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Numerical Verification of Degeneracy in Hexagonal
Photonic Crystal Fibers

Masanori Koshiba, Senior Member, IEEE,and Kunimasa Saitoh, Member, IEEE

Abstract—Modal birefringences in photonic crystal fibers with
six air holes symmetrically arranged around the core region and
with multiple air holes in hexagonal lattice are numerically inves-
tigated in detail. It is confirmed from computed results obtained by
a full-vector finite element method that both the hexagonal holey
fibers are not birefringent, namely, the two fundamental modes are
degenerate.

Index Terms—Finite element method, full vector model, holey
fiber, modal birefringence, photonic crystal fiber.

I. INTRODUCTION

PHOTONIC crystal fibers (PCFs), also called holey fibers
(HFs) [1] with multiple air holes periodically arranged

around the core possess numerous unusual properties, such as
wide single-mode wavelength range [2], bend-loss edge at short
wavelength [2], large effective core area at single-mode region
[3], anomalous group-velocity dispersion at visible and near-in-
frared wavelengths [4], and strong wavelength-dependent
beam divergence [5]. To accurately model HFs, especially with
large air holes, it is crucial to use a full vector model [6]–[9].
In particular, a complete vector model is required to predict
sensitive quantities such as dispersion and birefringence.
Although birefringence between the two fundamental modes
in HFs has been very often observed experimentally [10]–[12],
the existence of birefringence in HFs has not been fully inves-
tigated theoretically/numerically. In [7], [9], it is suggested that
hexagonal PCFs are birefringent, but the numerical data are not
shown. More recently, a full vector model has been applied to a
fiber with a ring of six air holes symmetrically arranged around
the core, guaranteeing that such fibers are not birefringent [13].

So far, a full vector model for HFs is based on a modal de-
composion approach using sinusoidal functions [plane-wave ex-
pansion (PWE) method] [6], [7], Hermite–Gaussian functions
(localized function method: LFM) [8], [9], or cylindrical func-
tions [multipole method (MM)] [13]. These methods can accu-
rately model HFs. However, PWE is not efficient, as it does not
take advantage of the localization of guided modes. LFM and
MM, on the other hand, cannot efficiently describe an extended
hexagonal lattice structure [9], and in [13], only the six-hole
fiber is treated. Therefore, another method based on space-do-
main-division-type technique, such as finite element method
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Fig. 1. Curvilinear hybrid edge/nodal element.

(FEM) with locally variable mesh is also useful for design and
modeling of HFs and for double check of modal degeneracies
of HFs treated in [13].

In this letter, a full vector FEM is applied to HFs, and the
modal birefringence is numerically investigated in detail, not
only for a fiber with a ring of six air holes, but for a fiber with
multiple air holes in hexagonal lattice. As a result, we conclude
that both the hexagonal HFs are not birefringent, namely, the
two fundamental modes are degenerate.

II. COMPUTED RESULTS AND DISCUSSION

When applying a full vector FEM to HFs, a curvilinear hy-
brid edge/nodal element, as shown in Fig. 1, is very useful for
avoiding spurious solutions and for accurately modeling curved
boundaries of circular air holes. For the axial electric field,, a
nodal element with six variables to is employed, while
for the transverse electric fields and an edge element with
eight variables to is employed, resulting in significantly
fast convergence of solutions [14].1

First, we consider a fiber with a ring of six air holes symmet-
rically arranged around the core as shown in Fig. 2(a), where the
hole diameter m, the hole pitch m, and the
background index [13]. Because of the symmetry na-
ture of the system, only one-quarter of the fiber cross section is
divided into curvilinear hybrid elements, and the computational
window size m.

Fig. 3 shows the convergence behavior of the effective
indexes and for the fundamental HE and HE
modes, which are, respectively, approximately uniformly
polarized along horizontal () and vertical ( ) directions,
where the operating wavelength m and “degrees
of freedom” stand for the sum of the edge () and the nodal
( ) variables used in the whole analysis region. In Fig. 3,

1In Table II, LT/QT-2 vector-based shape functions should be corrected
as follows:4 j J j j r L j L (L r L � L r L ) for � and
4 j J j j r L j L (L r L � L r L ) for �
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Fig. 2. PCFs with (a) a ring of six air holes and (b) multiple air holes in
hexagonal lattice.

Fig. 3. Convergence of effective indexes and modal birefringence for the HE
and the HE modes in a six-hole fiber.

the modal birefringence is also plotted. We find
degeneracy in the HE states to the order of 10 with degrees
of freedom of 99 687, corresponding to 14 198 elements. This
level is almost the same as that reported in [13]. Fig. 4 shows
the transverse electric field vector distributions. We can see that
each fundamental mode is essentially a linearly polarized field.

Fig. 4. Transverse electric field vectors for (a) the HEand (b) the HE
modes in a six-hole fiber.

Fig. 5. Convergence of effective indexes and modal birefringence for the HE
and the HE modes in a hexagonal-lattice-cladding fiber.
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Fig. 6. Transverse electric field vectors for (a) the HEand (b) the HE
modes in a hexagonal-lattice-cladding fiber.

Next, we consider a fiber with multiple air holes in hexagonal
lattice as shown in Fig. 1(b), where the hole diameter

m, the hole pitch m, the background index
, and the operating wavelength m [15]. Because

of the symmetry nature of the system, only one-quarter of the
fiber cross section is divided into curvilinear hybrid elements,
and the computational window size m and

m.
Fig. 5 shows the convergence behavior of the refractive in-

dexes and and the modal birefringence . Also
in this fiber, we again find degeneracy in the HEstates to the
level of 4.9 10 with degrees of freedom of 88 345, corre-
sponding to 12 576 elements. Fig. 6 shows the transverse electric
field vector distributions.

Noting that the hexagonal PCF has six-fold rotational sym-
metry and applying 2 rotation ( 1 to 6) to the HE
(or HE ) field, we obtain the rotated field which must be a lin-

early polarized mode with the original effective index (or
). This rotated field can also be expressed as a superposition

of the two orthogonal HE and HE states. If the fiber is not
degenerate, namely , we cannot obtain the above ro-
tated field with linear polarization and effective index (or

). As a result, fibers with six-fold rotational symmetry are
not birefringent.

III. CONCLUSION

A full vector FEM with curvilinear hybrid edge/nodal ele-
ments was effectively applied not only to a fiber with six air
holes, but to a fiber with multiple air holes in hexagonal lattice.
It was confirmed from numerical results that both the hexagonal
holey fibers are not birefringent, namely, the two fundamental
modes are degenerate.
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