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Chapter 1

Modulus of continuity of p-Dirichlet
solutions in a metric measure space

In this chapter we introduce results in papers [I1] and [12].

1.1 Potential theory in a metric measure space

Let ] < p < oo and let X = (X,d,u) be a complete connected metric measure space
endowed with a metric d and a positive complete Borel measure u such that 0 < u(U) <
oo for all non-empty bounded open sets U. Let B(x,r) = {y € X : d(x,y) < r } denote
the open ball centered at x with radius r. We assume that u is doubling, i.e., there is a
constant C > 1 such that u(B(x,2r)) < Cu(B(x,r)) for every x € X and r > 0. The
integral mean of u# over a measurable set E is denoted by

B =,
—— | udu =+ udu = ug.
H(E) JE E ¢

In a metric measure space, taking partial derivative is not possible. Therefore the
concept of the an upper gradient was introduced in Heinonen-Koskela [12] as a substitute
for the usual gradient. We say that a Borel function g on X is an upper gradient of a real-
valued function u on X if

(1.1.1) Iu(x)—u(y)ISIgds
Y

for any x,y € X and all compact rectifiable curves y joining x and y. If (1.1.1) fails only
for a curve family with zero p-modulus (see [12, Definition 2.1]), then g is said to be a
p-weak upper gradient of u. We say that g is a minimal p-weak upper gradient of u if
g < g’ p-almost everywhere for another p-weak upper gradients g’ of u. We denote by
g. the minimal p-weak upper gradient of u. The concept of upper gradients gave rise
to Newtonian space N'”(X) which is one of several attempts to define Sobolev spaces
on metric measure spaces and perhaps the most fruitful one. Whenever u € L?(X), we
define the seminorm

||M||N1w(X) = lullzrx) + irg}ngHLp(X),



where the infimum is taken over all p-weak upper gradients g of u. The Newtonian space
on X is the quotient space

NY(X) = {u € LP(X) : |lullyoxy < 00}/ ~,

where u ~ v if and only if [|u — V||y1.r(x) = 0. It is known that every function u € N (X)
has the minimal p-weak upper gradient g,,.
A p-harmonic function can be defined as the continuous minimizer of the variational

integral
f 8udp.

The p-capacity of a subset E C X is defined by

Cap, (E) = inf [l
where the infimum is taken over all ¥ € N'"(X) such that u > 1 on E. Let Q c X be
a bounded domain with Cap (X \ Q) > 0. Kinnunen-Shanmugalingam [16] proved that
p-harmonic functions in Q satisfy the Harnack inequality and the maximum principle,
and are locally Holder continuous provided X satisfies a (1, p)-Poincaré inequality, i.e.,
there exist constants ¥ > 1 and C > 1 such that for all balls B(x, ) C X, all measurable
functions u on X, and all p-weak upper gradients g of u we have

1/p
(1.1.2) J[ it — tpenldpt < Cr( ]( o7 d#) .
B(x,r) B(x,kr)

From now on, we assume that X admits a (1, p)-Poincaré inequality.

The Dirichlet problem for p-harmonic functions was studied by A. Bjorn, J. Bjorn
and Shanmugalingam ([7], [8], [9] and [21]). In particular, Bjorn-Bjorn-Shanmugalingam
[9] studied the Perron solution for p-harmonic functions. For a function f on Q2 we de-
note by Pq f the Perron solution of f over Q. A point & € 0Q is said to be a p-regular
point (with respect to the p-Dirichlet problem) if

Jim_Pofo) = f&)

for every f € C(0Q). If every boundary point is a p-regular point, then Q is called p-
regular. It is well known that if Q is p-regular and f € C(0€), then Pq f is p-harmonic
in Q and continuous in Q. It is natural to raise the following question:

Question 1.1.1. Does improved continuity of a boundary function f guarantee improved
continuity of Pq f?

Aikawa-Shanmugalingam [4] studied this question in the context of Holder continu-
ity. Aikawa [2] investigated this question in the context of general modulus of continuity
for the classical setting, i.e., for harmonic functions in a Euclidean domain. The purpose
of this chapter is to study this question in the context of general modulus of continuity
for p-harmonic functions in a metric measure space.



1.2 Modulus of continuity of p-Dirichlet solutions

Let M be the family of all positive nondecreasing concave functions ¢ on (0, co) with
Y(0) = lim_o¥(r) = 0. We say that f is y-Holder continuous if |[f(x) — f(y)] <
Cy(d(x,y)). The modulus of continuity of a uniformly continuous function on any
geodesic space is comparable to a certain concave function. See [10, Chapter 2 §6].
Therefore, we have only to check ¥-Holder continuity for ¢ € M to study Question
1.1.1 in the context of modulus of continuity.

As a typical example of ¢ € M, we consider ¢/,5 defined by

t*(=logt)™® for0 <t < t,
12(—logty)™? fort> 1.

Yop(t) = {

where either 0 < @ < 1 and 8 € Ror @ = 0 and 8 > 0; and ¢, is so small that .5 € M.
In particular we write ¢, = Y¥,0. If f is ¢,-continuous, then f is a-Hdlder continuous in
the classical sense.

Lety € Mand E C X. We consider the family A,(E) of all bounded continuous
functions f on E with norm

1fll.z = suplF) + sup LSO

xeE x,yeE lf//(d(x’ y))
XFY
We define the operator norm
1Paflly.0
Pall, = —
rens0e IS lly.00
1 1ly.007#0

Observe that y-Holder continuity of a boundary function f ensures y-Holder continuity
of Pqf if and only if ||Pgll, < oo.

Aikawa [2] characterized the family of Euclidean domains Q such that ||Pql, < oo
for ¢y € M in the context of harmonic functions. We consider the same problem in the
context of p-harmonic functions in a metric measure space. It is known that there exists
ay € (0, 1] such that every p-harmonic function in any domain Q is locally ay-Holder
continuous in Q (see [16, Theorem 5.2]). Hence, [|Pqll, < oo can hold only for ¢ € M,
in some sense, bigger than the function ¢, (f) = 1.

Let ¥, ¢ € M. We say that ¢ < ¢ if there are ry > 0 and C > 0 such that

@ < C&
@(r) (r)

Let M, be the family of all ¢ € M with t* < (¢). For example, if either 0 < a <
and € Rora =0andg > 0, then y,5 € My. Butif @ = @y and 5 < 0, then ¢, 3 ¢ Mo.
Hence we see that My & M. Our results will be given for ¢ € M.

Let U be an open set in X and let E be a Borel set in JU. A p-harmonic measure can
be defined as the upper Perron solution of the characteristic function yz. We denote by
w,(x, E, U) the p-harmonic measure evaluated at x of E in U. Note that the p-harmonic
measure is not a measure, i.e., the p-harmonic measure is not additive. We define two

forO<s<r<r.



decay properties for p-harmonic measures. We say that Q enjoys the Local Harmonic
Measure Decay property with i (abbreviated to the LHMD(y) property) if there are
positive constants C and ry depending only € and ¢ such that

(1.2.1) w,(x, Q2N IB(a,r), Q2N B(a,r)) < C, M for x € QN B(a,r),

Y(r)

whenever a € 9Q and 0 < r < ry. See Figure 1.1. We say that Q enjoys the Global
Harmonic Measure Decay property with ¢ (abbreviated to the GHMD(y) property) if
there are positive constants C, and ry depending only € and s such that

Y(d(x, a))
W(r)

whenever a € 9Q and 0 < r < ry. See Figure 1.2. By the comparison principle (see [15,
Theorem 7.2]) it is easy to see that (1.2.1) implies (1.2.2).

(1.2.2) wp(x,0Q\ B(a,r),Q) < C, for x € QN B(a,r),

wp =0 wp =10
Figure 1.1: LHMD(y) Figure 1.2: GHMD(y)

Without loss of generality, we may assume that €2 is a bounded p-regular domain (see
[4, Proposition 2.1]). For a € 0Q we define a test function 7,, on 6Q by

Tay(€) = Y(d(a,&)) for & € 0Q.
Then we have the following theorem.

Theorem 1.2.1. Let ¢ € M, and let Q be a bounded p-regular domain. Consider the
following conditions:

(@) [Pally < oo.
(i1) There is a constant C such that
Patey < CY(d(x,a)) forx e Q,
whenever a € 0Q.
(i11) Q satisfies the GHMD(yr) property.
(iv) Q satisfies the LHMD() property.

Then we have
(1) = (i) = (iil) & (Qv).



The remaining implications in Theorem 1.2.1 are of interest. In [I1] we gave the
equivalence (iii) <= (iv) under additional assumptions on X and ¥ € M. As was
observed in [4, Remark 2.4], the implication (iv) = (i) does not necessarily hold in
general. However, we prove that a condition slightly stronger than (iv) implies (i).

Theorem 1.2.2. Let Yy € M. Let yp, = Y1 /. Suppose that lim,_g,(r) = 0 and
there are constants 0 < Cz < 1 and ry > 0 such that y, is increasing on (0, ry) and

Y(r)  Yalp) N
O;)‘:Ero{w ’ W (r) = C%} < 00,

If Q satisfies the LHMD(yyr,) property, then ||Pqll, < oo.

(1.2.3)

Condition (1.2.3) looks rather complicated. We have a simple condition.

Corollary 1.2.3. Let Y,y € M. Let Y, = ¥ /¥. Suppose that there are constants
0 < Cy < 1andry > 0 such that , is increasing on (0, ry) and

mf 220
0<r<rg 17[12(C4r)

If Q satisfies the LHMD(yyr,) property, then ||Pqll, < oo.

(1.2.4)

Theorem 1.2.2 and Corollary 1.2.3 are main results of this chapter. They give several
corollaries for y/qg.

Corollary 1.2.4. Let Q be a bounded p-regular domain. Consider the following condi-
tions:

(1) O<a<d <ayandB,B’ € R.
) O=a<d <aygandpB > 0,5 €R.
(i) a=a" =0and0 < B < p.

Assume that either (1), (i1), or (ii1) holds. If Q satisfies the LHMD(, 5 ) property, then
Pally,, < oo

Let E c U c X. We define the relative p-capacity of E in U by

Cap,(E, U) = inf f ghdy,

U

where the infimum is taken over all u € N'”(X) such that # > 1 on E and Cap,({x €
X\ U : u(x) # 0}) = 0. We say that E C X is uniformly p-fat (or satisfies the p-capacity

density condition) if there are constants C > 0 and ry > 0 such that

Cap,(E N B(a, r), B(a,2r))

(1.2.5) Cap ,(B(a, 1), B(a,2r)) =6

whenever a € E and 0 < r < ry. The uniform p-fatness of the complement of a domain
Q is closely related to the condition [|Pqlly,, < oo. For @ > 0 we obtain the following
corollary.



Corollary 1.2.5. Let Q be a bounded p-regular domain. If X \ Q is uniformly p-fat, then
there is a constant 0 < a1 < g such that ||Pqlly,, < o for 0 < a < a; and € R.
Conversely, if ||Pally,, < oo for some 0 < a < ag and € R, then X \ Q is uniformly
p-fat, provided that there is a constant Q > p such that X is Ahlfors Q-regular, i.e.,

C'r? < u(B(x,r)) < Cre
forevery x e X andr > 0.

Remark 1.2.6. Aikawa and Shanmugalingam [4] showed the case 8 = 0 of Corollary
1.2.5.

For @ = 0 we obtain the following corollary.

Corollary 1.2.7. If X \ Q is uniformly p-fat, then ||Pqlly,, < oo for every 8 > 0.



Chapter 2

Martin boundary for p-harmonic
functions in a cylinder and a cone in R”

In this chapter we introduce results in [I3]. We restrict ourselves to R” to have delicate
arguments for p-harmonic functions.

2.1 Martin boundary theory for harmonic functions

Let us recall the classical Martin boundary theory for harmonic functions. Let D be
an arbitrary domain with Green function G(x,y). Martin [20] introduced the Martin
boundary A as the smallest ideal boundary for which G(x,y)/G(xo,y) has a continuous
extension K(x,y). An ideal boundary point y is called minimal if K(-,y) is a minimal
harmonic function; that is, every harmonic functions 4 in D with 0 < & < K(-,y) is a
constant multiple of K(:,y). The set of all minimal Martin boundary points is called the
minimal Martin boundary A,. Martin proved that if u is a positive harmonic function in
D, then there exists a measure y, on A, uniquely determined by u, such that y,(A\A;) = 0
and

u(x) = fA K(x, y)du,(y).

The identification of the (minimal) Martin boundary for specific domains is of great in-
terest. There are a number of works on this topic. Hunt-Wheeden [13] gave the first
cornerstone. They showed that the Martin boundary of a Lipschitz domain D is homeo-
morphic to the Euclidean boundary dD and every boundary point is minimal. They said
that a positive harmonic function u on D is a kernel function in D at a boundary point
w € dD if u has continuous boundary values 0 on D \ {w} and u(xy) = 1 ([13, p.507]).
They proved that every boundary point has a unique kernel function. This is crucial for
the identification of the Martin boundary.

In the linear case Kemper [14] proved that the uniqueness of kernel functions fol-
lows from the scale invariant boundary Harnack principle (see also [1]). For the reader’s
convenience we give a short proof below. By H(w) we denote the family of all ker-
nel functions at w with reference point xy. Then the scale invariant boundary Harnack
principle implies that there exists a constant C > 1 such that

(2.1.1) Clu(x) < w(x) < Cu(x) forallu,v e H(w)and x € D.



Theorem A. If (2.1.1) holds, then H(w) is a singleton.

Proof. Let

u(x)

Co = sup ——.

u,veH(w), xeD V(X)
Then 1 < Cy < oo by (2.1.1). It is sufficient to show Cy = 1. Suppose Cy > 1. Take
u,v € H(w). By the linearity of harmonicity v = (Cov — u)/(Cy — 1) is a positive
harmonic function with the same boundary values as # and v such that v;(xy) = (Cov(xp)—
u(xp))/(Co — 1) = 1. Hence v; € H(w), and so u < Cov; = Co(Cov — u)/(Cy — 1), which

implies

This contradicts the definition of C,. O

It is natural to extend the notion of kernel functions to p-harmonic functions. We
study p-harmonic kernel functions in a cylinder and a cone.

2.2 p-harmonic kernel functions in a cylinder and a cone

A point x € R” is denoted by (x', x,,) with x" = (xy,...,x,-1). We denote a point x €
R"\ {0} by (r,0) with r = |x] and o = x/|x|. We let OE be the boundary of a set E in R".
Let B(x, r) be the open ball with center x and radius r.

Let1 < p < 0. Let D C R" be a domain. We say that u is a p-harmonic function in D
ifue Wllo’f (D) is continuous and satisfies the p-Laplace equation A ,u = div(|Vul|P2Vu) =
0 in D in the weak sense; that is, whenever D’ is a relatively compact subdomain of D
and ¢ € Wé”’ (D), we have

f IVulP>Vu - Vo = 0.
DI

If p = 2, then the p-Laplace equation reduces to the classical linear equation Au = 0.
The set of all positive p-harmonic functions in D is denoted by H, (D).

Let D be an arbitrary domain with compactification D*. We write 9*D for the ideal
boundary D*\ D. We say that u € H,(D) is a p-harmonic kernel function in D atw € 9*D
with reference point x if # has continuous boundary values 0 on "D\ {w} and u(xy) = 1.
If each w € 0"D corresponds to a unique p-harmonic kernel function, we say that the
p-Martin boundary of D is homeomorphic to 0*D.

Let Q be a C*>*-domain in R*"!. The domain QxR = {(x’, x,) : X’ € Q, x, € R} is said
to be a cylinder generated by Q. We compactify QxR by adding the topological boundary
and the ideal boundary {+co, —co}, where +co corresponds to the limit as x, — oo,
respectively.

We investigate p-harmonic kernel functions in Q X R at +co with the aid of a translation
operator similar to the stretching operator used by Tolksdorf [22] in his study on p-
harmonic functions in a cone. We let

HI®(QXR) = {ue H(QXR): u=0o0ndQxR)U{—oo}},



Figure 2.1: The cylinder Q X R

where u = 0 at —co means lim, _,_., u(x) = 0. Similarly, we let
HQXR) ={ue H(QAXR):u=00ndQXxXR)U {oco}}.

By definition u € H,(Q X R) is a p-harmonic kernel function at +oco (resp. —oo) if and
only if u(xg) = 1 and u € H}*(Q x R) (resp. u € H;*(Q2 x R)). The following theorem
shows that +co and —oco have a unique p-harmonic kernel function.

Theorem 2.2.1. There exist a positive constant A and a function f(x') of x' € Q, depend-
ing only on p,n and Q, such that

(2.2.1) HIZ(QXR) = {Cexp(dx,) f(x') : C > 0},

(2.2.2) H, “(QXR) = {Cexp(—Ax,) f(x") : C > 0}.

Since Q X R is locally a C>®-domain in R”, every boundary point in (Q x R) has
a unique p-harmonic kernel function, in view of Lewis-Nystrom [18]. So, we have the
following corollary.

Corollary 2.2.2. The p-Martin boundary of Q X R is homeomorphic to d(2 X R) U

{_OO’ +OO},

Remark 2.2.3. Lewis-Nystrom obtained the uniqueness of p-harmonic kernel functions
by using their scale invariant Harnack principle for Lipschitz domains and starlike Lip-
schitz ring domains ([17]) and a very delicate argument. If p # 2, then the proof of
Theorem A fails, as vi = (Cov — u)/(Cy — 1) need not be p-harmonic even if u and v
are p-harmonic. Unlike the linear case, the scale invariant boundary Harnack principle is
not enough to deduce the uniqueness of p-harmonic kernel functions. This is the reason
why the domains in [18] are restricted to C! or convex. To avoid such difficulties, we re-
strict ourselves to C>*-domains in this chapter. In this case the scale invariant boundary
Harnack principle can be proved rather easily. See [3, Theorem 1.2].



In case n = 2, we can explicitly calculate A and f.

Theorem 2.2.4. Letn =2 and Q = (0, L) with 0 < L < oo. Then

pr
1= —_
20p- DL

and f(x) has a parametric representation given by

— — 1 2
f(s) = exp(—(p » %) lsm S) sin s,
(2.2.3) 1 » X P , )
xi1(s) = 71(2(p—1)s -1 sin 2s|.

Next we consider p-harmonic kernel functions in a cone. Let T be a C*>?-domain in
the unit sphere. The domainI" = {(r,0) : 0 < r < 00,0 € X} is said to be a cone generated
by . We compactify I by adding the topological boundary and the ideal boundary {co},
where oo is the point at infinity.

Figure 2.2: The cone I

We study p-harmonic kernel functions in I' at co and 0 with the aid of the stretching
operator used by Tolksdorf [22]. We let

HXT) ={ueH.(I):u=0o0ndl},
HUT) = {u € H,(T) : u=0o0n (3 U {oo}) \ {0},

where u = 0 on co means limy_ u(x) = 0. By definition u € H,(I') is a p-harmonic
kernel function at oo (resp. 0) if and only if u(xo) = 1 and u € H (') (resp. u € HUI)).
The following theorems show that co and 0 have a unique p-harmonic kernel function.

Theorem 2.2.5. There exist a positive constant u and a function g(o) of o € Z, depending
only on p,n and %, such that

(2.2.4) H>T) ={Cr'g(o): C > 0}.

Theorem 2.2.6. There exist a positive constant v and a function h(o) of o € Z, depending
only on p,n and %, such that

HUT) = (Cr¥h(o) : C > 0).

10



Corollary 2.2.7. The p-Martin boundary of T is homeomorphic to OU U {oo}.

Remark 2.2.8. Tolksdorf [22] studied functions u € H:°(I') satisfying the doubling con-
dition:
(2.2.5) sup u<C sup u forR>1,

TNB(0,2R) TNB(O,R)
with a constant C > 1 depending only on u. The set of all u € H*(I') satisfying (2.2.5)
is denoted by 5—(\5"(1"). By applying the stretching operator, he gave a characterization of
775"(1“) similar to (2.2.4). Theorem 2.2.5 implies that the doubling condition (2.2.5) is
superfluous, that is, 775" D) = HZD).

In case n = 2, we can explicitly calculate u, v, g and h. Our method goes back to
Aronsson [5], who studied p-harmonic functions in the whole plane R? \ {0} of the form
u(r,o) = r*F(o) and gave a representation of F depending on k. Although he assumed
2 < p < oo, his technique is appliable for 1 < p < 2.

We introduce the spherical coordinates (r, ) in R? which are related to the coordinates
(x1, x2) € R*\ {0} by

Xy =rsinf, x, =rcosé,

where 0 < r < oo, —mr <6 <. For 0 < ¢ <, we let
Ly ={(r,0) : 16| < ¢}.

For simplicity, we let
p—2
K=—0:.
p—1

Proposition 2.2.9. Letn =2 and I’ =T'y. Then

277 — k(= 2¢) + (7 — 2¢) AT — K) + K2(7 — 2¢)?
- 8(m — P)

and g(60) has a parametric representation given by

U

b

)04—1)/2

g(s) = (1 ~ K cos?s cos s,
U

0(s) = s+ S o arctan(

V(= &)

Proposition 2.2.10. Letn =2 and " =T'y. Then

tan s).
H—K

277 — k(T + 20)° + (7 + 2¢) AT (1 — &) + (7 + 29)?
- 8(m + ¢)¢

and h(0) has a parametric representation given by

v

b

(=v=1)/2
) cost,

h(t) = (1 + X cos?t
4

1+v
0t) =t - —— arctan(

VV(V + k)

tan t).
V+K

11



Remark 2.2.11. Dobrowolski [11] gave u but not g. Lundstrom-Vasilis [19] calculated
v and h for case p > 2 in the same way as in the proof of Proposition 2.2.10. On the
other hand, for case 1 < p < 2, they considered p/(p — 1)-harmonic stream functions
and so they obtained the explicit representation of v and . See [6] for details of stream
functions.
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Abstract. Let 1 < p < oo and let X be a metric measure space with a doubling measure and
a (1, p)-Poincaré inequality. Let © be a bounded domain in X. For a function f on 952 we denote
by Pqf the p-Dirichlet solution of f over Q. It is well known that if 2 is p-regular and f € C(99),
then Pq f is p-harmonic in © and continuous in Q. We characterize the family of domains € such
that improved continuity of boundary functions f ensures improved continuity of Pq f. We specify
such improved continuity if X is Ahlfors regular and X \ Q is uniformly p-fat.

1. Introduction

Let X = (X,d, ) be a complete connected metric measure space endowed with
a metric d and a positive complete Borel measure p such that 0 < u(U) < oo for all
non-empty bounded open sets U.

By the symbol C' we denote an absolute positive constant whose value is unim-
portant and may change from line to line. Let B(x,r) = {y € X : d(z,y) < r} denote
the open ball centered at x with radius ». We assume that p is doubling, i.e., there
is a constant C' > 1 such that u(B(z,2r)) < Cu(B(z,r)) for every x € X and r > 0.
Let 1 < p < 0o. We assume that X admits a (1, p)-Poincaré inequality.

We denote by Cap, the p-capacity defined on X (Definition 2.5). Let Q2 C X be
a bounded domain with Cap,(X \§2) > 0. For a function f on 92 we donate by Pq f
the p-Perron solution of f over 2. A point & € 012 is said to be a p-reqular point
(with respect to the p-Dirichlet problem) if

dim Pof(z) = £(6
for every f € C(09). If every boundary point is a p-regular point, then (2 is called p-
regular. It is well known that if {2 is p-regular and f € C(012), then Pgq f is p-harmonic
in Q and continuous in Q. It is natural to raise the following question:

Question 1.1. Does improved continuity of a boundary function f guarantee
improved continuity of Pq f7?

Aikawa and Shanmugalingam [3] studied this question in the context of Holder
continuity. Aikawa [2]| investigated this question in the context of general modulus of
continuity for the classical setting, i.e., for harmonic functions in a Euclidean domain.
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The purpose of this paper is to study this question in the context of general modulus
of continuity in a metric measure space.

Let M be the family of all positive nondecreasing concave functions ¢ on (0, 00)
with ¢(0) = limy_,o 1 (t) = 0. We say that f is ¢-Hdlder continuous if | f(z) — f(y)] <
C(d(z,y)). The modulus of continuity of a uniformly continuous function on any
geodesic space is comparable to a certain concave function. See [5, Chapter 2 §6| and
Propositions 2.13 and 2.14. The author would like to thank Kuroda for drawing his
attention to [5|. Therefore, we have only to check 1-Holder continuity for ¢ € M to
study Question 1.1 in the context of modulus of continuity.

As a typical example of 1) € M we consider 1,3 defined by

t*(—logt)™# for 0 <t < ty,
77Z)O‘ﬂ(t) = to& -8
&(—logto) for t > t,.

where either 0 < o < 1 and f € R or @« = 0 and § > 0; and ¢y is so small that
Yap € M. In particular, we write ¢, = 140, and we say that f is a-Holder continuous
if f is p,-continuous.

Let ¢y € M and E C X. We consider the family A, (E) of all bounded continuous
functions f on E with norm

[f(z) = fy)]

1 flls,z = sup | f(z)| + sup ————5 < o0

PP er rwer U(d(z,9))

z#y
We define the operator norm
P,
[Pally = sup IPeSlue
reng@9)  Nfllvo0

/11,0070

Observe that i-Holder continuity of a boundary function f ensures -Holder conti-
nuity of Pqof if and only if ||Pq|ly < oo.

Aikawa [2] characterized the family of Euclidean domains € such that || Pq/|, < oo
for ¢ € M in context of harmonic functions. We consider the same problem in the
context of p-harmonic functions in a metric measure space. It is known that there
exists ag € (0, 1] such that every p-harmonic function in any domain Q is locally
ap-Holder continuous in Q (see [10]). Hence, ||Pqlly < oo can hold only for ¢ € M,
in some sense, bigger than the function ¢, (t) = t*°.

Let 1, p € M. We say that ¢ =< @ if there are rg > 0 and C' > 0 such that

ols)  (s)
o) = S

Let Mg be the family of all 1) € M with t*0 = ¢(t). For example, if either 0 < a < ay
and B € Ror o =0 and 8 > 0, then 9,3 € M. But if @« = oy and 5 < 0, then
Vaop & Mo. Hence we see that My & M. Our results will be given for ¢ € M,.
Let U be an open set in X and let E be a Borel set in 0U. We denote by
wy(x, B,U) the p-harmonic measure evaluated at x of F in U. Note that the p-
harmonic measure is not a measure, i.e., the p-harmonic measure is not additive. We
define two decay properties for p-harmonic measures. We say that €2 enjoys the Local
Harmonic Measure Decay property with ¢ (abbreviated to the LHMD(v)) property)

for 0 < s<r <.
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if there are positive constants C; and ry, depending only €2 and v such that

(1.1) wy(x, Q2N IB(a,r), 2N B(a,r)) < 6’1% for x € QN B(a,r),

whenever a € 02 and 0 < r < 5. We say that  enjoys the Global Harmonic
Measure Decay property with ¢ (abbreviated to the GHMD(1)) property) if there are
positive constants Cy and ry depending only 2 and v such that

(1.2) wy(x, 002\ B(a,r),Q) < 02% for x € QN B(a,r),

whenever a € 90 and 0 < r < ry. By the comparison principle (see |9, Theorem 7.2|)
it is easy to see that (1.1) implies (1.2).

Without loss of generality, we may assume that €2 is a bounded p-regular domain
(see |3, Proposition 2.1]). For a € 02 we define a test function 7,, on 0 by

Tan(€) = ¥(d(a,€)) for & € ON.

Then we have the following theorem.
Theorem 1.2. Let ¢y € My and let ) be a bounded p-regular domain. Consider
the following conditions:
(i) [[Pally < oo
(ii) There is a constant C' such that
PaTay(x) < CY(d(z,a)) forz e,

whenever a € 0f).
(iii) €2 satisfies the GHMD(3)) property.
(iv) € satisfies the LHMD(1)) property.

Then we have
(i) <= (ii) = (iii) <= (iv).
The remaining implications in Theorem 1.2 are of interest. Theorem 4.1 in Sec-
tion 4 will give the equivalence (iii) <= (iv) under additional assumptions on X and

1 € My. As was observed in [3, Remark 2.4], the implication (iv) = (i) does not
hold. However, we prove that a condition slightly stronger than (iv) implies (i).

Theorem 1.3. Let ¢, ¢, € M. Let 1)y = 1 /1. Suppose that lim,_,o1s(r) =0
and there are constants 0 < C3 < 1 and ¢ > 0 such that 1, is increasing on (0,rg)
and

iﬂ(r) ) %(P) . 50
(13) o<53%m{w<p> ) 03} <00

If Q satisfies the LHMD (1)) property, then ||Pqll, < oo.
Condition (1.3) looks rather complicated. We have a simple condition.

Corollary 1.4. Let ¢,9; € My. Let 1py = /1. Suppose that there are
constants 0 < Cy < 1 and 9 > 0 such that i is increasing on (0,7) and

: a(r)
1.4 f
(1.4) 0<r<ry Gy (Cyr)
If Q satisfies the LHMD (i, ) property, then ||Pql|y < oc.

> 1
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Theorem 1.3 and Corollary 1.4 are main results of this paper. They give several
corollaries for ¥,3.

Corollary 1.5. Let ) be a bounded p-regular domain. Consider the following
conditions:

(i) 0<a<ad <ayand B, €R.
i) 0=a<d <apand f>0,5 €R.
(i) a=a’"=0and 0 < B < f.

Assume that either (i), (ii), or (iii) holds. If ) satisfies the LHMD (5 ) property,
then [|Pq/|y,, < oo.

We say that E C X is uniformly p-fat or satisfies the p-capacity density condition
if there are constants C' > 0 and rq > 0 such that

Cap,(E N B(a,r), B(a,2r))
Cap,(B(a,r), B(a,2r)) — '

(1.5)

whenever a € F and 0 < r < rg. The uniform p-fatness of the complement of a
domain €2 is closely related to the condition |Pqlly,, < co. For a > 0 we obtain the
following corollary.

Corollary 1.6. Let Q be a bounded p-regular domain. If X \ Q is uniformly
p-fat, then there is a constant 0 < a; < g such that ||Pqlly,, < oo for 0 < a < o
and 8 € R. Conversely, if | Pql|y,, < oo for some 0 < o < o and 3 € R, then X \
is uniformly p-fat, provided that there is a constant () > p such that X is Ahlfors
Q-regular, i.e.,

C 9 < pu(B(x,r)) < Cr9
for every x € X and r > 0.

Aikawa and Shanmugalingam [3] showed the case 5 = 0 of Corollary 1.6. For
a = 0 we obtain the following corollary.

Corollary 1.7. If X \ Q is uniformly p-fat, then ||Pq||y,, < oo for every 5 > 0.

The plan of this paper is as follows. In the next section we shall define notions
of p-harmonicity, p-Dirichlet problem, p-capacity, and p-harmonic measure, and we
shall observe some properties for M. In Section 3 we shall show Theorem 1.2. In
Section 4 we shall prove that Q satisfies the LHMD(¢)) property if and only if {2
satisfies the GHMD(¢)) property under certain additional assumptions. The proof of
Theorem 1.3 and Corollary 1.4 will be given in Section 5. Finally, we shall give the
proof of Corollaries 1.5, 1.6, and 1.7.

2. Preliminaries

In this section we introduce notions of p-harmonicity, p-Dirichlet problem, p-
capacity, and p-harmonic measure; for details we refer to [3], and we observe some
properties for M.

The integral mean of u over a measurable set E is denoted by

IS
— [ udp =+ udp =ug.
n(E) Jg E "
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Definition 2.1. We say that a Borel function g on X is an upper gradient of a
real-valued function v on X if

(2.1) u(z) — u(y)| < / gds

vy
for any x,y € X and all compact rectifiable curves v joining x and y. If (2.1) fails
only for a curve family with zero p-modulus (see |7, Definition 2.1]), then g is said to
be a p-weak upper gradient of u. We say that g is a minimal p-weak upper gradient
of u if g < ¢ p-almost everywhere for another p-weak upper gradients ¢’ of u. We
denote by ¢, a minimal p-weak upper gradient of w.

Definition 2.2. Let u € LP(X). We define the seminorm
lullwviecey = llullzy + inf gz,

where the infimum is taken over all p-weak upper gradients g of u. The Newtonian
space on X is the quotient space

N'P(X) = {u € LP(X): [Jullyrox) < 00}/ ~,
where u ~ v if and only if |Ju — v||x1r(x) = 0.
Remark 2.3. The Newtonian space N'?(X) with the norm || - ||yis(x) is a
Banach space. Every function u € N'P(X) has the minimal p-weak upper gradient
Gu-

Definition 2.4. We say that X admits a (1, p)-Poincaré inequality if there are
constants k > 1 and C' > 1 such that for all balls B(z,r) C X, all measurable
functions v on X, and all p-weak upper gradients ¢ of u we have

1/p
(2.2) ][ |u — upem|dp < Cr (][ q° du) )
B(z,r) B(z,kr)

A consequence of the (1,p)-Poincaré inequality is the following p-Sobolev in-
equality (see [10, Lemma 2.1]): if 0 < v < 1 and u({z € B(z, R): Ju(2)| > 0}) <
yu(B(z, R)), then there exists a positive constant C., depending only on 7 such that

1/p 1/p
(2.3) (][ |ul? du) < CWR(][ gt d,u) )
B(z,R) B(z,xR)

If X admits a (1, p)-Poincaré inequality, then X admits a (1, ¢)-Poincaré inequal-
ity for every ¢ > p by Holder’s inequality. Keith and Zhong [8] showed that if X
is proper (that is, closed and bounded subsets of X are compact) and X admits
a (1,p)-Poincaré inequality, then there exists ¢ < p such that X admits a (1,q)-
Poincaré inequality. Because X is a complete metric space equipped with a doubling
measure, X is proper. Therefore we can use their result.

Definition 2.5. The p-capacity of a subset E C X is defined by
Capp(E) = irulf ||U”1z9v1,p(x)a
where the infimum is taken over all u € N'?(X) such that u > 1 on E.

We say that a property holds p-quasieverywhere (p-q.e.) if the set of points for
which the property fails to hold has p-capacity zero. We let

Ny P(Q) = {u e N*(X): u=0 p-qe. on X\ Q}.
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We say that u € NLP(Q) if for every z € Q there is r, such that f|pg.,.) €
N'?(B(x,r,)). This is clearly equivalent to saying that f € N'(V) for every rela-
tively compact subset V' of ). We now introduce the notion of p-harmonicity.

Definition 2.6. We call a function u € N>"(Q) a p-harmonic function in Q if u
is continuous and

(2.4) / ghdp < / v Apt-
U U

for all relatively compact subsets U of {2 and all functions ¢ € N& P(U). A function
u € NLP(Q) is said to be a p-superminimizer in Q if (2.4) holds for all relatively
compact subsets U of © and all nonnegative functions ¢ € Ny?(U). We call a
function u € N-P(Q) a p-subminimizer in Q if (2.4) holds for all relatively compact

subsets U of  and all nonpositive functions ¢ € Ny?(U).

Let u and v be p-harmonic functions and let a, 5 € R. Then au+ [ is p-harmonic.
But in general u + v is not p-harmonic. Kinnunen and Shanmugalingam [10, Theo-
rem 5.2| showed the following local Holder continuity of p-harmonic functions. Here,
we denote by oscg u the oscillation supg u — infp u.

Theorem 2.7. Suppose a function u is p-harmonic on B(x,2kR). Then there
are constants 0 < ag < 1 and C' > 1 such that

ap
0SC uﬁC(i) osc u for0<r<R.
B(x,kr) R B(z,xR)

The constants oy and C' are independent of u, x, and R.

Next we define p-Dirichlet solutions over 2. For a function f € N'?(Q) we
denote by Hq f the Dirichlet solution of f over €, i.e., Hof is a function on Q that
is p-harmonic in Q with f — Hof € Ny?(Q). For E C X we denote by Lip(E) the
family of all Lipschitz continuous functions on E. For every f € Lip(0f2) there is a
function Ef € Lip(Q) such that f = Ef on 9§2. Therefore we can define Hqf by
the function HoFE' f; this is independent of the extension Ef. We say that a lower
semicontinuous function u on §2 is a p-superharmonic function in €2 if

(i) —o0 < u < o0
(ii) u is not identically oo in €
(iii) Hov < u in Y for every relatively compact subset €' of € and all functions
v € Lip(0€') such that v < u on 9.

If —u is p-superharmonic, then we say that u is p-subharmonic.

The following comparison principle is very useful in nonlinear potential theory
(see |9, Theorem 7.2|).

Theorem 2.8. Let u be a p-superharmonic function on ) and let v be a p-
subharmonic function on §2. If

(2.5) limsup v(z) < liminf u(z)
Q3z—¢ Q3z—¢

for every £ € 0X), and if both sides of (2.5) are not simultaneously co or —oo, then
v < in €.

Definition 2.9. Let f be a function on 0€2. Let U; be the set of all p-superharmonic
functions v on € bounded below such that lim infos, ¢ u(z) > f(€) for each £ € 0.
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The upper Perron solution of f is defined by
Pof(z) = inf u(x) forxeQ.
uGL{f

Similarly, we define the lower Perron solution of f by

Paf(z) = sup s(z) for xz €,

SEﬁf

where Ly = —U_; is the set of all p-subharmonic functions s on €2 bounded above
such that limsupos,_ s(z) < f(£) for each & € 9Q. If Pof = Pqf, then we write
Paof = Paf, and we say that f is resolutive. We call Pq f the Perron solution of f.

A. Bjorn, J. Bjérn and Shanmugalingam [4, Theorem 6.1] showed that if f €

C(09), then f is resolutive. Moreover, if f € N'P(X), then f is resolutive and
Paof = Haf, by [4, Theorem 5.1|. We define the p-harmonic measure as follows.

Definition 2.10. Let U be an open subset of X and let £/ be a Borel set in OU.
The p-harmonic measure evaluated at x of E/ in U is defined by

wy(z, E,U) = Pyxp(r) forzeU.
The p-harmonic measure is not additive because of the non-linear nature of p-

harmonic functions. Therefore the p-harmonic measure is not a measure.

Definition 2.11. Let £ C U C X. We define the relative p-capacity of E in U
by

Cap,(£,U) =inf/gﬁdﬂ,
v Ju

where the infimum is taken over all u € N& P(U) such that u > 1 on E.

Finally, we observe some properties for M. The following proposition shows an
elementary property for M (see |2, Lemma 2.2]).

Proposition 2.12. Let v € M. If¢ > 1 and 0 < s <t < ¢s, then ¥(s) <
e(t) < cis).

In Section 1 we have assumed that ¢ € M is concave. The relevance of concavity
of ¢y € M follows from the following propositions.

Proposition 2.13. Let ¢ be a nondecreasing subadditive function on (0, 00), i.e.,
if t1,ty > 0, then p(t1 + t2) < p(t1) + ¢(t2). Suppose that lim; 0 p(t) = ¢(0) = 0.
Then there is a function v € M satisfying

SU() < (1) S wlt) fort >0

Proposition 2.14. Let (A,d4) be a geodesic space and let f be a uniformly
continuous function on A. Then

wlt) = e(fit) = Sup [f(x) = f(y)| fort=0.
z,yéJASt

is a subadditive function on (0, 00).

See [2, Section 5], [5, Chapter 2 §6|, and |11, Section 3| for these accounts.
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3. Proof of Theorem 1.2

To prove Theorem 1.2 we recall the following geometric property (see |6, Propo-
sition 4.4)).

Lemma 3.1. The space X is quasiconvex, i.e., there exists a constant Cs > 1
such that every pair of points x, y € X can be joined by a curve of length at most
Csd(x,y). Hence if x € E &G X, then

dist(z, X \ F) < dist(z,0F) < C; dist(z, X \ E).

Proof of Theorem 1.2.  Since the LHMD(v) property implies the GHMD(v))
property, it is sufficient to show that Condition (ii) implies Condition (iii) and that
Condition (i) is equivalent to Condition (ii).

(il) = (iii). Suppose (ii) holds. Let a € 9Q and r > 0. Then

V() xoo\B(an) (§) < Taw(&) for £ € 0.
The comparison principle yields
P(r)wy(z, 00\ B(a, 1), ) < Porap(zr) forz e Q.
Hence, (ii) implies that
Y(r)wy(x, 002\ B(a,r),Q) < CY(d(z,a)) forz e Q.

Thus (iii) follows.

(i) = (ii). Suppose || Pqlly < 00. Since 7,4 € Ay (0€2), we have

[PaTaullvo < 1Pallpll7amnllv.on < oo

By definition

|Patay(z) — Patay(y)| < [[Patayllyov(d(z,y)) for z,y € Q.

Letting y — a, we see that Po7,4(2) < [|[PaTaylv.o(d(z,a)). Thus (ii) follows with
C = |Patawls.0-

(ii) = (i). Suppose (ii) holds. Let f € A, (092). Since |Pqf| is bounded by the
supremum of | f| over 0€2, it is sufficient to show that

(3.1) [Paf(x) = Paf(y)l < Cllfllwoo(d(z,y)) for z,y € Q.

Let z,y € Q. Without loss of generality, we may assume that dist(z, X \ Q) >
dist(y, X \ Q). Let R = dist(z, X \ ©)/2k. Since 02 is compact, we can take z* € 9
such that d(z, z*) = dist(z, 052). Then Lemma 3.1 gives

(3.2) 2kR < d(z,z") < 2kC5R.
Let fo(§) = f(&) — f(z*). By definition

[fo(O] < I fllwo0Tas4(€)  for £ € 9.
Hence, by the comparison principle and (ii), we obtain

(3.3) Pafo(2)] < Clifllyoav(d(z, 7)) for z € Q.

Let us consider two cases.
Case 1: d(z,y) < d(x,2*)/(2cC5). Let r = d(x,y). Then r < R. Since Pqfy is
p-harmonic, Theorem 2.7 gives
ap
0sC )PQfD < C(%) 505 Pa fo-

B(z,kr
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We obtain from (3.2) that
d(z,z") < d(z,z) +d(z,2") < (1+2C5)kR for z € B(z,kR).
By Proposition 2.12 we have
U(d(z,27)) < P((142C5)kR) < (1 +2C5)kip(R).
Thus by (3.3) we obtain

osc Pafo <2 sup |[Pafol < C|fllyoav(R).
B(z,xR) B(z,xR)

Hence

B4 [Pas(a) = Pos)] = IPofue) ~ Pasin] < ;) Iflsamt(D)

Since 1 € My, there is a constant C' > 0 such that
ap
(f) < CM for 0 < s < r < 2k diam(9Q2).
r W(r)
Hence by (3.4), we have

Paf(x) = Paf(y)l < Cllflls.oet(d(z,y)).
Case 2: d(x,y) > d(z,2*)/(2kC5). We have

d(y, «*) < d(x,y) +d(z,2") < (14 2kC5)d(x, y).
It follows from Proposition 2.12 and (3.3) that

[Paf(r) = Paf(W)l = [Pafo(z) — Pafo(y)l < [Pafo(x)| + [Pafo(y)]
< O fllyoa((d(z,2%)) + ¥(d(y,z7)))
< O fllp.o0v(d(z,y)).

Combining the above two cases, we obtain (3.1). Thus (i) follows. O

4. Equivalence between GHMD (%) and LHMD(v))

If ¥ = ¢, then the GHMD(%) property and the LHMD(v) property are equiv-
alent for Euclidean domains (see [1]) and for a metric measure space (see [3]). If
U # @q, it is not known whether this equivalence holds or not. In this section we
show that the equivalence holds under certain additional assumptions.

Let S(z,r) = {y € X: d(x,y) = r} be the sphere with center at z and radius
r and let A(z,r, R) be the annulus B(z, R) \ B(z,r) with center at x and radii r
and R. We say that X is linearly locally connected (abbreviated to LLC) if there are
constants Cg > 1 and 7y > 0 such that for every a € X and 0 < r < ry each pair of
points x, y € S(a,r) can be connected by a curve lying in A(a,r/Cg, Cer).

Theorem 4.1. Let Q2 be a bounded regular domain. Assume that X is LLC and
there is a constant C' > 0 such that

(4.1)
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whenever a € 02 and 0 < r < R < diam(X). Let ) € M. Suppose that there exist
constants 0 < C' < 1 and r¢ > 0 such that

o Y(r)
o BN

Then ) satisfies the LHMD(v) property if and only if ) satisfies the GHMD ()
property.

Theorem 4.1 is new, even for the classical setting, i.e., for harmonic functions in
Euclidean domains.

The proof is decomposed mainly into two steps. First, we show that the GHMD(¢))
property implies that the uniform perfectness of the boundary (Lemma 4.3). Second,

with the aid of the uniform perfectness and a chain property, we will complete proof
of Theorem 4.1. See [3, Lemmas 5.1 and 5.2] for Holder continuity.

Definition 4.2. Let E be a subset of X. We say that F is uniformly perfect if
there are constants 0 < C7 < 1 and rg > 0 such that A(x,Cyr,r) N E # 0 for every
r € Fandall 0 <r <rg.

Lemma 4.3. Let ) be a bounded regular domain. Assume that X is LLC and
w satisfies (4.1). Let v € My. Suppose that v satisfies (4.2). If Q) satisfies the
GHMD(3) property, then 052 is uniformly perfect.

For the proof we state the following lemma, which is proved in the same way as
[3, Lemma 5.3].

Lemma 4.4. Assume that u satisfies (4.1). If 0 < 2r < R < diam(2)/2, then

1—
Cap,(B(a,r), B(a, R)) - C(log E) pR—P_
(B(a, R)) r

Proof of Lemma 4.3. Let a € 02 and 0 < p; < ps < diam(Q2)/2. Suppose
A(a, p1, p2) does not intersect J€2. Then it is sufficient to show that the ratio p;/p2
is bounded below by a positive constant C' depending only on 2 and ).

Without loss of generality, we may assume that p; < py/(2CZ). By the LLC
property we see that A(a, Cgp1, p2/Cs) C Q. For simplicity, we let r = Cgp; and
R = p3/Cs. Then

(4.3) A(a,r, R) C Q.

(4.2) > 1.

Letting py be larger if necessary, we may assume that S(a, CgR) has a point b € 0fQ.
Let K = B(a,r) \ §2. Observe from (4.3) that K = B(a, R) \ §2. By Lemma 4.4,

Cap,(K,QUK) _ Cap,(B(a,r), B(a, R)) U2
1(B(a, R)) = 1(B(a, R)) SC(I ) e

Let ux be the p-capacitary potential for the condenser (K,Q U K), i.e., ug is p-
harmonic on Q, uxg =1 p-q.e. on K, ug =0 p-q.e. on X \ (QU K) and

(4.4)

Capp(K,QUK):/gﬁKd,u.
X

We prove that ux < 1/3 p-q.e. on B(b, BR) for some 0 < < 1. Since r < R/2
and A(a,r, R)NoQ = (, it follows from the comparison principle and the GHMD(v))
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property that

Y(d(x, b))
4.5 <Co———==  f QN B(b,R/2).
(4.5) ug () < " (R)2) orx € (b, R/2)
Since 1) satisfies (4.2), there is a constant 0 < Cg < 1 such that
. o(r)
S = f
o<7~<£m(9)/2 P (Csr)
Therefore, we have A
UCTR)2)
v(CsR/2)
for every positive integer j. Now multiplying the above inequalitiesover j = 1,2,... N
we get
V(O R/2)
We can find a positive integer N such that
Cy 1
2 < =
SN —3

Let 3 = CY /2. By the monotonicity of 9, if z € B(b, BR), then

U(d(x,0)) < D(BR) < p(R/2)/(3C3).
Hence, by (4.5) we obtain

1
ug () < 3 for x € QN B(b, BR)

Since ugx = 0 p-q.e. on B(b, R/2) \ 2, we have uyx < 1/3 p-q.e. on B(b, 5R).
Next we prove that ux > 2/3 p-q.e. on B(a, SR). It follows from (4.3) and the
comparison principle that

ug(r) =1 —wy(z,00Q\ B(a, R),) for xz €
By the GHMD(%), we have

wy(x, 002\ B(a, R),Q) < O, ) g € QN B(a, R)

Hence (4.2) implies
ug(z) > for x € QN B(a, BR)
Since ux = 1 p-q.e. on B(a,R) \ Q C B(a, R) \ , we obtain ux > 2/3 p-q.e. on

B(a,BR).
Let v = max{ug, 1/3} —1/3 > 0. Then
iz € B(a,2CsR): vlx) =0})  w(BG.SR) o
pu(B(a,2C6R)) ~ w(B(a,2CsR))

where v > 0 depends only on . Hence the p-Sobolev inequality (2.3) and the
doubling property of p imply

1/p 1/p
foses)" o] )"
B(a,2CsR) B(a,2kC6)

Wl N
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By the doubling property of p we have

/ P> / (1/3) dp > Cu(Bla, ).
(a,2CsR) (a,BR)

Hence, we obtain
Cap,(K.QUK) = [ ghodu= [~ grau
X (a,2kCsR)
> CR_p/ vPdp > CRPu(B(a, R)).
(a,2C6R)

This, together with (4.4), implies that r/R is bounded below and therefore so is
p1/p2. Thus the lemma is proved. O

To prove Theorem 4.1 we state two lemmas in [3].

Lemma 4.5. Let 0 < R < diam(2)/6x and let u be a p-subminimizer on
B(z,2kR). Suppose 0 <wu <1 on B(z,2kR) and

p({x € B(z,R): u(x) > 1— s})
n(B(z, R))
for some 0 < s < 1. Then there exists a constant t > 0 such that
u>1—t on B(z.R/2).
The constant t is independent of u, z, and R.

Lemma 4.6. Let 0 < R < diam(Q)/6k. Let B(z1, R/2) N B(z9, R/2) # 0.
Suppose u is a p-subminimizer on B(zo,26R) with 0 < u < 1 in B(z3,2kR). If u <
1—&y on B(z, R/2) for some g1 > 0, then there is a positive constant 5 = €5(g1) < 1
such that u <1 — ey on B(z9, R/2).

Proof of Theorem 4.1. 1t is sufficient to show that if ) satisfies the GHMD (%))
property, then €2 satisfies the LHMD(%)) property. Since € is uniformly perfect by
Lemma 4.3, there are constants 0 < C7 < 1 and o > 0 such that A(z, C7r,r)NoQ # ()
for every x € 92 and all 0 < r < ry. Let a € 92 and 0 < r < ry. Then we can find
p such that S(a,p) NI # 0 and Crr < p <.

Let ¢ be a small positive number to be determined later. By the LLC prop-
erty and the doubling property of ;4 we can find finitely many points z1,...,2y €
A(a, p/Cs, Cgp) such that the union U, B(z;, cr) is a covering of S(a, p) that forms a
chain, that is, for every k,l € {1,..., N} there is a subcollection of balls B;,, ..., B;,,
such that By = B;,, B, = B;,, and B;, N B;,,, # 0 for i € {1,...,m — 1}. Observe
that

<7<l

s — —4rer, Cop+4ker) C A(a, (2—4/430) , (Co+4rc)r).

B(zj,4kcr) C A(a, e C,

||C2

Let ¢ > 0 be small enough so that 4xc < C7/(2Cs). Let n = C7/(2Cs). Consider

- wp (092N B(a,nr), ) on ,
o on X \ Q.

Then 0 < u <1 on X and u is a p-subminimizer in X \ B(a,nr) D UX, B(z;, 4rcr).
Fix z* € 02N S(a, p). Without loss of generality, we may assume that z* € B(zy, cr).
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Since

B(z*,(4k — 1)er) C B(z1,4ker) C X\ B(a,nr),
it follows from the comparison principle that
u(z) < wy(z, 00\ B(2", (4 — 1)cr), Q) for z € Q.
Since € satisfies the GHMD(¢)) property and 1 satisfies (4.2), we obtain

1
u(z) < 5 for x € B(z*, 5r) N

for some B > 0 independent of @ and 7. Since v =0 on X \ €2, we have v < 1/2 on
B(z*, pr). Hence Lemma 4.5 with R = 2¢r yields that u < 1 — & on B(zy,cr) for
some €1 > 0 independent of a and r. Since Uévle (zj,cr) is a chain, we find some
ball, say B(zs, cr), intersecting B(z1, ¢r). Then by Lemma 4.6 we have u < 1 — &5 on
B(zo, cr) for some €5 > 0. We may repeat this argument finitely many times until, by
the finiteness of the cover and its chain property, we eventually obtain © < 1 —¢y on
U;VZIB(ZJ-, cr) for some gy > 0 that is independent of @ and r. In particular, u < 1—¢
on S(a, p). Since
w, (02N B(a,nr),Q) =1 —w,(02\ B(a,nr),) on €,

it follows that w,(0Q\ B(a,nr),) > ¢y on 2N S(a, p). By the comparison principle
we have

giwp(ﬁQ \ B(a,nr), ) > w,(Q2NIB(a,p), 2N B(a,p)) on Q2N B(a,p).
0

Hence the GHMD(%)) property and Proposition 2.12 yield
wy(xz, Q2N IB(a,r), 2N B(a,r)) <w,(x,2NIB(a, p), 2N B(a,p))
< Ge¥ld(@,a)) _ G P(d(z,a))
e () T e W(r)

for all x € QN B(a,p). Because p > Cqr, we obtain d(x,a) > Cyr for all z €
QN B(a,r)\ Bla, p). Proposition 2.12 yields

Yld(z,a)) _ 1 ¢(d(z,a))
Y(Cor) T Cr o (r)
for all z € QN B(a,r) \ B(a, p). Thus 2 satisfies the LHMD(v) property. O

wy(z, Q2N IB(a,r), 2N B(a,r)) <1

IN

Remark 4.7. We say that X is Ahlfors Q-regular if there exists a positive con-
stant C' such that

C'r9 < u(B(x,r)) < Cr?  for every B(x,r).

If X is Ahlfors Q-regular with ) > p, then u satisfies (4.1). Moreover if X supports a
(1, p)-Poincaré inequality and X is Ahlfors Q-regular with Q > p, then X is LLC (see
[6, Proposition 4.5]). Therefore, if X is Ahlfors Q-regular with @ > p and i € M,
satisfies (4.2), then Q satisfies the LHMD(1)) property if and only if {2 satisfies the
GHMD(v)) property.

Remark 4.8. Let ¢ = ¢,5. If a > 0, then 1,4 satisfies (4.2). Therefore if X is
Ahlfors Q-regular with ) > p, then the LHMD(4),5) property and the GHMD(1),3)
property are equivalent. On the other hand, s does not satisfy (4.2), and we do
not know whether the equivalence holds or not.
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5. Proof of Theorem 1.3 and Corollary 1.4

In this section we give the proof of Theorem 1.3 and Corollary 1.4.

Proof of Theorem 1.3. Let a € 0Q and u = Pqr,. We will show (ii) in
Theorem 1.2 holds, i.e., u(z) < CY(d(x,a)). For p > 0 we define a function f(p) by

fo) = swp ulz).
QNS(a,p)

It is sufficient to show that

(5.1) f(p) < C¥(p)

for small p > 0. Let 0 < p < r < diam(2). By definition of 7,, we see that
u < Y(r) + f(r)xanoB,r) on 02N B(a,r)). The comparison principle yields

u(x) < P(r) + f(r)w,(z, Q2N IB(a,r), 2N B(a,r))
for all x € QN B(a,r). Hence, the LHMD (¢, ) property implies

¥1(p) ¥(p) ¥2(p)
P1(r) Y(r) da(r)

Without loss of generality, we assume that ro < diam(§2). We can find a positive
integer N such that CY < 1/(2C;). By (1.3) we have

(5.2) f(p) <(r) +Cif(r) = (r) + Cof(r)

U(r)  va(p) N}
5.3 M= su : =5 p <oo.
(5.3) 0<p<7P<T0{ Y(p)  Pa(r) ’
We can find the number 0 < r, < 1y such that
Pa(rp) N
=C5.
va(ro) 7

Let 0 < 7 < 75. Then by (5.3) we can find a sequence {p;}7_; such that r = py <
pr<...<pp1<ry< pn<ro,

Ya(p;) 1

—:CNg— for j =0,1,...,n—1,
¢2(Pj+1) ’ 204
and
w(p]+1)§M forj:O,l,...,n_]u
V(p;)

Hence, by (5.2) we obtain

f(pi) < (pjsa) + %f(,onrl)% for j=0,1,...,n—1.
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These inequalities imply that

L p Lo 2(po)
F(r) = f(po) < (1) + ¥ (p ”1 t o (pn) =
(r) = f(po) < ¥(p1) ; T pe RGOk
SE ¥ (po)
<M +M —+ flpn) =
< Mib(py) + Mio(po) + Flpu) 22
U(pn)
¢ (diam(£2))
< (2M + —————5)¥(r),
( TEARAE
where f < 1 (diam(2)) and r{, < p,, are used in the last inequality. Thus (5.1) follows,
and so (ii) in Theorem 1.2 holds. Hence ||Pq||y < co by Theorem 1.2. O
Proof of Corollary 1.4. Let us prove (1.3) with
2ﬁQ(CM)
C5 = sup < 1.
° 0<7’<7‘0 ¢2( )
Fix 0 < r <ry. Then
P2(Cyr)
< Cs.
Uo(r) — 7
By the monotonicity of ¢ we can find a number p such that Cyr < p < r and
¥2(p) — (4
(1)
Proposition 2.12 yields that
o) _ ) _ 1
vip) ~ (Car) — Cy
Hence we have ) )
Y(r)  alp } 1
su : =(C3p < — <o00.
0<p<,p<m{¢(p) O R ae?

Next we prove that lim, ,g1o(r) = 0. By the monotonicity of v, the limit of
o(r) exists, as 7 — 0. If lim, o 12(r) # 0, then we would have

Ua(r)

im =
This would contradict (1.4). Hence lim,_,o12(r) = 0. Since the assumptions of
Theorem 1.3 are satisfied, it follows that ||Pql|, < oco. O

6. Proof of Corollaries 1.5, 1.6 and 1.7

In this section we prove Corollaries 1.5, 1.6, and 1.7.

Proof of Corollary 1.5. We divide the proof into the following two cases.
Case 1: (i) or (ii) holds. Let ¢ = tap, V1 = Yop, and ¥y = 101 /1p. Let 1 be a
small positive number. Then

Ua(r) =¥ "(=logr) 7P for 0 <r <.
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Hence 15 is increasing on (0, 7), and for some constant Cy € (0, 1)
: Pa(r)
in

0<rsro 1y (Cyr)
Since the assumptions of Corollary 1.4 are satisfied, we have ||Pql|y,, < co.

Case 2: (iii) holds. Let ¢ = g, Y1 = top, and ¢y = 11 /1). Let ry be a small
positive number. Then

> 1.

Yo(r) = (logr)™#*F  for 0 < r < rq.

Hence lim, o ¥2(r) = 0 and 1 is increasing on (0, 7). Fix a constant 0 < < 1 and
0<r<ry Let A\=n""F) and p =r*. Then we have

Ua(p) _ —B'+8 _
a(r) 4 "
and
Y(r) — )8
vp)
e v talp)
CPelp) | s
0<§3%m{¢<p> (1) ”} v
Thus it follows from Theorem 1.3 that ||Pq||y,, < oo. O

To prove Corollaries 1.6 and 1.7 we observe the following lemma (see |3, Lem-
ma 6.1]).

Lemma 6.1. A domain () satisfies the LHMD(p,,) property for some ay > 0 if
and only if X \ Q is uniformly p-fat.

Proof of Corollary 1.6. First suppose that X \ € is uniformly p-fat. It follows
from Lemma 6.1 that there is a constant as > 0 such that €2 satisfies the LHMD(,,)
property. Let ay = min{ag, az}. Then 2 satisfies the LHMD(¢,,) property. Corol-
lary 1.5 yields that |[Pqlly,, < oo for 0 <a < a; and 3 € R.

Conversely, suppose that || Pql|y,, < oo for some 0 < a < ap and 8 € R. Assume
that X is Ahlfors Q-regular with @) > p. By Theorem 1.2 Q satisfies the GHMD (t),3)
property. It follows from Remark 4.8 that €2 satisfies the LHMD(t,3) property. Let
0 < o’ < a. By Corollary 1.5 we obtain that |Pqfl,., < oo. Theorem 1.2 and
Theorem 4.1 imply that € satisfies the LHMD(¢p,) property. Lemma 6.1 yields that
X \ © is uniformly p-fat. O

Proof of Corollary 1.7.  Suppose that X \  is uniformly p-fat. It follows from
Lemma 6.1 that there is a constant s > 0 such that € satisfies the LHMD (¢, ) prop-
erty. Let ag = min{ag, as}. Then Q satisfies the LHMD(y,, ) property. Corollary 1.5
yields that ||Pglly,, < oo for every 3 € R. O
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ABSTRACT. Let 1 < p < oo and let X be a metric measure space with a
doubling measure and a (1, p)-Poincaré inequality. Let 2 be a bounded domain
in X. For a function f on 99 we denote by Pqf the p-harmonic extension
of f over Q. It is well known that if  is p-regular and f € C(952), then
Pqf is continuous in Q. We characterize the family of domains such that
logarithmic Hoélder continuity of boundary functions f ensures logarithmic
Holder continuity of Pgq f.

1. Introduction

Let X = (X,d, p) be a complete connected metric measure space endowed with
a metric d and a positive complete Borel measure p such that 0 < p(U) < oo for
all nonempty bounded open sets U.

By the symbol C' we denote an absolute positive constant whose value is unim-
portant and may change from line to line. Let B(x,r) = {y € X : d(x,y) < r}
denote the open ball centered at x with radius r. We assume that p is doubling,
i.e., there is a constant C' > 1 such that u(B(z,2r)) < Cu(B(z,r)) for every z € X
and r > 0. Let 1 < p < co. We assume that X admits a (1, p)-Poincaré inequality
(see [5]).

We denote by Cap, the p-capacity defined on X (see [2]). Let @ C X be a
bounded domain with Cap, (X \€2) > 0. For a function f on 9 we denote by Pq f
the p-Perron solution of f over €2 (see [3]). A point £ € 0f2 is said to be a p-regular
point (with respect to the p-Dirichlet problem) if

Q%i;g& Paf(x) = f(§)

for every f € C(09Q). If every boundary point is a p-regular point, then 2 is called
p-regular. It is well known that if O is p-regular and f € C(0%2), then Pof is
p-harmonic in €2 and continuous in 2. It is natural to raise the following question:

2010 Mathematics Subject Classification. 31E05, 31C45, 35J60.

Key words and phrases. Modulus of continuity, p-harmonic, p-Dirichlet solution, metric mea-
sure space, p-capacity.

This is the final form of the paper.
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Question 1.1. Does improved continuity of a boundary function f guarantee
improved continuity of Pq f?

Aikawa and Shanmugalingam [2] studied this question in the context of Holder
continuity. Aikawa [1] investigated this question in the context of general modulus
of continuity for the classical setting, i.e., for harmonic functions in a Euclidean
domain. The purpose of this paper is to study this question in the context of
logarithmic Holder continuity in a metric measure space.

We consider the function 1,5 defined by

Yap(t) = {

where either 0 < @ < 1 and f € Ror @« = 0 and g > 0; and ¢ty is so small that
Yap is concave. Let E be a subset of X and let f be a function on X. We say that
[ is tYap-Holder continuous if |f(x) — f(y)| < Cag (d(x,y)) for x,y € E. If f is
Yao0-Holder continuous, then f is a-Holder continuous in the classical sense. If f is
Yop-Holder continuous, then f is considered to be logarithmic Hoélder continuous.
In general, ¥, 3-Holder continuity is a mixture of Holder continuity and logarithmic
Holder continuity.

Let £ be a subset in X. We consider the family Ay _,(E) of all bounded
continuous functions f on E with norm

t*(—logt)=" for 0 <t <ty,
t&(—logty)™" for t > ty.

x p—
Flgup. = sup|f(a) + sup DLW
z€E zyeE Yap (d(x,y))
TFY
We define the operator norm
IPof oo
[Pallyes = sup pe,
fery, ,(09) [ fllp0s.00
£l 5,0070

Observe that logarithmic Holder-continuity of a boundary function f ensures
logarithmic Holder-continuity of Pqf if and only if ||Pg|ly,, < co. Therefore we
characterize the family of domains € for which [|Pq|y,, < oco.

In this paper, we state the results obtained in [6]. In Section 2, we give the
characterizations of the family of domains €2 for which ||Pql|y,, < oc. In Section 3,
we characterize the family of domains such that improved continuity of a boundary
function f ensures improved continuity of Pq f in the context of general modulus
of continuity. See [6] for their proofs.

2. Results

In this section, we give some characterizations of the family of domains €2 for
which || Pq||y,.; < oo.
The interior regularity of p-harmonic functions is known.

Theorem A ([8, Theorem 5.2]). There exists ag € (0,1] depending only on
X and p such that if u is a p-harmonic function in a domain ) in X, then u is
ag-Hoélder continuous on every compact subset of €.

Aikawa [1] estimated Dirichlet solutions by the Poisson integral representation
of harmonic functions on balls. Since we are dealing with (nonlinear) p-harmonic
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functions, we do not have the Poisson integral representation. We instead use the
local Holder continuity of p-harmonic functions, so that we restrict ourselves to
a < Q.

Let U be an open set in X and let E be a Borel set in 0U. We denote by
wp(z, E,U) the p-harmonic measure evaluated at = of E in U (see [2]). Note
that the p-harmonic measure is not a measure, i.e., the p-harmonic measure is not
additive. We define two decay properties for p-harmonic measures. We say that €2
enjoys the Local Harmonic Measure Decay property with 1,5 (abbreviated to the
LHMD(%)4p) property) if there are positive constants C' and r( depending only on
2 and 1, such that

(2.1) wp(x,QﬂaB(a,r),QﬂB(a,T)) <C Don(r)

whenever a € 002 and 0 < r < rg. We say that Q enjoys the Global Harmonic
Measure Decay property with 1,s (abbreviated to the GHMD(v¢,g) property) if
there are positive constants C' and r¢ depending only on 2 and 1,4 such that

o ar ¢a5(d($,a))
(2.2) p(x, 00\ B(a,r),) SC—Qﬁaﬁ(T)

whenever a € 92 and 0 < r < rg. By the comparison principle (see [7, Theo-
rem 7.2]) it is easy to see that (2.1) implies (2.2).

Without loss of generality, we may assume that €2 is a bounded p-regular domain
(see [2, Proposition 2.1]). For a € 0Q we define a test function 7,4, on 0 by

Ta,Yap (g) - wa/B (d(a, f)) for f € 0f).

Then we have the following theorem.

for x € QN B(a,r),

for x € QN B(a,r),

Theorem 2.1. Let ) be a bounded p-regular domain. Suppose that o and
satisfy either 0 < a < ag and f € R or a« = 0 and § > 0, where ag is as in
Theorem A. Consider the following four conditions:

(1) [[Pallp,, < oo
(ii) There is a constant C' such that

PaTapas (x) < Cap (d(w, a)) for x € Q,
whenever a € 0€).

(iii) © has the GHMD(243) property.

(iv) Q has the LHMD(443) property.
Then we have

(i) <= (i) = (iii)) <= (iv).
Moreover, if a > 0 and if X is Ahlfors Q-regular, i.e.,
C~ 1@ < u(B(z,r)) < CrQ  for every B(z,7),

then (iii) < (iv).

See [6, Theorems 1.2 and 4.1] for the proof of this theorem. Aikawa and Shan-
mugalingam [2] showed the case f = 0 of Theorem 2.1.

The implication (iv) = (i) with the same exponent o and /3 does not necessarily
hold in above theorem (see [2, Remark 2.4]). However, we obtain the following
theorem.
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Theorem 2.2 ([6, Theorem 1.3]). Let § be a bounded p-regular domain. Con-
sider the following conditions:

(i) 0<a<d <ayand B,5" € R.

(ii) 0=a<d <ag and >0, §' € R.

(iii) a=a' =0 and 0 < g < f'.
Assume that either (i), (ii), or (iil) holds. If Q has the LHMD (v /) property, then
[Pally,, < oo

PROOF. Let a € 92 and u = Pq7, 4, .. We will show (ii) in Theorem 2.1 holds,
ie., u(z) < Cipag(d(z,a)). For p >0 we define a function f(p) by

flp)=sup ().
QnS(a,p)

It is sufficient to show that

(2.3) f(p) < Cap(p)

for small p > 0.
Let 0 < p < r < diam(2). By definition of 7, 4, and the comparison principle
yields

w(z) < ap(r) + f(r)wy(z, 2N OB(a,r), 2N B(a,r))

for all x € QN B(a,r). Let ¥(r) = Yo (1) /1ap(r). Since 2 has the LHMD (1), 5/)
property,

Yo (p) Yas(p) ¥(p)
R4 1) S vas(r) + G T < s(r) + Cus ) 2T
for some (. Let ry be a small positive number. Since

d)(?") = d)oé//g// for 0 <r <y

where o/ = o/ — o and B” = 8 — 3, we have

Yap(r) v(p) _ 1 }

. M = : — .

22 I AR T <

Let 0 < r < rg. Then we can find a sequence {p;}7_ such that r = po < p; <
v < P < 1o < pp < diam(92),

o) _
Y(pjr1) 20,

forj=0,1,...,n—1,

and
Yap(pj+1)
Yaps(ps)

Hence, by (2.4) we obtain

<M forj=0,1,....,n—1.

Yas(py)

for=0,1,...,n—1.
Yap(pj+1)

F(b3) < bap(pson) + 5 F(pis)
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These inequalities imply that

f(r) = f(po) < Yap(p1) +as(po) ‘ %% z%f(pn)%
< Mtap(po) + Mtap(po) z_: 2% * ﬂpn)%
< Mapg(po) + Mtbas(po) + f(pn)%
< (2M + M)%ﬁ(ﬂ?

Yap(ro)

where f < ¢,43(diam(Q)) and rg < p,, are used in the last inequality. Thus (2.3)
follows, and so (ii) in Theorem 2.1 holds. Hence |Pq||y,, < oo by Theorem 2.1. [

We give more geometrical characterizations of domains € for which || Pq/|y,, <
oo. We say that £ C X is uniformly p-fat or satisfies the p-capacity density condi-
tion if there are constants C > 0 and rg > 0 such that
Cap,(E N B(a,r), B(a,2r
by (£ Bla.r). Ba.2r)) _
Cap,,(B(a,r), B(a,2r))

(2.6)

whenever ¢ € F and 0 < r < rg.
For a > 0 we obtain the following theorem.

Theorem 2.3 ([6, Theorem 1.4]). Let 2 be a bounded p-regular domain. If
X\ Q is uniformly p-fat, then there is a constant 0 < oy < g such that ||Pql|y,, <
oo for 0 < a < ay and B € R. Conversely, if |Pally,., < oo for some 0 < a < ag
and B € R, then X \ Q is uniformly p-fat, provided that there is a constant Q) > p
such that X is Ahlfors Q-regular.

To prove Theorem 2.3 we observe the following lemma (see [2, Lemma 6.1]).

Lemma 2.4. A domain Q has the LHMD(p,,) property for some as > 0 if
and only if X \ Q is uniformly p-fat.

PROOF OF THEOREM 2.3. First suppose that X \  is uniformly p-fat. It
follows from Lemma 2.4 that there is a constant as > 0 such that €2 has the
LHMD(p,,) property. Let a; = min{ag, as}. Then Q has the LHMD(p,,) prop-
erty. Theorem 2.2 yields that [|Pql|y,, < oo for 0 < a < a; and 3 € R.

Conversely, suppose that |[Pqlly,, < oo for some 0 < a < ag and 8 € R.
Assume that X is Ahlfors Q-regular with @@ > p. By Theorem 2.1 ) has the
LHMD (%) property. Let 0 < o/ < a. By Theorem 2.2 we obtain that ||Pqll, , <
oo. Theorem 2.1 implies that 2 has the LHMD(p,) property. Lemma 2.4 yields
that X \ Q is uniformly p-fat. O

Aikawa and Shanmugalingam [2] showed the case 8 = 0 of Theorem 2.3. More-
over, for a = 0 we obtain the following theorem.

Theorem 2.5 ([6, Theorem 1.5]). If X\ Q is uniformly p-fat, then ||Pql|y,, <
oo for every 8 > 0.
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PROOF. Suppose that X \ Q is uniformly p-fat. It follows from Lemma 2.4
that there is a constant ay > 0 such that € has the LHMD(yp,,) property. Let
a1 = min{ag, as}. Then Q has the LHMD(¢p,,, ) property. Theorem 2.2 yields that
1P|y < 0o for every 5 > 0. O

3. Modulus of continuity

In this section, we consider general modulus of continuity of p-Perron solutions
Paf. See [6] for the proof of theorems and the corollary in this section. Note that
the case of p = 2 and Euclidean domains was studied by Aikawa [1].

Let M be the family of all positive nondecreasing concave functions v on (0, co)
with (0) = lim;_,q ¢ (¢) = 0. In particular, if either 0 < o <1l and S € Ror a =0
and 8 > 0, then ¥,3 € M. For ¢ € M, we say that f is ¢-Hélder continuous if
|f(z) = f(y)] < C¥(d(x,y)). The modulus of continuity of a uniformly continuous
function on any geodesic space is comparable to a certain concave function. See
[4, Chapter 2, §6]. Therefore, we have only to check 1-Hélder continuity for ¢ € M
to study Question 1.1 in the context of modulus of continuity.

Next we define the operator norm for v € M. Let E be a subset in X. We
consider the family A, (E) of all bounded continuous functions f on E with norm

[f(z) — f(y)]
[fll.5 = sup|f(z)] 4+ sup “—————5= < o0

v T€FR r,yeE w(d(‘rvy))

Ty
We define the operator norm
|Pally =  sup M
rery09) Iflly00

I £1l,007#0

Let v, ¢ € M. We say that ¢ = 1 if there are g > 0 and C' > 0 such that

ols) _ (s)
p(r) = ()
Let Mg be the family of all ¢ € M with t* = (t), where g is a positive
constant such that every p-harmonic function in € is locally ag-Holder continuous
in €2 as explained in Section 2 (see [8]). For example, if either 0 < o < g and 5 € R
or a =0 and B > 0, then ¥,5 € My. But if & = ap and 8 < 0, then ¥,,5 € Mp.
Hence we see that My & M. We use the locally Holder continuity of p-harmonic
functions as Section 2, so that we restrict ourselves to the case 1 € M.
Let ¢ € M. We say that Q2 enjoys the Local Harmonic Measure Decay property
with ¢ (abbreviated to the LHMD(%) property) if there are positive constants C
and ro depending only on €2 and 1 such that

for 0 < s <r <.

¥(d(z,a))
¥(r)
whenever a € 92 and 0 < r < rg. We say that € enjoys the Global Harmonic
Measure Decay property with 1 (abbreviated to the GHMD(v)) property) if there
are positive constants C' and rg depending only on € and ¢ such that
¥(d(x,a))

(3.2) wp(z, 00\ B(a,r),) SCW for x € QN B(a,r),

(3.1) wp(z, Q2N IB(a,r),2N B(a,r)) <C for x € QN B(a,r),

whenever a € 02 and 0 < r < rg.
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For a € 092 we define a test function 7, , on 092 by
Tap (&) = ¥ (d(a,§)) for £ € O9.

Then we obtain the generalization of Theorem 2.1.

Theorem 3.1 ([6, Theorem 1.2]). Let ) € Mg and let Q2 be a bounded p-regular
domain. Consider the following conditions:

(i) [IPally < oo
(ii) There is a constant C' such that

PaTay < C(d(z,a)) forz e,

whenever a € 0€).
(iii) © has the GHMD(v)) property.
(iv) Q has the LHMD(v) property.

Then we have
(i) <« (ii)) = (ili) <= (iv).
Moreover, we have the generalizations of Theorem 2.2.

Theorem 3.2 ([6, Theorem 5.1]). Let 1,91 € Mg. Let 1o = 1p1 /1. Suppose
that lim,._,g¥9(r) = 0 and there are constants 0 < C < 1 and ro > 0 such that 1y
is increasing on (0,7r9) and

(3.3) M'¢2—(p)—0}<oo

sup : =
0<p<7"§7"0{ V(p)  ta(r)
If Q has the LHMD(v1) property, then ||Pq|ly < oc.

Corollary 3.3 ([6, Corollary 5.2]). Let ¥, € Mq. Let 1o = 1)1 /7). Suppose
that there are constants 0 < C' < 1 and ro > 0 such that ) is increasing on (0,7¢)
and

. Pa(r)
(34) 0<17I,1§fr0 m > 1.

If Q has the LHMD (1) property, then ||Pq|ly < oc.
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MARTIN BOUNDARY FOR p-HARMONIC FUNCTIONS IN A
CYLINDER AND A CONE

TSUBASA ITOH

AsstracT. Let 1 < p < . A p-harmonic kernel function is -
harmonic analogue of Martin kernel functions for harmonic functions.
We studyp-harmonic kernel functions in a cylinder and a con&W In
casen = 2 explicit representations gd-harmonic kernel functions are
given.

1. INTRODUCTION

Let R be the set of all real numbers. We denoteRdyn > 2) then-
dimensional Euclidean space. A pomte R" is denoted by X/, x,) with
X = (Xg,...,%_1). We denote a poink € R"\ {0} by (r,0) with r = |X|
ando = x/|X. We letdE andE be the boundary and the closure of aBet
in R", respectively. We define dist(E) to equal the distance from a point
x € R"to a setE c R". Let B(x,r) andS(x,r) be the open ball and the
sphere with centex and radiug, respectively. We use the symbGlto
denote an absolute positive constant whose value is unimportant and may
change from line to line.

Letl < p < . LetD c R" be a domain. We say thatis a p-
harmonic function inD if u € V\/,%)’CP(D) is continuous and satisfies tipe
Laplace equationyu = div([Vu[P2Vu) = 0 in D in the weak sense; that is,
wheneverD’ is a relatively compact subdomain Bfandy € Wg’p(D’), we
have

IVulP~2Vu- V¢ = 0.
D/
If p=2,then thep-Laplace equation reduces to the classical linear equation
Au = 0. The set of all positivgp-harmonic functions irD is denoted by

2010Mathematics Subject ClassificatioB1C35, 31C45, 35J92, 35J65.
Key words and phraseg-harmonic, cylinder, cone, Martin boundaptharmonic ker-
nel function.
This work was supported by Grant-in-aid for Scientific Research of JSPS Fellows
No0.24-6400.
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Let us recall the classical Martin boundary theory for harmonic func-
tions. LetD be an arbitrary domain with Green functi@(x,y). Mar-
tin [13] introduced the Martin boundary as the smallest ideal boundary
for which G(x,y)/G(Xo,y) has a continuous extensidf(x,y). An ideal
boundary pointy is called minimal ifK(-,y) is a minimal harmonic func-
tion. The set of all minimal Martin boundary points is called the minimal
Martin boundary. Martin proved that every positive harmonic function in
D is uniquely represented as the integral of the kernel fund€iony) over
the minimal Martin boundary. The identification of the (minimal) Martin
boundary for specific domains is of great interest. There are a number of
works on this topic. Hunt-Wheedeg][gave the first cornerstone. They
showed that the Martin boundary of a Lipschitz domBins homeomor-
phic to the Euclidean boundafD and every boundary point is minimal.
They said that a positive harmonic functiarin D is akernel functionin
D at a boundary pointv € dD if u has continuous boundary values 0 on
oD \ {w} andu(xo) = 1 ([8, p.507]). They proved that every boundary point
has a unique kernel function. This is crucial for the identification of the
Martin boundary.

In view of this important result, it is natural to extend the notion of kernel
functions top-harmonic functions. LeD be an arbitrary domain with com-
pactificationD*. We write 9*D for the ideal boundarp* \ D. We say that
u e H,(D) is ap-harmonic kernel function i atw € 9*D with reference
point X if uhas continuous boundary values 0@ \ {w} andu(xy) = 1.

If eachw € 9"D corresponds to a uniqueharmonic kernel function, we
say that thep-Martin boundary oD is homeomorphic té*D.

Let Q be aC??-domain inR"™?1. The domainQ x R = {(X,X,) : X €
Q, X, € R} is said to be a cylinder generated Qy We compactifyQ x R by
adding the topological boundary and the ideal boundary, —}, where
+oco corresponds to the limit ag, — +oo, respectively. In this paper we
investigatep-harmonic kernel functions iR x R at +co with the aid of a
translation operator similar to the stretching operator used by Tolkstigrf [
in his study onp-harmonic functions in a cone. We let

HIZ(QXR)={ue H(QXR):u=00nd(Q xR) U {-oco}},
whereu = 0 at—co means lim, _,_., u(x) = 0. Similarly, we let
HZ(QXR)={ue H,(QXR):u=00nd(Q xR) U {co}}.

By definitionu € H,(Q x R) is a p-harmonic kernel function atoco (resp.
—oo) if and only if u(xp) = 1 andu € H;*(Q X R) (resp.u € H °(Q x R)).
The following theorem shows thato and—oco have a uniqugp-harmonic
kernel function.
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Theorem 1.1. There exist a positive constahtind a function {x’) of X €
Q, depending only on,m andQ, such that

1.1) HI=(Q X R) = {Cexpx,) f(X):C >0},
(1.2) H QX R) ={CexpAx,) f(X) : C > 0}.

SinceQ xR is locally aC%*-domain inR", every boundary point ifi(Q x
R) has a uniqueg-harmonic kernel function, in view of Lewis-Nygim
[11]. So, we have the following corollary.

Corollary 1.2. The p-Martin boundary o2 x R is homeomorphic t8(Q x
R) U {—00, +00}.

Remarkl.3 Lewis-Nystbm obtained the uniqueness pfharmonic ker-

nel functions by using their scale invariant Harnack principle for Lipschitz
domains and starlike Lipschitz ring domain(@) and a very delicate argu-
ment. Unlike the linear case, the scale invariant boundary Harnack principle
is not enough to deduce the uniquenesp-bhrmonic kernel functions. See
Remark2.9below. This is the reason why the domainsii][are restricted

to C! or convex. To avoid such fliculties, we restrict ourselves @>*-
domains in this paper. In this case the scale invariant boundary Harnack
principle can be proved rather easily. See Lenth&below and P, Theo-

rem 1.2].

In casen = 2, we can explicitly calculaté and f.

Theorem 1.4.Letn=2andQ = (0,L) with0O < L < 0. Then
_ pr
1= 2(p- 1)L’
and f(x;) has a parametric representation given by

f(s) = exp(—_(p ~ 2)sirf S) sins,
1 pp_1 p-2
X1(S) = E(Z(p— 1)s+ 2p-1) sin 25).

Next we considep-harmonic kernel functions in a cone. ebe aC?“-
domain in the unit sphere. The domdin= {(r,o) : 0 < r < o0,0 €
Y} is said to be a cone generated by We compactifyl" by adding the
topological boundary and the ideal boundéxy}, whereo is the point at
infinity. We studyp-harmonic kernel functions ifi at co and 0 with the aid
of the stretching operator used by Tolksddr]. We let

HZ(I) ={ue H():u=0o0nal},
HOT) = {ue H, () :u=0on @I U{co})\ {0},

(1.3)
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whereu = 0 onco means liny_. u(x) = 0. By definitionu € H. (') is
a p-harmonic kernel function ab (resp. 0) if and only ifu(xy) = 1 and
u e H>() (resp.u € HOI)). The following theorems show that and 0
have a unique-harmonic kernel function.

Theorem 1.5. There exist a positive constgmtand a function ¢r) of o €
¥, depending only on,m andZ, such that

(1.4) H> () ={Cr-g(c) : C > 0}.

Theorem 1.6. There exist a positive constantind a function fv-) of o €
¥, depending only on,m andZ, such that

HO(I') = {Crh(c) : C > 0O},
Corollary 1.7. The p-Martin boundary df is homeomorphic tol" U {co}.

Remarkl.8 In casen = 2, we can explicitly calculatg, v, g andh, al-
though these are involved (Propositidhd and6.2). If ' is the upper half
spaceH = {(X, Xy) : Xy > 0}, thenu(x) = x, € H°(H) andu = 1 for any
p, n. However, in general, it is dicult to explicitly calculatey, v, g andh.

Remark1.9. Tolksdorf [15] studied functionsu € H*(I') satisfying the
doubling condition:

(1.5) sup u<C sup u forR>1,

I'NB(0,2R) I'NB(O,R)
with a constanC > 1 depending only o. The set of allu € H ()
satisfying (L.5) is denoted bWA{E’(F). By applying the stretching operator,
he gave a characterization %f\f"(l“) similar to (1.4). Theoreml.5implies
that the doubling conditionl(5) is superfluous, that i§7+‘7°(1") = H> ().

The plan of this paper is as follows. In the next section we shall state
known results op-harmonic functions. In Sectiorssand5, we shall prove
Theoremsl.1, 1.5 and 1.6 by applying the translation operator and the
stretching operator. We will show Theorelmt in Section4. Finally, we
shall explicitly calculate:, v, g andh for n = 2 in Sectiong.

Acknowledgments. | would like to thank Professor Hiroaki Aikawa, who
provided helpful comments and suggestions in preparing this paper.

2. PRELIMINARIES

In this section, leD be a domain iRR". We state known results for
p-harmonic functions such as Hopf's maximum principle and the strong
comparison principle (seé}, Section 3]).

Lemma 2.1. (Hopf’s Maximum Principle) Let B be a ball. If & #.(B) N
CY(B) and Uxg) = 0 for some ¥ € 9B, thenVu(xo) # O.
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Lemma 2.2.(Strong Comparison Principle) Assume that u is p-subharmonic
in D, v is p-superharmonic in D, & C*(D) andVu# 0in D. Ifu<vinD
and u# v, then u< vin D.

For C?>?-domains the boundary Harnack principle can be easily estab-
lished (seei, Theorem 1.2]).

Lemma 2.3. (Boundary Harnack Principle) Let D be a bounde#@lomain.
There exist constants,C 1, C, > 1, r; > 0 with the following property:
LetO <r <rpandé € dD. If u,v € H. (D n B(£, Cyr)) vanishing on
0D N B(&, Cqr), then

u(x)/u(y)
VNG) <C, forx,ye DnB(,r).

By [16, Theorem 1] and15, Proposition 3.7], we obtain the following
Cl7-estimate.

Lemma 2.4. (C17-estimate) Let B = B(xo, R) be a ball with radius R> 0.
Suppose thaiD N Byg is empty or that)D N By is a C>¢-boundary portion
of aD. If uis a p-harmonic function in D B(Xo, 2R) vanishing ordD N By,
then there exist constants 0 andy € (0, 1) depending only on,p, R, D
and||ull =pne,) Such that

[l |c137(Dn Br) = C.

The Schauder theorys] Theorems 6.13 and Lemma 6.18] implies the
following lemma.

Lemma 2.5. Let T c dD be a G-boundary portion. If u is p-harmonic in
Dandifu=00onT, then us C>*(D U T) providedVu# 0inDUT.

We are inspired by the argument in the proof of Hopf’s comparison prin-
ciple [15, Proposition 3.3.1], to give the following lemma.

Lemma 2.6. Let D be a G?-domain. Let € 9D and let i, be a sificiently
small positive constant. Assume thave H, (D N B(¢&, 6rp)) vanishing on
oD N B(¢, 6rg). Suppose that e C?(D n B(¢£, 6rp)) and there exist positive
constants m mp, M1, M, and M; such that

my < |Vv| < My in DN B(¢, 6ro),
o0’V
aXian

n

2,

i,j=1

‘ <M, inDnB(,F6ry),

sup < Mg,
DNB(¢,6r)

inf{u(x) — v(X) : x e DNB(¢, 6ry), dist(x,dD) > ro} > my.

If u>vinDn B(£, 6rg), then there exists a positive constantiepending
only onn p, my, mp, My, M,, M3 and 1, such that u> (1+46)vin DNB(&, ro).
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Proof. By [2, Lemma 2.2], the domaiD satisfies the ball condition with
somer; > 0; that is, for every e 9D there exist' € D andé® € R"\ D
such thatB(¢',r;) c D, B(&S,ry) ¢ R"\ D and& € S(&,r1) N S(£8,ry).
Letrg < ri/2 and letxg € D N B(&,1p). Then there ig; € 9D such that
dist(xo, 0D) = |Xo—n|. By the interior ball condition aj we findy' € D such
thatB(z;', 2ro) ¢ D andy € S(i7', 2rg). Observe thaB(r', 2ro) ¢ DNB(Z, 6rp)
andxo € B(77', 2ro) \ B(17', ro). Without loss of generality, we may assume
thaty' = 0 andrg = 1/2.

Forb > 1, we set

V(X) = b2(e — eb),

By assumption there is a constavif > 0 such that

0*(v+V)
0%0X;

(x)‘ < M; forye Dn B(,6ro).

We claimv + V is p-subharmonic irB(0, 1) \ B(0, 1/2) if b is suficiently
large. We will prove the claim later and we finish the proof of Lenfira
By assumption we can choosesuch that themu > v+ V on 9B(0,1) U
0B(0, 1/2). Hence it follows from the comparison principle thet v + V
in B(0, 1)\ B(0, 1/2), in particularu(xy) > v(Xo) + V(Xo). On the other hand,
we see thaV(xg) > C(1 — [xo|) and distk, dD) = 1 — |Xo| > CUXo) by the
ball condition. Therefore we obtain

u(xo) = (1 + C)v(xo).
Sincexy € D N B(¢&, rp) is arbitrary, we obtain that
u>(1+06)v inDnB(,ro),
wheres is a constant depending only am, mp, My, M, andMs.

Finally, we prove thav + V is p-subharmonic irB(0,1) \ B(0,1/2) if b
is suficiently large. Lete = min{1, p — 1}/4. Assume that

An+p-2) 41+Ip-2)(1+ Ml)nMé}

b > max{
& ey

Observe that

Ap(V+ V) = [VV+ V)Pl + 1o + 13+ 1g),
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where

ov ov  O0*v

n
Iy = [VVPAV+ (p-2) ) —— :
szzllaxi 0Xj 0%0X;

S OV oV 9PV
I, = |VV[2PAV -2)y ——
2 =|VV +(p )”221 9% 9% %X,
I3 = (IVV]? + 2(VV- VV))A(V + V),
8(V+V) dV+V) v dv 0*(Vv+V)
=025 Ak
+=(p- )Z % 8% %) 9%ax

i,j=1

Becausev € H,(D n B(£,3)), we havel; = 0in DN B(£,3). If x €
B(0,1) \ B(0,1/2), then

2) 2 ov ov 2
I, =|V 2(4 2_2(0—-p+ ) -bix® | g 2 Z x X; €D
> =Vl 4|x° — b +4(p- )IJ 18x. ax, XiX;€

24|Vv|2(min{ 1,p- LIx? - W)e—blxl2

>2myee X’

and
4|x?

b€ - (Vv X)e~o )A(V+V)‘

I3+ 14| <‘(

- 4 ov 2\0?(V + V)
2oz 7 bix|
’(p Z)Z(bZ’“XJ “bNax S ) %0,

i,j=1
<4(1+ p - 2|)nMé(|x|2
N b b
<myee ™,

2 2
e X 4 |x|My)e P

SinceAp(v+V) > 0in B(0, 1)\ B(0, 1/2), we see that+V is p-subharmonic
in B(O, 1) \ B(0,1/2). mi

It is well known that if{u;} is a locally uniformly bounded sequence of
p-harmonic functions irD, then there exist a subsequeriog} and ap-
harmonic functioru in D such thau;, — ulocally uniformly in D. More-
over the following lemma holds.

Lemma 2.7. Let D be a G?-domain. Let € D and let i be a syficiently
small positive constant. Assume thiaf € H.(D N B(¢, 6rp)) : u; = 0 on
0D N B(¢, 6rp)} is uniformly bounded. Then there exist a subsequémgce
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and ue H, (D N B(£, 6rp)) N CYH(D N B(£, 3rp)) vanishing oD N B(&, 3r)
such that

u.
(2.1) ﬁ — 1 uniformly in DN B(&, ro).

Proof. By Lemma2.4, there exist a subsequenfg,} andu € H,.(D N
B(¢, 6rg)) N CH(D N B(¢, 3rg)) such that

Uj, — u uniformly in D N B(¢, 3ro),
Vuj, — Vu uniformly in D N B(&, 3ro).

Hence we see that = 0 ondD N B(4, 3rg). Fix e > 0 and choos& > 0
such that ifk > N, then

IVu-Vu,| <& onD N B(, 3ro).

We prove 2.1). By [2, Lemma 2.2], the domaiD satisfies the ball con-
dition with somer; > 0. Letry < ry/2 and letx, € D N B(&, ro). Then there
is n € dD such that dist,, D) = |xg — n7|. By the interior ball condition
atn we findn' € D such thatB(i7', 2ro) ¢ D andn € S(i', 2ry). Observe
thatB(i7', 2ro) € D N B(£, 6rg) andxg € B(17', 2ro) \ B(17', rg). Without loss of
generality, we may assume thait= 0 andrg = 1.

Forb > 1 andC > 0, we set

V(X) = C(e™P* — g),
Since
ApV(X) = (2Cbe ™ )PLxP2(2b(p — 1)[x2 — n— p+ 2),

we can choosé > 0 such thaV is p-subharmonic irB(0, 1) \ B(0, 1/2).
If C > 0 is suficiently small, theru > V on9B(0, 1) U 9B(0, 1/2). Hence
it follows from the comparison principle that> V in B(0, 1) \ B(0,1/2).
Then we havei(xg) > V(X). SinceV(xy) > C(1 — |Xo|) for some constant
C > 0, we have

u(Xo) = C(1 - Ixol) = Clxo — 7.
By the mean value theorem, there exists a constant& 1 such that
U(Xo) — Uj, (%) = (VU = VU, )((1 - ) + Cx0) - (X0 — 1)
Hence ifk > N, then we have
‘1_ Ui (Xo) | _ ‘U(XO) — Uj(%0)
u(Xo) u(xo)
_ 1(Vu = Vu)(@ - O + exo)liXo — 7l
- u(x%o)

<

olo
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Therefore 2.1) is proved. O

Finally, we observe that the scale invariant boundary Harnack principle
implies the uniqueness of kernel functions in the linear case. This observa-
tion will be not used in the sequel; it is given only for the emphasis on the
difference between the linear cage<{ 2) and the nonlinear case & 2).

Let D be a domain with a boundary point By # (w) we denote the family
of all kernel functions atv with reference poinky,. Then the scale invariant
boundary Harnack principle implies that there exists a con§tantl such
that

(2.2) Clu(x) < v(x) < Cu(x) forallu,ve H(w)andx e D.
Proposition 2.8. If (2.2) holds, ther?H(w) is a singleton.

Proof. We follow Kemper P] (see also]]). Let
u(x)

Co= su —.

° u,veﬂ(w)?xeD V(X)

Then 1< Cy < oo by (2.2). Itis suficient to showCy = 1. Suppos€, > 1.
Takeu, v € H(w). By the linearity of harmonicity; = (Cov — u)/(Co — 1)
is a positive harmonic function with the same boundary valuas asdv
such that;(Xo) = (Cov(Xo) — U(X0))/(Co — 1) = 1. Hencev; € H(w), and so
u < Covy = Co(Cov — u)/(Co — 1), which implies
2

u._S

v 2Cy-1
This contradicts the definition @,. O

<Cy onD.

Remark2.9. If p # 2, then the above argument fails\as= (Cov—u)/(Co—
1) need not bg-harmonic even it andv are p-harmonic.

3. Proor or THEOREM 1.1

In this section we prove Theorehl By 0Q we denote the relative
boundary ofQ in R™1. We observe thati(x’, X,) = exp@x,)f(x) is p-
harmonic if and only if1 and f (x’) satisfy the equation
(3.1)

—dive [(2F2 + [V FR) 7V, ] = 2(p— D252 + [V fAZf  onQ,

whereV, is the gradient iR"* and div, is the divergence i&"2.
Fora € R, we define the translation operatog : H,(Q X (-, a)) —
H,(Q x (—e0,0)) by

Tau(x) = Ci(a)u(x + ae,),
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wheree, = (0,...,0,1) and the constar@,(a) is chosen such that

sup 7au(x) = 1.
Qx(—00,0)

Observe that iti € H;*(Q x R), thenT,u € H;*(Q xR) for alla e R.

For a domairD andE c 0D, we denote byu,(X, E, D) the p-harmonic
measure evaluated abf E in D. See [, Section 11] for the definition and
the property ofp-harmonic measure. Let

V(X) = wp(X, Q x {0}, Q X (=00, 0)).
Lemma 3.1. There exists a positive constaftsuch that
(3.2) V(x—aeg) < (1-ga)Vv(X) forxe Qx(—c,0),
whenever & [0, 1].

Proof. The maximum principle implies that

supv< 1
Qx{-1}
We set
V(X) = 1+ &oXn,
where

g=1- supv.
Qx{-1}

Clearly V is p-harmonic inR". Observe that < V on Q x {—1}. Since
v=V =1o0onQ x {0}, it follows from the comparison principle that

vV inQx(-10).
Hence we obtain that

V(x—ae) <V(x—-ag)=1-¢ga=(1-¢ga)Vv(x) forxeQx{0},

whenevera € [0, 1]. Applying the comparison principle, we obtaid.?).
m]

By LemmaZ2.7 and the comparison principle, there exist a positive in-
creasing sequend@;} andv' € H,(Q x (—o0,0)) N CHQ X (o0, —1/2))
such thaj + 1 < aj,1, V' = 0 on Q X (—c0,-1/2)) U {—co} and

T_aV

— 1 uniformly inQ x (oo, —1).

By Lemma3.1, we have
Vi(x—ag) < (1- ga)Vv'(x),
whenevea € [0, 1]. It follows that

z—\:n(X) > gV’ (X) >0 forxe Qx(—0,0).
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Applying Hopf’'s maximum principle (Lemma.1), we have

W #£0 inQx(—co,—1/2).
Therefore Lemma.5implies thatv* € C29(Q x (—co, —1)).

Lemma 3.2. For a > 0, we let

V(X — aaq)}.

Y1(a) = Qx(i_“of,_l){ v¥(X)

Then
Vi(x—ag) = y(av(x) forxe Qx (—o0,-1),
whenever & 0.
Proof. Leta > 0 be fixed. Clearly we have
Y@V (X) < Vv'(x—ag) forxe Qx(—o0,-1).
Suppose that there exists a paxgte Q x (—co0, —1) such that
Y@V (%) < V(%o — a&).

Sincev* € C?*(Q x (-, —1)), the strong comparison principle (Lemma
2.2) implies that

1@V (X) < vi(x—aeg) forxe Qx (—co,-1).
By Lemma2.6, there exists a positive constant 0 such that
A+ 20)1(avi(X) < Vv'(x—ag) forxeQx{-2}.

Becauseq_,V)/v* — 1 uniformly inQx (-0, —1), there exist& > 0 such
thatif j > N, then

1+ o)y(@v(x) <Vv(x—ag) forxe Qx{-a;-2},
so that
L+ oa(av(x) < v(x—ag,) forxe Qx (-0, -aj—2),
by the comparison principle. Sineg+ 1 < a;j,1, we have
(L+0)1(a)Ta,, U(X) < Ta, V(X —ag) for xe Qx (-0, -1),
for j > N. By letting ] — oo, we obtain that
A+ 0@V (X) < Vv (x—ag) forxe Qx(—oo,-1).
This is a contradiction to the definition ¢f(a). Therefore we obtain that
Vi(x—ae) = y1(@Vv(x) forxe Qx(—co,-1),

whenevem > 0. O
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Observe thai1(0) = 1 andy(a) is a decreasing continuous function of
a > 0. Moreover
Ya(a+a) = ya(@y(a) foraa >0,
since
Y@+ a)vi(x) =Vv(x-(a+a)e)
=V((x-a&) - aey)
= ya(a)V'(x - a&y)
=yn(@y(@)V(X) for x e Q x (—oo0,-1),
by Lemma3.2 By an elementary calculation it follows from continuity of
Yy that
y1(a) = exp1a) fora> 0,
with 1 = —logy1(1) > 0. By Lemma3.2, we have
Vi(X) = exp@(X, — D))V (X, -1) forxe Q x (—oo,-1).
Let f(x) = vi(X,-1) for X € Q. Sincev' e C>*(Q x (-c0,-1)) and
V' #0inQ X (o0, -1/2), we havef e C>*(Q) anda*f? + |V, f|> > 0 in
Q. Sincev' € H,(Q x (—o0,0)) andv' = 0 on Q X (—o0,-1/2)) U {—o0},

it follows that1 and f satisfy 8.1) andf = 0 ondQ. Therefore we obtain
the following lemma.

Lemma 3.3. There exist a positive constamtand a function fe C2(Q)
such thatt and f satisfy(3.1), 22 + |V, f|> > 0in Q and f = 0 on Q.

Proof of Theoreni.1 SinceH;*(QxR) = {u(X, —Xn) : U € H*(QxR)},
it is suficient to prove 1.1). Let up(X, Xn) = expix,) f(X), X € Q and
Xn € R, whered andf are asin Lemma&.3. Then we observey € H;*(Qx
R) N C%?(Q x R). Since

IVUuo(X)| = exp(xn)(A%f2 + |V, fI)Y? for xe Q xR,

we haveVu # 0 in Q x R. We will show that everyu € H;*(Q x R) is
represented as= Cuy with some positive constaft.

By LemmaZ2.7 and the comparison principle, there exist a positive in-
creasing sequend@;} andu* € H.(Q X (-o0,0)) N CHQ X (o0, -1/2))
such that; + 1 < aj,1, andu” = 0 on PQ x (—co0,~1/2)) U {—co} and

Tau

— 1 uniformly inQ x (oo, —1).
Let

— u* . u*
C= sup {—} and C= inf {—}
Qx(-c0,-1) Uo T Qx(-e-1lUp
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For an arbitrary > 0, there existiN > 0 such that iff > N, then
(3.3) B
(1-¢) exp(=1a;)C1(a)) 'Cup < U < (1+&) exp1a;)Ci(a) 'Cly  in Qx(—c0,a;-1),

where

Ci(a)™= sup u
Qx(—0,a))

It follows from the boundary Harnack principle (Lemr@zd) that 0 <
C < C < c0. We claimC = C. We will prove the claim later and we finish
the proof of Theoremi..1 By (3.3), there exists a positive constabitsuch
that

C! < exp(-1a)Ci(aj) ™t < C.

Hence there exist a subsequefigg of {a;} and a positive constakt* such
that

(3.4) K* = jIim exp(-4b;)Cy(b;) ™%
Taking the subsequendglg;} in (3.3) and passing to the limit as— o and
thene — 0, we obtain

u=KCu inQxR.

Thus Theoreni.1is proved. B
Finally we prove tha€ = C. Suppose th& < C. Sinceu, € C>*(Q x R)

andVu, # 0 onQ xR, it follows from the strong comparison principle
(Lemma2.2) and Lemma2.6 that there exists a positive constant- 0
such that

(C+20)up <u” onQ x{-2}.
By (7p,u)/u” — 1 uniformly inQ x (-0, —1) and @.4), we obtain that
K'(C+du<u onQx{b;-2}.
The comparison principle implies that
K*(C + 6)ug(X) < u(x) for x e Q x (—o0,b; —2).

Sinceb;_; + 1 < bj, by lettingx = y + b;_,&, we obtain

K" exp@bj_1)C1(bj-1)(C + 6)uo(y) < T, u(y) forye Qx (-o0,-1).
By letting ] — oo, we obtain

(C+0)ug(y) < u'(y) forye Qx(—o0,-1).

This would contradict the definition @&. Therefore we hav€ = C. O
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4. PrOOF OF THEOREM 1.4

In this section, we explicitly calculateand f in casen = 2. We observe
that u(xg, X2) = expxz) f(x1) is p-harmonic if and only if2 and f(x;)
satisfy the equation
4.1) (p— A3+ (2p - A2 F 2+ 222" + (p- 1)f?f” = 0.

Proof of Theoreni.4. Sinceu(xy, X2) = exp@xz) f(x1) € HI*((O,L) x R),
it follows thatA and f(x;) satisfy @.1). Then we obtain that

(p— 1)(A2F2 + F2)(A2F + £7) + (p— 22(F(A2F2 + £2) — F2(22f + £7)).
Multiplying by 22/(12f2 + £'2)2, we have
2§/ (22f + ) 2F £/(A22 + £/2) — 2F28/(2F + )
A N (2f2+ 12)2
A2f2
P 7)

+(p-2)12

:%(((p— 1) log@2f2 + 2) + (p - 2)2
—0.

Hence there exists a const@hsuch that
, A2f2
(42) (p - 1) |Og(/12f2 + f 2) + (p - Z)Azm =C

We introduce the Rifer substitution 4, pp.239-242]
4.3) /1,f (X1) = p(X1) Sins(xy),
/(%) = p(x1) coss(xy),

where 0< p(x;) < oo and 0< (x;) < 7. Sincef € C2¢([0, L]), we see that
p,S€ CY[0,L]). By (4.2, we obtain

C - sir’ s(x,)
(4.4) px) = ext{~5e )
On the other hand4(3) implies that
Ap COSS = /13—):1 = g—; sins+ ;—Zp coss.
By differentiating 4.4), we have
do _ ox C - sir? s(xl))(p — 1)sinscoss ds
dxq 2(p-1) p-2 dxg

(p—1)sinscoss ds
p—2 Xm.

dxg, 1 p-2 .
E_ﬂ(l 1SII’]28).

Hence we obtain
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Then there exists a constadt such that

1 p p-—2
- _(
9= 2p-°t ap-
Sincex;(9) is strictly increasing and(0) = f(L) = 0, we see that;(0) =0
andx;(r) = L. Hence we have

C'=0 4=

sin 23).

_pr
2(p-1)L°

By letting C = logA we obtain the parametric representatidrB3|. Thus
Theoreml.4is proved. |

5. Proor oF THEOREMS 1.5aND 1.6

In this section, we show Theoremis5 and1.6. By dX we denote the
relative boundary o in the unit sphere. For @ R; < R; < oo, we define
subsetd’(R;, Ry) andX(R,) by

I'(Ri,Ry) ={(r,0) iRy <r <Ry,0 € X},
Z(Rl) =I'n S(O, Rl)
Firstly, we considerH*(I'). We observe that(r,o) = r#g(o) is p-

harmonic if and only ifu andg satisfy the equation
(5.1

— div, [(12P +1V,9?) 7 V,] = u(u(p-1)+n-p)(PF+V,g2) 7 g onZ,

whereV, is the covariant derivative identified with the tangential gradient
and div, is the divergence operator acting on vector field on the unit sphere.
ForR > 0, we define the stretching operassff : H.(I'(0, R)) — H.(I'(0, 1))
by
Spu(x) = Co(R)U(RY),

where the constaii@,(R) is chosen such that

supS3u(x) = 1.
(0,1)

Observe that iti € H*(T), thenSgu € H(T) for all R> 0. Let
V(X) = wp(X, Z(1),I°(0, 1)),

where we recall thab (-, 2(1),I'(0, 1)) is the p-harmonic measure af(1)
inT'(0,1).

Lemma 5.1. There exists a positive constaftsuch that
(5.2) VIRY < (1-e9(1-R)v(x) forxeTI(0,1),
whenever R [1/2,1].
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Proof. The maximum principle implies that

supv< 1.
2(1/2)

Forb > 0 andC > 0, we set
V(X) = 1+ C(e® — e,
Since
ApV(X) = —C(2be™)P11xP2(20(p — 1)X2 - n - p + 2),

we can choosb > 0 such thav is p-superharmonic if'(1/2,1). Observe
that if C is suficiently small, thenv < V on£(1/2). Sincev =V = 1o0n
>(1), it follows from the comparison principle that

v<V inT(1/21).

Hence ifeg > 0 is suficiently small, then

V(RY < V(RX
= 1+ C(e ™ - eR¥)
<1-g(l-R)

=(1-e(1-R)v(x) for xe X(1),
wheneveR € [1/2,1]. Applying the comparison principle, we obtai ).
m]

By Lemma2.7 and the comparison principle, there exist a positive de-
creasing sequend®;} andv* € H,(I'(0, 1)) n C('(0, 3/4) \ {0}) such that
Rj/2 > Rj;1, V' = 0 onal’(0, 3/4) \ £(3/4) and

S2v . .
- 1 uniformly inT'(0, 1/2).

By Lemmab.1we have
V(RY > (1-e(1-R)v(x) inIC(0,1),
wheneveR € [1/2,1]. It follows that
aﬁ—‘f(x) >goV'(X) >0 forxel(0,1).
By Lemma2.1we have
VW' #0 inI(0,3/4)\ {0}.

It follows from Lemma2.5thatv* € C2*(I'(0, 1/2) \ {0}).
In a way similar to the proof of Lemma.2, we obtain the following
lemma.
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Lemma5.2.ForO<R< 1, we let

o (V(RY
V2R = r(lor,]lf/z){ V(%) }

Then
V' (RX) = yo(RV'(X) for xeTI(0,1/2),
wheneveb < R< 1.

Observe that»(1) = 1 andy»(R) is an increasing continuous function of
0 < R< 1. Moreover, it follows from Lemmé&.2that

Y2(RR) = ¥2(Ry2(R) forO<RR <1
By an elementary calculation, it follows from continuityf that
Uo(R =R forO<R<1,

with u = —logy,(1/€) > 0.
By Lemmab.2, we have

vi(r,o) = (2r¥'vi(o/2) forO<r<1/2,0€X.

Letg(o) = vi(o/2) for o € . Sincev* € C>*(I'(0,1/2) \ {0}) andVv* # 0
in T(0, 3/4) \ {0}, we haveg € C%*(Z) andu¢? + |V,g? > 0 onZ. Since
v € H,.(['(0,1)) andv* = 0 onar'(0, 3/4) \ X(3/4), it follows thatu andg
satisfy 6.1) andg = 0 ongX. Therefore we obtain the following lemma.

Lemma 5.3. There exist a positive constaatand a function ge C2*(3)
such thafz and g satisfy(5.1), 4°g® + |V..g°> > 0in £ and g= 0 ongx.

Proof of Theorenl.5. Let ug(r, o) = r*g(c), 0 < r < oo ando € X, where
w andg are as in Lemma.3. Then we observey € H(I') N C>*(T \ {0}).
Since
Vuo(X)| = M’ + IV,gP)"?  for xe T\ (0},

we haveVu, # 0inT \ {0}. We will show that every € HP(I) is repre-
sented asl = Cuy, with some positive constat.

By LemmaZ2.7 and the comparison principle, there exist a positive in-
creasing sequend®;} andu* € H,(I'(0,1)) n CY('(0, 3/4) \ {0}) such that
2R; < Rj;1, andu® = 0 onaI'(0, 3/4) \ X(3/4) and

0
NERY

u*

— 1 uniformly inT'(0, 1/2).
Let

= u* . u*
C= sup {—} and C= inf {—}
r©,1/2)\ Uo —  TI(01/2 Uy
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For an arbitrary > 0, there existiN > 0 such that iff > N, then
(5.3) (1-&)R"Co(R))'Cup < U < (1+8)R¥Cy(R)"Cly  inT(0, R;/2),

where

CHRi = g
LR

In a way similar to the proof of Theorefin1, we obtainC = C and there
exist a subsequendg} of {R;} and a positive constait* such that
K* = lim r;*Cy(rj)™.
o0

Taking the subsequenég} in (5.3) and passing to the limit as— o and
thene — 0, we obtain
u=K*Cuw inT.

Thus Theoreni..5is proved. O

Next we conside?°(I'). We observe thai(r, o) = r~"h(c’) is p-harmonic
if and only if v andh satisfy the equation
(5.4) , ,
—div, [(Ph?+|V,h?) 7 V,] = v(v(p-1)—n+ p) (M2 +|V,hD)Zh onX,
whereV,, is the covariant derivative identified with the tangential gradient
and div, is the divergence operator acting on vector field on the unit sphere.

For R > 0, we define the stretching operatS : H.(I'(R o)) —
H.(I'(1, e0)) by

SrU(X) = C3(R)U(RY),

where the constai@z;(R) is chosen such that

sup SRu(x) = 1.
I'(1,00)

Observe that it € HX(I'), thenSzu € HO(T) for all R > 0. Let
V(X) = wp(X, 2(1),I'(1, 0)),

where we recall thab,(-, (1), I['(1, o)) is the p-harmonic measure af(1)
in T'(1, o0). In way similar to the proof of Lemm&a.1, we obtain the follow-
ing lemma.

Lemma 5.4. There exists a positive constasftsuch that
V(RY < (1-ep(R-1))(x) forxeTI'(1, ),
whenever R [1, 2].
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By LemmaZ2.7 and the comparison principle, there exist a positive in-
creasing sequendd;} andv* € H,(['(1, )) N CHI'(3/2, »0)) such that
2R; < Rj41, VF =0 0n @I'(3/2, ) \ £(3/2)) U {0} and

SpVv
% — 1 uniformly inT'(2, o).
By Lemmab5.4we have
VI(RY < (1-g(R-1)V'(X) inT(1,o0),
whenevemR € [1, 2]. It follows that
ov*

a_f(x) < —ev'(X) <0 for x € (L, co).

By Lemma2.1we have
VW' #0 inT(3/2, ).

It follows from Lemma2.5thatv* € C2¥(I'(2, o0)).
In a way similar to the proof of Lemma.2, we obtain the following
lemma.

Lemma5.5.ForR> 1, we let

ws(R = int {

I'(2,00)

V*(RX)}
vi(x) )
Then

V'(RY) = y3(RV'(X) for xeTI'(2, ),
whenever R> 1.

Observe tha3(1) = 1 andy3(R) is a decreasing continuous function of
R > 1. Moreover, it follows from Lemma&.5that

¥3(RR) = y3(R)ys(R) forRR > 1.
By an elementary calculation, it follows from continuityyf that
U3(R) =R forR> 1,
with v = —logy3(e) > 0. By Lemmas.5, we have
Vi(r,o) = (r/2)vi(20) for2<r <oo,0€X.

Let h(0) = v'(20) for o € Z. Sincev' € C?*(I'(2,c0)) andVv* # 0
in T'(3/2, ), we haveh € C%*(Z) andv?h? + |V, h> > 0 onX. Since
v € H,(I'(1, 00)) andv* = 0 on PI'(3/2, ) \ £(3/2)) U {0}, it follows that

v andh satisfy 6.4) andh = 0 on9X. Therefore we obtain the following
lemma.

Lemma 5.6. There exist a positive constantand a function he C?*()
such thatvy and h satisfy(5.4), v’h? + |V, hj?> > 0in X and h= 0 on 6X.
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Proof of Theorenl..6. Letug(r,o) = rh(c), 0<r < oo ando € X, where
v andh are as in Lemm&.6. Then we observey, € H(I') N C3*(T \ {0}).
Since

IVuo(X)| = r"1(?h? + |V,.h?)Y2 for x e T\ {0},

we haveVu, # 0inT'\{0}. We will show that every € H(I') is represented
asu = Cuy with some positive constaft

By LemmaZ2.7 and the comparison principle, there exist a positive de-
creasing sequend®;} andu* € H,(I(1, )) N CYI'(3/2, o)) such that
Rj/2 > Rj:1, andu® = 0 on @I'(3/2, o0) \ X(3/2)) U {co} and

S‘;;’ju

— 1 uniformly inT'(2, o).

Let
— u* . *
C= sup{—} and C= inf {u_}
r(2,)Uo —  T@w)lUg
For an arbitrarye > 0, there existiN > 0 such that iff > N, then

(5.5) (1-&)RCs(R)"Cp<u<(1+&)RCs(R)Co inI(2Ry, ),

where
Ca(R) ™= supu
[(Rj,c0)
In a way similar to the proof of Theorefin1, we obtainC = C and there
exist a subsequendg} of {R;} and a positive constait* such that

K* = lim r}Cs(r)™".
J—o0

Taking the subsequenég} in (5.5 and passing to the limit ajs— oo and
thene — 0, we obtain

u=KCuw inT.
Thus Theoreni..6is proved. m|

6. CALCULATIONS OF i, v, g AND hFOR N = 2

In this section we explicitly calculaje v, g andh for n = 2. Our method
goes back to Aronssom], who studiedp-harmonic functions in the whole
planeR? \ {0} of the formu(r,o) = r*F(o) and gave a representation of
F depending ork. Although he assumed 2 p < oo, his technique is
appliable for 1< p < 2.

We introduce the spherical coordinatesd] in R? which are related to
the coordinatesxg, x,) € R? \ {0} by

Xy =rsing, X, =T C0SH,
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where O<r < oo, -t <0 < m. For0< ¢ < &, we let
Ly ={(r.0) : 16l < ¢}.
For simplicity, we let
K= p
p- 1
Firstly we considep andg. Sinceu(r, 8) = r*g(0) € H;°(I'y), we have

f W2 + 9?7 ¢%d0 = u(u(p - 1)+ 2 - p) f W+ g?) 7 o
—¢ —¢

Hence we obtaim — « > 0. Define the functio® : [-n/2,7/2] — [—¢, ¢]

by
_ 1-p [ K
0(s) = s+ —H(ﬂ = arctan( x tans).

dd 1-«kcoss

ds pu—-«kcogs’
we see that(s) is strictly increasing and there exists the inverse function
S(0). Let

Since

uy(r, 6) = r*(1- ; X cog 5(9)) coss(6).
Then we observe thak(r, 6) is p-harmonic inl’, (see B]).

Proposition 6.1. Letn= 2 andI" = I',. Theny and g in Theoreni.5is
given by

— k(m = 2¢)% + (7 — 2¢) VAr2(1 - k) + k3(r — 2¢)2
—¢)p
coss(6),

/l:

9(0) = (1 ~ X o2 s0)
u

where $0) is given as above.

)(ﬂ 1)/

Proof. It is suficient to calculatg:. Sinced(s) is strictly increasing, it fol-
lows fromu; € H(T') thato(n/2) = ¢. Thereforeu satisfies the equation

1- bs
6.1 T s > =9.
64 2" Ji-n 2

Squaring and rewriting give
A — §)pu’® — [27% — k(m — 2¢)*]u + 7° = 0.
The roots of this quadratic equation are
B 21?2 — k(;r — 2¢)? + | — 2| \/4n2(1 — k) + K3(7r — 2¢)?
a 8(r - 9)¢
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and

27?2 — k(rr — 2¢)? — | — 2| \/An2(1 — k) + k(7w — 2)2

8(m — ¢)¢ '
Observe thak < u; < 1 < py. It follows from (6.1) that if 0 < ¢ < 7/2,
thenu > 1, if 7/2 < ¢ < &, thenu < 1. Hence we obtain
212 — k(7 — 2¢)? + (7 — 2¢) \4n2(1 — k) + K2(m — 2¢)?

8(m — )¢ '

pz =

Next we consider andh. Sinceu(r, ) = r"h(6) € H°(I'), we have

¢ o -2
f (2% + D)z h2dg = v(v(p-1) - 2 + p) f (2h? + W)z h2dg.
-4 -¢

Hence, we have+ « > 0. Define the functiod : [-7/2, /2] — [-¢, ¢] by

1+v [ v
o) =t— m arctar( m tant).

We see thad(t) is strictly decreasing and there exists the inverse function
t(6). Let
_yil
up(r.6) = r(1+ X cog t(6)) * cost(o).
v
Then we observe thak(r, 6) is p-harmonic inl, (see B]).
Proposition 6.2. Let n= 2 andI" = T'y. Theny and h in Theoreni.6is
given by

272 — k(7w + 20)2 + (70 + 2¢) \Ar2(1 — k) + K2(m + 2¢)2
L, 8+ a)e ’
h(9) = (1 ; ’5 cog t(e)) cost(6),

y =

where {6) is given as above.

Proof. It is suficient to calculater. Sinced(t) is strictly decreasing, it fol-
lows fromu, € H2(T;) thaté(r/2) = —¢. Thereforev satisfies the equation

r__ity 1__,
2 Worn 2

Squaring and rewriting give
4@t + ¢)pv? + [-21° + k(mr + 2¢)?]v — 7% = 0.
The roots of this quadratic equation are
212 — k(7w + 2¢)? + (7 + 2¢) \4n2(1 — k) + K2(m + 2¢)? .
8(m + @)

0

V1 =
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and

272 — k(7w + 2¢)? — (7 + 2¢) \Ar2(1 — k) + K2(m + 2¢)? 0
8t + )¢ b

Vo =

Sincey > 0, we obtain
212 — k(7 + 2¢)? + (7 + 2¢) \4n2(1 — k) + 2(m + 2¢)?
8(r + ¢)¢ '

y =

O

Remark6.3. Dobrowolski ] gaveu but notg. Lundstibm-Vasilis [LZ] cal-
culatedv andh for casep > 2 in the same way as in the proof of Proposition
6.2 On the other hand, for cased p < 2, they considereg/(p — 1)-
harmonic stream functions and so they obtained the explicit representation
of v andh. See {|] for details of stream functions.
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