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Time-Domain Beam Propagation Method and Its 
Application to Photonic Crystal Circuits 

Masanori Koshiba, Senior. Member, IEEE, Yasuhide Tsuji, Menzbel; IEEE, and Masafumi Hikari 

Abstract-A time-domain beam propagation method (BPM) 
based on the finite-element scheme is described for the analysis 
of reflections of both transverse electric and transverse magnetic 
polariaed pulses in wavegniding structures containing arbitrarily 
shaped discontinuities. In order to avoid nonphysical reflections 
from the computational window edges, the perfectly matched layer 
boundarv condition is introduced. The mesent algorithm usine the 
Pade approximation is, to our knowle-dge, the Krst time-domain 
beam propagation method which can treat wide-band optical 
pulses. After validating this method for an optical grating with 
modulated refrative indexes, various photonic crystal circuit 
components are simulated. 

Index Terms-Finite-element method (FEM), optical waveguide 
analysis, photonic crystal, time-domain analysis, time-domain 
beam propagation method (TD-BPM). 

I. INTRODUCTION 

HE BEAM propagation method (BPM) is at present the T most widely used for the study of light propagation in lon- 
gitudindlly varying optical waveguides and now there are a great 
number of versions of BPM [I  1. Especially, a recently developed 
BPM based on the finite-element method (FE-BPM) [2]-[5] 
using the Pad6 approximation [61 can give very accuate results 
without increasing computational effort even if the wide-angle 
beam propagation is treated. However, BPM assumes only the 
forward propagating waves, and thus, it is difficult to take into 
account backward reflecting waves. One method used to study 
distributed reflection and diffraction at arbitrary angle is the fi- 
nite difference time-domain (FDTD) technique [7]. This tech- 
nique is very powerful and versatile, and has been introduced 
and adapted to optical waveguide devices [8]-[10]. In FDTD 
very small time step size must be used because both the carrier 
and the modulated envelope are included in the wave propagator. 

Recently, under the condition that the modulation frequency 
is much lower than the carrier frequency, a simple and efficient 
propagation algorithm in time domain has been developed and 
is called the time-domain BPM (TD-BPM) [ I l l ,  [12]. In this 
new algorithm the computational spatial domain is discretized 
with the finite difference method (FDM), hereafter, referred to 
as FDTD-BPM. The removal of the fast carrier allows one to 
track a slowly varying envelope of a pulsed wave directly in time 
domain and thus, the converged solution could be obtained with 
moderate time step size. Despite its programming simplicity, it 
has suffered from the staircasing approximation when modeling 
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Fig. 1. 

curved geometries because in FDM, it is, in general, difficult to 
use nonuniform and nonorthogonal meshes. Furthermore, the 
formulation was limited to transverse electric (TE) modes and 
was based on the Fresnel or paraxial approximation. Therefore, 
the wide-hand and/or transverse magnetic (TM)-pulsed wave 
propagation cannot be treated. 

In this paper, a unified TD-BPM based on the finite-element 
method (FEM) abbreviated as FETD-BPM is described for 
both TE and TM polarized pulses propagating in arbitrarily 
shaped waveguiding structures. In order to avoid nonphysical 
reflections from the computational window edges, the perfectly 
matched layer (PML) boundary condition [SI, [I31 is intro- 
duced. The present algorithm using the Pade approximation 
is, to our knowledge, the first wide-band TD-BPM. After 
validating this method for an optical grating with modulated 
refractive indexes, numerical results are shown for a sharp bend, 
a T-branch, a Y-branch, a directional coupler, a multimode 
coupler, and a microcavity, all based on photonic bandgap 
(PBG) structures 1141. 

Optical grating with modulated refractive indenes. 

11. BASIC EQUATION 

We consider a two-dimensional (2-D) optical waveguide, 
where the computational window (domain) is on the yz-plane 
and there is no variation in the z direction. With these assump- 
tions and the transversely scaled version of PML [ 5 ] ,  [I31 
with artificial electric and magnetic conductivities of parabolic 
profile, we obtain the following basic equation: 

with 

Q =E,, p =  I ,  q=n2,  for TE modes (2) 
=H,, p = l j 7 l  2 , q = 1, forTMmodes (3) 

3 C  2 1  

s =  { 2 q n d  d R (4) 
1 - j ~ (f ) lu -, in PML region 

1, in non-PML region 
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where 

Dividing the spatial domain into quadratic (second-order) tri- 
angular elements and applying the standard finite-element tech- 
nique to (6), we obtain 

1 d2{41 WO d{4} - [MI - - 2 [MI - 
c2 d t  

(7) 

{O] null vector; 
and the finite-element matrices are given by 

Fig. 2. Reflection characteristics of an optical grating for: (n) TE and (h) TM 
modes. 

Fig. 3. Photonic crysral. 

where 
E, x components of the electric fields; 
II, r components of the magnetic fields; 
t time; 
c speed of light in free space; 
n refractive index; 
wo carrier center angular frequency: 
d PML thickness; 
p distance from the beginning of PML; 
R theoretical reflection coefficient 1151. 

For the PML regions I (perpendicular to the y axis), I1 (perpen- 
dicularto the z axis), or111 (comers), sg = 1 and ,sz Y s, sy = s 
and sz  = 1, or s r  = sz = 1, respectively. 

where 
{ N }  shape function vector; 
T denotes a transpose; 
E, 
Utilizing the Pad6 recurrence relation [1]-[6], the following 

equation of TD-BPM (wide-angle FETD-BPM), which can treat 
wide-band optical pulses, is obtained: 

extends over all different elements. 

with 

[k] = [MI - $ ([XI + 3 [MI) . (11) 
4w0 

The Fresnel or paraxial equation of TD-BPM (narrow band 
FETD-BPM, for simplicity, abbreviated as FETD-BPM) is 
easily obtained from ( IO)  by replacing the matrix [a] by [MI. 

Applying the Crank-Nicholson algorithm for the time t to 
( I O )  yields 

lAIZ{4)%+l = [nlL{4lL (12) 

with 



104 JOURNAL OF LIGHTWAVE TECHNOLOGY, VOL. 18, NO. I. JANUARY 2000 

Fig 

t = O  t = 10 fs 

4. Electric or magnetic field patterns in a straight waveguide for: (a) TE and (b) TM pulses. 

(14) 
evaluated from the ratio between the Fourier transforms of the 
reflected pulse and the incident pulse. Although the accuracy 
of FETD-BPM may be limited to a narrow spectrum around 
the carrier center frequency wO, for both TE and TM modes, 
the results of wide-band FETD-BPM agree well with those of 
the conventional FEM formulated in frequency domain [17] 
over a wide range of frequencies, compared to the paraxial 
FETD-BPM. the FEM [ 171 the reflection transmission 
characteristics are calculated at every one frequency. 

w2 

( c2 

WO - 
[O]i = - 2 j  ~ [ M ] i  - 0.5At [Kli + 2 [MI; 

C2 

where 
At time step size; 
{dh ith time steps; 
{4)i+l (i + 1) time steps. 

The Bi-CGSTAB algorithm [ 161 is introduced to solve the linear 
(12). 

IV. NUMERICAL RESULTS 
A .  Optical Grating 

We consider an optical grating as shown in Fig. 1, where 
the number of grating periods is eight and the PML thickness 
d = 1.0 pm. The input pulse with a transverse profile +h~(g)  
corresponding to the fundamental mode of the planar waveguide 
and a Gaussian profile m the longitudinal direction at t = 0 is 
taken as 

.exp[-jp(z - ZO)] (15) 

where 
f l  propagation constant; 
ti0 
WO spot size. 

center position of the input pulse; 

Tbe reflected and transmitted pulses are monitored inside the 
waveguide. The fast Fourier transform of these pulses, normal- 
ized to the spectrum of the input pulse, gives the reflection and 
transmission spectra. 

Fig. 2 shows the reflection characteristics with the input 
pulse spectrum, where 20 = 11.0 pm, WO = 2.0 pm, the car- 
rier center wavelength XO = 1.50 pm. The time step size used 
is At = 1.0 fs which is, in general, sufficient to obtain stable 
solutions in the TD-BPM analysis [l l] .  Tbe total duration 
simulated is 220 fs. On a DEC-alpha workstation (500 MHz), 
the code takes 25 MB of memory for 37 555 nodal points and 
2098 s to run. The input and reflected pulses are monitored at 
the reference point as in Fig. 1, and the reflected spectra are 

B.  Photonic Crystal Circuits 

Photonic crystals have inspired great interest recently be- 
cause of their potential ability to control the propagation of 
light. Mekis et al. have demonstrated high transmission through 
sharp bends in photonic crystal waveguides [lo]. 

We consider a photonic crystal of dielectric rods in air on 
a square array with lattice constant a [lo] as shown in Fig. 3.  
The crystal has PBG for TE modes which extends from w = 
0.302 x 2ncla to w = 0.443 x Zncla, but not for TM modes. 
Fig. 4 shows the electric field patterns of the pulse with Gaussian 
profiles in both the transverse and longitudinal directions prop- 
agating in a straight waveguide, where XO = 1.5 ym and At = 
1.0 fs. It is confirmed that the TE pulse is confined in the de- 
fect, core region, while the TM pulse cannot he guided and is 
radiated into the cladding region. In the following, therefore we 
consider the TE pulse propagatoin and the time step size is taken 
as At = 1.0 fs. 

Fig. S(a) shows a 90" bend proposed by Mekis et al. [lo] and 
(b) the element division in the neighboorhood of the corner, and 
(c) the reflection and transmission characteristics. On a DEC- 
alpha workstation (500 MHz), the code takes 85 MB of memory 
for 158607 nodal points and 106 s per time step of At = 1.0 
fs to run. Two pulses with XO = 1.45 pm (solid line) and XO = 
1.65 /im (dashed line) are sent down the waveguide covering 
different ranges of frequencies, and the input pulse at t = 0 fs 
is taken as 
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t = 40 is 

0.0 
0.30 0.32 0.34 0.36 0.38 0.40 0.42 0.44 ( 

t = 20 fs 

t - B O  s 

t = 80 fs t = 100 fs 

(d) 

Fig. 5. 90' bend with (a) structure, (b) element division, (c) propagation characteristics, and (d) electric field panems. 

with 

~ o ( ? / , z )  = $O(Y,Z + ma),  VL = 0; fl, 1 2 : .  . . (17) 

where ~ o ( z / ,  z )  is a periodic function corresponding to the fun- 
damental mode of the photonic crystal waveguide of period a. 
For all examples presented in connection with photonic crystal 
circuits in this subsection, the input pulses are the same. One is 
at A0 = 1.45 pm (solid line) and the other at A0 = 1.65 /hm 
(dashed line) as shown in the top panel of Fig. 5(c). Also, for 
all propagation curves shown in Figs. 5-10, solid and dashed 
lines correspond to the input pulses at Xu = 1.45 Wm and at 
A0 = 1.65 pm, respectively. 

In Fig. S(c) the results of FDTD using six pulses [lo] are 
also plotted. In the FDTD calculation [lo], nonphysical, spu- 

rious Gibhs oscillations are observed near the lower cutoff fre- 
quencies. On the other hand, such phenomena do not occur in 
our calculation. Fig. 5(d) shows the electric field pattems for the 
pulse of A0 = 1.45 pm. Fig. 6(a) shows a 90" bend with zero 
radius of curvature, (b) the reflection and transmission charac- 
teristics, and (c) the electric field pattems (A0 = 1.45 pm). The 
transmission is a little deteriorated. 

Now, we propose photonic crystal circuit components as 
shown in Figs. 7-12 and simulate those propagation character- 
istics. 

Fig. 7(a) shows a T-branch. From Fig. 7(b) high transmission 
is observed at frequency ranges from w = 0.386 x 2 m l a  tow = 
0.403 x k c l a .  From Fig. 8(a) and (b), on the other hand, we can 
see that the transmission property of a Y-branch is not so good 
because of high return loss. The electric field pattems (A0 = 
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t = 40 

t = 100 fs t = 80 fs 
(4 

Fig. 6 .  Zero-curvature 90' bend with (a) structure, (b) propagation characteristics, and ( c )  electric field patterns 

t = I1 

. .  
(b) 

Fig. 7. T-branch with (a) structure, (b) propagation characteristics, and (c) electric field pattems. 
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Fig. 8. Y-branch with (a) structure, (h) propagation characteristics. and (c) electric field pattems. 
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t = 80 

Fig. 9. Directional coupler with ( U )  stmctue, (b) propagation characterislitis. and (c)  electiic field perrems. 

1.45 pm) for the T-branch and the Y-branch are, respectively, 
shown in Figs. 7(c) and S(c). 

Fig. 9(ak(c) shows, respectively, a directional coupler 
and its propagation characteristics, and the electric field 
pattems (A0 = 1.45 pm). It is worthy of note that a 

very low-loss 3-dB coupler can be realized at frequency 
w = 0.383 x 2nc/a. 

Fig. 10(a)-(c) shows, respectively, a multimode coupler, 
the propagatoni characteristics, and the electric field pat- 
terns (A0 = 1.45 &. In this structure, equal contributions 
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.e..¶. . e o * . .  ............ ................ ................ ................ ................ ................ 
put2 ..... p " I 4  

Fig. IO. Multimode coupler with (a) StNClUIe, (bj propagation characteristics, and (c) electric field pattems. 

* .  ................ r-'. 0 * e 0 D e  D e e s * e .  *. ................. ................ ................ 
e 0 s r s e e e . o a . e e . e  
0 0 0 . . 0 0 0 0 . 0 . . e . .  ................ ................ ................ 

p"'l1 e) 0 -  0 .  pwt2 

(a) 

t = 400 fs 
(C) 

Fig. 11. Microcavity with (a) StNClUre, (b) propagation characteristics, and (c) electric field pattems. 

in ports 3 and 4 can be hardly realized at very low reflec- V. CONCLUSION 
tion at port 1 and transmission at port 2. 

A wide-band FETD-BPM using the Pad6 approximation was Finally, we consider single and double microcavities con- described for both TE and TM polarized pulses. To validate 
pled to straight waveguides in Figs. Il(a) and 12(a). From the present algorithm, numerical results are shown for optical 
Figs. 1l(b) and Wb),  we can see that these Structures can gratings and are the conventional FEM in fie. 
produce optical filters with sharp transmission resonances. quency domain. Furthermore, various photonic crystal circuit 
Figs. Il(c) and 12(c) show the electric field pattems (Xo = components were simulated and those fascinating properties 
1.45 pm). were demonstrated. 
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.. 0 1 0 0 0 . . 1 1 1 8 1 . 1  
ea....o..e.n.... 
.e.... e.e. .De.. .  

t = 40 fs 

t = 120 fs 

t = 400 fs 
(C )  

Fig. 12. Double microcavities with (a) structure, (b) propagation characteristics, and (c)  electric field pattems 

A full-wave FETD-BPM for three-dimensional structures is 
now under consideration. 
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