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Chapter 1

Modulus of continuity of p-Dirichlet
solutions in a metric measure space

In this chapter we introduce results in papers [I1] and [I2].

1.1 Potential theory in a metric measure space
Let 1 < p < ∞ and let X = (X, d, µ) be a complete connected metric measure space
endowed with a metric d and a positive complete Borel measure µ such that 0 < µ(U) <
∞ for all non-empty bounded open sets U. Let B(x, r) = {y ∈ X : d(x, y) < r } denote
the open ball centered at x with radius r. We assume that µ is doubling, i.e., there is a
constant C ≥ 1 such that µ(B(x, 2r)) ≤ Cµ(B(x, r)) for every x ∈ X and r > 0. The
integral mean of u over a measurable set E is denoted by

1
µ(E)

∫

E
udµ =

∫

E
udµ = uE.

In a metric measure space, taking partial derivative is not possible. Therefore the
concept of the an upper gradient was introduced in Heinonen-Koskela [12] as a substitute
for the usual gradient. We say that a Borel function g on X is an upper gradient of a real-
valued function u on X if

(1.1.1) |u(x) − u(y)| ≤
∫

γ

gds

for any x, y ∈ X and all compact rectifiable curves γ joining x and y. If (1.1.1) fails only
for a curve family with zero p-modulus (see [12, Definition 2.1]), then g is said to be a
p-weak upper gradient of u. We say that g is a minimal p-weak upper gradient of u if
g ≤ g′ µ-almost everywhere for another p-weak upper gradients g′ of u. We denote by
gu the minimal p-weak upper gradient of u. The concept of upper gradients gave rise
to Newtonian space N1,p(X) which is one of several attempts to define Sobolev spaces
on metric measure spaces and perhaps the most fruitful one. Whenever u ∈ Lp(X), we
define the seminorm

‖u‖N1,p(X) = ‖u‖Lp(X) + inf
g
‖g‖Lp(X),
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where the infimum is taken over all p-weak upper gradients g of u. The Newtonian space
on X is the quotient space

N1,p(X) = {u ∈ Lp(X) : ‖u‖N1,p(X) < ∞}/ ∼,

where u ∼ v if and only if ‖u − v‖N1,p(X) = 0. It is known that every function u ∈ N1,p(X)
has the minimal p-weak upper gradient gu.

A p-harmonic function can be defined as the continuous minimizer of the variational
integral ∫

gp
udµ.

The p-capacity of a subset E ⊂ X is defined by

Capp(E) = inf
u
‖u‖p

N1,p(X),

where the infimum is taken over all u ∈ N1,p(X) such that u ≥ 1 on E. Let Ω ⊂ X be
a bounded domain with Capp(X \ Ω) > 0. Kinnunen-Shanmugalingam [16] proved that
p-harmonic functions in Ω satisfy the Harnack inequality and the maximum principle,
and are locally Hölder continuous provided X satisfies a (1, p)-Poincaré inequality, i.e.,
there exist constants κ ≥ 1 and C ≥ 1 such that for all balls B(x, r) ⊂ X, all measurable
functions u on X, and all p-weak upper gradients g of u we have

(1.1.2)
∫

B(x,r)
|u − uB(x,r)|dµ ≤ Cr

(∫

B(x,κr)
gp dµ

)1/p

.

From now on, we assume that X admits a (1, p)-Poincaré inequality.
The Dirichlet problem for p-harmonic functions was studied by A. Björn, J. Björn

and Shanmugalingam ([7], [8], [9] and [21]). In particular, Björn-Björn-Shanmugalingam
[9] studied the Perron solution for p-harmonic functions. For a function f on ∂Ω we de-
note by PΩ f the Perron solution of f over Ω. A point ξ ∈ ∂Ω is said to be a p-regular
point (with respect to the p-Dirichlet problem) if

lim
Ω3x→ξ

PΩ f (x) = f (ξ)

for every f ∈ C(∂Ω). If every boundary point is a p-regular point, then Ω is called p-
regular. It is well known that if Ω is p-regular and f ∈ C(∂Ω), then PΩ f is p-harmonic
in Ω and continuous in Ω. It is natural to raise the following question:

Question 1.1.1. Does improved continuity of a boundary function f guarantee improved
continuity of PΩ f ?

Aikawa-Shanmugalingam [4] studied this question in the context of Hölder continu-
ity. Aikawa [2] investigated this question in the context of general modulus of continuity
for the classical setting, i.e., for harmonic functions in a Euclidean domain. The purpose
of this chapter is to study this question in the context of general modulus of continuity
for p-harmonic functions in a metric measure space.
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1.2 Modulus of continuity of p-Dirichlet solutions
Let M be the family of all positive nondecreasing concave functions ψ on (0,∞) with
ψ(0) = limt→0 ψ(t) = 0. We say that f is ψ-Hölder continuous if | f (x) − f (y)| ≤
Cψ(d(x, y)). The modulus of continuity of a uniformly continuous function on any
geodesic space is comparable to a certain concave function. See [10, Chapter 2 §6].
Therefore, we have only to check ψ-Hölder continuity for ψ ∈ M to study Question
1.1.1 in the context of modulus of continuity.

As a typical example of ψ ∈ M, we consider ψαβ defined by

ψαβ(t) =


tα(− log t)−β for 0 < t < t0,

tα0 (− log t0)−β for t ≥ t0.

where either 0 < α < 1 and β ∈ R or α = 0 and β > 0; and t0 is so small that ψαβ ∈ M.
In particular we write ϕα = ψα0. If f is ϕα-continuous, then f is α-Hölder continuous in
the classical sense.

Let ψ ∈ M and E ⊂ X. We consider the family Λψ(E) of all bounded continuous
functions f on E with norm

‖ f ‖ψ,E = sup
x∈E
| f (x)| + sup

x,y∈E
x,y

| f (x) − f (y)|
ψ(d(x, y))

< ∞.

We define the operator norm

‖PΩ‖ψ = sup
f∈Λψ(∂Ω)
‖ f ‖ψ,∂Ω,0

‖PΩ f ‖ψ,Ω
‖ f ‖ψ,∂Ω

.

Observe that ψ-Hölder continuity of a boundary function f ensures ψ-Hölder continuity
of PΩ f if and only if ‖PΩ‖ψ < ∞.

Aikawa [2] characterized the family of Euclidean domains Ω such that ‖PΩ‖ψ < ∞
for ψ ∈ M in the context of harmonic functions. We consider the same problem in the
context of p-harmonic functions in a metric measure space. It is known that there exists
α0 ∈ (0, 1] such that every p-harmonic function in any domain Ω is locally α0-Hölder
continuous in Ω (see [16, Theorem 5.2]). Hence, ‖PΩ‖ψ < ∞ can hold only for ψ ∈ M,
in some sense, bigger than the function ϕα0(t) = tα0 .

Let ψ, ϕ ∈ M. We say that ϕ - ψ if there are r0 > 0 and C > 0 such that

ϕ(s)
ϕ(r)

≤ C
ψ(s)
ψ(r)

for 0 < s < r < r0.

LetM0 be the family of all ψ ∈ M with tα0 - ψ(t). For example, if either 0 < α < α0

and β ∈ R or α = 0 and β > 0, then ψαβ ∈ M0. But if α = α0 and β < 0, then ψα0β <M0.
Hence we see thatM0  M. Our results will be given for ψ ∈ M0.

Let U be an open set in X and let E be a Borel set in ∂U. A p-harmonic measure can
be defined as the upper Perron solution of the characteristic function χE. We denote by
ωp(x, E,U) the p-harmonic measure evaluated at x of E in U. Note that the p-harmonic
measure is not a measure, i.e., the p-harmonic measure is not additive. We define two
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decay properties for p-harmonic measures. We say that Ω enjoys the Local Harmonic
Measure Decay property with ψ (abbreviated to the LHMD(ψ) property) if there are
positive constants C1 and r0 depending only Ω and ψ such that

(1.2.1) ωp(x,Ω ∩ ∂B(a, r),Ω ∩ B(a, r)) ≤ C1
ψ(d(x, a))
ψ(r)

for x ∈ Ω ∩ B(a, r),

whenever a ∈ ∂Ω and 0 < r < r0. See Figure 1.1. We say that Ω enjoys the Global
Harmonic Measure Decay property with ψ (abbreviated to the GHMD(ψ) property) if
there are positive constants C2 and r0 depending only Ω and ψ such that

(1.2.2) ωp(x, ∂Ω \ B(a, r),Ω) ≤ C2
ψ(d(x, a))
ψ(r)

for x ∈ Ω ∩ B(a, r),

whenever a ∈ ∂Ω and 0 < r < r0. See Figure 1.2. By the comparison principle (see [15,
Theorem 7.2]) it is easy to see that (1.2.1) implies (1.2.2).

Figure 1.1: LHMD(ψ) Figure 1.2: GHMD(ψ)

Without loss of generality, we may assume that Ω is a bounded p-regular domain (see
[4, Proposition 2.1]). For a ∈ ∂Ω we define a test function τa,ψ on ∂Ω by

τa,ψ(ξ) = ψ(d(a, ξ)) for ξ ∈ ∂Ω.

Then we have the following theorem.

Theorem 1.2.1. Let ψ ∈ M0 and let Ω be a bounded p-regular domain. Consider the
following conditions:

(i) ‖PΩ‖ψ < ∞.

(ii) There is a constant C such that

PΩτa,ψ ≤ Cψ(d(x, a)) for x ∈ Ω,

whenever a ∈ ∂Ω.

(iii) Ω satisfies the GHMD(ψ) property.

(iv) Ω satisfies the LHMD(ψ) property.

Then we have
(i)⇐⇒ (ii) =⇒ (iii)⇐= (iv).
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The remaining implications in Theorem 1.2.1 are of interest. In [I1] we gave the
equivalence (iii) ⇐⇒ (iv) under additional assumptions on X and ψ ∈ M0. As was
observed in [4, Remark 2.4], the implication (iv) =⇒ (i) does not necessarily hold in
general. However, we prove that a condition slightly stronger than (iv) implies (i).

Theorem 1.2.2. Let ψ, ψ1 ∈ M0. Let ψ2 = ψ1/ψ. Suppose that limr→0 ψ2(r) = 0 and
there are constants 0 < C3 < 1 and r0 > 0 such that ψ2 is increasing on (0, r0) and

(1.2.3) sup
0<ρ<r≤r0

{
ψ(r)
ψ(ρ)

:
ψ2(ρ)
ψ2(r)

= C3

}
< ∞.

If Ω satisfies the LHMD(ψ1) property, then ‖PΩ‖ψ < ∞.

Condition (1.2.3) looks rather complicated. We have a simple condition.

Corollary 1.2.3. Let ψ, ψ1 ∈ M0. Let ψ2 = ψ1/ψ. Suppose that there are constants
0 < C4 < 1 and r0 > 0 such that ψ2 is increasing on (0, r0) and

(1.2.4) inf
0<r≤r0

ψ2(r)
ψ2(C4r)

> 1.

If Ω satisfies the LHMD(ψ1) property, then ‖PΩ‖ψ < ∞.

Theorem 1.2.2 and Corollary 1.2.3 are main results of this chapter. They give several
corollaries for ψαβ.

Corollary 1.2.4. Let Ω be a bounded p-regular domain. Consider the following condi-
tions:

(i) 0 < α < α′ < α0 and β, β′ ∈ R.

(ii) 0 = α < α′ < α0 and β > 0, β′ ∈ R.

(iii) α = α′ = 0 and 0 < β < β′.

Assume that either (i), (ii), or (iii) holds. If Ω satisfies the LHMD(ψα′β′) property, then
‖PΩ‖ψαβ < ∞.

Let E ⊂ U ⊂ X. We define the relative p-capacity of E in U by

Capp(E,U) = inf
u

∫

U
gp

udµ,

where the infimum is taken over all u ∈ N1,p(X) such that u ≥ 1 on E and Capp({x ∈
X \ U : u(x) , 0}) = 0. We say that E ⊂ X is uniformly p-fat (or satisfies the p-capacity
density condition) if there are constants C > 0 and r0 > 0 such that

(1.2.5)
Capp(E ∩ B(a, r), B(a, 2r))

Capp(B(a, r), B(a, 2r))
≥ C,

whenever a ∈ E and 0 < r < r0. The uniform p-fatness of the complement of a domain
Ω is closely related to the condition ‖PΩ‖ψαβ < ∞. For α > 0 we obtain the following
corollary.
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Corollary 1.2.5. Let Ω be a bounded p-regular domain. If X \Ω is uniformly p-fat, then
there is a constant 0 < α1 ≤ α0 such that ‖PΩ‖ψαβ < ∞ for 0 < α < α1 and β ∈ R.
Conversely, if ‖PΩ‖ψαβ < ∞ for some 0 < α < α0 and β ∈ R, then X \ Ω is uniformly
p-fat, provided that there is a constant Q ≥ p such that X is Ahlfors Q-regular, i.e.,

C−1rQ ≤ µ(B(x, r)) ≤ CrQ

for every x ∈ X and r > 0.

Remark 1.2.6. Aikawa and Shanmugalingam [4] showed the case β = 0 of Corollary
1.2.5.

For α = 0 we obtain the following corollary.

Corollary 1.2.7. If X \Ω is uniformly p-fat, then ‖PΩ‖ψ0β < ∞ for every β > 0.
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Chapter 2

Martin boundary for p-harmonic
functions in a cylinder and a cone in Rn

In this chapter we introduce results in [I3]. We restrict ourselves to Rn to have delicate
arguments for p-harmonic functions.

2.1 Martin boundary theory for harmonic functions
Let us recall the classical Martin boundary theory for harmonic functions. Let D be
an arbitrary domain with Green function G(x, y). Martin [20] introduced the Martin
boundary ∆ as the smallest ideal boundary for which G(x, y)/G(x0, y) has a continuous
extension K(x, y). An ideal boundary point y is called minimal if K(·, y) is a minimal
harmonic function; that is, every harmonic functions h in D with 0 ≤ h ≤ K(·, y) is a
constant multiple of K(·, y). The set of all minimal Martin boundary points is called the
minimal Martin boundary ∆1. Martin proved that if u is a positive harmonic function in
D, then there exists a measure µu on ∆, uniquely determined by u, such that µu(∆\∆1) = 0
and

u(x) =

∫

∆

K(x, y)dµu(y).

The identification of the (minimal) Martin boundary for specific domains is of great in-
terest. There are a number of works on this topic. Hunt-Wheeden [13] gave the first
cornerstone. They showed that the Martin boundary of a Lipschitz domain D is homeo-
morphic to the Euclidean boundary ∂D and every boundary point is minimal. They said
that a positive harmonic function u on D is a kernel function in D at a boundary point
w ∈ ∂D if u has continuous boundary values 0 on ∂D \ {w} and u(x0) = 1 ([13, p.507]).
They proved that every boundary point has a unique kernel function. This is crucial for
the identification of the Martin boundary.

In the linear case Kemper [14] proved that the uniqueness of kernel functions fol-
lows from the scale invariant boundary Harnack principle (see also [1]). For the reader’s
convenience we give a short proof below. By H(w) we denote the family of all ker-
nel functions at w with reference point x0. Then the scale invariant boundary Harnack
principle implies that there exists a constant C ≥ 1 such that

(2.1.1) C−1u(x) ≤ v(x) ≤ Cu(x) for all u, v ∈ H(w) and x ∈ D.
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Theorem A. If (2.1.1) holds, thenH(w) is a singleton.

Proof. Let

C0 = sup
u,v∈H(w), x∈D

u(x)
v(x)

.

Then 1 ≤ C0 < ∞ by (2.1.1). It is sufficient to show C0 = 1. Suppose C0 > 1. Take
u, v ∈ H(w). By the linearity of harmonicity v1 = (C0v − u)/(C0 − 1) is a positive
harmonic function with the same boundary values as u and v such that v1(x0) = (C0v(x0)−
u(x0))/(C0 − 1) = 1. Hence v1 ∈ H(w), and so u ≤ C0v1 = C0(C0v − u)/(C0 − 1), which
implies

u
v
≤ C2

0

2C0 − 1
< C0 on D.

This contradicts the definition of C0. �

It is natural to extend the notion of kernel functions to p-harmonic functions. We
study p-harmonic kernel functions in a cylinder and a cone.

2.2 p-harmonic kernel functions in a cylinder and a cone
A point x ∈ Rn is denoted by (x′, xn) with x′ = (x1, . . . , xn−1). We denote a point x ∈
Rn \ {0} by (r, σ) with r = |x| and σ = x/|x|. We let ∂E be the boundary of a set E in Rn.
Let B(x, r) be the open ball with center x and radius r.

Let 1 < p < ∞. Let D ⊂ Rn be a domain. We say that u is a p-harmonic function in D
if u ∈ W1,p

loc (D) is continuous and satisfies the p-Laplace equation 4pu = div(|∇u|p−2∇u) =

0 in D in the weak sense; that is, whenever D′ is a relatively compact subdomain of D
and ϕ ∈ W1,p

0 (D′), we have ∫

D′
|∇u|p−2∇u · ∇ϕ = 0.

If p = 2, then the p-Laplace equation reduces to the classical linear equation 4u = 0.
The set of all positive p-harmonic functions in D is denoted byH+(D).

Let D be an arbitrary domain with compactification D∗. We write ∂∗D for the ideal
boundary D∗\D. We say that u ∈ H+(D) is a p-harmonic kernel function in D at w ∈ ∂∗D
with reference point x0 if u has continuous boundary values 0 on ∂∗D\ {w} and u(x0) = 1.
If each w ∈ ∂∗D corresponds to a unique p-harmonic kernel function, we say that the
p-Martin boundary of D is homeomorphic to ∂∗D.

Let Ω be a C2,α-domain in Rn−1. The domain Ω×R = {(x′, xn) : x′ ∈ Ω, xn ∈ R} is said
to be a cylinder generated by Ω. We compactify Ω×R by adding the topological boundary
and the ideal boundary {+∞,−∞}, where ±∞ corresponds to the limit as xn → ±∞,
respectively.
We investigate p-harmonic kernel functions in Ω × R at ±∞ with the aid of a translation
operator similar to the stretching operator used by Tolksdorf [22] in his study on p-
harmonic functions in a cone. We let

H+∞
+ (Ω × R) = {u ∈ H+(Ω × R) : u = 0 on ∂(Ω × R) ∪ {−∞}},

8



Figure 2.1: The cylinder Ω × R

where u = 0 at −∞ means limxn→−∞ u(x) = 0. Similarly, we let

H−∞+ (Ω × R) = {u ∈ H+(Ω × R) : u = 0 on ∂(Ω × R) ∪ {∞}}.

By definition u ∈ H+(Ω × R) is a p-harmonic kernel function at +∞ (resp. −∞) if and
only if u(x0) = 1 and u ∈ H+∞

+ (Ω × R) (resp. u ∈ H−∞+ (Ω × R)). The following theorem
shows that +∞ and −∞ have a unique p-harmonic kernel function.

Theorem 2.2.1. There exist a positive constant λ and a function f (x′) of x′ ∈ Ω, depend-
ing only on p, n and Ω, such that

(2.2.1) H+∞
+ (Ω × R) = {C exp(λxn) f (x′) : C > 0},

(2.2.2) H−∞+ (Ω × R) = {C exp(−λxn) f (x′) : C > 0}.

Since Ω × R is locally a C2,α-domain in Rn, every boundary point in ∂(Ω × R) has
a unique p-harmonic kernel function, in view of Lewis-Nyström [18]. So, we have the
following corollary.

Corollary 2.2.2. The p-Martin boundary of Ω × R is homeomorphic to ∂(Ω × R) ∪
{−∞,+∞}.
Remark 2.2.3. Lewis-Nyström obtained the uniqueness of p-harmonic kernel functions
by using their scale invariant Harnack principle for Lipschitz domains and starlike Lip-
schitz ring domains ([17]) and a very delicate argument. If p , 2, then the proof of
Theorem A fails, as v1 = (C0v − u)/(C0 − 1) need not be p-harmonic even if u and v
are p-harmonic. Unlike the linear case, the scale invariant boundary Harnack principle is
not enough to deduce the uniqueness of p-harmonic kernel functions. This is the reason
why the domains in [18] are restricted to C1 or convex. To avoid such difficulties, we re-
strict ourselves to C2,α-domains in this chapter. In this case the scale invariant boundary
Harnack principle can be proved rather easily. See [3, Theorem 1.2].
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In case n = 2, we can explicitly calculate λ and f .

Theorem 2.2.4. Let n = 2 and Ω = (0, L) with 0 < L < ∞. Then

λ =
pπ

2(p − 1)L
,

and f (x1) has a parametric representation given by

(2.2.3)



f (s) = exp
(−(p − 2) sin2 s

p − 1

)
sin s,

x1(s) =
1
λ

( p
2(p − 1)

s +
p − 2

4(p − 1)
sin 2s

)
.

Next we consider p-harmonic kernel functions in a cone. Let Σ be a C2,α-domain in
the unit sphere. The domain Γ = {(r, σ) : 0 < r < ∞, σ ∈ Σ} is said to be a cone generated
by Σ. We compactify Γ by adding the topological boundary and the ideal boundary {∞},
where∞ is the point at infinity.

Figure 2.2: The cone Γ

We study p-harmonic kernel functions in Γ at ∞ and 0 with the aid of the stretching
operator used by Tolksdorf [22]. We let

H∞+ (Γ) = {u ∈ H+(Γ) : u = 0 on ∂Γ},
H0

+(Γ) = {u ∈ H+(Γ) : u = 0 on (∂Γ ∪ {∞}) \ {0}},
where u = 0 on ∞ means lim|x|→∞ u(x) = 0. By definition u ∈ H+(Γ) is a p-harmonic
kernel function at∞ (resp. 0) if and only if u(x0) = 1 and u ∈ H∞+ (Γ) (resp. u ∈ H0

+(Γ)).
The following theorems show that∞ and 0 have a unique p-harmonic kernel function.

Theorem 2.2.5. There exist a positive constant µ and a function g(σ) ofσ ∈ Σ, depending
only on p, n and Σ, such that

(2.2.4) H∞+ (Γ) = {Crµg(σ) : C > 0}.
Theorem 2.2.6. There exist a positive constant ν and a function h(σ) ofσ ∈ Σ, depending
only on p, n and Σ, such that

H0
+(Γ) = {Cr−νh(σ) : C > 0}.
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Corollary 2.2.7. The p-Martin boundary of Γ is homeomorphic to ∂Γ ∪ {∞}.
Remark 2.2.8. Tolksdorf [22] studied functions u ∈ H∞+ (Γ) satisfying the doubling con-
dition:

(2.2.5) sup
Γ∩B(0,2R)

u ≤ C sup
Γ∩B(0,R)

u for R ≥ 1,

with a constant C ≥ 1 depending only on u. The set of all u ∈ H∞+ (Γ) satisfying (2.2.5)
is denoted by H̃∞+ (Γ). By applying the stretching operator, he gave a characterization of
H̃∞+ (Γ) similar to (2.2.4). Theorem 2.2.5 implies that the doubling condition (2.2.5) is
superfluous, that is, H̃∞+ (Γ) = H∞+ (Γ).

In case n = 2, we can explicitly calculate µ, ν, g and h. Our method goes back to
Aronsson [5], who studied p-harmonic functions in the whole plane R2 \ {0} of the form
u(r, σ) = rkF(σ) and gave a representation of F depending on k. Although he assumed
2 < p < ∞, his technique is appliable for 1 < p ≤ 2.

We introduce the spherical coordinates (r, θ) inR2 which are related to the coordinates
(x1, x2) ∈ R2 \ {0} by

x1 = r sin θ, x2 = r cos θ,

where 0 < r < ∞, −π ≤ θ < π. For 0 < φ < π, we let

Γφ = {(r, θ) : |θ| < φ}.
For simplicity, we let

κ =
p − 2
p − 1

.

Proposition 2.2.9. Let n = 2 and Γ = Γφ. Then

µ =
2π2 − κ(π − 2φ)2 + (π − 2φ)

√
4π2(1 − κ) + κ2(π − 2φ)2

8(π − φ)φ
,

and g(θ) has a parametric representation given by


g(s) =

(
1 − κ

µ
cos2 s

)(µ−1)/2

cos s,

θ(s) = s +
1 − µ√
µ(µ − κ)

arctan
(√

µ

µ − κ tan s
)
.

Proposition 2.2.10. Let n = 2 and Γ = Γφ. Then

ν =
2π2 − κ(π + 2φ)2 + (π + 2φ)

√
4π2(1 − κ) + κ2(π + 2φ)2

8(π + φ)φ
,

and h(θ) has a parametric representation given by


h(t) =

(
1 +

κ

ν
cos2 t

)(−ν−1)/2

cos t,

θ(t) = t − 1 + ν√
ν(ν + κ)

arctan
(√

ν

ν + κ
tan t

)
.
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Remark 2.2.11. Dobrowolski [11] gave µ but not g. Lundström-Vasilis [19] calculated
ν and h for case p > 2 in the same way as in the proof of Proposition 2.2.10. On the
other hand, for case 1 < p < 2, they considered p/(p − 1)-harmonic stream functions
and so they obtained the explicit representation of ν and h. See [6] for details of stream
functions.
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Abstract. Let 1 < p < ∞ and let X be a metric measure space with a doubling measure and
a (1, p)-Poincaré inequality. Let Ω be a bounded domain in X. For a function f on ∂Ω we denote
by PΩf the p-Dirichlet solution of f over Ω. It is well known that if Ω is p-regular and f ∈ C(∂Ω),
then PΩf is p-harmonic in Ω and continuous in Ω. We characterize the family of domains Ω such
that improved continuity of boundary functions f ensures improved continuity of PΩf . We specify
such improved continuity if X is Ahlfors regular and X \ Ω is uniformly p-fat.

1. Introduction

Let X = (X, d, µ) be a complete connected metric measure space endowed with
a metric d and a positive complete Borel measure µ such that 0 < µ(U) < ∞ for all
non-empty bounded open sets U .

By the symbol C we denote an absolute positive constant whose value is unim-
portant and may change from line to line. Let B(x, r) = {y ∈ X : d(x, y) < r} denote
the open ball centered at x with radius r. We assume that µ is doubling, i.e., there
is a constant C ≥ 1 such that µ(B(x, 2r)) ≤ Cµ(B(x, r)) for every x ∈ X and r > 0.
Let 1 < p < ∞. We assume that X admits a (1, p)-Poincaré inequality.

We denote by Capp the p-capacity defined on X (Definition 2.5). Let Ω ⊂ X be
a bounded domain with Capp(X \Ω) > 0. For a function f on ∂Ω we donate by PΩf
the p-Perron solution of f over Ω. A point ξ ∈ ∂Ω is said to be a p-regular point
(with respect to the p-Dirichlet problem) if

lim
Ω3x→ξ

PΩf(x) = f(ξ)

for every f ∈ C(∂Ω). If every boundary point is a p-regular point, then Ω is called p-
regular. It is well known that if Ω is p-regular and f ∈ C(∂Ω), then PΩf is p-harmonic
in Ω and continuous in Ω. It is natural to raise the following question:

Question 1.1. Does improved continuity of a boundary function f guarantee
improved continuity of PΩf?

Aikawa and Shanmugalingam [3] studied this question in the context of Hölder
continuity. Aikawa [2] investigated this question in the context of general modulus of
continuity for the classical setting, i.e., for harmonic functions in a Euclidean domain.
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Key words: Modulus of continuity, p-harmonic, p-Dirichlet solution, Metric measure space,

p-capacity.
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The purpose of this paper is to study this question in the context of general modulus
of continuity in a metric measure space.

Let M be the family of all positive nondecreasing concave functions ψ on (0,∞)
with ψ(0) = limt→0 ψ(t) = 0. We say that f is ψ-Hölder continuous if |f(x)−f(y)| ≤
Cψ(d(x, y)). The modulus of continuity of a uniformly continuous function on any
geodesic space is comparable to a certain concave function. See [5, Chapter 2 §6] and
Propositions 2.13 and 2.14. The author would like to thank Kuroda for drawing his
attention to [5]. Therefore, we have only to check ψ-Hölder continuity for ψ ∈ M to
study Question 1.1 in the context of modulus of continuity.

As a typical example of ψ ∈ M we consider ψαβ defined by

ψαβ(t) =

{
tα(− log t)−β for 0 < t < t0,

tα0 (− log t0)
−β for t ≥ t0.

where either 0 < α < 1 and β ∈ R or α = 0 and β > 0; and t0 is so small that
ψαβ ∈ M. In particular, we write ϕα = ψα0, and we say that f is α-Hölder continuous
if f is ϕα-continuous.

Let ψ ∈ M and E ⊂ X. We consider the family Λψ(E) of all bounded continuous
functions f on E with norm

‖f‖ψ,E = sup
x∈E

|f(x)|+ sup
x,y∈E
x6=y

|f(x)− f(y)|
ψ(d(x, y))

< ∞.

We define the operator norm

‖PΩ‖ψ = sup
f∈Λψ(∂Ω)
‖f‖ψ,∂Ω 6=0

‖PΩf‖ψ,Ω
‖f‖ψ,∂Ω

.

Observe that ψ-Hölder continuity of a boundary function f ensures ψ-Hölder conti-
nuity of PΩf if and only if ‖PΩ‖ψ < ∞.

Aikawa [2] characterized the family of Euclidean domains Ω such that ‖PΩ‖ψ < ∞
for ψ ∈ M in context of harmonic functions. We consider the same problem in the
context of p-harmonic functions in a metric measure space. It is known that there
exists α0 ∈ (0, 1] such that every p-harmonic function in any domain Ω is locally
α0-Hölder continuous in Ω (see [10]). Hence, ‖PΩ‖ψ < ∞ can hold only for ψ ∈ M,
in some sense, bigger than the function ϕα0(t) = tα0 .

Let ψ, ϕ ∈ M. We say that ϕ - ψ if there are r0 > 0 and C > 0 such that

ϕ(s)

ϕ(r)
≤ C

ψ(s)

ψ(r)
for 0 < s < r < r0.

LetM0 be the family of all ψ ∈ M with tα0 - ψ(t). For example, if either 0 < α < α0

and β ∈ R or α = 0 and β > 0, then ψαβ ∈ M0. But if α = α0 and β < 0, then
ψα0β 6∈ M0. Hence we see that M0  M. Our results will be given for ψ ∈ M0.

Let U be an open set in X and let E be a Borel set in ∂U . We denote by
ωp(x,E, U) the p-harmonic measure evaluated at x of E in U . Note that the p-
harmonic measure is not a measure, i.e., the p-harmonic measure is not additive. We
define two decay properties for p-harmonic measures. We say that Ω enjoys the Local
Harmonic Measure Decay property with ψ (abbreviated to the LHMD(ψ) property)
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if there are positive constants C1 and r0 depending only Ω and ψ such that

(1.1) ωp(x,Ω ∩ ∂B(a, r),Ω ∩B(a, r)) ≤ C1
ψ(d(x, a))

ψ(r)
for x ∈ Ω ∩B(a, r),

whenever a ∈ ∂Ω and 0 < r < r0. We say that Ω enjoys the Global Harmonic
Measure Decay property with ψ (abbreviated to the GHMD(ψ) property) if there are
positive constants C2 and r0 depending only Ω and ψ such that

(1.2) ωp(x, ∂Ω \B(a, r),Ω) ≤ C2
ψ(d(x, a))

ψ(r)
for x ∈ Ω ∩B(a, r),

whenever a ∈ ∂Ω and 0 < r < r0. By the comparison principle (see [9, Theorem 7.2])
it is easy to see that (1.1) implies (1.2).

Without loss of generality, we may assume that Ω is a bounded p-regular domain
(see [3, Proposition 2.1]). For a ∈ ∂Ω we define a test function τa,ψ on ∂Ω by

τa,ψ(ξ) = ψ(d(a, ξ)) for ξ ∈ ∂Ω.

Then we have the following theorem.

Theorem 1.2. Let ψ ∈ M0 and let Ω be a bounded p-regular domain. Consider
the following conditions:

(i) ‖PΩ‖ψ < ∞.
(ii) There is a constant C such that

PΩτa,ψ(x) ≤ Cψ(d(x, a)) for x ∈ Ω,

whenever a ∈ ∂Ω.
(iii) Ω satisfies the GHMD(ψ) property.
(iv) Ω satisfies the LHMD(ψ) property.

Then we have
(i) ⇐⇒ (ii) =⇒ (iii) ⇐= (iv).

The remaining implications in Theorem 1.2 are of interest. Theorem 4.1 in Sec-
tion 4 will give the equivalence (iii) ⇐⇒ (iv) under additional assumptions on X and
ψ ∈ M0. As was observed in [3, Remark 2.4], the implication (iv) =⇒ (i) does not
hold. However, we prove that a condition slightly stronger than (iv) implies (i).

Theorem 1.3. Let ψ, ψ1 ∈ M0. Let ψ2 = ψ1/ψ. Suppose that limr→0 ψ2(r) = 0
and there are constants 0 < C3 < 1 and r0 > 0 such that ψ2 is increasing on (0, r0)
and

(1.3) sup
0<ρ<r≤r0

{
ψ(r)

ψ(ρ)
:
ψ2(ρ)

ψ2(r)
= C3

}
< ∞.

If Ω satisfies the LHMD(ψ1) property, then ‖PΩ‖ψ < ∞.

Condition (1.3) looks rather complicated. We have a simple condition.

Corollary 1.4. Let ψ, ψ1 ∈ M0. Let ψ2 = ψ1/ψ. Suppose that there are
constants 0 < C4 < 1 and r0 > 0 such that ψ is increasing on (0, r0) and

(1.4) inf
0<r≤r0

ψ2(r)

ψ2(C4r)
> 1.

If Ω satisfies the LHMD(ψ1) property, then ‖PΩ‖ψ < ∞.
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Theorem 1.3 and Corollary 1.4 are main results of this paper. They give several
corollaries for ψαβ.

Corollary 1.5. Let Ω be a bounded p-regular domain. Consider the following
conditions:

(i) 0 < α < α′ < α0 and β, β′ ∈ R.
(ii) 0 = α < α′ < α0 and β > 0, β′ ∈ R.
(iii) α = α′ = 0 and 0 < β < β′.

Assume that either (i), (ii), or (iii) holds. If Ω satisfies the LHMD(ψα′β′) property,
then ‖PΩ‖ψαβ

< ∞.

We say that E ⊂ X is uniformly p-fat or satisfies the p-capacity density condition
if there are constants C > 0 and r0 > 0 such that

(1.5)
Capp(E ∩B(a, r), B(a, 2r))

Capp(B(a, r), B(a, 2r))
≥ C,

whenever a ∈ E and 0 < r < r0. The uniform p-fatness of the complement of a
domain Ω is closely related to the condition ‖PΩ‖ψαβ

< ∞. For α > 0 we obtain the
following corollary.

Corollary 1.6. Let Ω be a bounded p-regular domain. If X \ Ω is uniformly
p-fat, then there is a constant 0 < α1 ≤ α0 such that ‖PΩ‖ψαβ

< ∞ for 0 < α < α1

and β ∈ R. Conversely, if ‖PΩ‖ψαβ
< ∞ for some 0 < α < α0 and β ∈ R, then X \Ω

is uniformly p-fat, provided that there is a constant Q ≥ p such that X is Ahlfors
Q-regular, i.e.,

C−1rQ ≤ µ(B(x, r)) ≤ CrQ

for every x ∈ X and r > 0.

Aikawa and Shanmugalingam [3] showed the case β = 0 of Corollary 1.6. For
α = 0 we obtain the following corollary.

Corollary 1.7. If X \ Ω is uniformly p-fat, then ‖PΩ‖ψ0β
< ∞ for every β > 0.

The plan of this paper is as follows. In the next section we shall define notions
of p-harmonicity, p-Dirichlet problem, p-capacity, and p-harmonic measure, and we
shall observe some properties for M. In Section 3 we shall show Theorem 1.2. In
Section 4 we shall prove that Ω satisfies the LHMD(ψ) property if and only if Ω
satisfies the GHMD(ψ) property under certain additional assumptions. The proof of
Theorem 1.3 and Corollary 1.4 will be given in Section 5. Finally, we shall give the
proof of Corollaries 1.5, 1.6, and 1.7.

2. Preliminaries

In this section we introduce notions of p-harmonicity, p-Dirichlet problem, p-
capacity, and p-harmonic measure; for details we refer to [3], and we observe some
properties for M.

The integral mean of u over a measurable set E is denoted by

1

µ(E)

ˆ

E

u dµ =

ˆ

E

u dµ = uE.
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Definition 2.1. We say that a Borel function g on X is an upper gradient of a
real-valued function u on X if

(2.1) |u(x)− u(y)| ≤
ˆ

γ

g ds

for any x, y ∈ X and all compact rectifiable curves γ joining x and y. If (2.1) fails
only for a curve family with zero p-modulus (see [7, Definition 2.1]), then g is said to
be a p-weak upper gradient of u. We say that g is a minimal p-weak upper gradient
of u if g ≤ g′ µ-almost everywhere for another p-weak upper gradients g′ of u. We
denote by gu a minimal p-weak upper gradient of u.

Definition 2.2. Let u ∈ Lp(X). We define the seminorm

‖u‖N1,p(X) = ‖u‖Lp + inf
g
‖g‖Lp,

where the infimum is taken over all p-weak upper gradients g of u. The Newtonian
space on X is the quotient space

N1,p(X) = {u ∈ Lp(X) : ‖u‖N1,p(X) < ∞}/ ∼,

where u ∼ v if and only if ‖u− v‖N1,p(X) = 0.

Remark 2.3. The Newtonian space N1,p(X) with the norm ‖ · ‖N1,p(X) is a
Banach space. Every function u ∈ N1,p(X) has the minimal p-weak upper gradient
gu.

Definition 2.4. We say that X admits a (1, p)-Poincaré inequality if there are
constants κ ≥ 1 and C ≥ 1 such that for all balls B(x, r) ⊂ X, all measurable
functions u on X, and all p-weak upper gradients g of u we have

(2.2)
ˆ

B(x,r)

|u− uB(x,r)| dµ ≤ Cr

(ˆ

B(x,κr)

gp dµ

)1/p

.

A consequence of the (1, p)-Poincaré inequality is the following p-Sobolev in-
equality (see [10, Lemma 2.1]): if 0 < γ < 1 and µ({z ∈ B(x,R) : |u(z)| > 0}) ≤
γµ(B(x,R)), then there exists a positive constant Cγ depending only on γ such that

(2.3)
(ˆ

B(x,R)

|u|p dµ
)1/p

≤ CγR

(ˆ

B(x,κR)

gpu dµ

)1/p

.

If X admits a (1, p)-Poincaré inequality, then X admits a (1, q)-Poincaré inequal-
ity for every q ≥ p by Hölder’s inequality. Keith and Zhong [8] showed that if X
is proper (that is, closed and bounded subsets of X are compact) and X admits
a (1, p)-Poincaré inequality, then there exists q < p such that X admits a (1, q)-
Poincaré inequality. Because X is a complete metric space equipped with a doubling
measure, X is proper. Therefore we can use their result.

Definition 2.5. The p-capacity of a subset E ⊂ X is defined by

Capp(E) = inf
u
‖u‖pN1,p(X),

where the infimum is taken over all u ∈ N1,p(X) such that u ≥ 1 on E.

We say that a property holds p-quasieverywhere (p-q.e.) if the set of points for
which the property fails to hold has p-capacity zero. We let

N1,p
0 (Ω) = {u ∈ N1,p(X) : u = 0 p-q.e. on X \ Ω}.
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We say that u ∈ N1,p
loc (Ω) if for every x ∈ Ω there is rx such that f |B(x,rx) ∈

N1,p(B(x, rx)). This is clearly equivalent to saying that f ∈ N1,p(V ) for every rela-
tively compact subset V of Ω. We now introduce the notion of p-harmonicity.

Definition 2.6. We call a function u ∈ N1,p
loc (Ω) a p-harmonic function in Ω if u

is continuous and

(2.4)
ˆ

U

gpu dµ ≤
ˆ

U

gpu+ϕ dµ.

for all relatively compact subsets U of Ω and all functions ϕ ∈ N1,p
0 (U). A function

u ∈ N1,p
loc (Ω) is said to be a p-superminimizer in Ω if (2.4) holds for all relatively

compact subsets U of Ω and all nonnegative functions ϕ ∈ N1,p
0 (U). We call a

function u ∈ N1,p
loc (Ω) a p-subminimizer in Ω if (2.4) holds for all relatively compact

subsets U of Ω and all nonpositive functions ϕ ∈ N1,p
0 (U).

Let u and v be p-harmonic functions and let α, β ∈ R. Then αu+β is p-harmonic.
But in general u + v is not p-harmonic. Kinnunen and Shanmugalingam [10, Theo-
rem 5.2] showed the following local Hölder continuity of p-harmonic functions. Here,
we denote by oscE u the oscillation supE u− infE u.

Theorem 2.7. Suppose a function u is p-harmonic on B(x, 2κR). Then there
are constants 0 < α0 ≤ 1 and C ≥ 1 such that

osc
B(x,κr)

u ≤ C

(
r

R

)α0

osc
B(x,κR)

u for 0 < r ≤ R.

The constants α0 and C are independent of u, x, and R.

Next we define p-Dirichlet solutions over Ω. For a function f ∈ N1,p(Ω) we
denote by HΩf the Dirichlet solution of f over Ω, i.e., HΩf is a function on Ω that
is p-harmonic in Ω with f −HΩf ∈ N1,p

0 (Ω). For E ⊂ X we denote by Lip(E) the
family of all Lipschitz continuous functions on E. For every f ∈ Lip(∂Ω) there is a
function Ef ∈ Lip(Ω) such that f = Ef on ∂Ω. Therefore we can define HΩf by
the function HΩEf ; this is independent of the extension Ef . We say that a lower
semicontinuous function u on Ω is a p-superharmonic function in Ω if

(i) −∞ < u ≤ ∞;
(ii) u is not identically ∞ in Ω;
(iii) HΩ′v ≤ u in Ω′ for every relatively compact subset Ω′ of Ω and all functions

v ∈ Lip(∂Ω′) such that v ≤ u on ∂Ω′.
If −u is p-superharmonic, then we say that u is p-subharmonic.

The following comparison principle is very useful in nonlinear potential theory
(see [9, Theorem 7.2]).

Theorem 2.8. Let u be a p-superharmonic function on Ω and let v be a p-
subharmonic function on Ω. If

(2.5) lim sup
Ω3x→ξ

v(x) ≤ lim inf
Ω3x→ξ

u(x)

for every ξ ∈ ∂Ω, and if both sides of (2.5) are not simultaneously ∞ or −∞, then
v ≤ u in Ω.

Definition 2.9. Let f be a function on ∂Ω. Let Uf be the set of all p-superharmonic
functions u on Ω bounded below such that lim infΩ3x→ξ u(x) ≥ f(ξ) for each ξ ∈ ∂Ω.
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The upper Perron solution of f is defined by

PΩf(x) = inf
u∈Uf

u(x) for x ∈ Ω.

Similarly, we define the lower Perron solution of f by

PΩf(x) = sup
s∈Lf

s(x) for x ∈ Ω,

where Lf = −U−f is the set of all p-subharmonic functions s on Ω bounded above
such that lim supΩ3x→ξ s(x) ≤ f(ξ) for each ξ ∈ ∂Ω. If PΩf = PΩf , then we write
PΩf = PΩf , and we say that f is resolutive. We call PΩf the Perron solution of f .

A. Björn, J. Björn and Shanmugalingam [4, Theorem 6.1] showed that if f ∈
C(∂Ω), then f is resolutive. Moreover, if f ∈ N1,p(X), then f is resolutive and
PΩf = HΩf , by [4, Theorem 5.1]. We define the p-harmonic measure as follows.

Definition 2.10. Let U be an open subset of X and let E be a Borel set in ∂U .
The p-harmonic measure evaluated at x of E in U is defined by

ωp(x,E, U) = PUχE(x) for x ∈ U.

The p-harmonic measure is not additive because of the non-linear nature of p-
harmonic functions. Therefore the p-harmonic measure is not a measure.

Definition 2.11. Let E ⊂ U ⊂ X. We define the relative p-capacity of E in U
by

Capp(E,U) = inf
u

ˆ

U

gpu dµ,

where the infimum is taken over all u ∈ N1,p
0 (U) such that u ≥ 1 on E.

Finally, we observe some properties for M. The following proposition shows an
elementary property for M (see [2, Lemma 2.2]).

Proposition 2.12. Let ψ ∈ M. If c > 1 and 0 < s ≤ t ≤ cs, then ψ(s) ≤
ψ(t) ≤ cψ(s).

In Section 1 we have assumed that ψ ∈ M is concave. The relevance of concavity
of ψ ∈ M follows from the following propositions.

Proposition 2.13. Let ϕ be a nondecreasing subadditive function on (0,∞), i.e.,
if t1, t2 > 0, then ϕ(t1 + t2) ≤ ϕ(t1) + ϕ(t2). Suppose that limt→0 ϕ(t) = ϕ(0) = 0.
Then there is a function ψ ∈ M satisfying

1

2
ψ(t) ≤ ϕ(t) ≤ ψ(t) for t ≥ 0.

Proposition 2.14. Let (A, dA) be a geodesic space and let f be a uniformly
continuous function on A. Then

ϕ(t) = ϕ(f, t) = sup
dA(x,y)≤t
x,y∈A

|f(x)− f(y)| for t ≥ 0.

is a subadditive function on (0,∞).

See [2, Section 5], [5, Chapter 2 §6], and [11, Section 3] for these accounts.
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3. Proof of Theorem 1.2

To prove Theorem 1.2 we recall the following geometric property (see [6, Propo-
sition 4.4]).

Lemma 3.1. The space X is quasiconvex, i.e., there exists a constant C5 ≥ 1
such that every pair of points x, y ∈ X can be joined by a curve of length at most
C5d(x, y). Hence if x ∈ E  X, then

dist(x,X \ E) ≤ dist(x, ∂E) ≤ C5 dist(x,X \ E).

Proof of Theorem 1.2. Since the LHMD(ψ) property implies the GHMD(ψ)
property, it is sufficient to show that Condition (ii) implies Condition (iii) and that
Condition (i) is equivalent to Condition (ii).

(ii) =⇒ (iii). Suppose (ii) holds. Let a ∈ ∂Ω and r > 0. Then

ψ(r)χ∂Ω\B(a,r)(ξ) ≤ τa,ψ(ξ) for ξ ∈ ∂Ω.

The comparison principle yields

ψ(r)ωp(x, ∂Ω \B(a, r),Ω) ≤ PΩτa,ψ(x) for x ∈ Ω.

Hence, (ii) implies that

ψ(r)ωp(x, ∂Ω \B(a, r),Ω) ≤ Cψ(d(x, a)) for x ∈ Ω.

Thus (iii) follows.
(i) =⇒ (ii). Suppose ‖PΩ‖ψ < ∞. Since τa,ψ ∈ Λψ(∂Ω), we have

‖PΩτa,ψ‖ψ,Ω ≤ ‖PΩ‖ψ‖τa,ψ‖ψ,∂Ω < ∞.

By definition

|PΩτa,ψ(x)− PΩτa,ψ(y)| ≤ ‖PΩτa,ψ‖ψ,Ωψ(d(x, y)) for x, y ∈ Ω.

Letting y → a, we see that PΩτa,ψ(x) ≤ ‖PΩτa,ψ‖ψ,Ωψ(d(x, a)). Thus (ii) follows with
C = ‖PΩτa,ψ‖ψ,Ω.

(ii) =⇒ (i). Suppose (ii) holds. Let f ∈ Λψ(∂Ω). Since |PΩf | is bounded by the
supremum of |f | over ∂Ω, it is sufficient to show that

(3.1) |PΩf(x)− PΩf(y)| ≤ C‖f‖ψ,∂Ωψ(d(x, y)) for x, y ∈ Ω.

Let x, y ∈ Ω. Without loss of generality, we may assume that dist(x,X \ Ω) ≥
dist(y,X \Ω). Let R = dist(x,X \Ω)/2κ. Since ∂Ω is compact, we can take x∗ ∈ ∂Ω
such that d(x, x∗) = dist(x, ∂Ω). Then Lemma 3.1 gives

(3.2) 2κR ≤ d(x, x∗) ≤ 2κC5R.

Let f0(ξ) = f(ξ)− f(x∗). By definition

|f0(ξ)| ≤ ‖f‖ψ,∂Ωτx∗,ψ(ξ) for ξ ∈ ∂Ω.

Hence, by the comparison principle and (ii), we obtain

(3.3) |PΩf0(z)| ≤ C‖f‖ψ,∂Ωψ(d(z, x∗)) for z ∈ Ω.

Let us consider two cases.
Case 1: d(x, y) ≤ d(x, x∗)/(2κC5). Let r = d(x, y). Then r ≤ R. Since PΩf0 is

p-harmonic, Theorem 2.7 gives

osc
B(x,κr)

PΩf0 ≤ C

(
r

R

)α0

osc
B(x,κR)

PΩf0.



Modulus of continuity of p-Dirichlet solutions in a metric measure space 347

We obtain from (3.2) that

d(z, x∗) ≤ d(x, z) + d(x, x∗) ≤ (1 + 2C5)κR for z ∈ B(x, κR).

By Proposition 2.12 we have

ψ(d(z, x∗)) ≤ ψ((1 + 2C5)κR) ≤ (1 + 2C5)κψ(R).

Thus by (3.3) we obtain

osc
B(x,κR)

PΩf0 ≤ 2 sup
B(x,κR)

|PΩf0| ≤ C‖f‖ψ,∂Ωψ(R).

Hence

(3.4) |PΩf(x)− PΩf(y)| = |PΩf0(x)− PΩf0(y)| ≤ C

(
r

R

)α0

‖f‖ψ,∂Ωψ(R).

Since ψ ∈ M0, there is a constant C > 0 such that
(
s

r

)α0

≤ C
ψ(s)

ψ(r)
for 0 < s < r < 2κ diam(Ω).

Hence by (3.4), we have

|PΩf(x)−PΩf(y)| ≤ C‖f‖ψ,∂Ωψ(d(x, y)).
Case 2: d(x, y) ≥ d(x, x∗)/(2κC5). We have

d(y, x∗) ≤ d(x, y) + d(x, x∗) ≤ (1 + 2κC5)d(x, y).

It follows from Proposition 2.12 and (3.3) that

|PΩf(x)−PΩf(y)| = |PΩf0(x)− PΩf0(y)| ≤ |PΩf0(x)|+ |PΩf0(y)|
≤ C‖f‖ψ,∂Ω(ψ(d(x, x∗)) + ψ(d(y, x∗)))

≤ C‖f‖ψ,∂Ωψ(d(x, y)).
Combining the above two cases, we obtain (3.1). Thus (i) follows. ¤

4. Equivalence between GHMD(ψ) and LHMD(ψ)

If ψ = ϕα, then the GHMD(ψ) property and the LHMD(ψ) property are equiv-
alent for Euclidean domains (see [1]) and for a metric measure space (see [3]). If
ψ 6= ϕα, it is not known whether this equivalence holds or not. In this section we
show that the equivalence holds under certain additional assumptions.

Let S(x, r) = {y ∈ X : d(x, y) = r} be the sphere with center at x and radius
r and let A(x, r, R) be the annulus B(x,R) \ B(x, r) with center at x and radii r
and R. We say that X is linearly locally connected (abbreviated to LLC) if there are
constants C6 > 1 and r0 > 0 such that for every a ∈ X and 0 < r < r0 each pair of
points x, y ∈ S(a, r) can be connected by a curve lying in A(a, r/C6, C6r).

Theorem 4.1. Let Ω be a bounded regular domain. Assume that X is LLC and
there is a constant C > 0 such that

(4.1)
µ(B(a, r))

µ(B(a,R))
≤ C

(
r

R

)p
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whenever a ∈ ∂Ω and 0 < r ≤ R < diam(X). Let ψ ∈ M0. Suppose that there exist
constants 0 < C < 1 and r0 > 0 such that

(4.2) inf
0<r<r0

ψ(r)

ψ(Cr)
> 1.

Then Ω satisfies the LHMD(ψ) property if and only if Ω satisfies the GHMD(ψ)
property.

Theorem 4.1 is new, even for the classical setting, i.e., for harmonic functions in
Euclidean domains.

The proof is decomposed mainly into two steps. First, we show that the GHMD(ψ)
property implies that the uniform perfectness of the boundary (Lemma 4.3). Second,
with the aid of the uniform perfectness and a chain property, we will complete proof
of Theorem 4.1. See [3, Lemmas 5.1 and 5.2] for Hölder continuity.

Definition 4.2. Let E be a subset of X. We say that E is uniformly perfect if
there are constants 0 < C7 < 1 and r0 > 0 such that A(x,C7r, r) ∩ E 6= ∅ for every
x ∈ E and all 0 < r < r0.

Lemma 4.3. Let Ω be a bounded regular domain. Assume that X is LLC and
µ satisfies (4.1). Let ψ ∈ M0. Suppose that ψ satisfies (4.2). If Ω satisfies the
GHMD(ψ) property, then ∂Ω is uniformly perfect.

For the proof we state the following lemma, which is proved in the same way as
[3, Lemma 5.3].

Lemma 4.4. Assume that µ satisfies (4.1). If 0 < 2r ≤ R < diam(Ω)/2, then

Capp(B(a, r), B(a,R))

µ(B(a,R))
≤ C

(
log

R

r

)1−p

R−p.

Proof of Lemma 4.3. Let a ∈ ∂Ω and 0 < ρ1 < ρ2 < diam(Ω)/2. Suppose
A(a, ρ1, ρ2) does not intersect ∂Ω. Then it is sufficient to show that the ratio ρ1/ρ2
is bounded below by a positive constant C depending only on Ω and ψ.

Without loss of generality, we may assume that ρ1 ≤ ρ2/(2C
2
6). By the LLC

property we see that A(a, C6ρ1, ρ2/C6) ⊂ Ω. For simplicity, we let r = C6ρ1 and
R = ρ2/C6. Then

(4.3) A(a, r, R) ⊂ Ω.

Letting ρ2 be larger if necessary, we may assume that S(a, C6R) has a point b ∈ ∂Ω.
Let K = B(a, r) \ Ω. Observe from (4.3) that K = B(a,R) \ Ω. By Lemma 4.4,

(4.4)
Capp(K,Ω ∪K)

µ(B(a,R))
≤ Capp(B(a, r), B(a,R))

µ(B(a,R))
≤ C

(
log

R

r

)1−p

R−p.

Let uK be the p-capacitary potential for the condenser (K,Ω ∪ K), i.e., uK is p-
harmonic on Ω, uK = 1 p-q.e. on K, uK = 0 p-q.e. on X \ (Ω ∪K) and

Capp(K,Ω ∪K) =

ˆ

X

gpuK
dµ.

We prove that uK ≤ 1/3 p-q.e. on B(b, βR) for some 0 < β < 1. Since r ≤ R/2
and A(a, r, R)∩ ∂Ω = ∅, it follows from the comparison principle and the GHMD(ψ)
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property that

(4.5) uK(x) ≤ C2
ψ(d(x, b))

ψ(R/2)
for x ∈ Ω ∩B(b, R/2).

Since ψ satisfies (4.2), there is a constant 0 < C8 < 1 such that

S = inf
0<r<diam(Ω)/2

ψ(r)

ψ(C8r)
> 1.

Therefore, we have
ψ(Cj−1

8 R/2)

ψ(Cj
8R/2)

≥ S

for every positive integer j. Now multiplying the above inequalities over j = 1, 2, . . . , N ,
we get

ψ(R/2)

ψ(CN
8 R/2)

≥ SN .

We can find a positive integer N such that
C2

SN
≤ 1

3
.

Let β = CN
8 /2. By the monotonicity of ψ, if x ∈ B(b, βR), then

ψ(d(x, b)) ≤ ψ(βR) ≤ ψ(R/2)/(3C2).

Hence, by (4.5) we obtain

uK(x) ≤
1

3
for x ∈ Ω ∩B(b, βR)

Since uK = 0 p-q.e. on B(b, R/2) \ Ω, we have uK ≤ 1/3 p-q.e. on B(b, βR).
Next we prove that uK ≥ 2/3 p-q.e. on B(a, βR). It follows from (4.3) and the

comparison principle that

uK(x) = 1− ωp(x, ∂Ω \B(a,R),Ω) for x ∈ Ω.

By the GHMD(ψ), we have

ωp(x, ∂Ω \B(a,R),Ω) ≤ C2
ψ(d(x, a))

ψ(R)
for x ∈ Ω ∩B(a,R)

Hence (4.2) implies

uK(x) ≥
2

3
for x ∈ Ω ∩B(a, βR)

Since uK = 1 p-q.e. on B(a, βR) \ Ω ⊂ B(a,R) \ Ω, we obtain uK ≥ 2/3 p-q.e. on
B(a, βR).

Let v = max{uK , 1/3} − 1/3 ≥ 0. Then

µ({x ∈ B(a, 2C6R) : v(x) = 0})
µ(B(a, 2C6R))

≥ µ(B(b, βR))

µ(B(a, 2C6R))
≥ γ

where γ > 0 depends only on β. Hence the p-Sobolev inequality (2.3) and the
doubling property of µ imply

( ˆ

B(a,2C6R)

vp dµ

)1/p

≤ CR

( ˆ

B(a,2κC6)

gpv dµ

)1/p

.
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By the doubling property of µ we haveˆ

B(a,2C6R)

vp dµ ≥
ˆ

B(a,βR)

(1/3)p dµ ≥ Cµ(B(a,R)).

Hence, we obtain

Capp(K,Ω ∪K) =

ˆ

X

gpuK
dµ ≥

ˆ

B(a,2κC6R)

gpv dµ

≥ CR−p

ˆ

B(a,2C6R)

vp dµ ≥ CR−pµ(B(a,R)).

This, together with (4.4), implies that r/R is bounded below and therefore so is
ρ1/ρ2. Thus the lemma is proved. ¤

To prove Theorem 4.1 we state two lemmas in [3].

Lemma 4.5. Let 0 < R < diam(Ω)/6κ and let u be a p-subminimizer on
B(z, 2κR). Suppose 0 ≤ u ≤ 1 on B(z, 2κR) and

µ({x ∈ B(z, R) : u(x) > 1− s})
µ(B(z, R))

≤ γ < 1

for some 0 < s < 1. Then there exists a constant t > 0 such that

u ≥ 1− t on B(z.R/2).

The constant t is independent of u, z, and R.

Lemma 4.6. Let 0 < R < diam(Ω)/6κ. Let B(z1, R/2) ∩ B(z2, R/2) 6= ∅.
Suppose u is a p-subminimizer on B(z2, 2κR) with 0 ≤ u ≤ 1 in B(z2, 2κR). If u ≤
1−ε1 on B(z1, R/2) for some ε1 > 0, then there is a positive constant ε2 = ε2(ε1) < 1
such that u ≤ 1− ε2 on B(z2, R/2).

Proof of Theorem 4.1. It is sufficient to show that if Ω satisfies the GHMD(ψ)
property, then Ω satisfies the LHMD(ψ) property. Since Ω is uniformly perfect by
Lemma 4.3, there are constants 0 < C7 < 1 and r0 > 0 such that A(x,C7r, r)∩∂Ω 6= ∅
for every x ∈ ∂Ω and all 0 < r < r0. Let a ∈ ∂Ω and 0 < r < r0. Then we can find
ρ such that S(a, ρ) ∩ ∂Ω 6= ∅ and C7r ≤ ρ < r.

Let c be a small positive number to be determined later. By the LLC prop-
erty and the doubling property of µ we can find finitely many points z1, . . . , zN ∈
A(a, ρ/C6, C6ρ) such that the union ∪N

j=1B(zj, cr) is a covering of S(a, ρ) that forms a
chain, that is, for every k, l ∈ {1, . . . , N} there is a subcollection of balls Bj1 , . . . , Bjm

such that Bk = Bj1 , Bl = Bjm and Bji ∩ Bji+1
6= ∅ for i ∈ {1, . . . ,m − 1}. Observe

that

(4.6)
N⋃

j=1

B(zj, 4κcr) ⊂ A(a,
ρ

C6

−4κcr, C6ρ+4κcr) ⊂ A(a, (
C7

C6

−4κc)r, (C6+4κc)r).

Let c > 0 be small enough so that 4κc ≤ C7/(2C6). Let η = C7/(2C6). Consider

u =

{
ωp(∂Ω ∩B(a, ηr),Ω) on Ω,

0 on X \ Ω.

Then 0 ≤ u ≤ 1 on X and u is a p-subminimizer in X \B(a, ηr) ⊃ ∪N
j=1B(zj, 4κcr).

Fix z∗ ∈ ∂Ω∩S(a, ρ). Without loss of generality, we may assume that z∗ ∈ B(z1, cr).
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Since
B(z∗, (4κ− 1)cr) ⊂ B(z1, 4κcr) ⊂ X \B(a, ηr),

it follows from the comparison principle that

u(x) ≤ ωp(x, ∂Ω \B(z∗, (4κ− 1)cr),Ω) for x ∈ Ω.

Since Ω satisfies the GHMD(ψ) property and ψ satisfies (4.2), we obtain

u(x) ≤ 1

2
for x ∈ B(z∗, βr) ∩ Ω

for some β > 0 independent of a and r. Since u = 0 on X \ Ω, we have u ≤ 1/2 on
B(z∗, βr). Hence Lemma 4.5 with R = 2cr yields that u ≤ 1 − ε1 on B(z1, cr) for
some ε1 > 0 independent of a and r. Since ∪N

j=1B(zj, cr) is a chain, we find some
ball, say B(z2, cr), intersecting B(z1, cr). Then by Lemma 4.6 we have u ≤ 1− ε2 on
B(z2, cr) for some ε2 > 0. We may repeat this argument finitely many times until, by
the finiteness of the cover and its chain property, we eventually obtain u ≤ 1− ε0 on
∪N
j=1B(zj, cr) for some ε0 > 0 that is independent of a and r. In particular, u ≤ 1−ε0

on S(a, ρ). Since

ωp(∂Ω ∩B(a, ηr),Ω) = 1− ωp(∂Ω \B(a, ηr),Ω) on Ω,

it follows that ωp(∂Ω \B(a, ηr),Ω) ≥ ε0 on Ω∩S(a, ρ). By the comparison principle
we have

1

ε0
ωp(∂Ω \B(a, ηr),Ω) ≥ ωp(Ω ∩ ∂B(a, ρ),Ω ∩B(a, ρ)) on Ω ∩B(a, ρ).

Hence the GHMD(ψ) property and Proposition 2.12 yield
ωp(x,Ω ∩ ∂B(a, r),Ω ∩B(a, r)) ≤ ωp(x,Ω ∩ ∂B(a, ρ),Ω ∩B(a, ρ))

≤ C2

ε0

ψ(d(x, a))

ψ(ηr)
≤ C2

ε0η

ψ(d(x, a))

ψ(r)

for all x ∈ Ω ∩ B(a, ρ). Because ρ ≥ C7r, we obtain d(x, a) ≥ C7r for all x ∈
Ω ∩B(a, r) \B(a, ρ). Proposition 2.12 yields

ωp(x,Ω ∩ ∂B(a, r),Ω ∩B(a, r)) ≤ 1 ≤ ψ(d(x, a))

ψ(C7r)
≤ 1

C7

ψ(d(x, a))

ψ(r)

for all x ∈ Ω ∩B(a, r) \B(a, ρ). Thus Ω satisfies the LHMD(ψ) property. ¤

Remark 4.7. We say that X is Ahlfors Q-regular if there exists a positive con-
stant C such that

C−1rQ ≤ µ(B(x, r)) ≤ CrQ for every B(x, r).

If X is Ahlfors Q-regular with Q ≥ p, then µ satisfies (4.1). Moreover if X supports a
(1, p)-Poincaré inequality and X is Ahlfors Q-regular with Q ≥ p, then X is LLC (see
[6, Proposition 4.5]). Therefore, if X is Ahlfors Q-regular with Q ≥ p and ψ ∈ M0

satisfies (4.2), then Ω satisfies the LHMD(ψ) property if and only if Ω satisfies the
GHMD(ψ) property.

Remark 4.8. Let ψ = ψαβ. If α > 0, then ψαβ satisfies (4.2). Therefore if X is
Ahlfors Q-regular with Q ≥ p, then the LHMD(ψαβ) property and the GHMD(ψαβ)
property are equivalent. On the other hand, ψ0β does not satisfy (4.2), and we do
not know whether the equivalence holds or not.
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5. Proof of Theorem 1.3 and Corollary 1.4

In this section we give the proof of Theorem 1.3 and Corollary 1.4.

Proof of Theorem 1.3. Let a ∈ ∂Ω and u = PΩτa,ψ. We will show (ii) in
Theorem 1.2 holds, i.e., u(x) ≤ Cψ(d(x, a)). For ρ > 0 we define a function f(ρ) by

f(ρ) = sup
Ω∩S(a,ρ)

u(x).

It is sufficient to show that

(5.1) f(ρ) ≤ Cψ(ρ)

for small ρ > 0. Let 0 < ρ < r < diam(Ω). By definition of τa,ψ we see that
u ≤ ψ(r) + f(r)χΩ∩∂B(a,r) on ∂(Ω ∩B(a, r)). The comparison principle yields

u(x) ≤ ψ(r) + f(r)ωp(x,Ω ∩ ∂B(a, r),Ω ∩B(a, r))

for all x ∈ Ω ∩B(a, r). Hence, the LHMD(ψ1) property implies

(5.2) f(ρ) ≤ ψ(r) + C1f(r)
ψ1(ρ)

ψ1(r)
= ψ(r) + C1f(r)

ψ(ρ)

ψ(r)

ψ2(ρ)

ψ2(r)
.

Without loss of generality, we assume that r0 < diam(Ω). We can find a positive
integer N such that CN

3 ≤ 1/(2C1). By (1.3) we have

(5.3) M = sup
0<ρ<r≤r0

{
ψ(r)

ψ(ρ)
:
ψ2(ρ)

ψ2(r)
= CN

3

}
< ∞.

We can find the number 0 < r′0 < r0 such that

ψ2(r
′
0)

ψ2(r0)
= CN

3 .

Let 0 < r < r′0. Then by (5.3) we can find a sequence {ρj}nj=1 such that r = ρ0 <
ρ1 < . . . < ρn−1 < r′0 ≤ ρn < r0,

ψ2(ρj)

ψ2(ρj+1)
= CN

3 ≤ 1

2C1

for j = 0, 1, . . . , n− 1,

and

ψ(ρj+1)

ψ(ρj)
≤ M for j = 0, 1, . . . , n− 1.

Hence, by (5.2) we obtain

f(ρj) ≤ ψ(ρj+1) +
1

2
f(ρj+1)

ψ(ρj)

ψ(ρj+1)
for j = 0, 1, . . . , n− 1.



Modulus of continuity of p-Dirichlet solutions in a metric measure space 353

These inequalities imply that

f(r) = f(ρ0) ≤ ψ(ρ1) + ψ(ρ0)
n−1∑

j=1

1

2j
ψ(ρj+1)

ψ(ρj)
+

1

2n
f(ρn)

ψ(ρ0)

ψ(ρn)

≤ Mψ(ρ0) +Mψ(ρ0)
n−1∑

j=1

1

2j
+ f(ρn)

ψ(ρ0)

ψ(ρn)

≤ Mψ(ρ0) +Mψ(ρ0) + f(ρn)
ψ(ρ0)

ψ(ρn)

≤ (2M +
ψ(diam(Ω))

ψ(r′0)
)ψ(r),

where f ≤ ψ(diam(Ω)) and r′0 ≤ ρn are used in the last inequality. Thus (5.1) follows,
and so (ii) in Theorem 1.2 holds. Hence ‖PΩ‖ψ < ∞ by Theorem 1.2. ¤

Proof of Corollary 1.4. Let us prove (1.3) with

C3 = sup
0<r≤r0

ψ2(C4r)

ψ2(r)
< 1.

Fix 0 < r ≤ r0. Then
ψ2(C4r)

ψ2(r)
≤ C3.

By the monotonicity of ψ2 we can find a number ρ such that C4r ≤ ρ < r and
ψ2(ρ)

ψ2(r)
= C3.

Proposition 2.12 yields that
ψ(r)

ψ(ρ)
≤ ψ(r)

ψ(C4r)
≤ 1

C4

.

Hence we have

sup
0<ρ<r≤r0

{
ψ(r)

ψ(ρ)
:
ψ2(ρ)

ψ2(r)
= C3

}
≤ 1

C4

< ∞.

Next we prove that limr→0 ψ2(r) = 0. By the monotonicity of ψ2 the limit of
ψ2(r) exists, as r → 0. If limr→0 ψ2(r) 6= 0, then we would have

lim
r→0

ψ2(r)

ψ2(C4r)
= 1.

This would contradict (1.4). Hence limr→0 ψ2(r) = 0. Since the assumptions of
Theorem 1.3 are satisfied, it follows that ‖PΩ‖ψ < ∞. ¤

6. Proof of Corollaries 1.5, 1.6 and 1.7

In this section we prove Corollaries 1.5, 1.6, and 1.7.

Proof of Corollary 1.5. We divide the proof into the following two cases.
Case 1: (i) or (ii) holds. Let ψ = ψαβ, ψ1 = ψα′β′ , and ψ2 = ψ1/ψ. Let r0 be a

small positive number. Then

ψ2(r) = rα
′−α(− log r)−β′+β for 0 < r ≤ r0.
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Hence ψ2 is increasing on (0, r0), and for some constant C4 ∈ (0, 1)

inf
0<r≤r0

ψ2(r)

ψ2(C4r)
> 1.

Since the assumptions of Corollary 1.4 are satisfied, we have ‖PΩ‖ψαβ
< ∞.

Case 2: (iii) holds. Let ψ = ψ0β, ψ1 = ψ0β′ , and ψ2 = ψ1/ψ. Let r0 be a small
positive number. Then

ψ2(r) = (log r)−β′+β for 0 < r ≤ r0.

Hence limr→0 ψ2(r) = 0 and ψ2 is increasing on (0, r0). Fix a constant 0 < η < 1 and
0 < r ≤ r0. Let λ = η1/(β−β′) and ρ = rλ. Then we have

ψ2(ρ)

ψ2(r)
= λ−β′+β = η,

and
ψ(r)

ψ(ρ)
= λβ.

Hence
sup

0<ρ<r≤r0

{
ψ(r)

ψ(ρ)
:
ψ2(ρ)

ψ2(r)
= η

}
= λβ < ∞.

Thus it follows from Theorem 1.3 that ‖PΩ‖ψ0β
< ∞. ¤

To prove Corollaries 1.6 and 1.7 we observe the following lemma (see [3, Lem-
ma 6.1]).

Lemma 6.1. A domain Ω satisfies the LHMD(ϕα2) property for some α2 > 0 if
and only if X \ Ω is uniformly p-fat.

Proof of Corollary 1.6. First suppose that X \ Ω is uniformly p-fat. It follows
from Lemma 6.1 that there is a constant α2 > 0 such that Ω satisfies the LHMD(ϕα2)
property. Let α1 = min{α0, α2}. Then Ω satisfies the LHMD(ϕα1) property. Corol-
lary 1.5 yields that ‖PΩ‖ψαβ

< ∞ for 0 < α < α1 and β ∈ R.
Conversely, suppose that ‖PΩ‖ψαβ

< ∞ for some 0 < α < α0 and β ∈ R. Assume
that X is Ahlfors Q-regular with Q ≥ p. By Theorem 1.2 Ω satisfies the GHMD(ψαβ)
property. It follows from Remark 4.8 that Ω satisfies the LHMD(ψαβ) property. Let
0 < α′ < α. By Corollary 1.5 we obtain that ‖PΩ‖ϕα′ < ∞. Theorem 1.2 and
Theorem 4.1 imply that Ω satisfies the LHMD(ϕα′) property. Lemma 6.1 yields that
X \ Ω is uniformly p-fat. ¤

Proof of Corollary 1.7. Suppose that X \ Ω is uniformly p-fat. It follows from
Lemma 6.1 that there is a constant α2 > 0 such that Ω satisfies the LHMD(ϕα2) prop-
erty. Let α1 = min{α0, α2}. Then Ω satisfies the LHMD(ϕα1) property. Corollary 1.5
yields that ‖PΩ‖ψ0β

< ∞ for every β ∈ R. ¤
Acknowledgements. The author is grateful to the referee for many valuable com-

ments.
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Logarithmic Hölder Estimates of p-Harmonic Extension
Operators in a Metric Measure Space

Tsubasa Itoh

Abstract. Let 1 < p < ∞ and let X be a metric measure space with a
doubling measure and a (1, p)-Poincaré inequality. Let Ω be a bounded domain
in X. For a function f on ∂Ω we denote by PΩf the p-harmonic extension
of f over Ω. It is well known that if Ω is p-regular and f ∈ C(∂Ω), then
PΩf is continuous in Ω. We characterize the family of domains such that
logarithmic Hölder continuity of boundary functions f ensures logarithmic
Hölder continuity of PΩf .

1. Introduction

Let X = (X, d, μ) be a complete connected metric measure space endowed with
a metric d and a positive complete Borel measure μ such that 0 < μ(U) < ∞ for
all nonempty bounded open sets U .

By the symbol C we denote an absolute positive constant whose value is unim-
portant and may change from line to line. Let B(x, r) = {y ∈ X : d(x, y) < r}
denote the open ball centered at x with radius r. We assume that μ is doubling,
i.e., there is a constant C ≥ 1 such that μ(B(x, 2r)) ≤ Cμ(B(x, r)) for every x ∈ X
and r > 0. Let 1 < p < ∞. We assume that X admits a (1, p)-Poincaré inequality
(see [5]).

We denote by Capp the p-capacity defined on X (see [2]). Let Ω ⊂ X be a
bounded domain with Capp(X \ Ω) > 0. For a function f on ∂Ω we denote by PΩf
the p-Perron solution of f over Ω (see [3]). A point ξ ∈ ∂Ω is said to be a p-regular
point (with respect to the p-Dirichlet problem) if

lim
Ω�x→ξ

PΩf(x) = f(ξ)

for every f ∈ C(∂Ω). If every boundary point is a p-regular point, then Ω is called
p-regular. It is well known that if Ω is p-regular and f ∈ C(∂Ω), then PΩf is
p-harmonic in Ω and continuous in Ω. It is natural to raise the following question:
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Key words and phrases. Modulus of continuity, p-harmonic, p-Dirichlet solution, metric mea-
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Question 1.1. Does improved continuity of a boundary function f guarantee
improved continuity of PΩf?

Aikawa and Shanmugalingam [2] studied this question in the context of Hölder
continuity. Aikawa [1] investigated this question in the context of general modulus
of continuity for the classical setting, i.e., for harmonic functions in a Euclidean
domain. The purpose of this paper is to study this question in the context of
logarithmic Hölder continuity in a metric measure space.

We consider the function ψαβ defined by

ψαβ(t) =
{

tα(− log t)−β for 0 < t < t0,
tα
0 (− log t0)−β for t ≥ t0.

where either 0 < α < 1 and β ∈ R or α = 0 and β > 0; and t0 is so small that
ψαβ is concave. Let E be a subset of X and let f be a function on X. We say that
f is ψαβ-Hölder continuous if |f(x) − f(y)| ≤ Cψαβ

(
d(x, y)

)
for x, y ∈ E. If f is

ψα0-Hölder continuous, then f is α-Hölder continuous in the classical sense. If f is
ψ0β-Hölder continuous, then f is considered to be logarithmic Hölder continuous.
In general, ψαβ-Hölder continuity is a mixture of Hölder continuity and logarithmic
Hölder continuity.

Let E be a subset in X. We consider the family Λψαβ
(E) of all bounded

continuous functions f on E with norm

‖f‖ψαβ ,E = sup
x∈E

|f(x)| + sup
x,y∈E
x�=y

|f(x) − f(y)|
ψαβ

(
d(x, y)

) < ∞.

We define the operator norm

‖PΩ‖ψαβ
= sup

f∈Λψαβ
(∂Ω)

‖f‖ψαβ ,∂Ω �=0

‖PΩf‖ψαβ ,Ω

‖f‖ψαβ ,∂Ω
.

Observe that logarithmic Hölder-continuity of a boundary function f ensures
logarithmic Hölder-continuity of PΩf if and only if ‖PΩ‖ψαβ

< ∞. Therefore we
characterize the family of domains Ω for which ‖PΩ‖ψαβ

< ∞.
In this paper, we state the results obtained in [6]. In Section 2, we give the

characterizations of the family of domains Ω for which ‖PΩ‖ψαβ
< ∞. In Section 3,

we characterize the family of domains such that improved continuity of a boundary
function f ensures improved continuity of PΩf in the context of general modulus
of continuity. See [6] for their proofs.

2. Results

In this section, we give some characterizations of the family of domains Ω for
which ‖PΩ‖ψαβ

< ∞.
The interior regularity of p-harmonic functions is known.

Theorem A ([8, Theorem 5.2]). There exists α0 ∈ (0, 1] depending only on
X and p such that if u is a p-harmonic function in a domain Ω in X, then u is
α0-Hölder continuous on every compact subset of Ω.

Aikawa [1] estimated Dirichlet solutions by the Poisson integral representation
of harmonic functions on balls. Since we are dealing with (nonlinear) p-harmonic
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functions, we do not have the Poisson integral representation. We instead use the
local Hölder continuity of p-harmonic functions, so that we restrict ourselves to
α < α0.

Let U be an open set in X and let E be a Borel set in ∂U . We denote by
ωp(x, E, U) the p-harmonic measure evaluated at x of E in U (see [2]). Note
that the p-harmonic measure is not a measure, i.e., the p-harmonic measure is not
additive. We define two decay properties for p-harmonic measures. We say that Ω
enjoys the Local Harmonic Measure Decay property with ψαβ (abbreviated to the
LHMD(ψαβ) property) if there are positive constants C and r0 depending only on
Ω and ψαβ such that

(2.1) ωp

(
x, Ω ∩ ∂B(a, r), Ω ∩ B(a, r)

)
≤ C

ψαβ

(
d(x, a)

)

ψαβ(r) for x ∈ Ω ∩ B(a, r),

whenever a ∈ ∂Ω and 0 < r < r0. We say that Ω enjoys the Global Harmonic
Measure Decay property with ψαβ (abbreviated to the GHMD(ψαβ) property) if
there are positive constants C and r0 depending only on Ω and ψαβ such that

(2.2) ωp(x, ∂Ω \ B(a, r), Ω) ≤ C
ψαβ

(
d(x, a)

)

ψαβ(r) for x ∈ Ω ∩ B(a, r),

whenever a ∈ ∂Ω and 0 < r < r0. By the comparison principle (see [7, Theo-
rem 7.2]) it is easy to see that (2.1) implies (2.2).

Without loss of generality, we may assume that Ω is a bounded p-regular domain
(see [2, Proposition 2.1]). For a ∈ ∂Ω we define a test function τa,ψαβ

on ∂Ω by

τa,ψαβ
(ξ) = ψαβ

(
d(a, ξ)

)
for ξ ∈ ∂Ω.

Then we have the following theorem.

Theorem 2.1. Let Ω be a bounded p-regular domain. Suppose that α and β
satisfy either 0 < α < α0 and β ∈ R or α = 0 and β > 0, where α0 is as in
Theorem A. Consider the following four conditions:

(i) ‖PΩ‖ψαβ
< ∞.

(ii) There is a constant C such that
PΩτa,ψαβ

(x) ≤ Cψαβ

(
d(x, a)

)
for x ∈ Ω,

whenever a ∈ ∂Ω.
(iii) Ω has the GHMD(ψαβ) property.
(iv) Ω has the LHMD(ψαβ) property.

Then we have
(i) ⇐⇒ (ii) =⇒ (iii) ⇐= (iv).

Moreover, if α > 0 and if X is Ahlfors Q-regular, i.e.,
C−1rQ ≤ μ(B(x, r)) ≤ CrQ for every B(x, r),

then (iii) ⇔ (iv).

See [6, Theorems 1.2 and 4.1] for the proof of this theorem. Aikawa and Shan-
mugalingam [2] showed the case β = 0 of Theorem 2.1.

The implication (iv) ⇒ (i) with the same exponent α and β does not necessarily
hold in above theorem (see [2, Remark 2.4]). However, we obtain the following
theorem.
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Theorem 2.2 ([6, Theorem 1.3]). Let Ω be a bounded p-regular domain. Con-
sider the following conditions:

(i) 0 < α < α′ < α0 and β, β′ ∈ R.
(ii) 0 = α < α′ < α0 and β > 0, β′ ∈ R.
(iii) α = α′ = 0 and 0 < β < β′.

Assume that either (i), (ii), or (iii) holds. If Ω has the LHMD(ψα′β′) property, then
‖PΩ‖ψαβ

< ∞.

Proof. Let a ∈ ∂Ω and u = PΩτa,ψαβ
. We will show (ii) in Theorem 2.1 holds,

i.e., u(x) ≤ Cψαβ

(
d(x, a)

)
. For ρ > 0 we define a function f(ρ) by

f(ρ) = sup
Ω∩S(a,ρ)

u(x).

It is sufficient to show that

(2.3) f(ρ) ≤ Cψαβ(ρ)

for small ρ > 0.
Let 0 < ρ < r < diam(Ω). By definition of τa,ψαβ

and the comparison principle
yields

u(x) ≤ ψαβ(r) + f(r)ωp(x, Ω ∩ ∂B(a, r), Ω ∩ B(a, r))

for all x ∈ Ω ∩ B(a, r). Let ψ(r) = ψα′β′(r)/ψαβ(r). Since Ω has the LHMD(ψα′β′)
property,

(2.4) f(ρ) ≤ ψαβ(r) + C1f(r)ψα′β′(ρ)
ψα′β′(r) ≤ ψαβ(r) + C1f(r)ψαβ(ρ)

ψαβ(r)
ψ(ρ)
ψ(r)

for some C1. Let r0 be a small positive number. Since

ψ(r) = ψα′′β′′ for 0 < r < r0

where α′′ = α′ − α and β′′ = β′ − β, we have

(2.5) M = sup
0<ρ<r≤r0

{
ψαβ(r)
ψαβ(ρ) : ψ(ρ)

ψ(r) = 1
2C1

}
< ∞.

Let 0 < r < r0. Then we can find a sequence {ρj}n
j=0 such that r = ρ0 < ρ1 <

· · · < ρn−1 < r0 ≤ ρn < diam(Ω),

ψ(ρj)
ψ(ρj+1) = 1

2C1
for j = 0, 1, . . . , n − 1,

and
ψαβ(ρj+1)
ψαβ(ρj) ≤ M for j = 0, 1, . . . , n − 1.

Hence, by (2.4) we obtain

f(ρj) ≤ ψαβ(ρj+1) + 1
2f(ρj+1) ψαβ(ρj)

ψαβ(ρj+1) for j = 0, 1, . . . , n − 1.
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These inequalities imply that

f(r) = f(ρ0) ≤ ψαβ(ρ1) + ψαβ(ρ0)
n−1∑

j=1

1
2j

ψαβ(ρj+1)
ψαβ(ρj) + 1

2n
f(ρn) ψαβ(ρ0)

ψαβ(ρn)

≤ Mψαβ(ρ0) + Mψαβ(ρ0)
n−1∑

j=1

1
2j

+ f(ρn) ψαβ(ρ0)
ψαβ(ρn)

≤ Mψαβ(ρ0) + Mψαβ(ρ0) + f(ρn) ψαβ(ρ0)
ψαβ(ρn)

≤ (2M + ψαβ(diam(Ω))
ψαβ(r0) )ψαβ(r),

where f ≤ ψαβ

(
diam(Ω)

)
and r0 ≤ ρn are used in the last inequality. Thus (2.3)

follows, and so (ii) in Theorem 2.1 holds. Hence ‖PΩ‖ψαβ
< ∞ by Theorem 2.1. �

We give more geometrical characterizations of domains Ω for which ‖PΩ‖ψαβ
<

∞. We say that E ⊂ X is uniformly p-fat or satisfies the p-capacity density condi-
tion if there are constants C > 0 and r0 > 0 such that

(2.6)
Capp

(
E ∩ B(a, r), B(a, 2r)

)

Capp

(
B(a, r), B(a, 2r)

) ≥ C,

whenever a ∈ E and 0 < r < r0.
For α > 0 we obtain the following theorem.

Theorem 2.3 ([6, Theorem 1.4]). Let Ω be a bounded p-regular domain. If
X \Ω is uniformly p-fat, then there is a constant 0 < α1 ≤ α0 such that ‖PΩ‖ψαβ

<
∞ for 0 < α < α1 and β ∈ R. Conversely, if ‖PΩ‖ψαβ

< ∞ for some 0 < α < α0
and β ∈ R, then X \ Ω is uniformly p-fat, provided that there is a constant Q ≥ p
such that X is Ahlfors Q-regular.

To prove Theorem 2.3 we observe the following lemma (see [2, Lemma 6.1]).

Lemma 2.4. A domain Ω has the LHMD(ϕα2) property for some α2 > 0 if
and only if X \ Ω is uniformly p-fat.

Proof of Theorem 2.3. First suppose that X \ Ω is uniformly p-fat. It
follows from Lemma 2.4 that there is a constant α2 > 0 such that Ω has the
LHMD(ϕα2) property. Let α1 = min{α0, α2}. Then Ω has the LHMD(ϕα1) prop-
erty. Theorem 2.2 yields that ‖PΩ‖ψαβ

< ∞ for 0 < α < α1 and β ∈ R.
Conversely, suppose that ‖PΩ‖ψαβ

< ∞ for some 0 < α < α0 and β ∈ R.
Assume that X is Ahlfors Q-regular with Q ≥ p. By Theorem 2.1 Ω has the
LHMD(ψαβ) property. Let 0 < α′ < α. By Theorem 2.2 we obtain that ‖PΩ‖ϕα′ <
∞. Theorem 2.1 implies that Ω has the LHMD(ϕα′) property. Lemma 2.4 yields
that X \ Ω is uniformly p-fat. �

Aikawa and Shanmugalingam [2] showed the case β = 0 of Theorem 2.3. More-
over, for α = 0 we obtain the following theorem.

Theorem 2.5 ([6, Theorem 1.5]). If X \Ω is uniformly p-fat, then ‖PΩ‖ψ0β
<

∞ for every β > 0.
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Proof. Suppose that X \ Ω is uniformly p-fat. It follows from Lemma 2.4
that there is a constant α2 > 0 such that Ω has the LHMD(ϕα2) property. Let
α1 = min{α0, α2}. Then Ω has the LHMD(ϕα1) property. Theorem 2.2 yields that
‖PΩ‖ψ0β

< ∞ for every β > 0. �

3. Modulus of continuity

In this section, we consider general modulus of continuity of p-Perron solutions
PΩf . See [6] for the proof of theorems and the corollary in this section. Note that
the case of p = 2 and Euclidean domains was studied by Aikawa [1].

Let M be the family of all positive nondecreasing concave functions ψ on (0, ∞)
with ψ(0) = limt→0 ψ(t) = 0. In particular, if either 0 < α < 1 and β ∈ R or α = 0
and β > 0, then ψαβ ∈ M. For ψ ∈ M, we say that f is ψ-Hölder continuous if
|f(x) − f(y)| ≤ Cψ

(
d(x, y)

)
. The modulus of continuity of a uniformly continuous

function on any geodesic space is comparable to a certain concave function. See
[4, Chapter 2, §6]. Therefore, we have only to check ψ-Hölder continuity for ψ ∈ M
to study Question 1.1 in the context of modulus of continuity.

Next we define the operator norm for ψ ∈ M. Let E be a subset in X. We
consider the family Λψ(E) of all bounded continuous functions f on E with norm

‖f‖ψ,E = sup
x∈E

|f(x)| + sup
x,y∈E
x�=y

|f(x) − f(y)|
ψ

(
d(x, y)

) < ∞.

We define the operator norm

‖PΩ‖ψ = sup
f∈Λψ(∂Ω)
‖f‖ψ,∂Ω �=0

‖PΩf‖ψ,Ω
‖f‖ψ,∂Ω

.

Let ψ, ϕ ∈ M. We say that ϕ � ψ if there are r0 > 0 and C > 0 such that
ϕ(s)
ϕ(r) ≤ C

ψ(s)
ψ(r) for 0 < s < r < r0.

Let M0 be the family of all ψ ∈ M with tα0 � ψ(t), where α0 is a positive
constant such that every p-harmonic function in Ω is locally α0-Hölder continuous
in Ω as explained in Section 2 (see [8]). For example, if either 0 < α < α0 and β ∈ R
or α = 0 and β > 0, then ψαβ ∈ M0. But if α = α0 and β < 0, then ψα0β �∈ M0.
Hence we see that M0 � M. We use the locally Hölder continuity of p-harmonic
functions as Section 2, so that we restrict ourselves to the case ψ ∈ M0.

Let ψ ∈ M. We say that Ω enjoys the Local Harmonic Measure Decay property
with ψ (abbreviated to the LHMD(ψ) property) if there are positive constants C
and r0 depending only on Ω and ψ such that

(3.1) ωp(x, Ω ∩ ∂B(a, r), Ω ∩ B(a, r)) ≤ C
ψ

(
d(x, a)

)

ψ(r) for x ∈ Ω ∩ B(a, r),

whenever a ∈ ∂Ω and 0 < r < r0. We say that Ω enjoys the Global Harmonic
Measure Decay property with ψ (abbreviated to the GHMD(ψ) property) if there
are positive constants C and r0 depending only on Ω and ψ such that

(3.2) ωp(x, ∂Ω \ B(a, r), Ω) ≤ C
ψ

(
d(x, a)

)

ψ(r) for x ∈ Ω ∩ B(a, r),

whenever a ∈ ∂Ω and 0 < r < r0.
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For a ∈ ∂Ω we define a test function τa,ψ on ∂Ω by
τa,ψ(ξ) = ψ

(
d(a, ξ)

)
for ξ ∈ ∂Ω.

Then we obtain the generalization of Theorem 2.1.
Theorem 3.1 ([6, Theorem 1.2]). Let ψ ∈ M0 and let Ω be a bounded p-regular

domain. Consider the following conditions:
(i) ‖PΩ‖ψ < ∞.
(ii) There is a constant C such that

PΩτa,ψ ≤ Cψ
(
d(x, a)

)
for x ∈ Ω,

whenever a ∈ ∂Ω.
(iii) Ω has the GHMD(ψ) property.
(iv) Ω has the LHMD(ψ) property.

Then we have
(i) ⇐⇒ (ii) =⇒ (iii) ⇐= (iv).

Moreover, we have the generalizations of Theorem 2.2.
Theorem 3.2 ([6, Theorem 5.1]). Let ψ, ψ1 ∈ M0. Let ψ2 = ψ1/ψ. Suppose

that limr→0 ψ2(r) = 0 and there are constants 0 < C < 1 and r0 > 0 such that ψ2
is increasing on (0, r0) and

(3.3) sup
0<ρ<r≤r0

{
ψ(r)
ψ(ρ) : ψ2(ρ)

ψ2(r) = C

}
< ∞.

If Ω has the LHMD(ψ1) property, then ‖PΩ‖ψ < ∞.
Corollary 3.3 ([6, Corollary 5.2]). Let ψ, ψ1 ∈ M0. Let ψ2 = ψ1/ψ. Suppose

that there are constants 0 < C < 1 and r0 > 0 such that ψ is increasing on (0, r0)
and

(3.4) inf
0<r≤r0

ψ2(r)
ψ2(Cr) > 1.

If Ω has the LHMD(ψ1) property, then ‖PΩ‖ψ < ∞.
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MARTIN BOUNDARY FOR p-HARMONIC FUNCTIONS IN A
CYLINDER AND A CONE

TSUBASA ITOH

Abstract. Let 1 < p < ∞. A p-harmonic kernel function is ap-
harmonic analogue of Martin kernel functions for harmonic functions.
We studyp-harmonic kernel functions in a cylinder and a cone inRn. In
casen = 2 explicit representations ofp-harmonic kernel functions are
given.

1. Introduction

Let R be the set of all real numbers. We denote byRn(n ≥ 2) then-
dimensional Euclidean space. A pointx ∈ Rn is denoted by (x′, xn) with
x′ = (x1, . . . , xn−1). We denote a pointx ∈ Rn \ {0} by (r, σ) with r = |x|
andσ = x/|x|. We let∂E andE be the boundary and the closure of a setE
in Rn, respectively. We define dist(x,E) to equal the distance from a point
x ∈ Rn to a setE ⊂ Rn. Let B(x, r) andS(x, r) be the open ball and the
sphere with centerx and radiusr, respectively. We use the symbolC to
denote an absolute positive constant whose value is unimportant and may
change from line to line.

Let 1 < p < ∞. Let D ⊂ Rn be a domain. We say thatu is a p-
harmonic function inD if u ∈ W1,p

loc (D) is continuous and satisfies thep-
Laplace equation∆pu = div(|∇u|p−2∇u) = 0 in D in the weak sense; that is,
wheneverD′ is a relatively compact subdomain ofD andφ ∈ W1,p

0 (D′), we
have ∫

D′
|∇u|p−2∇u · ∇φ = 0.

If p = 2, then thep-Laplace equation reduces to the classical linear equation
∆u = 0. The set of all positivep-harmonic functions inD is denoted by
H+(D).

2010Mathematics Subject Classification.31C35, 31C45, 35J92, 35J65.
Key words and phrases.p-harmonic, cylinder, cone, Martin boundary,p-harmonic ker-

nel function.
This work was supported by Grant-in-aid for Scientific Research of JSPS Fellows

No.24-6400.
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2 TSUBASA ITOH

Let us recall the classical Martin boundary theory for harmonic func-
tions. Let D be an arbitrary domain with Green functionG(x, y). Mar-
tin [13] introduced the Martin boundary as the smallest ideal boundary
for which G(x, y)/G(x0, y) has a continuous extensionK(x, y). An ideal
boundary pointy is called minimal ifK(·, y) is a minimal harmonic func-
tion. The set of all minimal Martin boundary points is called the minimal
Martin boundary. Martin proved that every positive harmonic function in
D is uniquely represented as the integral of the kernel functionK(x, y) over
the minimal Martin boundary. The identification of the (minimal) Martin
boundary for specific domains is of great interest. There are a number of
works on this topic. Hunt-Wheeden [8] gave the first cornerstone. They
showed that the Martin boundary of a Lipschitz domainD is homeomor-
phic to the Euclidean boundary∂D and every boundary point is minimal.
They said that a positive harmonic functionu in D is a kernel functionin
D at a boundary pointw ∈ ∂D if u has continuous boundary values 0 on
∂D \ {w} andu(x0) = 1 ([8, p.507]). They proved that every boundary point
has a unique kernel function. This is crucial for the identification of the
Martin boundary.

In view of this important result, it is natural to extend the notion of kernel
functions top-harmonic functions. LetD be an arbitrary domain with com-
pactificationD∗. We write∂∗D for the ideal boundaryD∗ \ D. We say that
u ∈ H+(D) is a p-harmonic kernel function inD at w ∈ ∂∗D with reference
point x0 if u has continuous boundary values 0 on∂∗D \ {w} andu(x0) = 1.
If eachw ∈ ∂∗D corresponds to a uniquep-harmonic kernel function, we
say that thep-Martin boundary ofD is homeomorphic to∂∗D.

Let Ω be aC2,α-domain inRn−1. The domainΩ × R = {(x′, xn) : x′ ∈
Ω, xn ∈ R} is said to be a cylinder generated byΩ. We compactifyΩ×R by
adding the topological boundary and the ideal boundary{+∞,−∞}, where
±∞ corresponds to the limit asxn → ±∞, respectively. In this paper we
investigatep-harmonic kernel functions inΩ × R at ±∞ with the aid of a
translation operator similar to the stretching operator used by Tolksdorf [15]
in his study onp-harmonic functions in a cone. We let

H+∞+ (Ω × R) = {u ∈ H+(Ω × R) : u = 0 on∂(Ω × R) ∪ {−∞}},
whereu = 0 at−∞ means limxn→−∞ u(x) = 0. Similarly, we let

H−∞+ (Ω × R) = {u ∈ H+(Ω × R) : u = 0 on∂(Ω × R) ∪ {∞}}.
By definitionu ∈ H+(Ω × R) is a p-harmonic kernel function at+∞ (resp.
−∞) if and only if u(x0) = 1 andu ∈ H+∞+ (Ω × R) (resp.u ∈ H−∞+ (Ω × R)).
The following theorem shows that+∞ and−∞ have a uniquep-harmonic
kernel function.
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Theorem 1.1.There exist a positive constantλ and a function f(x′) of x′ ∈
Ω, depending only on p,n andΩ, such that

(1.1) H+∞+ (Ω × R) = {C exp(λxn) f (x′) : C > 0},
(1.2) H−∞+ (Ω × R) = {C exp(−λxn) f (x′) : C > 0}.

SinceΩ×R is locally aC2,α-domain inRn, every boundary point in∂(Ω×
R) has a uniquep-harmonic kernel function, in view of Lewis-Nyström
[11]. So, we have the following corollary.

Corollary 1.2. The p-Martin boundary ofΩ×R is homeomorphic to∂(Ω×
R) ∪ {−∞,+∞}.
Remark1.3. Lewis-Nystr̈om obtained the uniqueness ofp-harmonic ker-
nel functions by using their scale invariant Harnack principle for Lipschitz
domains and starlike Lipschitz ring domains ([10]) and a very delicate argu-
ment. Unlike the linear case, the scale invariant boundary Harnack principle
is not enough to deduce the uniqueness ofp-harmonic kernel functions. See
Remark2.9below. This is the reason why the domains in [11] are restricted
to C1 or convex. To avoid such difficulties, we restrict ourselves toC2,α-
domains in this paper. In this case the scale invariant boundary Harnack
principle can be proved rather easily. See Lemma2.3below and [2, Theo-
rem 1.2].

In casen = 2, we can explicitly calculateλ and f .

Theorem 1.4.Let n= 2 andΩ = (0, L) with 0 < L < ∞. Then

λ =
pπ

2(p− 1)L
,

and f(x1) has a parametric representation given by

(1.3)



f (s) = exp
(−(p− 2) sin2 s

p− 1

)
sins,

x1(s) =
1
λ

( p
2(p− 1)

s+
p− 2

4(p− 1)
sin 2s

)
.

Next we considerp-harmonic kernel functions in a cone. LetΣ be aC2,α-
domain in the unit sphere. The domainΓ = {(r, σ) : 0 < r < ∞, σ ∈
Σ} is said to be a cone generated byΣ. We compactifyΓ by adding the
topological boundary and the ideal boundary{∞}, where∞ is the point at
infinity. We studyp-harmonic kernel functions inΓ at∞ and 0 with the aid
of the stretching operator used by Tolksdorf [15]. We let

H∞+ (Γ) = {u ∈ H+(Γ) : u = 0 on∂Γ},
H0
+(Γ) = {u ∈ H+(Γ) : u = 0 on (∂Γ ∪ {∞}) \ {0}},
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whereu = 0 on∞ means lim|x|→∞ u(x) = 0. By definitionu ∈ H+(Γ) is
a p-harmonic kernel function at∞ (resp. 0) if and only ifu(x0) = 1 and
u ∈ H∞+ (Γ) (resp.u ∈ H0

+(Γ)). The following theorems show that∞ and 0
have a uniquep-harmonic kernel function.

Theorem 1.5. There exist a positive constantµ and a function g(σ) of σ ∈
Σ, depending only on p,n andΣ, such that

(1.4) H∞+ (Γ) = {Crµg(σ) : C > 0}.
Theorem 1.6. There exist a positive constantν and a function h(σ) of σ ∈
Σ, depending only on p,n andΣ, such that

H0
+(Γ) = {Cr−νh(σ) : C > 0}.

Corollary 1.7. The p-Martin boundary ofΓ is homeomorphic to∂Γ ∪ {∞}.
Remark1.8. In casen = 2, we can explicitly calculateµ, ν, g andh, al-
though these are involved (Propositions6.1and6.2). If Γ is the upper half
spaceH = {(x′, xn) : xn > 0}, thenu(x) = xn ∈ H∞+ (H) andµ = 1 for any
p,n. However, in general, it is difficult to explicitly calculateµ, ν, g andh.

Remark1.9. Tolksdorf [15] studied functionsu ∈ H∞+ (Γ) satisfying the
doubling condition:

(1.5) sup
Γ∩B(0,2R)

u ≤ C sup
Γ∩B(0,R)

u for R≥ 1,

with a constantC ≥ 1 depending only onu. The set of allu ∈ H∞+ (Γ)
satisfying (1.5) is denoted bỹH∞+ (Γ). By applying the stretching operator,
he gave a characterization of̃H∞+ (Γ) similar to (1.4). Theorem1.5 implies
that the doubling condition (1.5) is superfluous, that is,̃H∞+ (Γ) = H∞+ (Γ).

The plan of this paper is as follows. In the next section we shall state
known results ofp-harmonic functions. In Sections3 and5, we shall prove
Theorems1.1, 1.5 and 1.6 by applying the translation operator and the
stretching operator. We will show Theorem1.4 in Section4. Finally, we
shall explicitly calculateµ, ν, g andh for n = 2 in Section6.

Acknowledgments. I would like to thank Professor Hiroaki Aikawa, who
provided helpful comments and suggestions in preparing this paper.

2. Preliminaries

In this section, letD be a domain inRn. We state known results for
p-harmonic functions such as Hopf’s maximum principle and the strong
comparison principle (see [15, Section 3]).

Lemma 2.1. (Hopf’s Maximum Principle) Let B be a ball. If u∈ H+(B) ∩
C1(B) and u(x0) = 0 for some x0 ∈ ∂B, then∇u(x0) , 0.
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Lemma 2.2. (Strong Comparison Principle) Assume that u is p-subharmonic
in D, v is p-superharmonic in D, v∈ C2(D) and∇u , 0 in D. If u ≤ v in D
and u. v, then u< v in D.

For C2,α-domains the boundary Harnack principle can be easily estab-
lished (see [2, Theorem 1.2]).

Lemma 2.3. (Boundary Harnack Principle) Let D be a bounded C2,α-domain.
There exist constants C1 > 1, C2 > 1, r1 > 0 with the following property:
Let 0 < r < r1 and ξ ∈ ∂D. If u, v ∈ H+(D ∩ B(ξ,C1r)) vanishing on
∂D ∩ B(ξ,C1r), then

u(x)/u(y)
v(x)/v(y)

≤ C2 for x, y ∈ D ∩ B(ξ, r).

By [16, Theorem 1] and [15, Proposition 3.7], we obtain the following
C1,γ-estimate.

Lemma 2.4. (C1,γ-estimate) Let BR = B(x0,R) be a ball with radius R> 0.
Suppose that∂D∩B2R is empty or that∂D∩B2R is a C2,α-boundary portion
of ∂D. If u is a p-harmonic function in D∩B(x0,2R) vanishing on∂D∩B2R,
then there exist constants C> 0 andγ ∈ (0,1) depending only on n, p,R,D
and ||u||L∞(D∩B2R) such that

||u||C1,γ(D∩BR) ≤ C.

The Schauder theory [6, Theorems 6.13 and Lemma 6.18] implies the
following lemma.

Lemma 2.5. Let T ⊂ ∂D be a C2,α-boundary portion. If u is p-harmonic in
D and if u= 0 on T, then u∈ C2,α(D ∪ T) provided∇u , 0 in D ∪ T.

We are inspired by the argument in the proof of Hopf’s comparison prin-
ciple [15, Proposition 3.3.1], to give the following lemma.

Lemma 2.6. Let D be a C2,α-domain. Letξ ∈ ∂D and let r0 be a sufficiently
small positive constant. Assume that u, v ∈ H+(D ∩ B(ξ, 6r0)) vanishing on
∂D ∩ B(ξ, 6r0). Suppose that v∈ C2(D ∩ B(ξ, 6r0)) and there exist positive
constants m1,m2,M1,M2 and M3 such that

m1 ≤ |∇v| ≤ M1 in D ∩ B(ξ, 6r0),
n∑

i, j=1

∣∣∣∣∣
∂2v

∂xi∂xj

∣∣∣∣∣ ≤ M2 in D ∩ B(ξ, 6r0),

sup
D∩B(ξ,6r0)

≤ M3,

inf {u(x) − v(x) : x ∈ D∩B(ξ,6r0),dist(x, ∂D) ≥ r0} ≥ m2.

If u > v in D∩ B(ξ, 6r0), then there exists a positive constantδ, depending
only on n, p,m1,m2,M1,M2,M3 and r0, such that u≥ (1+δ)v in D∩B(ξ, r0).
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Proof. By [2, Lemma 2.2], the domainD satisfies the ball condition with
somer1 > 0; that is, for everyξ ∈ ∂D there existξi ∈ D andξe ∈ Rn \ D
such thatB(ξi , r1) ⊂ D, B(ξe, r1) ⊂ Rn \ D and ξ ∈ S(ξi , r1) ∩ S(ξe, r1).
Let r0 < r1/2 and letx0 ∈ D ∩ B(ξ, r0). Then there isη ∈ ∂D such that
dist(x0, ∂D) = |x0−η|. By the interior ball condition atηwe findηi ∈ D such
thatB(ηi ,2r0) ⊂ D andη ∈ S(ηi ,2r0). Observe thatB(ηi ,2r0) ⊂ D∩B(ξ, 6r0)
andx0 ∈ B(ηi ,2r0) \ B(ηi , r0). Without loss of generality, we may assume
thatηi = 0 andr0 = 1/2.

Forb > 1, we set

V(x) = b−2(e−b|x|2 − e−b).

By assumption there is a constantM′2 > 0 such that

∣∣∣∣∣
∂2(v+ V)
∂xi∂xj

(x)
∣∣∣∣∣ ≤ M′2 for y ∈ D ∩ B(ξ, 6r0).

We claimv+V is p-subharmonic inB(0,1)\ B(0, 1/2) if b is sufficiently
large. We will prove the claim later and we finish the proof of Lemma2.6.
By assumption we can chooseb such that thenu ≥ v + V on ∂B(0,1) ∪
∂B(0,1/2). Hence it follows from the comparison principle thatu ≥ v+ V
in B(0,1)\B(0,1/2), in particularu(x0) ≥ v(x0)+V(x0). On the other hand,
we see thatV(x0) ≥ C(1 − |x0|) and dist(x, ∂D) = 1 − |x0| ≥ Cv(x0) by the
ball condition. Therefore we obtain

u(x0) ≥ (1+C)v(x0).

Sincex0 ∈ D ∩ B(ξ, r0) is arbitrary, we obtain that

u ≥ (1+ δ)v in D ∩ B(ξ, r0),

whereδ is a constant depending only onm1,m2,M1,M2 andM3.
Finally, we prove thatv + V is p-subharmonic inB(0,1) \ B(0,1/2) if b

is sufficiently large. Letε = min{1, p− 1}/4. Assume that

b > max
{4(n+ p− 2)

ε
,
4(1+ |p− 2|)(1+ M1)nM′2

εm1

}
.

Observe that

∆p(v+ V) = |∇(v+ V)|p−4(I1 + I2 + I3 + I4),
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where

I1 = |∇v|2∆v+ (p− 2)
n∑

i, j=1

∂v
∂xi

∂v
∂x j

∂2v
∂xi∂xj

,

I2 = |∇v|2∆V + (p− 2)
n∑

i, j=1

∂v
∂xi

∂v
∂xj

∂2V
∂xi∂xj

,

I3 = (|∇V|2 + 2(∇v · ∇V))∆(v+ V),

I4 = (p− 2)
n∑

i, j=1

(
∂(v+ V)
∂xi

∂(v+ V)
∂xj

− ∂v
∂xi

∂v
∂x j

)
∂2(v+ V)
∂xi∂x j

.

Becausev ∈ H+(D ∩ B(ξ,3)), we haveI1 = 0 in D ∩ B(ξ, 3). If x ∈
B(0, 1) \ B(0,1/2), then

I2 =|∇v|2
(
4|x|2 − 2(n− p+ 2)

b

)
e−b|x|2 + 4(p− 2)

n∑

i, j=1

∂v
∂xi

∂v
∂xj

xi xje
−b|x|2

≥4|∇v|2
(
min{1, p− 1}|x|2 − 2(n+ p− 2)

b

)
e−b|x|2

≥2m1εe
−b|x|2,

and

|I3 + I4| ≤
∣∣∣∣∣(

4|x|2
b2

e−2b|x|2 − 4
b

(∇v · x)e−b|x|2)∆(v+ V)
∣∣∣∣∣

+

∣∣∣∣∣(p− 2)
n∑

i, j=1

( 4
b2

xi x je
−2b|x|2 − 4

b
xi
∂v
∂x j

e−b|x|2
)
∂2(v+ V)
∂xi∂xj

∣∣∣∣∣

≤4(1+ |p− 2|)nM′2
b

(
|x|2
b

e−b|x|2 + |x|M1)e
−b|x|2

≤m1εe
−b|x|2.

Since∆p(v+V) ≥ 0 in B(0,1)\B(0, 1/2), we see thatv+V is p-subharmonic
in B(0, 1) \ B(0,1/2). □

It is well known that if{uj} is a locally uniformly bounded sequence of
p-harmonic functions inD, then there exist a subsequence{ujk} and ap-
harmonic functionu in D such thatujk → u locally uniformly in D. More-
over the following lemma holds.

Lemma 2.7. Let D be a C2,α-domain. Letξ ∈ ∂D and let r0 be a sufficiently
small positive constant. Assume that{uj ∈ H+(D ∩ B(ξ, 6r0)) : uj = 0 on
∂D ∩ B(ξ, 6r0)} is uniformly bounded. Then there exist a subsequence{ujk}
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and u∈ H+(D∩ B(ξ,6r0))∩C1(D ∩ B(ξ, 3r0)) vanishing on∂D∩ B(ξ, 3r0)
such that

(2.1)
ujk

u
→ 1 uniformly in D∩ B(ξ, r0).

Proof. By Lemma2.4, there exist a subsequence{ujk} and u ∈ H+(D ∩
B(ξ, 6r0)) ∩C1(D ∩ B(ξ, 3r0)) such that

ujk → u uniformly in D ∩ B(ξ, 3r0),

∇ujk → ∇u uniformly in D ∩ B(ξ, 3r0).

Hence we see thatu = 0 on∂D ∩ B(ξ, 3r0). Fix ε > 0 and chooseN > 0
such that ifk > N, then

|∇u− ∇ujk | < ε on D ∩ B(ξ,3r0).

We prove (2.1). By [2, Lemma 2.2], the domainD satisfies the ball con-
dition with somer1 > 0. Let r0 < r1/2 and letx0 ∈ D ∩ B(ξ, r0). Then there
is η ∈ ∂D such that dist(x0, ∂D) = |x0 − η|. By the interior ball condition
at η we find ηi ∈ D such thatB(ηi ,2r0) ⊂ D andη ∈ S(ηi ,2r0). Observe
thatB(ηi ,2r0) ⊂ D∩B(ξ, 6r0) andx0 ∈ B(ηi ,2r0) \B(ηi , r0). Without loss of
generality, we may assume thatηi = 0 andr0 = 1.

Forb > 1 andC > 0, we set

V(x) = C(e−b|x|2 − e−b).

Since

∆pV(x) = (2Cbe−b|x|2)p−1|x|p−2(2b(p− 1)|x|2 − n− p+ 2),

we can chooseb > 0 such thatV is p-subharmonic inB(0, 1) \ B(0,1/2).
If C > 0 is sufficiently small, thenu ≥ V on ∂B(0,1)∪ ∂B(0,1/2). Hence
it follows from the comparison principle thatu ≥ V in B(0,1) \ B(0,1/2).
Then we haveu(x0) ≥ V(x0). SinceV(x0) ≥ C(1 − |x0|) for some constant
C > 0, we have

u(x0) ≥ C(1− |x0|) = C|x0 − η|.
By the mean value theorem, there exists a constant 0< c < 1 such that

u(x0) − ujk(x0) = (∇u− ∇ujk)((1− c)η + cx0) · (x0 − η).
Hence ifk ≥ N, then we have

∣∣∣∣∣1−
ujk(x0)

u(x0)

∣∣∣∣∣ =
∣∣∣∣∣
u(x0) − ujk(x0)

u(x0)

∣∣∣∣∣

≤ |(∇u− ∇ujk)((1− c)η + cx0)||x0 − η|
u(x0)

≤ ε

C
.
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Therefore (2.1) is proved. □

Finally, we observe that the scale invariant boundary Harnack principle
implies the uniqueness of kernel functions in the linear case. This observa-
tion will be not used in the sequel; it is given only for the emphasis on the
difference between the linear case (p = 2) and the nonlinear case (p , 2).
Let D be a domain with a boundary pointw. ByH(w) we denote the family
of all kernel functions atw with reference pointx0. Then the scale invariant
boundary Harnack principle implies that there exists a constantC ≥ 1 such
that

(2.2) C−1u(x) ≤ v(x) ≤ Cu(x) for all u, v ∈ H(w) andx ∈ D.

Proposition 2.8. If (2.2) holds, thenH(w) is a singleton.

Proof. We follow Kemper [9] (see also [1]). Let

C0 = sup
u,v∈H(w), x∈D

u(x)
v(x)

.

Then 1≤ C0 < ∞ by (2.2). It is sufficient to showC0 = 1. SupposeC0 > 1.
Takeu, v ∈ H(w). By the linearity of harmonicityv1 = (C0v− u)/(C0 − 1)
is a positive harmonic function with the same boundary values asu andv
such thatv1(x0) = (C0v(x0)− u(x0))/(C0− 1) = 1. Hencev1 ∈ H(w), and so
u ≤ C0v1 = C0(C0v− u)/(C0 − 1), which implies

u
v
≤ C2

0

2C0 − 1
< C0 on D.

This contradicts the definition ofC0. □

Remark2.9. If p , 2, then the above argument fails, asv1 = (C0v−u)/(C0−
1) need not bep-harmonic even ifu andv arep-harmonic.

3. Proof of Theorem 1.1

In this section we prove Theorem1.1. By ∂Ω we denote the relative
boundary ofΩ in Rn−1. We observe thatu(x′, xn) = exp(λxn) f (x′) is p-
harmonic if and only ifλ and f (x′) satisfy the equation
(3.1)
− divx′[(λ

2 f 2 + |∇x′ f |2)
p−2
2 ∇x′ f ] = λ2(p− 1)(λ2 f 2 + |∇x′ f |2)

p−2
2 f onΩ,

where∇x′ is the gradient inRn−1 and divx′ is the divergence inRn−1.
For a ∈ R, we define the translation operatorTa : H+(Ω × (−∞,a)) →

H+(Ω × (−∞,0)) by

Tau(x) = C1(a)u(x+ aen),
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whereen = (0, . . . , 0,1) and the constantC1(a) is chosen such that

sup
Ω×(−∞,0)

Tau(x) = 1.

Observe that ifu ∈ H+∞+ (Ω × R), thenTau ∈ H+∞+ (Ω × R) for all a ∈ R.
For a domainD andE ⊂ ∂D, we denote byωp(x,E,D) the p-harmonic

measure evaluated atx of E in D. See [7, Section 11] for the definition and
the property ofp-harmonic measure. Let

v(x) = ωp(x,Ω × {0},Ω × (−∞,0)).

Lemma 3.1. There exists a positive constantε0 such that

(3.2) v(x− aen) ≤ (1− ε0a)v(x) for x ∈ Ω × (−∞,0),

whenever a∈ [0,1].

Proof. The maximum principle implies that

sup
Ω×{−1}

v < 1.

We set
V(x) = 1+ ε0xn,

where
ε0 = 1− sup

Ω×{−1}
v.

Clearly V is p-harmonic inRn. Observe thatv ≤ V on Ω × {−1}. Since
v = V = 1 onΩ × {0}, it follows from the comparison principle that

v ≤ V in Ω × (−1,0).

Hence we obtain that

v(x− aen) ≤ V(x− aen) = 1− ε0a = (1− ε0a)v(x) for x ∈ Ω × {0},
whenevera ∈ [0,1]. Applying the comparison principle, we obtain (3.2).

□

By Lemma2.7 and the comparison principle, there exist a positive in-
creasing sequence{aj} andv∗ ∈ H+(Ω × (−∞,0)) ∩ C1(Ω × (−∞,−1/2))
such thataj + 1 < aj+1, v∗ = 0 on (∂Ω × (−∞,−1/2))∪ {−∞} and

T−a j v

v∗
→ 1 uniformly inΩ × (−∞,−1).

By Lemma3.1, we have

v∗(x− aen) ≤ (1− ε0a)v∗(x),

whenevera ∈ [0,1]. It follows that
∂v∗

∂xn
(x) ≥ ε0v

∗(x) > 0 for x ∈ Ω × (−∞,0).
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Applying Hopf’s maximum principle (Lemma2.1), we have

∇v∗ , 0 inΩ × (−∞,−1/2).

Therefore Lemma2.5 implies thatv∗ ∈ C2,α(Ω × (−∞,−1)).

Lemma 3.2. For a ≥ 0, we let

ψ1(a) = inf
Ω×(−∞,−1)

{v∗(x− aen)
v∗(x)

}
.

Then
v∗(x− aen) = ψ1(a)v∗(x) for x ∈ Ω × (−∞,−1),

whenever a≥ 0.

Proof. Let a ≥ 0 be fixed. Clearly we have

ψ1(a)v∗(x) ≤ v∗(x− aen) for x ∈ Ω × (−∞,−1).

Suppose that there exists a pointx0 ∈ Ω × (−∞,−1) such that

ψ1(a)v∗(x0) < v∗(x0 − aen).

Sincev∗ ∈ C2,α(Ω × (−∞,−1)), the strong comparison principle (Lemma
2.2) implies that

ψ1(a)v∗(x) < v∗(x− aen) for x ∈ Ω × (−∞,−1).

By Lemma2.6, there exists a positive constantδ > 0 such that

(1+ 2δ)ψ1(a)v∗(x) ≤ v∗(x− aen) for x ∈ Ω × {−2}.
Because (T−a j v)/v∗ → 1 uniformly inΩ×(−∞,−1), there existsN > 0 such
that if j > N, then

(1+ δ)ψ1(a)v(x) ≤ v(x− aen) for x ∈ Ω × {−aj − 2},
so that

(1+ δ)ψ1(a)v(x) ≤ v(x− aen) for x ∈ Ω × (−∞,−aj − 2),

by the comparison principle. Sinceaj + 1 < aj+1, we have

(1+ δ)ψ1(a)Ta j+1v(x) ≤ Ta j+1v(x− aen) for x ∈ Ω × (−∞,−1),

for j > N. By letting j → ∞, we obtain that

(1+ δ)ψ1(a)v∗(x) ≤ v∗(x− aen) for x ∈ Ω × (−∞,−1).

This is a contradiction to the definition ofψ1(a). Therefore we obtain that

v∗(x− aen) = ψ1(a)v∗(x) for x ∈ Ω × (−∞,−1),

whenevera ≥ 0. □
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Observe thatψ1(0) = 1 andψ1(a) is a decreasing continuous function of
a ≥ 0. Moreover

ψ1(a+ a′) = ψ1(a)ψ1(a
′) for a,a′ ≥ 0,

since
ψ1(a+ a′)v∗(x) = v∗(x− (a+ a′)en)

= v∗((x− aen) − a′en)

= ψ1(a
′)v∗(x− aen)

= ψ1(a)ψ1(a
′)v∗(x) for x ∈ Ω × (−∞,−1),

by Lemma3.2. By an elementary calculation it follows from continuity of
ψ1 that

ψ1(a) = exp(−λa) for a ≥ 0,

with λ = − logψ1(1) > 0. By Lemma3.2, we have

v∗(x) = exp(λ(xn − 1))v∗(x′,−1) for x ∈ Ω × (−∞,−1).

Let f (x′) = v∗(x′,−1) for x′ ∈ Ω. Sincev∗ ∈ C2,α(Ω × (−∞,−1)) and
∇v∗ , 0 inΩ × (−∞,−1/2), we havef ∈ C2,α(Ω) andλ2 f 2 + |∇x′ f |2 > 0 in
Ω. Sincev∗ ∈ H+(Ω × (−∞, 0)) andv∗ = 0 on (∂Ω × (−∞,−1/2))∪ {−∞},
it follows thatλ and f satisfy (3.1) and f = 0 on∂Ω. Therefore we obtain
the following lemma.

Lemma 3.3. There exist a positive constantλ and a function f∈ C2,α(Ω)
such thatλ and f satisfy(3.1), λ2 f 2 + |∇x′ f |2 > 0 in Ω and f = 0 on∂Ω.

Proof of Theorem1.1. SinceH−∞+ (Ω×R) = {u(x′,−xn) : u ∈ H+∞+ (Ω×R)},
it is sufficient to prove (1.1). Let u0(x′, xn) = exp(λxn) f (x′), x′ ∈ Ω and
xn ∈ R, whereλ and f are as in Lemma3.3. Then we observeu0 ∈ H+∞+ (Ω×
R) ∩C2,α(Ω × R). Since

|∇u0(x)| = exp(λxn)(λ
2 f 2 + |∇x′ f |2)1/2 for x ∈ Ω × R,

we have∇u , 0 in Ω × R. We will show that everyu ∈ H+∞+ (Ω × R) is
represented asu = Cu0 with some positive constantC.

By Lemma2.7 and the comparison principle, there exist a positive in-
creasing sequence{aj} andu∗ ∈ H+(Ω × (−∞,0)) ∩ C1(Ω × (−∞,−1/2))
such thataj + 1 < aj+1, andu∗ = 0 on (∂Ω × (−∞,−1/2))∪ {−∞} and

Ta j u

u∗
→ 1 uniformly inΩ × (−∞,−1).

Let

C = sup
Ω×(−∞,−1)

{u∗
u0

}
and C = inf

Ω×(−∞,−1)

{u∗
u0

}
.
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For an arbitraryε > 0, there existsN > 0 such that ifj > N, then
(3.3)
(1−ε) exp(−λaj)C1(aj)

−1Cu0 ≤ u ≤ (1+ε) exp(−λaj)C1(aj)
−1Cu0 in Ω×(−∞, aj−1),

where

C1(aj)
−1 = sup

Ω×(−∞,a j )
u.

It follows from the boundary Harnack principle (Lemma2.3) that 0 <
C ≤ C < ∞. We claimC = C. We will prove the claim later and we finish
the proof of Theorem1.1. By (3.3), there exists a positive constantC such
that

C−1 ≤ exp(−λaj)C1(aj)
−1 ≤ C.

Hence there exist a subsequence{bj} of {aj} and a positive constantK∗ such
that

(3.4) K∗ = lim
j→∞

exp(−λbj)C1(bj)
−1.

Taking the subsequence{bj} in (3.3) and passing to the limit asj → ∞ and
thenε→ 0, we obtain

u = K∗Cu0 in Ω × R.
Thus Theorem1.1 is proved.

Finally we prove thatC = C. Suppose thatC < C. Sinceu0 ∈ C2,α(Ω × R)
and∇u0 , 0 onΩ × R, it follows from the strong comparison principle
(Lemma2.2) and Lemma2.6 that there exists a positive constantδ > 0
such that

(C + 2δ)u0 ≤ u∗ onΩ × {−2}.
By (Tb j u)/u∗ → 1 uniformly inΩ × (−∞,−1) and (3.4), we obtain that

K∗(C + δ)u0 ≤ u onΩ × {bj − 2}.
The comparison principle implies that

K∗(C + δ)u0(x) ≤ u(x) for x ∈ Ω × (−∞,bj − 2).

Sincebj−1 + 1 ≤ bj, by lettingx = y+ bj−1en we obtain

K∗ exp(λbj−1)C1(bj−1)(C + δ)u0(y) ≤ Tb j−1u(y) for y ∈ Ω × (−∞,−1).

By letting j → ∞, we obtain

(C + δ)u0(y) ≤ u∗(y) for y ∈ Ω × (−∞,−1).

This would contradict the definition ofC. Therefore we haveC = C. □
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4. Proof of Theorem 1.4

In this section, we explicitly calculateλ and f in casen = 2. We observe
that u(x1, x2) = exp(λx2) f (x1) is p-harmonic if and only ifλ and f (x1)
satisfy the equation

(4.1) (p− 1)λ4 f 3 + (2p− 3)λ2 f f ′2 + λ2 f 2 f ′′ + (p− 1) f ′2 f ′′ = 0.

Proof of Theorem1.4. Sinceu(x1, x2) = exp(λx2) f (x1) ∈ H+∞+ ((0, L) × R),
it follows thatλ and f (x1) satisfy (4.1). Then we obtain that

(p− 1)(λ2 f 2 + f ′2)(λ2 f + f ′′) + (p− 2)λ2( f (λ2 f 2 + f ′2) − f 2(λ2 f + f ′′)).

Multiplying by 2 f ′2/(λ2 f 2 + f ′2)2, we have

(p− 1)
2 f ′(λ2 f + f ′′)
λ2 f 2 + f ′2

+ (p− 2)λ22 f f ′(λ2 f 2 + f ′2) − 2 f 2 f ′(λ2 f + f ′′)
(λ2 f 2 + f ′2)2

=
d
dx

(
(p− 1) log(λ2 f 2 + f ′2) + (p− 2)λ2 λ2 f 2

λ2 f 2 + f ′2

)

=0.

Hence there exists a constantC such that

(4.2) (p− 1) log(λ2 f 2 + f ′2) + (p− 2)λ2 λ2 f 2

λ2 f 2 + f ′2
= C.

We introduce the Prüfer substitution [14, pp.239-242]

(4.3)


λ f (x1) = ρ(x1) sins(x1),

f ′(x1) = ρ(x1) coss(x1),

where 0< ρ(x1) < ∞ and 0≤ s(x1) ≤ π. Since f ∈ C2,α([0, L]), we see that
ρ, s ∈ C1([0, L]). By (4.2), we obtain

(4.4) ρ(x1) = exp
(C − sin2 s(x1)

2(p− 1)

)
.

On the other hand, (4.3) implies that

λρ coss= λ
d f
dx1
=

dρ
dx1

sins+
ds
dx1

ρ coss.

By differentiating (4.4), we have

dρ
dx1
= exp

(C − sin2 s(x1)
2(p− 1)

) (p− 1) sinscoss
p− 2

ds
dx1

= ρ
(p− 1) sinscoss

p− 2
ds
dx1

.

Hence we obtain
dx1

ds
=

1
λ

(
1− p− 2

p− 1
sin2 s

)
.
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Then there exists a constantC∗ such that

x1(s) = C∗ +
1
λ

( p
2(p− 1)

s+
p− 2

4(p− 1)
sin 2s

)
.

Sincex1(s) is strictly increasing andf (0) = f (L) = 0, we see thatx1(0) = 0
andx1(π) = L. Hence we have

C∗ = 0, λ =
pπ

2(p− 1)L
.

By letting C = logλ we obtain the parametric representation (1.3). Thus
Theorem1.4 is proved. □

5. Proof of Theorems 1.5and 1.6

In this section, we show Theorems1.5 and1.6. By ∂Σ we denote the
relative boundary ofΣ in the unit sphere. For 0≤ R1 < R2 ≤ ∞, we define
subsetsΓ(R1,R2) andΣ(R1) by

Γ(R1,R2) = {(r, σ) : R1 < r < R2, σ ∈ Σ},
Σ(R1) = Γ ∩ S(0,R1).

Firstly, we considerH∞+ (Γ). We observe thatu(r, σ) = rµg(σ) is p-
harmonic if and only ifµ andg satisfy the equation
(5.1)
−divσ[(µ2g2+ |∇σg|2) p−2

2 ∇σ] = µ(µ(p−1)+n− p)(µ2g2+ |∇σg|2) p−2
2 g onΣ,

where∇σ is the covariant derivative identified with the tangential gradient
and divσ is the divergence operator acting on vector field on the unit sphere.

ForR> 0, we define the stretching operatorS0
R : H+(Γ(0,R))→ H+(Γ(0,1))

by
S0

Ru(x) = C2(R)u(Rx),

where the constantC2(R) is chosen such that

sup
Γ(0,1)
S0

Ru(x) = 1.

Observe that ifu ∈ H∞+ (Γ), thenS0
Ru ∈ H∞+ (Γ) for all R> 0. Let

v(x) = ωp(x,Σ(1),Γ(0,1)),

where we recall thatωp(·,Σ(1),Γ(0,1)) is thep-harmonic measure ofΣ(1)
in Γ(0,1).

Lemma 5.1. There exists a positive constantε0 such that

(5.2) v(Rx) ≤ (1− ε0(1− R))v(x) for x ∈ Γ(0, 1),

whenever R∈ [1/2,1].
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Proof. The maximum principle implies that

sup
Σ(1/2)

v < 1.

Forb > 0 andC > 0, we set

V(x) = 1+C(e−b − e−b|x|2).

Since

∆pV(x) = −C(2be−b|x|2)p−1|x|p−2(2b(p− 1)|x|2 − n− p+ 2),

we can chooseb > 0 such thatV is p-superharmonic inΓ(1/2,1). Observe
that if C is sufficiently small, thenv ≤ V on Σ(1/2). Sincev = V = 1 on
Σ(1), it follows from the comparison principle that

v ≤ V in Γ(1/2,1).

Hence ifε0 > 0 is sufficiently small, then

v(Rx) ≤ V(Rx)

= 1+C(e−b − e−b|Rx|2)

≤ 1− ε0(1− R)

= (1− ε0(1− R))v(x) for x ∈ Σ(1),

wheneverR ∈ [1/2,1]. Applying the comparison principle, we obtain (5.2).
□

By Lemma2.7 and the comparison principle, there exist a positive de-
creasing sequence{Rj} andv∗ ∈ H+(Γ(0,1))∩C1(Γ(0,3/4) \ {0}) such that
Rj/2 > Rj+1, v∗ = 0 on∂Γ(0,3/4) \ Σ(3/4) and

S0
Rv

v∗
→ 1 uniformly inΓ(0,1/2).

By Lemma5.1we have

v∗(Rx) ≥ (1− ε0(1− R))v∗(x) in Γ(0,1),

wheneverR ∈ [1/2,1]. It follows that

∂v∗

∂r
(x) ≥ ε0v

∗(x) > 0 for x ∈ Γ(0,1).

By Lemma2.1we have

∇v∗ , 0 in Γ(0, 3/4) \ {0}.
It follows from Lemma2.5thatv∗ ∈ C2,α(Γ(0,1/2) \ {0}).

In a way similar to the proof of Lemma3.2, we obtain the following
lemma.
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Lemma 5.2. For 0 < R≤ 1, we let

ψ2(R) = inf
Γ(0,1/2)

{v∗(Rx)
v∗(x)

}
.

Then
v∗(Rx) = ψ2(R)v∗(x) for x ∈ Γ(0,1/2),

whenever0 < R≤ 1.

Observe thatψ2(1) = 1 andψ2(R) is an increasing continuous function of
0 < R≤ 1. Moreover, it follows from Lemma5.2that

ψ2(RR′) = ψ2(R)ψ2(R
′) for 0 < R,R′ ≤ 1.

By an elementary calculation, it follows from continuity ofψ2 that

ψ2(R) = Rµ for 0 < R≤ 1,

with µ = − logψ2(1/e) > 0.
By Lemma5.2, we have

v∗(r, σ) = (2r)µv∗(σ/2) for 0< r < 1/2, σ ∈ Σ.
Let g(σ) = v∗(σ/2) for σ ∈ Σ. Sincev∗ ∈ C2,α(Γ(0,1/2) \ {0}) and∇v∗ , 0
in Γ(0,3/4) \ {0}, we haveg ∈ C2,α(Σ) andµ2g2 + |∇σg|2 > 0 onΣ. Since
v∗ ∈ H+(Γ(0,1)) andv∗ = 0 on∂Γ(0,3/4) \ Σ(3/4), it follows thatµ andg
satisfy (5.1) andg = 0 on∂Σ. Therefore we obtain the following lemma.

Lemma 5.3. There exist a positive constantµ and a function g∈ C2,α(Σ)
such thatµ and g satisfy(5.1), µ2g2 + |∇σg|2 > 0 in Σ and g= 0 on∂Σ.

Proof of Theorem1.5. Let u0(r, σ) = rµg(σ), 0 < r < ∞ andσ ∈ Σ, where
µ andg are as in Lemma5.3. Then we observeu0 ∈ H∞+ (Γ) ∩C2,α(Γ \ {0}).
Since

|∇u0(x)| = rµ−1(µ2g2 + |∇σg|2)1/2 for x ∈ Γ \ {0},
we have∇u0 , 0 in Γ \ {0}. We will show that everyu ∈ H∞+ (Γ) is repre-
sented asu = Cu0 with some positive constantC.

By Lemma2.7 and the comparison principle, there exist a positive in-
creasing sequence{Rj} andu∗ ∈ H+(Γ(0,1))∩C1(Γ(0, 3/4) \ {0}) such that
2Rj < Rj+1, andu∗ = 0 on∂Γ(0,3/4) \ Σ(3/4) and

S0
Rj

u

u∗
→ 1 uniformly inΓ(0,1/2).

Let

C = sup
Γ(0,1/2)

{u∗
u0

}
and C = inf

Γ(0,1/2)

{u∗
u0

}
.
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For an arbitraryε > 0, there existsN > 0 such that ifj > N, then

(5.3) (1−ε)R−µj C2(Rj)
−1Cu0 ≤ u ≤ (1+ε)R−µj C2(Rj)

−1Cu0 in Γ(0,Rj/2),

where

C2(Rj)
−1 = sup

Γ(0,Rj )
u.

In a way similar to the proof of Theorem1.1, we obtainC = C and there
exist a subsequence{r j} of {Rj} and a positive constantK∗ such that

K∗ = lim
j→∞

r−µj C2(r j)
−1.

Taking the subsequence{r j} in (5.3) and passing to the limit asj → ∞ and
thenε→ 0, we obtain

u = K∗Cu0 in Γ.

Thus Theorem1.5 is proved. □

Next we considerH0
+(Γ). We observe thatu(r, σ) = r−νh(σ) is p-harmonic

if and only if ν andh satisfy the equation
(5.4)
−divσ[(ν2h2+ |∇σh|2) p−2

2 ∇σ] = ν(ν(p−1)−n+ p)(ν2h2+ |∇σh|2) p−2
2 h onΣ,

where∇σ is the covariant derivative identified with the tangential gradient
and divσ is the divergence operator acting on vector field on the unit sphere.

For R > 0, we define the stretching operatorS∞R : H+(Γ(R,∞)) →
H+(Γ(1,∞)) by

S∞R u(x) = C3(R)u(Rx),

where the constantC3(R) is chosen such that

sup
Γ(1,∞)

S∞R u(x) = 1.

Observe that ifu ∈ H0
+(Γ), thenS∞R u ∈ H0

+(Γ) for all R> 0. Let

v(x) = ωp(x,Σ(1),Γ(1,∞)),

where we recall thatωp(·,Σ(1),Γ(1,∞)) is thep-harmonic measure ofΣ(1)
in Γ(1,∞). In way similar to the proof of Lemma5.1, we obtain the follow-
ing lemma.

Lemma 5.4. There exists a positive constantε0 such that

v(Rx) ≤ (1− ε0(R− 1))v(x) for x ∈ Γ(1,∞),

whenever R∈ [1,2].
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By Lemma2.7 and the comparison principle, there exist a positive in-
creasing sequence{Rj} and v∗ ∈ H+(Γ(1,∞)) ∩ C1(Γ(3/2,∞)) such that
2Rj < Rj+1, v∗ = 0 on (∂Γ(3/2,∞) \ Σ(3/2))∪ {∞} and

S∞R v

v∗
→ 1 uniformly inΓ(2,∞).

By Lemma5.4we have

v∗(Rx) ≤ (1− ε0(R− 1))v∗(x) in Γ(1,∞),

wheneverR ∈ [1,2]. It follows that
∂v∗

∂r
(x) ≤ −ε0v

∗(x) < 0 for x ∈ Γ(1,∞).

By Lemma2.1we have

∇v∗ , 0 in Γ(3/2,∞).

It follows from Lemma2.5thatv∗ ∈ C2,α(Γ(2,∞)).
In a way similar to the proof of Lemma3.2, we obtain the following

lemma.

Lemma 5.5. For R≥ 1, we let

ψ3(R) = inf
Γ(2,∞)

{v∗(Rx)
v∗(x)

}
.

Then
v∗(Rx) = ψ3(R)v∗(x) for x ∈ Γ(2,∞),

whenever R≥ 1.

Observe thatψ3(1) = 1 andψ3(R) is a decreasing continuous function of
R≥ 1. Moreover, it follows from Lemma5.5that

ψ3(RR′) = ψ3(R)ψ3(R
′) for R,R′ ≥ 1.

By an elementary calculation, it follows from continuity ofψ3 that

ψ3(R) = R−ν for R≥ 1,

with ν = − logψ3(e) > 0. By Lemma5.5, we have

v∗(r, σ) = (r/2)νv∗(2σ) for 2 < r < ∞, σ ∈ Σ.
Let h(σ) = v∗(2σ) for σ ∈ Σ. Sincev∗ ∈ C2,α(Γ(2,∞)) and∇v∗ , 0
in Γ(3/2,∞), we haveh ∈ C2,α(Σ) and ν2h2 + |∇σh|2 > 0 on Σ. Since
v∗ ∈ H+(Γ(1,∞)) andv∗ = 0 on (∂Γ(3/2,∞) \ Σ(3/2))∪ {∞}, it follows that
ν andh satisfy (5.4) andh = 0 on∂Σ. Therefore we obtain the following
lemma.

Lemma 5.6. There exist a positive constantν and a function h∈ C2,α(Σ)
such thatν and h satisfy(5.4), ν2h2 + |∇σh|2 > 0 in Σ and h= 0 on∂Σ.
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Proof of Theorem1.6. Let u0(r, σ) = r−νh(σ), 0 < r < ∞ andσ ∈ Σ, where
ν andh are as in Lemma5.6. Then we observeu0 ∈ H0

+(Γ) ∩C2,α(Γ \ {0}).
Since

|∇u0(x)| = r−ν−1(ν2h2 + |∇σh|2)1/2 for x ∈ Γ \ {0},
we have∇u0 , 0 inΓ\{0}. We will show that everyu ∈ H0

+(Γ) is represented
asu = Cu0 with some positive constantC.

By Lemma2.7 and the comparison principle, there exist a positive de-
creasing sequence{Rj} and u∗ ∈ H+(Γ(1,∞)) ∩ C1(Γ(3/2,∞)) such that
Rj/2 > Rj+1, andu∗ = 0 on (∂Γ(3/2,∞) \ Σ(3/2))∪ {∞} and

S∞Rj
u

u∗
→ 1 uniformly inΓ(2,∞).

Let

C = sup
Γ(2,∞)

{u∗
u0

}
and C = inf

Γ(2,∞)

{u∗
u0

}
.

For an arbitraryε > 0, there existsN > 0 such that ifj > N, then

(5.5) (1− ε)Rν
jC3(Rj)

−1Cu0 ≤ u ≤ (1+ ε)Rν
jC3(Rj)

−1Cu0 in Γ(2Rj ,∞),

where
C3(Rj)

−1 = sup
Γ(Rj ,∞)

u.

In a way similar to the proof of Theorem1.1, we obtainC = C and there
exist a subsequence{r j} of {Rj} and a positive constantK∗ such that

K∗ = lim
j→∞

rνjC3(r j)
−1.

Taking the subsequence{r j} in (5.5) and passing to the limit asj → ∞ and
thenε→ 0, we obtain

u = K∗Cu0 in Γ.

Thus Theorem1.6 is proved. □

6. Calculations of µ, ν, g and h for n = 2

In this section we explicitly calculateµ, ν, g andh for n = 2. Our method
goes back to Aronsson [3], who studiedp-harmonic functions in the whole
planeR2 \ {0} of the formu(r, σ) = rkF(σ) and gave a representation of
F depending onk. Although he assumed 2< p < ∞, his technique is
appliable for 1< p ≤ 2.

We introduce the spherical coordinates (r, θ) in R2 which are related to
the coordinates (x1, x2) ∈ R2 \ {0} by

x1 = r sinθ, x2 = r cosθ,
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where 0< r < ∞, −π ≤ θ < π. For 0< ϕ < π, we let

Γϕ = {(r, θ) : |θ| < ϕ}.
For simplicity, we let

κ =
p− 2
p− 1

.

Firstly we considerµ andg. Sinceu(r, θ) = rµg(θ) ∈ H∞+ (Γϕ), we have
∫ ϕ

−ϕ
(µ2g2 + g′2)

p−2
2 g′2dθ = µ(µ(p− 1)+ 2− p)

∫ ϕ

−ϕ
(µ2g2 + g′2)

p−2
2 g2dθ.

Hence we obtainµ − κ > 0. Define the functionθ : [−π/2, π/2] → [−ϕ, ϕ]
by

θ(s) = s+
1− µ√
µ(µ − κ)

arctan
(√

µ

µ − κ tans
)
.

Since
dθ
ds
=

1− κ cos2 s
µ − κ cos2 s

,

we see thatθ(s) is strictly increasing and there exists the inverse function
s(θ). Let

u1(r, θ) = rµ
(
1− κ

µ
cos2 s(θ)

) µ−1
2 coss(θ).

Then we observe thatu1(r, θ) is p-harmonic inΓϕ (see [3]).

Proposition 6.1. Let n = 2 andΓ = Γϕ. Thenµ and g in Theorem1.5 is
given by



µ =
2π2 − κ(π − 2ϕ)2 + (π − 2ϕ)

√
4π2(1− κ) + κ2(π − 2ϕ)2

8(π − ϕ)ϕ
,

g(θ) =
(
1− κ

µ
cos2 s(θ)

)(µ−1)/2

coss(θ),

where s(θ) is given as above.

Proof. It is sufficient to calculateµ. Sinceθ(s) is strictly increasing, it fol-
lows fromu1 ∈ H∞+ (Γϕ) thatθ(π/2) = ϕ. Thereforeµ satisfies the equation

(6.1)
π

2
+

1− µ√
µ(µ − κ)

· π
2
= ϕ.

Squaring and rewriting give

4(π − ϕ)ϕµ2 − [2π2 − κ(π − 2ϕ)2]µ + π2 = 0.

The roots of this quadratic equation are

µ1 =
2π2 − κ(π − 2ϕ)2 + |π − 2ϕ|√4π2(1− κ) + κ2(π − 2ϕ)2

8(π − ϕ)ϕ
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and

µ2 =
2π2 − κ(π − 2ϕ)2 − |π − 2ϕ|√4π2(1− κ) + κ2(π − 2ϕ)2

8(π − ϕ)ϕ
.

Observe thatκ < µ2 ≤ 1 ≤ µ1. It follows from (6.1) that if 0 < ϕ ≤ π/2,
thenµ ≥ 1; if π/2 ≤ ϕ < π, thenµ ≤ 1. Hence we obtain

µ =
2π2 − κ(π − 2ϕ)2 + (π − 2ϕ)

√
4π2(1− κ) + κ2(π − 2ϕ)2

8(π − ϕ)ϕ
.

□

Next we considerν andh. Sinceu(r, θ) = r−νh(θ) ∈ H0
+(Γ), we have

∫ ϕ

−ϕ
(ν2h2 + h′2)

p−2
2 h′2dθ = ν(ν(p− 1)− 2+ p)

∫ ϕ

−ϕ
(ν2h2 + h′2)

p−2
2 h2dθ.

Hence, we haveν+ κ > 0. Define the functionθ : [−π/2, π/2]→ [−ϕ, ϕ] by

θ(t) = t − 1+ ν√
ν(ν + κ)

arctan
(√

ν

ν + κ
tant
)
.

We see thatθ(t) is strictly decreasing and there exists the inverse function
t(θ). Let

u2(r, θ) = rν
(
1+

κ

ν
cos2 t(θ)

)− ν+1
2 cost(θ).

Then we observe thatu2(r, θ) is p-harmonic inΓϕ (see [3]).

Proposition 6.2. Let n = 2 andΓ = Γϕ. Thenν and h in Theorem1.6 is
given by



ν =
2π2 − κ(π + 2ϕ)2 + (π + 2ϕ)

√
4π2(1− κ) + κ2(π + 2ϕ)2

8(π + ϕ)ϕ
,

h(θ) =
(
1+

κ

ν
cos2 t(θ)

)(−ν−1)/2

cost(θ),

where t(θ) is given as above.

Proof. It is sufficient to calculateν. Sinceθ(t) is strictly decreasing, it fol-
lows fromu2 ∈ H0

+(Γϕ) thatθ(π/2) = −ϕ. Thereforeν satisfies the equation

π

2
− 1+ ν√

ν(ν + κ)
· π

2
= −ϕ.

Squaring and rewriting give

4(π + ϕ)ϕν2 + [−2π2 + κ(π + 2ϕ)2]ν − π2 = 0.

The roots of this quadratic equation are

ν1 =
2π2 − κ(π + 2ϕ)2 + (π + 2ϕ)

√
4π2(1− κ) + κ2(π + 2ϕ)2

8(π + ϕ)ϕ
> 0
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and

ν2 =
2π2 − κ(π + 2ϕ)2 − (π + 2ϕ)

√
4π2(1− κ) + κ2(π + 2ϕ)2

8(π + ϕ)ϕ
< 0.

Sinceν > 0, we obtain

ν =
2π2 − κ(π + 2ϕ)2 + (π + 2ϕ)

√
4π2(1− κ) + κ2(π + 2ϕ)2

8(π + ϕ)ϕ
.

□

Remark6.3. Dobrowolski [5] gaveµ but notg. Lundstr̈om-Vasilis [12] cal-
culatedν andh for casep > 2 in the same way as in the proof of Proposition
6.2. On the other hand, for case 1< p < 2, they consideredp/(p − 1)-
harmonic stream functions and so they obtained the explicit representation
of ν andh. See [4] for details of stream functions.
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no. 5, 765–813.

[11] , Boundary behavior and the Martin boundary problem forp harmonic func-
tions in Lipschitz domains, Ann. of Math. (2)172(2010), no. 3, 1907–1948.

[12] N. L. P. Lundstr̈om and J. Vasilis,Decay of ap-harmonic measure in the plane, Ann.
Acad. Sci. Fenn. Math.38 (2013), no. 1, 351–366.



24 TSUBASA ITOH

[13] R. S. Martin, Minimal positive harmonic functions, Trans. Amer. Math. Soc.49
(1941), 137–172.

[14] L. C. Piccinini, G. Stampacchia, and G. Vidossich,Ordinary differential equations
in Rn, Applied Mathematical Sciences, vol. 39, Springer-Verlag, New York, 1984,
Problems and methods, Translated from the Italian by A. LoBello.

[15] P. Tolksdorf,On the Dirichlet problem for quasilinear equations in domains with
conical boundary points, Comm. Partial Differential Equations8 (1983), no. 7, 773–
817.

[16] , Regularity for a more general class of quasilinear elliptic equations, J. Dif-
ferential Equations51 (1984), no. 1, 126–150.

Department of Mathematics, Hokkaido University, Sapporo 060-0810, Japan
E-mail address: tsubasa@math.sci.hokudai.ac.jp


	1 Modulus of continuity of p-Dirichlet solutions in a metric measure space
	1.1 Potential theory in a metric measure space
	1.2 Modulus of continuity of p-Dirichlet solutions

	2 Martin boundary for p-harmonic functions in a cylinder and a cone in Rn
	2.1 Martin boundary theory for harmonic functions
	2.2 p-harmonic kernel functions in a cylinder and a cone

	Bibliography
	3 Appendix
	Paper [I1]
	Paper [I2]
	Paper [I3]


