Numerical Verification of Degeneracy in Hexagonal Photonic Crystal Fibers

Masanori Koshiba, Senior Member, IEEE, and Kunimasa Saitoh, Member, IEEE

Abstract—Modal birefringences in photonic crystal fibers with six air holes symmetrically arranged around the core region and with multiple air holes in hexagonal lattice are numerically investigated in detail. It is confirmed from computed results obtained by a full-vector finite element method that both the hexagonal holey fibers are not birefringent, namely, the two fundamental modes are degenerate.

Index Terms—Finite element method, full vector model, holey fiber, modal birefringence, photonic crystal fiber.

I. INTRODUCTION

PHOTONIC crystal fibers (PCFs), also called holey fibers (HFs) [1] with multiple air holes periodically arranged around the core possess numerous unusual properties, such as wide single-mode wavelength range [2], bend-loss edge at short wavelength [2], large effective core area at single-mode region [3], anomalous group-velocity dispersion at visible and near-infrared wavelengths [4], and strong wavelength-dependent beam divergence [5]. To accurately model HFs, especially with large air holes, it is crucial to use a full vector model [6]–[9]. In particular, a complete vector model is required to predict sensitive quantities such as dispersion and birefringence. Although birefringence between the two fundamental modes in HFs has been very often observed experimentally [10]–[12], the existence of birefringence in HFs has not been fully investigated theoretically/numerically. In [7], [9], it is suggested that hexagonal PCFs are birefringent, but the numerical data are not shown. More recently, a full vector model has been applied to a fiber with a ring of six air holes symmetrically arranged around the core, guaranteeing that such fibers are not birefringent [13].

So far, a full vector model for HFs is based on a modal decomposition approach using sinusoidal functions [plane-wave expansion (PWE) method] [6], [7], Hermite–Gaussian functions (localized function method: LFM) [8], [9], or cylindrical functions [multipole method (MM)] [13]. These methods can accurately model HFs. However, PWE is not efficient, as it does not take advantage of the localization of guided modes. LFM and MM, on the other hand, cannot efficiently describe an extended hexagonal lattice structure [9], and in [13], only the six-hole fiber is treated. Therefore, another method based on space-domain-division-type technique, such as finite element method (FEM) with locally variable mesh is also useful for design and modeling of HFs and for double check of modal degeneracies of HFs treated in [13].

In this letter, a full vector FEM is applied to HFs, and the modal birefringence is numerically investigated in detail, not only for a fiber with a ring of six air holes, but for a fiber with multiple air holes in hexagonal lattice. As a result, we conclude that both the hexagonal HFs are not birefringent, namely, the two fundamental modes are degenerate.

II. COMPUTED RESULTS AND DISCUSSION

When applying a full vector FEM to HFs, a curvilinear hybrid edge/nodal element, as shown in Fig. 1, is very useful for avoiding spurious solutions and for accurately modeling curved boundaries of circular air holes. For the axial electric field, E_z, a nodal element with six variables E_{11} to E_{16} is employed, while for the transverse electric fields E_x and E_y, an edge element with eight variables E_{14} to E_{18} is employed, resulting in significantly fast convergence of solutions [14].

First, we consider a fiber with a ring of six air holes symmetrically arranged around the core as shown in Fig. 2(a), where the hole diameter $d = 5 \mu m$, the hole pitch $\Delta = 6.75 \mu m$, and the background index $n = 1.45$ [13]. Because of the symmetry nature of the system, only one-quarter of the fiber cross section is divided into curvilinear hybrid elements, and the computational window size $R = 40.5 \mu m$.

Fig. 2 shows the core/boundaries/side of the effective indexes n_{eff} for the fundamental HE_{11} and HE_{11} modes, which are, respectively, approximately uniformly polarized along horizontal (x) and vertical (y) directions, where the operating wavelength $\lambda = 1.55 \mu m$ and “degrees of freedom” stand for the sum of the edge (E_{12}) and the nodal (E_{16}) variables used in the whole analysis region. In Fig. 3, in Table II, LT/QT-2 vector-based shape functions should be corrected as follows: 4 | $J \mid_4 \nabla \times L_1 \mid_4 L_2(L_3 \nabla L_1 - L_3 \nabla L_2)$ for ϕ_{17} and 4 | $J \mid_3 \nabla \times L_2 \mid_3 L_2(L_3 \nabla L_1 - L_3 \nabla L_2)$ for ϕ_{18}.

Manuscript received June 5, 2001. This work was supported in part by a Grant-in-Aid for Scientific Research from the Ministry of Education, Science, and Culture, Japan.

The authors are with the Division of Electronics and Information Engineering, Graduate School of Engineering, Hokkaido University, 060-8628 Sapporo, Japan.

Publisher Item Identifier S 1041-1135(01)09976-1.
the modal birefringence $\gamma_{\text{HE}} - \gamma_{\text{TE}}$ is also plotted. We find degeneracy in the HE$_{11}$ states to the order of 10^{-8} with degrees of freedom of 99,687, corresponding to 14,198 elements. This level is almost the same as that reported in [13]. Fig. 4 shows the transverse electric field vector distributions. We can see that each fundamental mode is essentially a linearly polarized field.
and (b) the HE modes with degrees of freedom of 88 345, corresponding to 12 576 elements. Fig. 6 shows the transverse electric field vectors for (a) the HE modes and (b) the HE modes in a hexagonal-lattice-cladding fiber.

Next, we consider a fiber with multiple air holes in hexagonal lattice as shown in Fig. 1(b), where the hole diameter \(d = 1.51 \mu m \), the hole pitch \(\Lambda = 2.26 \mu m \), the background index \(n = 1.45 \), and the operating wavelength \(\lambda = 0.8 \mu m \) [15]. Because of the symmetry nature of the system, only one-quarter of the fiber cross section is divided into curvilinear hybrid elements, and the computational window size \(X = 10.17 \mu m \) and \(Y = 9.13 \mu m \).

Fig. 5 shows the convergence behavior of the refractive indexes \(n^{x}_{\text{eff}} \) and \(n^{y}_{\text{eff}} \) and the modal birefringence \(n^{x}_{\text{eff}} - n^{y}_{\text{eff}} \). Also in this fiber, we again find degeneracy in the HE11 states to the level of \(4.9 \times 10^{-8} \) with degrees of freedom of 88 345, corresponding to 12 576 elements. Fig. 6 shows the transverse electric field vector distributions.

Noting that the hexagonal PCF has six-fold rotational symmetry and applying \(2\pi / m \) rotation \((m = 1 \text{ to } 6) \) to the HE (or HE) field, we obtain the rotated field which must be a linearly polarized mode with the original effective index \(n^{x}_{\text{eff}} \) (or \(n^{y}_{\text{eff}} \)). This rotated field can also be expressed as a superposition of the two orthogonal HE and HE states. If the fiber is not degenerate, namely \(n^{x}_{\text{eff}} \neq n^{y}_{\text{eff}} \) we cannot obtain the above rotated field with linear polarization and effective index \(n^{x}_{\text{eff}} \) (or \(n^{y}_{\text{eff}} \)). As a result, fibers with six-fold rotational symmetry are not birefringent.

III. CONCLUSION

A full vector FEM with curvilinear hybrid edge/nodal elements was effectively applied not only to a fiber with six air holes, but to a fiber with multiple air holes in hexagonal lattice. It was confirmed from numerical results that both the hexagonal holey fibers are not birefringent, namely, the two fundamental modes are degenerate.

REFERENCES