66$ (m, 4 $\mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 19.0,26.7,28.5,36.3,39.9,44.4,46.2,52.1,60.9,61.8,124.9$, 127.6, 129.6, 133.6, 135.5, 156.6, 158.1, 168.3; EI-LRMS $m / z 494\left[(\mathrm{M}-\mathrm{Me})^{+}\right], 452,365,268,213$, 183, 135, 107; EI-HRMS calcd for $\mathrm{C}_{28} \mathrm{H}_{36} \mathrm{NO}_{5} \mathrm{Si} 494.23627$, found 464.23636.
<run 7>

$\mathrm{CH}_{2} \rightarrow \mathrm{Me}: 4.9 \% \mathrm{NOE}$
$\mathrm{Me} \rightarrow \mathrm{CH}_{2}: 3.4 \% \mathrm{NOE}$
(E)-Methyl 2-\{(2-oxazolidon-3-yl)methyl\}but-2-enoate (219). According to the general procedure, a crude product, which was obtained from $211(50.2 \mathrm{mg}, 0.361 \mathrm{mmol}), \mathrm{Ni}(\mathrm{cod})_{2}(99.4 \mathrm{mg}, 0.361$ $\mathrm{mmol})$, and DBU ($0.22 \mathrm{~mL}, 1.47 \mathrm{mmol}$) in THF (5.8 mL) for 1 h , was purified by flash column chromatography on silica gel (hexane/ $\mathrm{AcOEt}=1 / 1$) to give $219(32.0 \mathrm{mg}, 44 \%)$ as a colorless oil. IR (neat) 2952, 1752, 1714, 1650, 1436, 1273, 1053, $761 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 1.99$ (d, $J=7.3 \mathrm{~Hz}, 3 \mathrm{H}$), 3.53-3.57(m, 2 H), 3.76 ($\mathrm{s}, 3 \mathrm{H}$), 4.17 ($\mathrm{s}, 2 \mathrm{H}$), 4.25-4.30 (m, 2 H), $7.17(\mathrm{q}, J=$ $7.3 \mathrm{~Hz}, 1 \mathrm{H}$); ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 14.8,39.3,44.8,52.0,61.9,127.7,144.5,158.1$, 167.5; EI-LRMS $m / z 200,199\left(\mathrm{M}^{+}, 184\left[(\mathrm{M}-\mathrm{Me})^{+}\right], 167,155,140,123,111,100,96\right.$; EI-HRMS calcd for $\mathrm{C}_{9} \mathrm{H}_{13} \mathrm{NO}_{4}$ 199.08446, found 199.08402.
<run 8>
Methyl 3-methyl-2-\{(2-oxazolidon-3-yl)methyl\}but-2-enoate (220). According to the general procedure, a crude product, which was obtained from $212(55.0 \mathrm{mg}, 0.359 \mathrm{mmol}), \mathrm{Ni}(\mathrm{cod})_{2}(99.4$ $\mathrm{mg}, 0.361 \mathrm{mmol})$, and $\operatorname{DBU}(0.22 \mathrm{~mL}, 1.47 \mathrm{mmol})$ in THF $(5.8 \mathrm{~mL})$ for 1 h , was purified by flash column chromatography on silica gel (hexane/ $\mathrm{AcOEt}=1 / 1$) to give $220(45.3 \mathrm{mg}, 59 \%)$ as a colorless oil. IR (neat) 2951, 1753, 1716, 1635, 1432, 1222, 1093, 1060, $762 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (500 $\mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 1.97(\mathrm{~s}, 3 \mathrm{H}), 2.08(\mathrm{~s}, 3 \mathrm{H}), 3.47-3.51(\mathrm{~m}, 2 \mathrm{H}), 3.75(\mathrm{~s}, 3 \mathrm{H}), 4.17(\mathrm{~s}, 2 \mathrm{H})$, 4.25-4.30 (m, 2 H); ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 22.7$, 23.5, 42.7, 44.2, 51.6, 61.8, 122.3, 151.6, 158.1, 167.5; EI-LRMS $m / z 213\left(\mathrm{M}^{+}, 181\left[(\mathrm{M}-\mathrm{MeO}-\mathrm{H})^{+}\right], 153,125,110,100,95\right.$; EI-HRMS calcd for $\mathrm{C}_{10} \mathrm{H}_{15} \mathrm{NO}_{4} 213.10011$, found 213.10018.
<Scheme 38>

Methyl \boldsymbol{N}-benzyl- \boldsymbol{N}-(propa-1,2-dien-1-yl)carbamate (199). To a solution of 222 ($1.44 \mathrm{~g}, 9.91$ $\mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(40 \mathrm{~mL})$ were added $\mathrm{NaHCO}_{3}(2.54 \mathrm{~g}, 30.2 \mathrm{mmol})$ and $\mathrm{ClCO}_{2} \mathrm{Me}(1.15 \mathrm{~mL}, 14.9$ mmol), and the mixture was stirred at room temperature for 24 h . To the mixture was added $\mathrm{H}_{2} \mathrm{O}$, and the aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The organic layer was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated. The residue was roughly purified by short column chromatography on silica gel $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$ to give crude $16(1.92 \mathrm{~g})$, which was dissolved in DMF $(40 \mathrm{~mL})$. To the DMF solution
was added ${ }^{t} \mathrm{BuOK}(339.3 \mathrm{mg}, 3.02 \mathrm{mmol})$ at room temperature, and the mixture was stirred at the same temperature for 30 min . To the mixture was added saturated $\mathrm{NH}_{4} \mathrm{Cl}$ aqueous solution, and the aqueous layer was extracted with $\mathrm{Et}_{2} \mathrm{O}$. The organic layer was washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated. The residue was purified flash column chromatography on silica gel (hexane/ $\mathrm{AcOEt}=20 / 1$) to give $199(832.3 \mathrm{mg}, 2$ steps 41%) as a colorless oil. IR (neat) 2955, 1962, 1711, 1465, 1311, $1228 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR (500 MHz, DMSO- $d_{6}, 100^{\circ} \mathrm{C}$) $\delta 3.73$ ($\mathrm{s}, 3 \mathrm{H}$), $4.56(\mathrm{~s}$, $2 \mathrm{H}), 5.35(\mathrm{~d}, J=6.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.09(\mathrm{t}, J=6.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.20-7.26(\mathrm{~m}, 3 \mathrm{H}), 7.29-7.34(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (125 MHz, DMSO- $d_{6}, 100^{\circ} \mathrm{C}$) $\delta 47.8,52.5,87.1,99.7,126.6,126.7,127.8,137.1,153.4$, 200.6; EI-LRMS m/z $203(\mathrm{M})^{+}, 202,188,158,144,115,91$; EI-HRMS calcd for $\mathrm{C}_{12} \mathrm{H}_{12} \mathrm{NO}_{2}$ 202.08680 , found 202.08649.
<Scheme 39>
\boldsymbol{N}-Benzyl-4,4-dimethylpent-2-yn-1-amine (225). A solution of $\mathbf{2 2 4}{ }^{57}$ ($7.00 \mathrm{~g}, 36.8 \mathrm{mmol}$) in hexane (6 mL) was added to neat $\mathrm{BnNH}_{2}(24 \mathrm{~mL}, 220 \mathrm{mmol})$ at $0{ }^{\circ} \mathrm{C}$, and mixture was stirred at room temperature for 18 h . After the mixture was concentrated in vacuo, the residue was purified by flash column chromatography on silica gel (hexane/ $\mathrm{AcOEt}=4 / 1$) to give $225(4.65 \mathrm{~g}, 63 \%)$ as a colorless oil. IR (neat) 3322, 2968, 2226, 1742, 1455, 1362, 1263, 737, $698 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (500 $\mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 1.24(\mathrm{~s}, 9 \mathrm{H}), 3.40(\mathrm{~s}, 2 \mathrm{H}), 3.86(\mathrm{~s}, 2 \mathrm{H}), 7.24-7.36(\mathrm{~m}, 5 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (125 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 27.4,31.2,37.8,52.3,76.2,92.5,127.0,128.36,128.42,139.7 ;$ EI-LRMS $m / z 200$ $\left[(\mathrm{M}-\mathrm{H})^{+}\right], 186,158,144,110,91$; EI-HRMS calcd for $\mathrm{C}_{14} \mathrm{H}_{18} \mathrm{~N} 200.14392$, found 200.14332.

Methyl N-benzyl- N-(4,4-dimethylpenta-1,2-dien-1-yl)carbamate (202). Similar to the synthesis of $\mathbf{1 9 9}$ from 222, a crude product, which was obtained from $225(5.20 \mathrm{~g}, 25.8 \mathrm{mmol}), \mathrm{ClCO}_{2} \mathrm{Me}$ (3 $\mathrm{mL}, 38.9 \mathrm{mmol}), \mathrm{NaHCO}_{3}(6.51 \mathrm{~g}, 77.5 \mathrm{mmol}), \mathrm{CH}_{2} \mathrm{Cl}_{2}(50 \mathrm{~mL})$ for 14 h , was roughly purified by short column chromatography on silica gel $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$ to give crude $226(6.55 \mathrm{~g})$, which was dissolved in DMF (50 mL). To the DMF solution was added ${ }^{\mathrm{t}} \mathrm{BuOK}(2.13 \mathrm{~g}, 19.0 \mathrm{mmol})$ at room temperature, and the mixture was stirred at the same temperature for 3 h . After the usual work-up, a crude product was purified flash column chromatography on silica gel (hexane/AcOEt $=20 / 1$) to give $202\left(3.09 \mathrm{~g}, 2\right.$ steps 46%) as a colorless solid. mp. $49-50^{\circ} \mathrm{C}$ (recrystallized from hexane); IR (neat) $2960,1963,1704,1340,1265,739 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (500 MHz, DMSO- d_{6}, at $100^{\circ} \mathrm{C}$) $\delta 0.88(\mathrm{~s}$, 9 H), $3.74(\mathrm{~s}, 3 \mathrm{H}), 4.57(\mathrm{~s}, 2 \mathrm{H}), 5.68(\mathrm{~d}, J=5.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.08(\mathrm{~d}, J=5.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.15-7.25(\mathrm{~m}$, $3 \mathrm{H}), 7.27-7.33(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (125 MHz , DMSO- d_{6}, at $100^{\circ} \mathrm{C}$) $\delta 28.6,31.9,47.6,52.5,100.9$,
114.2, 126.0, 126.3, 127.7, 137.1, 153.6, 190.4; EI-LRMS m/z $259\left(\mathrm{M}^{+}\right), 244,216,202,170,144$, 91; EI-HRMS calcd for $\mathrm{C}_{16} \mathrm{H}_{21} \mathrm{NO}_{2}$ 259.15723, found 259.15748.
<Scheme 40>

Methyl 2-[\{N-benzyl- N-(methoxycarbonyl)amino\}methyl]-4,4-dimethylpentanoate (227). To a solution of $203(E: Z=91: 9,31.9 \mathrm{mg}, 99.9 \mu \mathrm{~mol})$ in $\mathrm{AcOEt}(2 \mathrm{~mL})$ was added $\mathrm{Pd}(\mathrm{OH})_{2} / \mathrm{C}(20$ $\mathrm{w} / \mathrm{w} \%$ on charcoal, $10.0 \mathrm{~g}, 7.12 \mathrm{mmol}$), and the mixture was stirred at room temperature for 8 h . After the Pd catalyst was removed by filtration through silica gel pad, the filtrate was concentrated. The residue was purified by flash column chromatography on silica gel (hexane/ $\mathrm{AcOEt}=10 / 1 \sim 4 / 1$) to give $227(30.8 \mathrm{mg}, 96 \%)$ as colorless oil. IR (neat) 2953, 1736, 1708, 1475, 1237, 1119, 701 $\mathrm{cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (500 MHz, DMSO- d_{6}, at $100{ }^{\circ} \mathrm{C}$) $\delta 0.83(\mathrm{~s}, 9 \mathrm{H}), 1.16(\mathrm{dd}, J=3.0,14.3 \mathrm{~Hz}, 1 \mathrm{H})$, $1.62(\mathrm{dd}, J=9.1,14.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.77$ (dddd, $J=3.0,5.8,9.1,9.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.25(\mathrm{dd}, J=5.8,14.0$ $\mathrm{Hz}, 1 \mathrm{H}$), 3.26 (dd, $J=9.1,14.0 \mathrm{~Hz}, 1 \mathrm{H}$), $3.60(\mathrm{~s}, 3 \mathrm{H}), 3.65(\mathrm{~s}, 3 \mathrm{H}), 4.31(\mathrm{~d}, J=15.5 \mathrm{~Hz}, 1 \mathrm{H})$, $4.53(\mathrm{~d}, J=15.5,1 \mathrm{H}), 7.20-7.36(\mathrm{~m}, 5 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (125 MHz, DMSO- d_{6}, at $100^{\circ} \mathrm{C}$) $\delta 28.5$, 29.7, $40.4,42.6,50.1,50.2,50.8,51.8,126.6,126.8,127.9,137.3,155.9,174.6$; EI-LRMS $m / z 321(\mathrm{M})^{+}$, 290, 274, 262, 230, 178, 91; EI-HRMS calcd for $\mathrm{C}_{18} \mathrm{H}_{27} \mathrm{NO}_{2} 321.19401$, found 321.19357.
<Scheme 41>
tert-Butyl \boldsymbol{N}-benzyl- \boldsymbol{N}-(4,4-dimethylpenta-1,2-dien-1-yl)carbamate (205). To a solution of $\mathbf{2 2 5}$ ($780 \mathrm{mg}, 3.88 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(16 \mathrm{~mL}\right.$) was added $(\mathrm{Boc})_{2} \mathrm{O}(1.27 \mathrm{~g}, 5.82 \mathrm{mmol})$, and the mixture was stirred at room temperature for 22 h . To the mixture was added saturated $\mathrm{Na}_{2} \mathrm{CO}_{3}$ aqueous solution was added, and the aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The organic layer was washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated. The residue was roughly purified by short column chromatography on silica gel (hexane/ $\mathrm{AcOEt}=10 / 1$) to give crude $228(1.29 \mathrm{~g})$, which was dissolved in DMF (20 mL). To the DMF solution was added ${ }^{t} \mathrm{BuOK}$ ($646.0 \mathrm{mg}, 5.76$ mmol) at room temperature, and the mixture was stirred at the same temperature for 7 h . After the usual work-up, a crude product was purified flash column chromatography on silica gel (hexane/ $\mathrm{AcOEt}=20 / 1$) to give $205(767.1 \mathrm{mg}, 2$ steps 65%) as a colorless oil. IR (neat) 2961, 1962, 1704, 1445, 1165, $894 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (500 MHz , DMSO- d_{6}, at $100^{\circ} \mathrm{C}$) $\delta 0.89(\mathrm{~s}, 9 \mathrm{H}), 1.44$ (s, 9 H), $4.52(\mathrm{~s}, 2 \mathrm{H}), 5.67(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.09(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.15-7.25(\mathrm{~m}, 3 \mathrm{H})$, 7.27-7.33 (m, 2 H); ${ }^{13} \mathrm{C}$ NMR (125 MHz , DMSO- d_{6}, at $100^{\circ} \mathrm{C}$) $\delta 27.4,28.6,31.9,47.4,80.2,101.2$,
114.0, 125.9, 126.1, 127.6, 137.5, 152.0, 190.2; EI-LRMS m/z $301\left(\mathrm{M}^{+}\right), 245,230,200,188,144$, 91; EI-HRMS calcd for $\mathrm{C}_{19} \mathrm{H}_{27} \mathrm{NO}_{2} 301.20418$, found 301.20405.

<Scheme 42>

3-(4,4-Dimethylpenta-1,2-dien-1-yl)oxazolidin-2-one (206). To a suspension of NaH (60% in mineral oil, $358.7 \mathrm{mg}, 8.97 \mathrm{mmol}$) in DMF (30 mL) was added $229(764 \mathrm{mg}, 8.77 \mathrm{mmol})$ at $0{ }^{\circ} \mathrm{C}$, and the mixture was stirred at room temperature for 30 min . To the mixture was added a solution of $224(1.51 \mathrm{~g}, 7.96 \mathrm{mmol})$ in DMF $(10 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$, and the resulting mixture was stirred at room temperature for 16 h . To the mixture was added saturated $\mathrm{NH}_{4} \mathrm{Cl}$ aqueous solution, and the organic layer was extracted with $\mathrm{Et}_{2} \mathrm{O}$. The organic layer was washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ dry, and concentrated. The residue was roughly purified by short column chromatography on silica gel (AcOEt) to give crude $230(1.52 \mathrm{~g})$, which was dissolved in DMF (15 mL). To the DMF solution was added ${ }^{t} \mathrm{BuOK}(499.4 \mathrm{mg}, 4.45 \mathrm{mmo}$) at room temperature, and the mixture was stirred at the same temperature for 41 h . After the usual work-up, a crude product was purified flash column chromatography on silica gel (hexane/ $\mathrm{AcOEt}=4 / 1$) to give $206(609 \mathrm{mg}, 2$ steps 42%) as a colorless solid. $\mathrm{mp} 51-52{ }^{\circ} \mathrm{C}$ (recrystallized from hexane); IR (film, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$) 2962, 1966, 1753, 1450, 1236, 1056, $738 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 1.05(\mathrm{~s}, 9 \mathrm{H}), 3.50-3.62(\mathrm{~m}$, $2 \mathrm{H}), 4.37-4.46(\mathrm{~m}, 2 \mathrm{H}), 5.82(\mathrm{~d}, J=5.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.86(\mathrm{~d}, J=5.7 \mathrm{~Hz}, 1 \mathrm{H}){ }^{13} \mathrm{C}$ NMR (125 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 29.7,32.9,43.1,62.1,98.1,115.5,155.3,191.5$; EI-LRMS $m / z 181\left(\mathrm{M}^{+}\right), 166,122,94$, 81; EI-HRMS calcd for $\mathrm{C}_{10} \mathrm{H}_{15} \mathrm{NO}_{2}$ 181.11028, found 181.10978.

1-(4,4-Dimethylpenta-1,2-dien-1-yl)-2-pyridone (207). To a solution of 231 ($1.05 \mathrm{~g}, 5.53 \mathrm{mmol}$) in DMF (25 mL) were added $224(491.3 \mathrm{mg}, 5.17 \mathrm{mmol})$ and $\mathrm{K}_{2} \mathrm{CO}_{3}(1.38 \mathrm{~g}, 9.99 \mathrm{mmol})$ at room temperature, and the mixture was stirred at $60^{\circ} \mathrm{C}$ for 4 days. To the mixture was added saturated $\mathrm{NH}_{4} \mathrm{Cl}$ aqueous solution, and the aqueous layer was extracted with $\mathrm{Et}_{2} \mathrm{O}$. The organic layer was washed with brine dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated. The residue was roughly purified by short column chromatography on silica gel (hexane/ $\mathrm{AcOEt}=2 / 1 \sim 1 / 1$) to give crude $232(400 \mathrm{mg})$, which was dissolved in DMF (8 mL). To the DMF solution was added ${ }^{t} \mathrm{BuOK}$ ($150 \mathrm{mg}, 1.36$ mmol), and the mixture was stirred at room temperature for 5 h . After the usual work-up, a crude product was purified flash column chromatography on silica gel (hexane/ $\mathrm{AcOEt}=2 / 1 \sim 1 / 1$) to give 207 (49.9 mg , 2 steps 5% yield) as a black oil. IR (neat) $3476,2961,1962,1666,1591,1537,1260$, $1067 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 1.12(\mathrm{~s}, 9 \mathrm{H}), 6.01(\mathrm{~d}, J=6.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.19(\mathrm{~m}, 1 \mathrm{H})$,
$6.59(\mathrm{~m}, 1 \mathrm{H}), 7.26(\mathrm{~m}, 1 \mathrm{H}), 7.46(\mathrm{~m}, 1 \mathrm{H}) 7.71(\mathrm{~d}, J=6.3 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 29.8,33.6,47.6,98.9,106.6,117.0,121.2,132.7,138.9,160.9,193.2 ;$ EI-LRMS $m / z 189\left(\mathrm{M}^{+}\right)$, 174, 130, 96 ; EI-HRMS calcd for $\mathrm{C}_{12} \mathrm{H}_{15} \mathrm{NO}$ 189.11536, found 189.11552.

<Scheme 43>

6-tert-Butyldiphenylsilyloxy-4,4-dimethylhex-2-yn-1-ol (236). To a solution of $\mathbf{2 3 3}$ ($6.69 \mathrm{~g}, 18.8$ $\mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(40 \mathrm{~mL})$ were added MS4A (10.6 g) and NMO ($3.21 \mathrm{~g}, 27.4 \mathrm{mmol}$), and the mixture was stirred at room temperature for 10 min . To the suspension were added TPAP (202.2 mg , 0.573 mmol), and the mixture was stirred at same temperature for 1.5 h . After filtration through Celite ${ }^{\circledR}$ pad, and the filtrate was concentrated. The residue was roughly purified by short column chromatography on silica gel $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$ to give crude $234(6.63 \mathrm{~g})$. To a solution of $\mathrm{PPh}_{3}(19.4 \mathrm{~g}$, $74.9 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(36 \mathrm{~mL})$ was added a solution of $\mathrm{CBr}_{4}(12.2 \mathrm{~g}, 36.8 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20$ mL) at $0^{\circ} \mathrm{C}$, and the mixture was stirred at the same temperature for 15 min . To the mixture was added a solution of $\mathbf{2 3 4}(6.63 \mathrm{~g})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$, and the mixture was stirred at the same temperature for 30 min . After additional stirring at room temperature for 2 h , the mixture was diluted with AcOEt. After the mixture was filtered through short column packed with a mixture of Celite ${ }^{\circledR}$ and silica gel ($1 / 1$), and the filtrate was concentrated. The residue was purified by short column chromatography on silica (hexane/ $\mathrm{AcOEt}=10 / 1$) to give $235(8.18 \mathrm{~g})$, which was dissolved in THF (80 mL). To the THF solution was added a solution of BuLi $(1.58 \mathrm{M}, 22.5 \mathrm{~mL}, 35.6$ mmol) in hexane at $-78{ }^{\circ} \mathrm{C}$, and the mixture was stirred at the same temperature for 1 h , then warmed to room temperature over 30 min . To the mixture was added paraformaldehyde (4.74 g , 158 mmol) at $-78{ }^{\circ} \mathrm{C}$, and the mixture was stirred at an ambient temperature for 15 h . To the mixture was added saturated $\mathrm{NH}_{4} \mathrm{Cl}$ aqueous solution, and the aqueous layer was extracted with $\mathrm{Et}_{2} \mathrm{O}$. The organic layer was washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated. The residue was purified by flash column chromatography on silica gel (hexane/ $\mathrm{AcOEt}=10 / 1$) to give 236 ($2.65 \mathrm{~g}, 3$ steps 37%) as colorless oil. IR (neat) 3343, 2931, 1960, 1890, 1824, 1589, 1428, 1110, $702 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 1.04(\mathrm{~s}, 9 \mathrm{H}), 1.17(\mathrm{~s}, 6 \mathrm{H}), 1.72(\mathrm{t}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H})$, $3.85(\mathrm{t}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 4.12-4.15(\mathrm{~m}, 2 \mathrm{H}), 7.36-7.45(\mathrm{~m}, 6 \mathrm{H}), 7.66-7.70(\mathrm{~m}, 4 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (125 $\mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 19.1,26.8,29.6,29.8,45.1,51.3,61.6,92.8,127.6,129.5$ 133.9, 135.6; EI-LRMS $m / z 323\left[\left(\mathrm{M}-{ }^{t} \mathrm{Bu}\right)^{+}\right]$, 305, 237, 199, 139, 91; EI-HRMS calcd for $\mathrm{C}_{20} \mathrm{H}_{23} \mathrm{O}_{2} \mathrm{Si} 323.14673$, found 323.14659 .

3-(6-tert-Butyldiphenylsilyloxy-4,4-dimethylhexa-1,2-dien-1-yl)oxazolidin-2-one (208).

To a solution of $236(1.45 \mathrm{~g}, 3.80 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(19 \mathrm{~mL})$ were successively added $\mathrm{Et}_{3} \mathrm{~N}(0.64$ $\mathrm{mL}, 4.59 \mathrm{mmol})$ and $\mathrm{MsCl}(0.35 \mathrm{~mL}, 4.52 \mathrm{mmol})$, and the mixture was stirred at $0{ }^{\circ} \mathrm{C}$ for 30 min . To the mixture was added $\mathrm{H}_{2} \mathrm{O}$, and the aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The organic layer was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated. The residue was roughly purified by short column chromatography on silica gel $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$ to give crude $237(1.80 \mathrm{~g})$. To a suspension of $\mathrm{NaH}(60 \%$ dispersion in mineral oil, $206.9 \mathrm{mg}, 5.17 \mathrm{mmol}$) in DMF (7.5 mL) was added $229(340.3 \mathrm{mg}$, 3.91 $\mathrm{mmol})$, and the mixture was stirred at 1 h . To the mixture was added a solution of $237(1.80 \mathrm{~g})$ in DMF (7.5 mL), and the mixture was stirred at room temperature for 3 h . To the mixture was added saturated $\mathrm{NH}_{4} \mathrm{Cl}$ aqueous solution, and the aqueous layer was extracted with $\mathrm{Et}_{2} \mathrm{O}$. The organic layer was washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated. The residue was roughly purified by short column chromatography on silica gel to give crude $238(1.70 \mathrm{~g})$, which was dissolved in DMF (19 mL). To the DMF solution was added ${ }^{t} \mathrm{BuOK}$ ($120.4 \mathrm{mg}, 1.07 \mathrm{mmol}$) at room temperature, and the mixture was stirred at room temperature for 1 min . After the usual work-up, a crude product was purified by flash column chromatography on silica gel (hexane/ $\mathrm{AcOEt}=2 / 1$) to give $\mathbf{2 0 8}\left(1.04 \mathrm{~g}, 3\right.$ steps 61% yield) as a colorless oil. IR (film $\mathrm{CH}_{2} \mathrm{Cl}_{2}$) 2960, 1965, 1760, 1446, 1112, $704 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 0.97$ ($\mathrm{s}, 3 \mathrm{H}$), $1.00(\mathrm{~s}, 3 \mathrm{H}$), $1.03(\mathrm{~s}, 9 \mathrm{H}), 1.58-1.61(\mathrm{~m}, 2 \mathrm{H}), 3.20-3.33(\mathrm{~m}, 2 \mathrm{H}), 3.63-3.73(\mathrm{~m}, 2 \mathrm{H}), 4.20-4.30(\mathrm{~m}, 2 \mathrm{H}), 5.70$ $(\mathrm{d}, J=6.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.78(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.36-7.46(\mathrm{~m}, 6 \mathrm{H}), 7.62-7.69(\mathrm{~m}, 4 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 19.0,26.7,27.3,28.3,34.9,43.0,44.7,61.1,62.1,98.2,114.1,127.61,127.63$, 129.6, 133.8, 135.50, 135.53, 155.2, 192.1; EI-LRMS $m / z 434\left[(\mathrm{M}-\mathrm{Me})^{+}\right], 392,362,314,268,224$, 199, 167; EI-HRMS calcd for $\mathrm{C}_{26} \mathrm{H}_{32} \mathrm{NO}_{3} \mathrm{Si} 434.21514$, found 434.21429 .

<Scheme 44>

4-Benzyloxy-4-methylpent-2-yn-1-ol (241). To a suspension of $\mathrm{NaH}(2.02 \mathrm{~g}, 50.5 \mathrm{mmol})$ in THF $(100 \mathrm{~mL})$ was added $239(4 \mathrm{~mL}, 41.3 \mathrm{mmol})$ at $0^{\circ} \mathrm{C}$, and the mixture was stirred at room temperature for 30 min . To the mixture were successively added $\mathrm{Bu}_{4} \mathrm{NI}(760.3 \mathrm{mg}, 2.06 \mathrm{mmol}$) and $\mathrm{BnBr}(6 \mathrm{~mL}, 50.4 \mathrm{mmol})$ at room temperature, and the resulting mixture was stirred at the same temperature for 4 h . To the mixture was added saturated $\mathrm{NH}_{4} \mathrm{Cl}$ aqueous solution, and the aqueous layer was extracted with $\mathrm{Et}_{2} \mathrm{O}$. The organic layer was washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated. The residue was purified by short column chromatography on silica gel (hexane/ $\mathrm{AcOEt}=20 / 1$) to give crude $240(7.87 \mathrm{~g})$, which was dissolved in THF $(80 \mathrm{~mL})$. To the

THF solution was added a solution of $\operatorname{BuLi}(1.64 \mathrm{M}, 28 \mathrm{~mL}, 45.9 \mathrm{mmol})$ at $-78^{\circ} \mathrm{C}$, and the mixture was stirred at the same temperature for 30 min . To the mixture was added paraformaldehyde (1.47 $\mathrm{g}, 49.0 \mathrm{mmol}$) at $-78^{\circ} \mathrm{C}$, and the mixture was stirred at an room temperature for 19 h . To the mixture was added saturated $\mathrm{NH}_{4} \mathrm{Cl}$ aqueous solution, and the aqueous layer was extracted with $\mathrm{Et}_{2} \mathrm{O}$. The organic layer was washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated. The residue was purified by flash column (hexane/ $\mathrm{AcOEt}=4 / 1$) to give $241(5.01 \mathrm{~g}, 2$ steps 59%) as colorless oil. IR (neat) 3390, 2984, 1953, 1246, 1156, 1058, $699 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (500 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 1.55(\mathrm{~s}, 3 \mathrm{H}), 4.28-4.31(\mathrm{~m}, 2 \mathrm{H}), 4.63(\mathrm{~s}, 2 \mathrm{H}), 7.24-7.39(\mathrm{~m}, 5 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (125 MHz , CDCl_{3}) $\delta 28.8,51.1,66.4,70.5,82.4,88.0,127.3,127.6$ 128.3, 139.0; EI-LRMS m/z 189 $\left[(\mathrm{M}-\mathrm{Me})^{+}\right], 173,159,145,91$; EI-HRMS calcd for $\mathrm{C}_{12} \mathrm{H}_{13} \mathrm{O}_{2} 189.09155$, found 189.09148.

3-(4-Benzyloxy-4-methylpenta-1,2-dien-1-yl)oxazolidin-2-one (209). To a solution of 241 (1.02 g , $4.99 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20 \mathrm{~mL})$ were successively added $\mathrm{Et}_{3} \mathrm{~N}(0.8 \mathrm{~mL}, 5.74 \mathrm{mmol})$ and $\mathrm{MsCl}(0.45$ $\mathrm{mL}, 5.81 \mathrm{mmol}$), and the mixture was stirred at $0^{\circ} \mathrm{C}$ for 30 min . To the mixture was added $\mathrm{H}_{2} \mathrm{O}$, and the aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The organic layer was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated. The residue was roughly purified by short column chromatography on silica gel $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$ to give crude $242(1.50 \mathrm{~g})$. To a suspension of $\mathrm{NaH}(60 \%$ dispersion in mineral oil, $246.7 \mathrm{mg}, 6.17 \mathrm{mmol}$) in DMF (10 mL) was added 229 ($431 \mathrm{mg}, 4.95 \mathrm{mmol}$), and the mixture was stirred at 30 min . To the mixture was added a solution of $\mathbf{2 4 2}(1.50 \mathrm{~g})$ in DMF $(10 \mathrm{~mL})$, and the mixture was stirred at room temperature for 15 h . To the mixture was added saturated $\mathrm{NH}_{4} \mathrm{Cl}$ aqueous solution, and the aqueous layer was extracted with $\mathrm{Et}_{2} \mathrm{O}$. The organic layer was washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated. The residue was roughly purified by short column chromatography on silica gel to give crude 243 (1.75 g), which was dissolved in DMF (20 $\mathrm{mL})$. To the DMF solution was added ${ }^{t} \mathrm{BuOK}(153 \mathrm{mg}, 1.36 \mathrm{mmol})$ at room temperature, and the mixture was stirred at room temperature for 30 min . After the usual work-up, a crude product was purified by flash column chromatography on silica gel (hexane/AcOEt=2/1) to give $\mathbf{2 0 9}$ ($877 \mathrm{mg}, 3$ steps 64% yield) as a colorless solid. mp $73-75{ }^{\circ} \mathrm{C}$ (recrystallized from $\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{Hex}$); IR (film, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$) 2979, 1968, 1758, 1449, 1230, 1056, $737 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 1.40(\mathrm{~s}, 3 \mathrm{H})$, $1.41(\mathrm{~s}, 3 \mathrm{H}), 3.52-3.65(\mathrm{~m}, 2 \mathrm{H}), 4.39-4.48(\mathrm{~m}, 4 \mathrm{H}), 5.97(\mathrm{~d}, J=5.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.99(\mathrm{~d}, J=5.7 \mathrm{~Hz}$, $1 \mathrm{H}), 7.24-7.36(\mathrm{~m}, 5 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 26.5,26.7,43.1,62.2,65.4,98.9,110.8$, 127.4 (2 C), 128.4, 139.0, 155.2, 193.9; ESI-LRMS m/z $296\left[(\mathrm{M}+\mathrm{Na})^{+}\right]$, 166; ESI-HRMS calcd for $\mathrm{C}_{16} \mathrm{H}_{19} \mathrm{NNaO}_{3}$ 269.12571, found 296.12558.
<Scheme 45>

3-(4-tert-Butyldimethylsilyloxy-4-methylpenta-1,2-dien-1-yl)oxazolidin-2-one (210). Similar to that of the synthesis of $\mathbf{2 4 1}$ to $\mathbf{2 0 9}$, a crude product, which was obtained from $\mathbf{2 4 4} \mathbf{4}^{\mathbf{4 7})}(1.27 \mathrm{~g}, 5.56$ $\mathrm{mmol})$, $\mathrm{MsCl}(0.52 \mathrm{~mL}, 6.72 \mathrm{mmol})$, and $\mathrm{Et}_{3} \mathrm{~N}(0.95 \mathrm{~mL}, 6.82 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(11 \mathrm{~mL})$, was roughly purified by short column chromatography on silica gel $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$ to give crude $\mathbf{2 4 5}(1.78 \mathrm{~g})$. To a suspension of $\mathrm{NaH}(283.8 \mathrm{mg}, 7.10 \mathrm{mmol})$ in DMF (11 mL) was added $229(493 \mathrm{mg}, 5.67$ mmol), and the mixture was stirred at room temperature for 30 min . To the mixture was added a solution of $\mathbf{2 4 5}(1.78 \mathrm{~g})$ in DMF (22 mL), and the mixture was stirred at room temperature for 3 h . To the mixture was added saturated $\mathrm{NH}_{4} \mathrm{Cl}$ aqueous solution, and the aqueous layer was extracted with $\mathrm{Et}_{2} \mathrm{O}$. The organic layer was washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated. The residue was roughly purified by short column chromatography on silica gel (AcOEt) to give crude $246(2.02 \mathrm{~g})$, which was dissolved in DMF (22 mL). To the DMF solution was added ${ }^{t} \mathrm{BuOK}$ ($172.7 \mathrm{mg}, 1.54 \mathrm{mmol}$), and the mixture was stirred at room temperature for 3 h . After the usual work-up, a crude product was purified by flash column chromatography on silica gel (hexane/ $\mathrm{AcOEt}=4 / 1$) to give $210\left(908 \mathrm{mg}, 3\right.$ steps 55% yield) as a colorless solid. $\mathrm{mp} 49-50^{\circ} \mathrm{C}$ (recrystallized from heane); IR (film, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$) 2929, 1970, 1761, 1450, 1229, 1055, 835, $739 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 0.06(\mathrm{~s}, 6 \mathrm{H}), 0.84(\mathrm{~s}, 9 \mathrm{H}), 1.31(\mathrm{~s}, 3 \mathrm{H}), 1.32(\mathrm{~s}, 3 \mathrm{H}), 3.48-3.61(\mathrm{~m}$, $2 \mathrm{H}), 4.37-4.45(\mathrm{~m}, 2 \mathrm{H}), 5.93(\mathrm{~d}, J=6.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.88(\mathrm{~d}, J=6.3 \mathrm{~Hz}, 1 \mathrm{H}){ }^{13} \mathrm{C}$ NMR (125 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta-2.27,-2.25,17.9,25.6,30.3,30.5,43.2,62.1,72.5,98.6,113.9,155.2,191.2$; ESI-LRMS $m / z 320\left[(\mathrm{M}+\mathrm{Na})^{+}\right]$, 298, 173; ESI-HRMS calcd for $\mathrm{C}_{15} \mathrm{H}_{27} \mathrm{NNaO}_{3} \mathrm{Si} 320.16524$, found 320.16538.

Chapter 2, Section 3

<Scheme 47>
<Eq. 15>
$\mathrm{Ni}(\operatorname{cod})_{2}(98.7 \mathrm{mg}, 0.359 \mathrm{mmol})$ was weighed into a flame-dried flask. To this was added THF $(2.9 \mathrm{~mL})$ and $\mathrm{DBU}(0.22 \mathrm{~mL}, 1.47 \mathrm{mmol})$ at $0^{\circ} \mathrm{C}$, and the flask was immersed in a liquid nitrogen bath. After the mixture had been frozen, the flask was evacuated to 0.05 mmHg . The flask was backfilled with CO_{2} in a plastic balloon and the frozen mixture was slowly thawed at $0{ }^{\circ} \mathrm{C}$. To this suspension was added a solution of $195(81.4 \mathrm{mg}, 0.365 \mathrm{mmol})$ in THF $(2.9 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$, and the resulting mixture was stirred for 1 h at the same temperature. To the mixture wad added 10% $\mathrm{DCl} / \mathrm{D}_{2} \mathrm{O}$ at $0^{\circ} \mathrm{C}$, and the aqueous layer was extracted with AcOEt. The organic layer was washed
with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated in vacuo. The residue was treated with diazomethane in MeOH according to the standard procedure. After the usual work-up, the crude product was purified by flash column chromatography on silica gel (hexane/ $\mathrm{AcOEt}=10 / 1 \sim 4 / 1$) to give 196-D ($91.5 \mathrm{mg}, 90 \%$) as a colorless oil. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 1.89-1.92(\mathrm{~m}, 2 \mathrm{H})$, 2.42 (s, 3 H), 3.07 ($\mathrm{s}, 3 \mathrm{H}$), 3.71 ($\mathrm{s}, 3 \mathrm{H}$), 7.27 (d, $J=8.2 \mathrm{~Hz}, 2 \mathrm{H}$), 7.46 (m, 1 H), 7.63 (d, $J=8.2$ $\mathrm{Hz}, 2 \mathrm{H}$).
$<$ Eq. 16>
$\mathrm{Ni}(\mathrm{cod})_{2}(99.6 \mathrm{mg}, 0.362 \mathrm{mmol})$ was weighed into a flame-dried flask. To this was added THF $(2.9 \mathrm{~mL})$ and $\mathrm{DBU}(0.22 \mathrm{~mL}, 1.47 \mathrm{mmol})$ at $0{ }^{\circ} \mathrm{C}$, and the flask was immersed in a liquid nitrogen bath. After the mixture had been frozen, the flask was evacuated to 0.05 mmHg . The flask was backfilled with CO_{2} in a plastic balloon and the frozen mixture was slowly thawed at $0^{\circ} \mathrm{C}$. To this suspension was added a solution of $202(93.3 \mathrm{mg}, 0.360 \mathrm{mmol})$ in THF $(2.9 \mathrm{~mL})$ at $0{ }^{\circ} \mathrm{C}$, and the resulting mixture was stirred for 21 h at the same temperature. To the mixture wad added 10% $\mathrm{DCl} / \mathrm{D}_{2} \mathrm{O}$ at $0^{\circ} \mathrm{C}$, and the aqueous layer was extracted with AcOEt. The organic layer was washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated in vacuo. The residue was treated with diazomethane in MeOH according to the standard procedure. After the usual work-up, the crude product was purified by flash column chromatography on silica gel (hexane/ $\mathrm{AcOEt}=20 / 1 \sim 4 / 1$) to give 203-D ($111.2 \mathrm{mg}, 84 \%, E: Z=87: 13$). E-203-D: ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{DMSO}-d_{6}$, at $100{ }^{\circ} \mathrm{C}$) δ 1.09 ($\mathrm{s}, 9 \mathrm{H}$), 3.60 ($\mathrm{s}, 3 \mathrm{H}$), 3.64 ($\mathrm{s}, 3 \mathrm{H}$), 4.33 ($\mathrm{s}, 1 \mathrm{H}$), 4.41 ($\mathrm{s}, 2 \mathrm{H}$), 6.63 ($\mathrm{s}, 1 \mathrm{H}$), 7.14-7.35 (m, 5 H). Z-203-D: ${ }^{1} \mathrm{H}$ NMR (500 MHz, DMSO- d_{6}, at $100^{\circ} \mathrm{C}$) $\delta 1.04(\mathrm{~s}, 9 \mathrm{H}), 3.64(\mathrm{~s}, 3 \mathrm{H}), 3.66(\mathrm{~s}, 3 \mathrm{H})$, 3.91 (s, 1 H), 4.39 (s, 2 H), 5.49 (s, 1 H), 7.14-7.35 (m, 5 H).

参考文献

＜序論＞

1．（a）Lautens，M．；Klute，W．；Tam，W．Chem．Rev．1996，96，49．（b）Ojima，I．；Tzamarioudaki，M．；Li，Z．； Donovan，R．J．Chem．Rev．1996，96，635．（c）Aubert，C．；Buisine，O．；Malacria，M．Chem．Rev．2002， 102，813．（d）Michelet，V．；Toullec，P．Y．；Genêt，J．－P．Angew．Chem．Int．Ed．Engl．2008，47， 4268.
2．Chatani，N．；Morimoto，T．；Fukumoto，Y．；Murai，S．J．Am．Chem．Soc．1998，120， 5335.
3．Koyama，I．；Kurahashi，T．；Matsubara，S．J．Am．Chem．Soc．2009，131， 1350.
4．（a）Kablaoui，N．M．；Buckwald，S．L．J．Am．Chem．Soc．1995，117，6785．（b）Crowe，W．E．；Rachita，M． J．J．Am．Chem．Soc．1995，117， 6787.

＜第一章＞

5．For stereoselective cyclization of 1，3－diene and a tethered carbonyl group，see：（a）Sato，Y．；Takimoto， M．；Hayashi，K．；Katsuhara，T．；Takagi，K．；Mori，M．J．Am．Chem．Soc．1994，116，9771．（b）Sato， Y．；Takimoto，M．；Mori，M．Tetrahedron Lett．1996，37，887．（c）Sato，Y．；Takimoto，M．；Mori，M． Synlett 1997，734．（d）Sato，Y．；Saito，N．；Mori，M．Tetrahedron Lett．1997，38， 3931. （e）Sato，Y．； Saito，N．；Mori，M．Tetrahedron 1998，54，1153．（f）Sato，Y．；Takanashi，T．；Hoshiba，M．；Mori，M． Tetrahedron Lett．1998，39，5579．（g）Sato，Y．；Takanashi，T．；Mori，M．Organometallics 1999，18， 4891．（h）Sato，Y．；Takimoto，M．；Mori，M．J．Am．Chem．Soc．2000，122，1624．（i）Sato，Y．；Saito， N．；Mori，M．J．Am．Chem．Soc．2000，122，2371．（j）Sato，Y．；Takimoto，M．；Mori，M．Chem．Pharm． Bull 2000，1753．（k）Sato，Y．；Saito，N．；Mori，M．J．Org．Chem．2002，67， 9310 ．（l）Sato，Y．；Saito， N．；Mori，M．Chem．Lett．2002，18．（m）Sato，Y．；Takanashi，T．；Hoshiba，M．；Mori，M．J．Organomet． Chem．2003，688，36．（n）Sato，Y．；Saito，N．；Mori，M．J．Organomet．Chem．2007，692， 460.

6．Takimoto，M．；Hiraga，Y．；Sato，Y．；Mori，M．Tetrahedron Lett．1998，39， 4543.
7．（a）Sato，Y．；Sawaki，R．；Mori，M．Organometallics 2001，20，5510．（b）Sawaki，R．；Sato，Y．；Mori，M． Org．Lett．2004，6，1131．（c）佐脇理恵子 博士論文，2004 北海道大学

8．Oblinger，E．；Montgomery，J．J．Am．Chem．Soc．1997，119， 9065.
9．（a）Huang，W．S．；Chan，J．；Jamison，T．F．Org．Lett．2000，2，4221．（b）Miller，K．M．；Huang，W．S．； Jamison，T．F．J．Am．Chem．Soc．2003，125， 3442.

10．Mahandru，G．M．；Liu，G．；Montgomery，J．J．Am．Chem．Soc．2004，126， 3698.
11．（a）Miller，K．M．；Luanphaisarnnont，T．；Morinao，C．；Jamison，T．F．J．Am．Chem．Soc．2004，126， 4130．（b）Miller，K．M．；Jamison，T．F．Org Lett．2005，7， 3077.
12．Lie．P．；McCarren．P．；Cheong．P．H．；Jamison，T．F．；K．N．Houk．J．Am．Chem．Soc．2010，132， 2050.
13．Murakami，M．；Ashida，S．；Matsuda，T．J．Am．Chem．Soc．2005，127， 6932.
14．Chen．J．；Jamison，T．F．J．Am．Chem．Soc．2004，126， 10682.
15．Gansäuer，A．；Pierobon，M．；Bluhm，H．Synthesis 2001，16， 2500.

16．Shono，T．；Kise，N．；Fujimoto，T．；Tominaga，N．；Murai，H．J．Org．Chem．1992，57， 7175.
17．（a）Mahandru，G．M．；Skauge，A．R．L．；Chowdhury，S．K．；Amarasinghe，K．K．D．；Heeg，M．J．； Montgomery，J．J．Am．Chem．Soc．2003，125，13481．（b）Mori，M．；Akashi，M．；Hori，M．；Hori，K．； Nishida，M．；Sato，Y．Bull．Chem．Soc．Jpn．2004，77，1655．（c）Trost，B．M．；Chen，D．W．C．J．Am． Chem．Soc．1996，118， 12541.

18．Lee，G．H．；Choi，E．B．；Lee，E．；Pak，C．S．J．Org．Chem．1994，59， 1428.
19．Morisson，V．；Barnier，J．P．；Blanco，L．Tetrahedron 1998，54， 7749.
20．Hero，G．；Helga，M．；Peter，W．Chem．Ber．1975，108， 3448.
21．Sha，C．K．；Ho，W．Y．；Mohanakrishnan，A．K．；Lin，C．L．；Chu，S．Y．C．R．Acad．Sci．2001，4，439．See also，ref 15

22．Tsuchida，H．；Tamura，M．；Hasegawa，E．J．Org．Chem．2009，74， 2467.
23．González－García，E．M．；Grognux，J．；Wahler，D．；Reymond，J．L．Helv．Chem．Acta 2003，86， 2458.
24．Zhang，Q．；Xu，W．；Lu，X．J．Org．Chem．2005，70， 1505.
25．Nevado，C．；Cárdenas，D．J．；Echavarren，A．M．Chem．Eur．J．2003，9， 2627.
26．Bennacer，B．；Fujiwara，M．；Lee，S．Y．；Ojima，I．J．Am．Chem．Soc．2005，127， 17756.
27．Tuji，J．；Mandai，T．Angew．Chem．，Int．Ed．Engl．1995，34， 2589.
28．Saito，N．；Sugimura，Y．；Sato，Y．Org．Lett．2010，12， 3494.

＜第二章＞

29．Aresta，M．；Nobile，C．F．；Albano，V．G．；Forni，E．；Manassero，M．J．Chem．Soc．，Chem．Commun． 1975， 636.

30．Burkhart，G．；Hoberg，H．Angew．Chem．Int．Ed．Engl．1982，21， 76.
31．（a）Hoberg，H．；Schaefer，D．J．Organomet．Chem．1983，251，C51．（b）Hoberg，H．；Peres，Y．； Milchereit，A．J．Organomet．Chem．1986，307，C41．
32．（a）Walther，D．；Dinjus，E．Z．Chem．1982，22，228．（b）Hoberg，H．；Schaefer，D．；Oster，B．W．J． Organomet．Chem．1984，266，313．（c）Hoberg，H．；Bärhasusen，D．J．Organomet．Chem．1989，379， C7．

33．Hoberg，H．；Oster，B．W．J．Organomet．Chem．1984，266， 321.
34．（a）Tsuda，T．；Sumiya，R．；Saegusa，T．Synth．Commun．1987，17，147．（b）Tsuda，T．；Morikawa，S．； Sumiya，R．；Saegusa，T．J．Org．Chem．1988，53， 3140.

35．Takimoto，M．；Kawamura，M．；Mori，M．；Synthesis 2004， 791.
36．Takimoto，M．；Kawamura，M．；Mori，M．；Sato，Y．；Synlett 2005， 2019.
37．（a）Wei，L．－L．；Xiong，H．；Hsung，R．P．Acc．Chem．Res．2003，36，773．（b）Lu，T．；Lu，Z．；Ma，Z．－X．； Zhang，Y．；Hsung，R．P．Chem．Rev．2013，113， 4862.
38．Rameshkumar，C．；Xiong，H．；Tracey，M．R．；Berry，C．R．；Yao，L．J．；Hsung，R．P．J．Org．Chem．2002， 67， 1339.

39．Lohse，A．G．；Hsung，R．P．Org．Lett．2009，11， 3430.

40．Xiong，H．；Hsung，R．P．；Wei，L．L．；Berry，C．R．；Mulder，J．A．；Stocwell，B．Org．Lett．2000．2． 2869.
41．Skucas，E．；Zbieg，J．R．；Krische，M．J．J．Am．Chem．Soc．2009，131， 5054.
42．Suárez－Pantiga，S．；Hernández－Díaz，C．；Piedrafita，M．；Rubio，E．；González．J．M．Adv．Synth．Catal． 2012，354， 1651.
43．Kimber，M．C．Org．Lett．2010，12， 1128.
44．Nussbaumer，P．；Leitner，I．；Stütz，A．J．Med．Chem．1994，37， 610.
45．（a）Shen，H．；Hsung，R．P．；Zhang，Y．；Antoline，J．E．；Zhang，X．Org．Lett．2005，7，3081．（b）Trost，B． M．；Stiles，D．T．Org．Lett．2005，7， 2117.

46．Hodgson，D．M．；Chung，Y．K．；Nuzzo，I．；Freixas，G．；Kulikiewicz，K．K．；Cleator，E．；Paris，J．－M．J． Am．Chem．Soc．2007，129， 4456.

47．Mukherjee，P．；Widenhoefer，R．A．Angew．Chem．Int．Ed．2012，51， 1405.
48．Saito，N．；Sugimura，Y．；Sato，Y．Synlett，accepted．

[^0]: ${ }^{* 1}$ Jamison らは（－）－terpestacin（79）および類縁体の合成研究の途上，75 を Ni 触媒存在下で反応させると，目的 とする 15 員環化合物 78 は全く得られず，14員環化合物 77 を 25% の収率で得るとともに，ケトンとアルキ ンが反応した 76 が得られることを報告している（スキーム 13）。 ${ }^{14)}$

[^1]: ${ }^{*}$ NHC 配位子は高い σ 電子供与能を持つことから，ホスフィン配位子にくらベニッケル中心の電子密度が上 がり，酸化的環化付加の過程が促進されるため，良い結果を与えたと考えられる。

[^2]: ${ }^{* 1}$ これら環化体のらち化合物 97，98 の立体化学は以下のように決定した。オレフィンの幾何異性について は図 3 に示す位置に NOESY 相関が観測されたことから，E体であると決定した。

[^3]: 核間の立体化学については化合物 96 も含めオゾン分解後，トリエチルシリル基をアセトニトリル中，フ ッ化水素により脱保護することで文献既知化合物 $\mathbf{8 3}$ へと誘導し，${ }^{1} \mathrm{H}$ NMR を比較することで立体構造を決定 している（スキーム 17）。なお，環化体 100 の立体化学については検討を行っていないものの同様に E－cis の立体構造であると考えている。

[^4]: ${ }^{\text {a }}$ Reaction procedure：A solution of substrates in THF was added to a solution of $\mathrm{Ni}(\mathrm{cod})_{2}(10 \mathrm{~mol} \%), \mathrm{IPr} \cdot \mathrm{HCl}(10 \mathrm{~mol} \%)$ ，${ }^{\text {t }} \mathrm{BuOK}$（ $12 \mathrm{~mol} \%$ ）and $\mathrm{Et}_{3} \mathrm{SiH}^{(5}$ equiv）in THF．${ }^{b}$ Isorated yield．${ }^{c}$ Yield in parenthesis is NMR yield．

[^5]: ${ }^{* 1}$ この他にも DBU とTMEDA の比較を行ったが，いずれもDBUを用いた場合の方が高い収率で目的物が得られたため，4当量の DBUを用いた条件を最適条件とし，以降の検討を行っている。

[^6]: ＊1 スキーム 40 に用いた基質のうち 197^{43} は文献記載の方法に従い合成した。基質 199 はプロパルギルアミ ン 222 をメチルカルバメート保護した後，塩基性条件下異性化させて合成した（スキーム 38）。

