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Time-Domain Beam Propagation Method and Its
Application to Photonic Crystal Circuits

Masanori Koshiba, Senior Member, IEEFE, Yasuhide Tsuji, Member, IEEE, and Masafumi Hikari

Abstract—A time-domain beam propagation method (BPM)
based on the finite-element scheme is described for the analysis
of reflections of both transverse electric and transverse magnetic
polarized pulses in waveguiding structures containing arbitrarily
shaped discontinuities. In order to avoid nonphysical reflections
from the computational window edges, the perfectly matched layer
boundary condition is introduced. The present algorithm using the
Padé approximation is, to our knowledge, the first time-domain
beam propagation method which can treat wide-band optical
pulses. After validating this method for an eptical grating with
modulated refrative indexes, various photenic crystal circuit
components are simulated. -

Index Terms—TFinite-element method (FEM), optical waveguide

analysis, photonic crystal, time-domain analysis, time-domain
beam propagation method (TD-BPM).

1. INTRODUCTION

HE BEAM propagation method (BPM) is at present the
most widely used for the study of light propagaticn in lon-
gitudinally varying optical waveguides and now there are a great
number of versions of BPM [1]. Especially, a recently developed
BPM based on the finite-element method (FE-BPM) [2]-[5]
using the Padé approximation [6] can give very accuate results
without increasing computational effort even if the wide-angle
beam propagation is treated. However, BPM assumes only the
forward propagating waves, and thus, it is difficult to take into
account backward reflecting waves. One method used to study
distributed reflection and diffraction at arbitrary angle is the fi-
nite difference time-domain (FDTD) technique [7]. This tech-
nique is very powerful and versatile, and has been introduced
and adapted to optical waveguide devices [8]-[10]. In FDTD
very small time step size must be used because both the carrier
and the modulated envelope are included in the wave propagator.
Recently, under the condition that the modulation frequency

is much lower than the carrier frequency, a simple and efficient
© propagation algorithm in time domain has been developed and
is called the time-domain BPM (TD-BPM) [11], [12]. In this
new algorithm the computational spatial domain is discretized
with the finite difference method (FDM), hereafter, referred to
as FDTD-BPM. The removal of the fast carrier allows one to
track a slowly varying envelope of a pulsed wave directly in time
domain and thus, the converged solution could be obtained with
moderate time step size. Despite its programming simplicity, it
has suffered from the staircasing approximation when modeling
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Fig. 1. Optical grating with modulated refractive indexes.

curved geometries because in FDM, it is, int general, difficult to
use nonuniform and noncrthogonal meshes, Furthermore, the
formulation was limited to transverse electric (TE) modes and
was based on the Fresnel or paraxial approximation. Therefore,
the wide-band and/or transverse magnetic (TM)-pulsed wave
propagation cannot be treated.

In this paper, a unified TD-BPM based on the finite-element
method (FEM) abbreviated as FETD-BPM is described for
both TE and TM polarized pulses propagating in arbitrarily
shaped waveguiding structures. In order to avoid nonphysical
reflections from the computational window edges, the perfectly
matched layer (PML) boundary cendition [5], [13] is intro-
duced. The present algorithm using the Padé approximation
is, to our knowledge, the first wide-band TD-BPM. After
validating this method for an optical grating with modulated
refractive indexes, numerical results are shown for a sharp bend,
a T-branch, a Y-branch, a directional coupler, a multimode
coupler, and a microcavity, all based on photonic bandgap
(PBG) structures [14].

II. BaSIC EQUATION

We consider a two-dimensional (2-D) optical waveguide,
where the computational window (domain) is on the yz-plane
and there is no variation in the = direction. With these assump-
tions and the transversely scaled version of PML [5], [13]
with artificial electric and magnetic conductivities of parabolic
profile, we obtain the following basic equation:

8 [ s, 0F 0 ( 5 08\ _ g 8¢ _
Sy@y (‘Db dy)+ > (p?a) e o2 0@
with
b=E, p=1, g=n? for TE modes 2)
d=H, p=1/n% ¢=1, for TM modes 3)

. 3e pNE L .

1—; £ il

s:{ ‘]2w0nd (d) In 7 in PML region )
L,

in non-PML region
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Fig. 2. Reflection characteristics of an optical grating for: (a) TE and (b} TM
modes.
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Fig. 3. Photonic crystal.

where
E,  x components of the electric fields;
H., x components of the magnetic fields;
i3 time;
¢ speed of light in free space;

n refractive index;

wo  carrier center angniar frequency:;

d PML thickness;

p . distance from the beginning of PML,;
R theoretical reflection coefficient [15].

For the PML regions I (perpendicular to the y axis), II (perpen-
dicular to the z axis), or IIl (corners), s, = land s. = 8,8, =
and 5, = 1, 0or 8, = 5, = 1, respectively.
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ITI. FeNITE ELEMENT DISCRETIZATION
Substituting a solution of the form
B(y, 2,£) = By, z,1) exp(juod) )

inte (1), we obtain the following equation for the slowly varying
complex amplitude ¢:

PP, weg 0 D (s, Dp
¢z gz T 2 ot yc“)y P By

a 5, O ,“)oq _
+Sza(p?5)+b o ¢=0. (6)

Dividing the spatial domain into quadratic {second-order) tri-
angular-elements and applying the standard finite-element tech-
nique to (6), we obtain

2
~ St EL gy g U
+0m+§wﬂw#4m @

where
{¢} global electric or magnetic field vector;
{0} null vector;

and the finite-element mairices are given by

_ 52 O(N} 9N}
K-35/ [P—WT

8T O{N} oN}T
ps Oz Oz

M) =3 / / (NN dydz ©)

dy dz 8)

where

{N} shape function vector;

T denotes a transpose;

Y. extends over all different elements.

Utilizing the Padé recurrence relation [1]-[6], the following
equation of TD-BPM (wide-angle FETD-BPM), which can treat
wide-band optical pulses, is obtained:

%[M]) {¢} ={0} (0

([K} L+

)= 1 S (14 S ).

with
(1D

The Fresnel or paraxial equation of TD-BPM (narrow band
FETD-BPM, for simplicity, abbreviated as FETD-BPM) is
easily obtained from {10) by replacing the matrix [M] by [A].

Applying the Crank—Nicholson algorithm for the time { to
(10) yields

[ALi{#}iv1 = [Bli{e}: (12)

with

Bt ([K]i + 9 {M]i) (13)
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Fig. 4. Electric or magnetic field patterns in a straight waveguide for: (a) TE and (b} TM pulses.

wo .~ wh
NI (T S

where
At time step size;
{¢}: ith time steps;
{#}in (% + 1) time steps.

The Bi-CGSTAB algorithm [16] is introduced to solve the linear
(12).

IV. NUMERICAL RESULTS

A. Optical Grating

We consider an optical grating as shown in Fig. 1, where
the number of grating periods is eight and the PML thickness
d = 1.0 pm. The input pulse with a transverse profile ¢o(y)
corresponding to the fundamental mode of the planar waveguide
and a Gaussian profile in the longitudinal direction at £ = ( is
taken as

Wo
~exp[—j Az = 70)]

2
B(y,7 1 = 0) = doly) exp| - ( - "’")
a5)

where

Fé) propagation constant;

#p  center position of the input pulse;

Wo  spot size.

The reflected and transmitted pulses are monitored inside the
waveguide. The fast Fourier transform of these pulses, normal-
ized to the spectrum of the input pulse, gives the reflection and
transmission spectra.

Fig. 2 shows the reflection characteristics with the input
pulse spectrum, where zg = 11.0 pm, Wy = 2.0 pm, the car-
rier center wavelength Ag = 1.50 zm., The time step size used
is Af = 1.0 fs which is, in general, sufficient to obtain stable
solutions in the TD-BPM analysis [11]. The total duration
simulated is 220 fs. On a DEC-alpha workstation (500 MHz),
the code takes 25 MB of memory for 37 535 nodal points and
2098 s to run. The input and reflected pulses are monitored at
the reference point as in Fig. 1, and the reflected spectra are

evaluated from the ratio between the Fourier transforms of the
reflected pulse and the incident pulse. Although the accuracy
of FETD-BPM may be limited 0 a narrow spectrum around
the carrier center frequency wyp, for both TE and TM meodes,
the results of wide-band FETD-BPM agree well with those of
the conventional FEM formulated in frequency domain [17]
over a wide range of frequencies, compared to the paraxial
FETD-BPM. In the FEM [17} the reflection and transmission
characteristics are calculated af every one frequency.

B. Photonic Crystal Circuits

Photonic crystals have inspired great interest recently be-
cause of their potential ability to control the propagation of
light. Mekis ef al. have demonstrated high transmission through
sharp bends in photonic crystal waveguides [10].

We consider a photonic erystal of dielectric rods in air on
a square array with lattice constant ¢ [10] as shown in Fig. 3.
The crystal has PBG for TE modes which extends from w —
0.302 x 27¢/a tow = 0.443 x 2wc/a, but not for TM modes.
Fig. 4 shows the electric field patterns of the pulse with Gaussian
profiles in both the transverse and longitudinal directions prop-
agating in a straight waveguide, where Ag = 1.5 pm and At =
1.0 fs. It is confirmed that the TE pulse is confined in the de-
fect, core region, while the TM pulse cannot be guided and is
radiated into the cladding region. In the following, therefore we
consider the TE pulse propagatoin and the time step size is taken
as At = 1.0 fs.

Fig. 5(a) shows a 907 bend proposed by Mekis ef o/, [10] and
(b) the element division in the neighboorhood of the corner, and
{¢) the reflection and transmission characteristics. On a DEC-
alpha workstation (500 MHz), the code takes 85 MB of memory
for 158 607 nodal points and 106 s per time step of At = 1.0
fs to run. Two pulses with Ag = 1.45 pum (solid line) and Ay =
1.65 pm (dashed line) are sent down the waveguide covering
different ranges of frequencies, and the input pulse at £ = 0 fs
is taken as

2
0020t = 0) = ol 2) exp [— (52)

-exp{—jf{z — 2)i  (16)
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Fig. 5. 90° bend with (a) structure, (b) element division, (c) propagation characteristics, and (d) electric field patterns.

wiﬂ1

doly, z) = ¢oly, z + ma), m=0,+1,42,... (17)
where ¢o(y, z) is a periodic function corresponding to the fun-
damental mode of the photonic crystal waveguide of period a.
For all examples presented in connection with photonic erystal
circuits in this subsection, the input pulses are the same, One is
at Ap = 1.45 um (solid line) and the other at Ap = 1.65 pm
(dashed line) as shown in the top panel of Fig. 5(c). Also, for
all propagation curves shown in Figs. 5-10, solid and dashed
lines correspond-to the input pulses at Ag 1.45 pm and at
Ap = 1.65 pm, respectively.

In Fig. 5(¢) the results of FDTD using six pulses [10] are
also plotted. In the FDTD caleulation [10], nonphysical, spu-

rious Gibbs oscillations are observed near the lower cutoff fre-
quencies. On the other hand, such phenomena do not occur in
our calculation. Fig. 5(d) shows the electric field patterns for the
pulse of Ay = 1.45 pm. Fig. 6(a) shows a 90° bend with zero
radius of curvature, (b) the reflection and transmission charac-
teristics, and (c) the electric field patterns (A = 1.45 psm). The
transmission is a little deteriorated.

‘Now, we propose photonic crystal circuit components as
shown in Figs. 7-12 and simulate those propagation character-
istics.

Fig. 7(a) shows a T-branch. From Fig. 7(b} high transmission
is observed at frequency ranges from w = 0.386 x 2nc/atow =
0.403 x 2wc/a. From Fig. 8(a) and (b), on the other hand, we can
see that the transmission property of a Y-branch is not so good
because of high return loss. The electric field patterns (hy =
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1.45 pm) for the T-branch and the Y-branch are, respectively,
shown in Figs. 7(c) and 3(c).

Fig. 9(a)(c) shows, respectively, a directional coupler
and its propagation characteristics, and the electric field
patterns (A = 1.45 pm). It is worthy of note that a

very low-loss 3-dB coupler can be realized at frequency
w = 0.383 % 2n¢/fa.

Fig. 10(a)—(c) shows, respectively, a multimode coupler,
the propagatoni characteristics, and the electric field pat-
terns (Ag = 1.45 gm). In this structure, equal contributions



108

P LEIVBIEOHGOBED
PROVECRRRORORD BRI
PUREREODODBIBILDIA
2259002090232 025 3
B2 06622002008989

por} - B eeees partd
eeee BoB LEEE Y]
Yy’ [EXXEY]
LR N X 8268009
26009 290¢0 0
LEX X X XXX
pon2 262006 portd
2002903000000 908
000CEOBPN300BEBDO
6808000203000 600
*P200000E0 020008
CVEEBVOGBODIBIB G
(a)
1.0
Sos
=
g
0.6
o]
8
= 04
£
202
0.0
0.30 0.
wa/(2re)
(b)

JOURNAL OF LIGHTWAVE TECHNOLOQGY, VOL. 18, NO.+l, JANUARY 2000

=120 1s
©

Fig. 10. Multimode coupler with (a) structure, (b) propagation characteristics, and (c) electric field patterns.
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in ports 3 and 4 can be hardly realized at very low reflec-
tion at port 1 and transmission at port 2,

Finally, we consider single and double microcavities cou-
pled to straight waveguides in Figs. 11(a) and 12(a). From
Figs. 11(b) and 12(b), we can see that these structures can
produce optical filters with sharp transmission resonances.
Figs. 11(c) and 12(c) show the electric field patterns (g =
1.45 gm). '

V. CONCLUSION

A wide-band FETD-BPM using the Padé approximation was
described for both TE and TM polarized pulses. Te validate
the present algorithm, numerical results are shown for optical
gratings and are compared with the conventional FEM in fre-
quency domain. Furthermore, various photonic crystal circuit
components were simulated and those fascinating properties
were demonstrated.
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Fig. 12. Double microcavities with (a) structure, (b) propagation characteristics, and (c) electric field patterns.

A full-wave FETD-BPM for three-dimensional structures is
now under consideration.

REFERENCES

{11 H.-P. Nolting and R. Mérz, “Results of benchmark tests for different nu-
merical BPM algorithms,” J. Lightwave Technol., vol, 13, pp. 216-224,
Feb, 1995,

[2] M. Koshiba and Y. Tsuji, “A wide-angle finite element beam propaga-
tion method,” IEEE Photon. Technol. Let., vol. 8, pp. 1208-1210, Sept.
1996.

{31 Y. Tsuji, M. Koshiba, and T. Tanabe, “A wide-angle beam propagation
method based on a finite element scheme,” IEFE Trans. Magnet., vol.
33, pp. 1544-1547, Mar. 1997,

[4] Y. Tsuji, M. Koshiba, and T. Shiraishi, ‘Finite element beam propagation
method for three-dimenstonal optical wavegaide structures,” J. Light-
wave Technol., vol. 15, pp. 1728-1734, Sept. 1997.

[5] Y. Tsujiand M. Koshiba, “Finite elemeni beam propagation method with
perfectly matched layer boundary conditions for three-dimensional op-
tical waveguides,” Int. J. Numer, Modeling, to be published.

6] G. R. Hadley, “Wide-angle beam propagation using Padé approximant
operators,” Opt. Lett., vol. 17, pp. 14261428, Oct. 1992,

[7] K. S. Yee, “Numerical solution of initial boundary value problems
involving Maxwell’s equations,” IEEE Trans. Antennas Propag., vol.
AP-14, pp. 302-307, May 1966,

[8] S.-T. Chu and S. Chaudhuri, “A finite-difference time-domain methed
for the design and analysis of guided wave optical structures,” J. Light-
wave Techrol., vel. 7, pp. 2033-2038, Dec. 1989,

[91 J. Yamauchi, M. Mita, S, Aoki, and H. Nakano, “Analysis of antire-
flection coatings using the FD-TD method with the PML absorbing
boundary condition,” IEEE Photon. Technol, Lett., vol. 8, pp. 236-241,
Feb. 1996. .

{10] A. Mekis, J. C. Chen, L. Kurland, 8. Fan, P. R, Villeneuve, and J, D
Joannopoulos, “High transmission through sharp bends in photonic
crystal wavegnides,” Phys. Rev. Lett., vol. 77, pp. 3787-3790, Oct.
1996,

{11} P-L. Liu, Q. Zhao, and E.-8. Choa, “Slow-wave finite-difference beam
propagation method.” JEEE Photon. Technrol. Lett., vol. 7, pp. 890-892,
Aug. 1995,

[12] G.H.Iin,J. Harari, J. P. Vilcot, and D. Decoster, *An improved time-do-

main beam propagaton method for integrated optics components,” [EEE

Photon. Technol. Lett., vol. 9, pp. 348-350, Mar. 1997.

U. Pekel and R. Mittra, “A finite element method frequency domain

application of the perfectly matched layer (PML) concept,” Microwave

Opt. Technol. Leit., vol. 9, pp. 117-122, June 1995,

[13]

[14] E. Yablonevitch, “Photonic band-gap structures,” J. Opt. Soc. Amer. B.,
vol, 10, pp. 293-293, Feb. 1993.

[15] 1.-P. Berenger, “A perfectly matched layer for the absorption of electro-

magnetic waves,” J. Comput. Phys., vol. 114, pp. 185-200, Oct. 1994,

H. A. Van der Vorst, “Bi:CGSTAB: A fast and smoothly converging

variant of Bi-CG for the solution of nonsymmetric linear systems,” STAM

J. Sci. Star. Comput., vol. 13, pp. 631-644, Mar. 1992,

[17] K. Hirayama, M. Koshiba, and M. Suzuki, “Finite clement analysis of
dielectric slab waveguide with finite periodic conrugation,” Trans. Inst.
Electron, Inform. Commun. Eng., vol. J69, pp. 724730, June 1986.

[16]

Masanori Koshiba ($M’84) was born in Sappero,
Japan, on November 23, 1948. He received the B.S.,
M.S., and Ph.D. degrees in electronic engineering
from Hokkaido University, Sapporo, Japan, in 1971,
1973, and 1976, respectively.

In 1976, he joined the Department of Electronic
Engineering, Kitami Institute of Technology, Kitami,
Japan. From 1979 to 1987, he was an Associate
Professor of Electronic Engineering at Hokkaido
University, and in 1987, he became a Professor. He
has been engaged in research on wave electronics,
including microwaves, millimeter-waves, lightwaves, surface acoustic waves
{SAW), magnetostatic waves (MSW), and electron waves, and computer-aided
design and modeling of guided-wave devices using finite-clement method,
boundary element method, and beam propagation method. He is the author
or coauthor of more than 200 research papers in English and more than 100
research papers in Japanese in refereed journals. He authored the books Oprical
Waveguide Analysis (New York: McGraw-Hill) and Oprical Waveguide Theory
by the Finite Element Method (Tokyo, Yapan/Dordrecht, Germany: KTK
Scientific Poblishers/Kluwer Academic), and coanthored the books Analysis
Methods for Efectromagnetic Wave Problems (Norwood, MA: Artech Housc},
Ultrafast and Ultra-paraflel Optoelectronics (New York: Wiley), and Finite
Element Software for Microwave Engineering (New York: Wiley).

Dr. Koshiba is a member of the Institute of Electronics, Information and Com-
munication Engineers (IEICE) of Japan, the Institute of Electrical Engineers of
Tapan, the Institute of Image Information and Television Engineers of Japan, the
Japan Society for Simulation Techuology, the Japan Society for Computational
Methods in Engineering, the Japan Society of Applied Electromagnetics and
Mechanics, the Yapan Society for Computational Engineering and Science, and
the Applied Computational Electromagnetics Society (ACES). In 1987, 1997,
and 1999, he was awarded the Excellent Paper Awards from the IEICE, respec-
tively, and in 1998, he was awarded the Electronics-Seciety Award from the
1EICE.



110

Yasuhide Tsuji (M'97) was bom in Takikawa,
Japan, on December 31, 1967, He received the B.S.,
M.S., and Ph.D. degrees in electronic engingering
from Hokkaide University, Sapporo, Japan, in 1991,
1993, and 1996, respectively,

In 1996, he joined the Department of Applied
Electronic  Engineering, Hokkaido Institute of
Technology, Sapporo, Japan. Since 1997, he has
been an Associate Professor of Hokkaido University,
Sapporo, Japan, He has been engaged in research on
wave electronics.

Dr. Tsuji is a member of the Institute of Electronics, Information and Com-
munication Engineers (IEICE) of Japan. In 1997 and 1999, he was awarded the
Excellent Paper Awards from the IEICE, and in 1999, he was awarded the Young
Scientist Award from the IEICE.

JOURNAL OF LIGHTWAVE TECHNOLOGY, VOL. 18, NO, |, JANUARY 2000

Masafumi Hikari was born in Ichihara, Japan, on
August 3, 1973, He recieved the B.S. and M.3. de-
grees in electronic enginecring from Hokkaido Uni-
versity, Sapporo, Japan, in 1997, and 1999, respec- -
tively.

He is currently working at Hitachi, Ltd., Tokyo,
Japan,

Mr. Hikari is a member of the Institute of Elec-
tronics, Information and Communication Engineers
(IEICE) of Japan.



