<table>
<thead>
<tr>
<th>項目</th>
<th>内容</th>
</tr>
</thead>
<tbody>
<tr>
<td>項目</td>
<td>内容</td>
</tr>
<tr>
<td>項目</td>
<td>内容</td>
</tr>
<tr>
<td>項目</td>
<td>内容</td>
</tr>
</tbody>
</table>

タイトル
LINEAR TOPOLOGIES ON SEMI-ORDERED LINEAR SPACES

著者
Nakano, Hidegorô

引用
Journal of the Faculty of Science Hokkaido University. Ser. 1 Mathematics = 北海道大学理学部紀要, 12(3): 087-104

発行日
1953

URL
http://hdl.handle.net/2115/55978

ファイル情報
JFSHIU_12_N3_087-104.pdf

Hokkaido University Collection of Scholarly and Academic Papers : HUSCAP
Normed semi-order linear spaces are considered first by L. Kantorovitch. In this paper we shall consider linear topologies on semi-ordered linear spaces.

Let R be a linear space. A manifold $V \subset R$ is called a vicinity, if for any $a \in R$ we can find $\varepsilon > 0$ such that $\xi a \in V$ for $|\xi| \leq \varepsilon$. A collection of vicinities \mathfrak{B} is said to be a linear topology on R, if

1) $U \subset V \in \mathfrak{B}$ implies $U \in \mathfrak{B}$,
2) $U, V \in \mathfrak{B}$ implies $UV \in \mathfrak{B}$,
3) $V \in \mathfrak{B}$ implies $\xi V \in \mathfrak{B}$ for every real number ξ,
4) for any $V \in \mathfrak{B}$ we can find $U \in \mathfrak{B}$ such that $\xi U \subset V$ for $|\xi| \leq 1$,
5) for any $V \in \mathfrak{B}$ we can find $U \in \mathfrak{B}$ such that $U \times U \subset V$,

adopting the notations:

$$\xi U = \{\xi x : x \in U\}, \quad U \times V = \{x+y : x \in U, y \in V\}.$$

A subset $\mathfrak{B} \subset \mathfrak{B}$ is called a basis of a linear topology \mathfrak{B}, if for any $V \in \mathfrak{B}$ we can find $U \in \mathfrak{B}$ and $\varepsilon > 0$ such that $\varepsilon U \subset V$.

Let R be now a semi-ordered linear space and universally continuous, that is, for any system of positive elements $a_{\lambda} \in R (\lambda \in \Lambda)$ there exists $\cap a_{\lambda}$. In this paper we shall consider only such linear topologies \mathfrak{B} on R that \mathfrak{B} have a basis composed only of vicinities V subject to the conditions:

6) $a \in V, |x| \leq a$ implies $x \in V$,
7) $0 \leq a_{\lambda} \in V (\lambda \in \Lambda), a_{\lambda} \uparrow_{\lambda \in \Lambda} a$ implies $a \in V$.

Here $a_{\lambda} \uparrow_{\lambda \in \Lambda} a$ means that for any two $\lambda, \lambda_{2} \in \Lambda$ we can find $\lambda \in \Lambda$ such that

$$a_{\lambda} \geq a_{\lambda_{1}}, \cup a_{\lambda_{2}}, \text{ and } a = \cup_{\lambda \in \Lambda} a_{\lambda}.$$

For such a linear topology, we shall prove as a principal result that the manifold $\{x : a \leq x \leq b\}$ is complete as a uniform space in Weil’s
sense.\(^{(2)}\)

For a vicinity \(V \) subject to the conditions 6), 7), putting

\[
\|x\|_V = \inf_{\xi \in \mathcal{V}} \frac{1}{\xi},
\]

we obtain a pseudo-norm on \(R \). A manifold \(A \subset R \) is said to be topologically bounded, by a linear topology \(\mathcal{B} \), if \(\sup_{x \in A} \|x\|_V < +\infty \) for every such vicinity \(V \in \mathcal{B} \). A linear topology \(\mathcal{B} \) on \(R \) is said to be monotone complete, if for any topologically bounded system \(0 \leq a_\lambda \in R (\lambda \in \Lambda) \) such that \(a_\lambda \downarrow \lambda \in \Lambda \), we can find \(a \in R \) for which \(a_\lambda \downarrow \lambda \in \Lambda \). With this definition, we can prove that if a linear topology \(\mathcal{B} \) is monotone complete, then \(R \) is complete by \(\mathcal{B} \) in \(\text{Weil's sense} \). This result may be considered as a generalization of the famous Riesz-Fischer's theorem about \(L_p \)-spaces.

A vicinity \(V \) is said to be convex, if \(V \times V \subset 2V \). A linear topology \(\mathcal{B} \) is said to be convex, if \(\mathcal{B} \) has a basis composed only of convex vicinities. There exists a linear topology \(\mathcal{B} \) on \(R \) of which the totality of convex vicinities subject to the conditions 6), 7) is a basis. This linear topology \(\mathcal{B} \) is called the strong topology of \(R \). A linear topology \(\mathcal{B} \) is said to be sequential, if \(\mathcal{B} \) has a basis composed of at most countable vicinities. We shall prove that if a linear topology \(\mathcal{B} \) is sequential, convex, complete, and \(\prod_{\mathcal{B}} V = \{0\} \), then \(\mathcal{B} \) is the strong topology of \(R \).

Let \(R \) be now reflexive and \(\overline{R} \) its conjugate space.\(^{(3)}\) The so-called weak linear topology of \(R \) by \(\overline{R} \) is not a linear topology in our sense. However there exists the weakest linear topology \(\mathfrak{B} \) among our linear topologies by which every \(\overline{a} \in \overline{R} \) is topologically continuous. This linear topology \(\mathfrak{B} \) is called the absolute weak topology of \(R \), as the system of vicinities \(\{x : \overline{a}(|x|) \leq 1\} \) for all positive \(\overline{a} \in \overline{R} \) is a basis of \(\mathfrak{B} \). We can prove that the absolute weak topology \(\mathfrak{B} \) of \(R \) is weaker than the strong topology \(\mathcal{E} \) of \(R \), i.e., \(\mathfrak{B} \subset \mathcal{E} \), but \(\mathfrak{B} \) is equivalent to \(\mathcal{E} \), i.e., a manifold \(A \subset R \) is topologically bounded by \(\mathfrak{B} \), if and only if \(A \) is so by \(\mathcal{E} \).

A pseudo-norm \(\|x\| \) on \(R \) is said to be reflexive, if for

\[
\overline{A} = \{\overline{a} : \sup_{|x| \leq 1} |\overline{a}(x)| \leq 1\},
\]

we have \(\|x\| = \sup_{x \in \overline{A}} |\overline{a}(x)| \). A linear topology \(\mathcal{B} \) on \(R \) is said to be reflexive, if \(\mathfrak{B} \) has a basis \(\mathfrak{B} \) such that the pseudo-norm \(\|x\|_V \) is reflexive

\(^{(3)}\) H. \text{Nakano} : Modulated semi-ordered linear spaces, Tokyo Math. Book Series I (1950), §22. This book will be denoted by MSLS in this paper.
Linear topologies on semi-ordered linear spaces

for every $V \in \mathcal{B}$. The absolute weak topology of R is reflexive. We shall prove that if the strong topology of R is sequential, then it is reflexive. This result is a generalization of the theorem: if there is a complete norm on R, then there exists a complete reflexive norm on R.

We shall make use of notations in MSLS and the following notations:

$$A^+ = \{x^+ : x \in A\}, \quad A^- = \{x^- : x \in A\}, \quad |A| = \{|x| : x \in A\},$$

$$A \searrow B = \{x \searrow y : x \in A, y \in B\}, \quad A \nearrow B = \{x \nearrow y : x \in A, y \in B\},$$

$$A \times B = \{x + y : x \in A, y \in B\}.$$

for manifolds A, B of R.

§ 1. Linear topologies

Let R be a universally continuous semi-ordered linear space. A set of positive elements V is said to be a positive vicinity, if

1) for any $a \geq 0$ we can find $\epsilon > 0$ such that $\epsilon a \in V$,
2) $0 \leq b \leq a \in V$ implies $b \in V$,
3) $V \ni a \uparrow \lambda \alpha a$ implies $a \in V$.

A positive vicinity V is said to be convex, if $x, y \in V$, $\lambda + \mu = 1$, $\lambda, \mu \geq 0$ implies $\lambda x + \mu y \in V$.

With this definition, we see easily that if V is a positive vicinity (convex), then ξV also is a positive vicinity (convex) for $\xi > 0$, and for two positive vicinity U, V (convex), both UV and $U \times V$ are positive vicinities (convex).

A collection \mathcal{B} of positive vicinities is called a linear topology, if

1') $U \subset V \in \mathcal{B}$ implies $U \in \mathcal{B}$,
2') $U, V \in \mathcal{B}$ implies $UV \in \mathcal{B}$,
3') $V \in \mathcal{B}$ implies $\xi V \in \mathcal{B}$ for every $\xi > 0$,
4') for any $V \in \mathcal{B}$ we can find $U \in \mathcal{B}$ such that $U \times U \subset V$.

For a linear topology \mathcal{B} on R, a subset $\mathcal{B} \subset \mathcal{B}$ is called a basis of \mathcal{B}, if for any $V \in \mathcal{B}$ we can find $U \in \mathcal{B}$ and $a > 0$ such that $aU \subset V$. With this definition, we can prove easily

Theorem 1.1 If a collection of positive vicinities \mathcal{B} satisfies

1'') for any $U, V \in \mathcal{B}$ we can find $W \in \mathcal{B}$ and $a > 0$ such that $aW \subset UV$,
2'') for any $V \in \mathcal{B}$ we can find $U \in \mathcal{B}$ and $a > 0$ such that $U \times U \subset aV$,

then there exists uniquely a linear topology \mathcal{B} of which \mathcal{B} is a basis.

A linear topology \mathcal{B} is said to be convex, if \mathcal{B} has a basis composed
only of convex positive vicinities. A linear topology \mathfrak{B} is said to be *sequential*, if \mathfrak{B} has a basis composed of at most countable positive vicinities. A sequence of positive vicinities $V_\nu (\nu = 1, 2, \cdots)$ is said to be *decreasing*, if

$$V_\nu \supset V_{\nu+1} \times V_{\nu+1} \quad \text{for every } \nu = 1, 2, \cdots .$$

If a linear topology \mathfrak{B} is sequential, then we can find obviously by definition a decreasing sequence $V_\nu \in \mathfrak{B} \ (\nu = 1, 2, \cdots)$ as a basis of \mathfrak{B}. Such a basis is called a *decreasing basis* of \mathfrak{B}. If $V_\nu \in \mathfrak{B} \ (\nu = 1, 2, \cdots)$ is a decreasing basis of \mathfrak{B}, then for any $V \in \mathfrak{B}$ we can find ν such that $V_\nu \subset V$. Because we can find by definition μ and $\varepsilon > 0$ such that $\varepsilon V_\mu \subset V$. For such $\varepsilon > 0$, we can find $\nu > \mu$ such that $\frac{1}{2^{\nu - \mu}} < \varepsilon$, and then we have

$$V_\nu \subset \frac{1}{2^{\nu - \mu}} V_\mu \subset \varepsilon V_\mu \subset V,$$

because we have $V_\nu \supset 2V_{\nu+1}$ for every $\nu = 1, 2, \cdots$.

A decreasing basis $V_\nu \in \mathfrak{B} \ (\nu = 1, 2, \cdots)$ is said to be *convex*, if every $V_\nu \ (\nu = 1, 2, \cdots)$ is convex. With this definition, we see at once by definition

Theorem 1.2. *If* a linear topology \mathfrak{B} is sequential and convex, *then* \mathfrak{B} *has a convex decreasing basis*.

A linear topology \mathfrak{B} is said to be of *single vicinity* if \mathfrak{B} has a basis composed only of a single positive vicinity. With this definition we have obviously

Theorem 1.3. *If* a linear topology \mathfrak{B} is of single vicinity and convex, *then there is a convex positive vicinity which is a basis of \mathfrak{B}."

§ 2. Pseudo-norms

A functional $\|x\| \ (x \in R)$ on R is said to be a *pseudo-norm* on R, if

1) $0 \leq \|x\| < + \infty \quad \text{for every } x \in R ,$

2) $|x| \leq |y| \quad \text{implies } \|x\| \leq \|y\| ,$

3) $\|\xi x\| = |\xi| \|x\| \quad \text{for every real number } \xi ,$

4) $0 \leq x_\lambda \ (\lambda \in A) \quad \text{implies } \|x\| = \sup_{\lambda \in A} \|x_\lambda\| .$

A pseudo-norm $\|x\| \ (x \in R)$ is said to be *convex*, if

$$\|x + y\| \leq \|x\| + \|y\| \quad \text{for every } x, y \in R .$$

For a pseudo-norm $\|x\| \ (x \in R)$, putting

$$V = \{x : \|x\| \leq 1 , \ x \geq 0\} ,$$
we see easily that V is a positive vicinity. Furthermore, if $\|x\|(x \in R)$ is convex, then this positive vicinity V is convex.

Conversely, for a positive vicinity V, putting

\begin{equation}
\|x\|_V = \inf_{\xi \in \mathbb{R}} \frac{1}{\xi}
\end{equation}

we obtain a pseudo-norm $\|x\|_V (x \in R)$, which will be called the pseudo-norm of V. With this definition, we see easily

\begin{equation}
V = \{x : \|x\|_V \leq 1, x \geq 0\}.
\end{equation}

Furthermore we can prove easily

\begin{enumerate}
\item \[\|x+y\|_\xi = \frac{1}{\xi} \|x\|_V \quad \text{for } \xi > 0,\]
\item \[V \subset U \text{ implies } \|x\|_V \geq \|x\|_U \quad \text{for every } x \in R,\]
\item \[V \times V \subset U \text{ implies } \|x+y\|_U \leq \max \{\|x\|_V, \|y\|_V\}.\]
\end{enumerate}

By virtue of Theorem 1.1, we can prove easily

\begin{figure}
\centering
\includegraphics[width=\textwidth]{figure1.png}
\caption{Figure 1.}
\end{figure}

\textbf{Theorem 2.1.} For a system of pseudo-norms $\|x\|_\lambda (\lambda \in \Lambda)$ on R, if for any $\lambda \in \Lambda$ we can find $\sigma \in \Lambda$ such that

\[\|x+y\|_\lambda \leq \|x\|_\sigma + \|y\|_\sigma \quad \text{for every } x, y \in R,\]

then there exists uniquely a linear topology \mathcal{B} on R such that the totality of

\[V_{\lambda_1, \lambda_2, \ldots, \lambda_k} = \{x : \|x\|_\lambda \leq 1 (\lambda = 1, 2, \ldots, k), x \geq 0\}\]

for every finite number of elements $\lambda \in \Lambda (\lambda = 1, 2, \ldots, k)$ is a basis of \mathcal{B}.

A pseudo-norm $\|x\| (x \in R)$ is said to be proper, if $\|x\| = 0$ implies $x = 0$. A pseudo-norm is called a norm, if it is convex and proper.

\textbf{Theorem 2.2.} For a convex pseudo-norm $\|x\| (x \in R)$ there exists uniquely a normal manifold N of R such that $\|x\| (x \in N)$ is proper in N and $\|x\| = 0$ for every $x \in N^\perp$.

\textbf{Proof.} Putting $N = \{x : \|x\| = 0\}$, we see easily that N is a normal manifold of R. For such N, it is evident that $\|x\| = 0$ for every $x \in N$. Conversely, if $\|x\| = 0$, then we have naturally $x \in N$, and hence $[N^\perp] x = 0$. Thus $\|x\|$ is proper in N^\perp. If $\|x\|$ is proper in a normal manifold M and $\|x\| = 0$ for every $x \in M^\perp$, then it is evident that $M^\perp = N$.

A system of pseudo-norms $\|x\|_\lambda (\lambda \in \Lambda)$ is said to be proper, if $\|x\|_\lambda = 0$ for all $\lambda \in \Lambda$ implies $x = 0$. With this definition, we have

\textbf{Theorem 2.3.} For a system of pseudo-norms $\|x\|_\lambda (\lambda \in \Lambda)$ on R, if for any $\lambda \in \Lambda$ we can find $\sigma \in \Lambda$ such that

\[\|x+y\|_\lambda \leq \|x\|_\sigma + \|y\|_\sigma \quad \text{for every } x, y \in R,\]
then there exists uniquely a normal manifold N of R such that the system $||x||_\lambda (\lambda \in \Lambda)$ is proper in N and $||x||_\lambda = 0$ for every $\lambda \in \Lambda$ and $x \in N^\perp$.

Proof. Putting $M = \{ x : ||x||_\lambda = 0 \text{ for all } \lambda \in \Lambda \}$, we see easily that M is a normal manifold of R and M^\perp satisfies our requirement. Furthermore the uniqueness is obvious.

We shall say that R is separated by a linear topology \mathfrak{B}, or that \mathfrak{B} is separative if $\prod_{V \in \mathfrak{B}} V = \{ 0 \}$. With this definition, we see at once

Theorem 2.4. A linear topology \mathfrak{B} is separative, if and only if for a basis \mathfrak{B} of \mathfrak{B}, the system of pseudo-norms $||x||_V (V \in \mathfrak{B})$ is proper.

§ 3. Completeness

Let \mathfrak{B} be a linear topology on R. A system of manifolds $A_\lambda (\lambda \in \Lambda)$ is said to be a CAUCHY system by \mathfrak{B}, if $\prod_{\nu=1}^{r_V} A_{\lambda\nu} \neq 0$ for every finite number of elements $\lambda, \nu \in \Lambda (\nu = 1, 2, \cdots, r_V)$, and for any $V \in \mathfrak{B}$ we can find $\lambda \in \Lambda$ such that

$$|x - y| \in V$$

for every $x, y \in A_\lambda$.

A CAUCHY system $A_\lambda (\lambda \in \Lambda)$ is said to be convergent to a limit $a \in R$, if for any $V \in \mathfrak{B}$ we can find $\lambda \in \Lambda$ such that

$$|x - a| \in V$$

for every $x \in A_\lambda$.

If \mathfrak{B} is separative, then we see easily that the limit of a CAUCHY system is uniquely determined, if it is convergent.

We see easily by definition that for a basis \mathfrak{B} of \mathfrak{B}, a system of manifolds $A_\lambda (\lambda \in \Lambda)$ is a CAUCHY system by \mathfrak{B}, if and only if $\prod_{\nu=1}^{r_V} A_{\lambda\nu} \neq 0$ for every finite number of elements $\lambda, \nu \in \Lambda (\nu = 1, 2, \cdots, r_V)$ and for any $V \in \mathfrak{B}$ and $\varepsilon > 0$ we can find $\lambda \in \Lambda$ such that

$$||x - y||_V \leq \varepsilon$$

for every $x, y \in A_\lambda$.

Furthermore we see that a CAUCHY system $A_\lambda (\lambda \in \Lambda)$ is convergent to a limit $a \in R$, if and only if for any $V \in \mathfrak{B}$ and $\varepsilon > 0$ we can find $\lambda \in \Lambda$ such that

$$||x - a||_V \leq \varepsilon$$

for every $x \in A_\lambda$.

By virtue of the formula §2(5), we can prove easily

Theorem 3.1. For two CAUCHY system A_λ and $B_\lambda (\lambda \in \Lambda)$, all $A_\lambda \setminus B_\lambda$, $A_\lambda \cap B_\lambda$, and $A_\lambda \times B_\lambda (\lambda \in \Lambda)$ are CAUCHY systems, furthermore, if A_λ and
Linear topologies on semi-ordered linear spaces

93

$B_{\lambda}(\lambda \in \Lambda)$ are convergent respectively to limits a and b, then $A_{\lambda} \cup B_{\lambda}$, $A_{\lambda} \cap B_{\lambda}$, and $A_{\lambda} \times B_{\lambda}(\lambda \in \Lambda)$ are convergent to $a \cup b$, $a \cap b$, and $a+b$ respectively.

We see further easily

Theorem 3.2. For a CAUCHY system $A_{\lambda}(\lambda \in \Lambda)$, all $A_{\lambda}^{+}, A_{\lambda}^{-}, |A_{\lambda}|, aA_{\lambda}$, and $[N]A_{\lambda}(\lambda \in \Lambda)$ are CAUCHY systems for every real number a and projection operator $[N]$. If a CAUCHY system $A_{\lambda}(\lambda \in \Lambda)$ is convergent to a limit a, then $A_{\lambda}^{+}, A_{\lambda}^{-}, |A_{\lambda}|, aA_{\lambda}$, and $[N]A_{\lambda}(\lambda \in \Lambda)$ are convergent to $a^{+}, a^{-}, |a|, aa$, and $[N]a$ respectively.

A manifold A of R is said to be complete by a linear topology \mathcal{B}, if every CAUCHY system $A_{\lambda} \subset A(\lambda \in \Lambda)$ is convergent to a limit $a \in A$. With this definition we have

Theorem 3.3. For every positive element $a \in R$, $\{x : |x| \leqq a\}$ is complete by \mathcal{B}.

Proof. We shall consider firstly the case where \mathcal{B} is sequential and separative. Let $V_{\nu} \in \mathcal{B}(\nu = 1, 2, \cdots)$ be a decreasing basis of \mathcal{B}. We set

$A = \{x : |x| \leqq a\}$

and assume that $A_{\lambda} \subset A(\lambda \in \Lambda)$ is a CAUCHY system by \mathcal{B}. Then we can find $\lambda_{\nu} \in \Lambda(\nu = 1, 1, \cdots)$ such that

$\sup_{x, y \in A_{\lambda}} \|x - y\|_{\nu} \leqq \frac{1}{\nu}(\nu = 1, 2, \cdots).$

For such $\lambda_{\nu} \in \Lambda(\nu = 1, 2, \cdots)$ we can find

$a_{\mu} \in \prod_{\nu = 1}^{\mu} A_{\lambda, \nu}(\mu = 1, 2, \cdots).$

As $V_{\nu+1} \times V_{\nu+1} \subset V_{\nu}$, we conclude by the formula §2(5)

$\left\| \left(\sum_{\nu = 1}^{\sigma} |a_{\nu+1} - a_{\nu}| \right) \right\|_{V_{\mu - 1}} \leqq \max_{\mu \leqq \nu \leqq \sigma} \|a_{\nu+1} - a_{\nu}\|_{\nu} \leqq \frac{1}{\mu}.$

On the other hand we have

$\sigma_{\nu = 1}^{\sigma} a_{\nu} - a_{\mu} = \sigma_{\nu = 1}^{\sigma} (a_{\nu} - a_{\mu}) \leqq \sigma_{\nu = 1}^{\sigma} |a_{\nu+1} - a_{\nu}|,$

and hence $\left\| \sigma_{\nu = 1}^{\sigma} a_{\nu} - a_{\mu} \right\|_{V_{\mu - 1}} \leqq \frac{1}{\mu}$. This relation yields by 4) in §2

$\left\| \bigcup_{\nu = 1}^{\infty} a_{\nu} - a_{\mu} \right\|_{V_{\mu - 1}} \leqq \frac{1}{\mu}(\mu = 2, 3, \cdots).$

We obtain likewise

$\left\| a_{\mu} - \bigcap_{\nu = 1}^{\infty} a_{\nu} \right\|_{V_{\mu - 1}} \leqq \frac{1}{\mu}(\mu = 2, 3, \cdots).$
Consequently we have by the formula §2 (5)

\[\left\| \bigcup_{\nu=\mu}^{\infty} a_{\nu} - \bigcap_{\nu=\mu}^{\infty} a_{\nu} \right\|_{V_{\mu-B}} \leq \frac{1}{\mu} \quad (\mu=3, 4, \cdots). \]

Thus, putting \(l_{\mu} = \bigcup_{\nu=\mu}^{\infty} a_{\nu} - \bigcap_{\nu=\mu}^{\infty} a_{\nu} \), \(l = \bigcap_{\mu=1}^{\infty} l_{\mu} \), we obtain \(\|l\|_{V_{\mu-0}} \leq \frac{1}{\mu} \) for every \(\rho = 3, 4, \cdots \). By \(\S 2 \) (4), we conclude hence \(\|l\|_{V_{1}} \leq \|l\|_{V_{\mu}} = 0 \) for every \(\rho = 1, 2, \cdots \), and hence \(l = 0 \), as \(\mathcal{B} \) is separative by assumption. Therefore there exists \(a \in R \) such that \(\lim_{\nu \to \infty} a_{\nu} = a \), and naturally \(a \in A \). Furthermore we have

\[\|a - a_{\mu}\|_{V_{\mu-2}} \leq \frac{1}{\mu} \]

for every \(\mu = 3, 4, \cdots \), because \(\bigcup_{\nu=\mu}^{\infty} a_{\nu} \geq a \geq \bigcap_{\nu=\mu}^{\infty} a_{\nu} \). This relation shows that \(A_{\lambda} (\lambda \in \Lambda) \) is convergent to \(a \) by \(\mathcal{B} \).

Now we consider the general case. Let \(A_{\lambda} \subset A (\lambda \in \Lambda) \) be an arbitrary Cauchy system by \(\mathcal{B} \) and \(V_{\nu} \in \mathcal{B} (\nu=1, 2, \cdots) \) an arbitrary decreasing sequence. By virtue of Theorem 2.3, we can find a normal manifold \(N_{V_{1}, V_{2}, \cdots} \) of \(R \) such that the system \(\|x\|_{V_{\nu}} (\nu=1, 2, \cdots) \) is proper in \(N_{V_{1}, V_{2}, \cdots} \) and \(\|x\|_{V_{\nu}} = 0 \) for every \(x \in N_{V_{1}, V_{2}, \cdots} \) and \(\nu = 1, 2, \cdots \). Recalling Theorem 2.1, we can find then a linear topology \(\mathcal{B}_{V_{1}, V_{2}, \cdots} \) on \(N_{V_{1}, V_{2}, \cdots} \) such that \([N_{V_{1}, V_{2}, \cdots}] \mathcal{B}_{V_{1}, V_{2}, \cdots} A_{\lambda} (\lambda \in \Lambda) \) is a Cauchy system by \(\mathcal{B}_{V_{1}, V_{2}, \cdots} \), there exists uniquely a limit \(a \in [N_{V_{1}, V_{2}, \cdots}] A_{\lambda} (\lambda \in \Lambda) \), as proved just above.

Corresponding to every decreasing sequence \(V_{\nu} \in \mathcal{B} (\nu=1, 2, \cdots) \), we obtain thus uniquely a normal manifold \(N_{V_{1}, V_{2}, \cdots} \) and a limit \(a_{V_{1}, V_{2}, \cdots} \in [N_{V_{1}, V_{2}, \cdots}] A_{\lambda} (\lambda \in \Lambda) \). We see further by Theorem 3.2 that for every two decreasing sequences \(V_{\nu} \) and \(U_{\nu} \in \mathcal{B} (\nu=1, 2, \cdots) \), we have

\[[N_{V_{1}, V_{2}, \cdots}] [N_{U_{1}, U_{2}, \cdots}] a_{V_{1}, V_{2}, \cdots} = [N_{V_{1}, U_{2}, \cdots}] a_{V_{1}, U_{2}, \cdots}. \]

Therefore we can find \(a \in A \) such that

\[[N_{V_{1}, V_{2}, \cdots}] a = a_{V_{1}, V_{2}, \cdots} \]

for every decreasing sequence \(V_{\nu} \in \mathcal{B} (\nu=1, 2, \cdots) \). Such \(a \in A \) is a limit of \(A_{\lambda} (\lambda \in \Lambda) \). Because, for any \(V \in \mathcal{B} \) we can find a decreasing sequence \(V_{\nu} \in \mathcal{B} (\nu=1, 2, \cdots) \) such that \(V \supset V_{1} \times V_{1} \), and \(\lambda \in \Lambda \) such that

\[\sup_{x \in [N_{V_{1}, V_{2}, \cdots} A_{\lambda}]} \|x - a_{V_{1}, V_{2}, \cdots}\|_{V_{1}} \leq 1, \]
Linear topologies on semi-ordered linear spaces

and hence \(\sup_{x \in A_{\lambda}} \|[N_{V_{1}}, V_{\sim}] x - a\|_{V_{1}} \leq 1 \). As
\[
\|[N_{V_{1}}, V_{\sim}] x - a\|_{V_{1}} = 0,
\]
we obtain by §2(5)
\[
\sup_{x \in A_{\lambda}} \|x - a\|_{V} \leq 1,
\]
that is, \(|x - a| \in V \) for every \(x \in A_{\lambda} \). Therefore \(A \) is complete by \(\mathfrak{B} \).

Theorem 3.4. \(\{x : a \leq x \leq b\} \) is complete by every linear topology \(\mathfrak{B} \) for every two elements \(a \leq b \).

Proof. Putting \(A = \{x : |x| \leq |a| + |b|\} \), \(B = \{x : a \leq x \leq b\} \), we have obviously \(B \subset A \) and \(A \) is complete by \(\mathfrak{B} \) on account of Theorem 3.3. For a Cauchy system \(A_{\lambda} \subset B (\lambda \in \Lambda) \) there exists hence a limit \(c \in A \) of \(A_{\lambda} (\lambda \in \Lambda) \), and then we obtain by Theorem 3.1 that \((c \wedge a) \cap b \) is a limit of
\[
(A_{\lambda} \leftarrow a) \wedge b = A_{\lambda} (\lambda \in \Lambda),
\]
and it is evident that \((c \wedge a) \cap b \in B \). Therefore \(B \) is complete by \(\mathfrak{B} \).

§ 4. Topologically bounded manifolds

A manifold \(A \) of \(\mathbb{R} \) is said to be **topologically bound** by a linear topology \(\mathfrak{B} \), if
\[
\sup_{x \in A} \|x\|_{V} < +\infty \quad \text{for every } V \in \mathfrak{B}.
\]
With this definition, it is obvious by the formula §2(4) that a manifold \(A \) is topologically bounded by a linear topology \(\mathfrak{B} \), if and only if for a basis \(\mathfrak{B} \) of \(\mathfrak{B} \) we have
\[
\sup_{x \in A} \|x\|_{V} < +\infty \quad \text{for every } V \in \mathfrak{B}.
\]

We can prove easily by definition

Theorem 4.1. If a manifold \(A \) is topologically bounded by a linear topology \(\mathfrak{B} \), then all \(A^{+}, A^{-}, |A|, aA, [N] A \) are topologically bound by \(\mathfrak{B} \) for every real number \(a \) and projection operator \([N] \). If both manifolds \(A \) and \(B \) are topologically bounded by \(\mathfrak{B} \), then all \(A^{\wedge} B, A_{\wedge} B, \) and \(A \times B \) are topologically bounded by \(\mathfrak{B} \).

A manifold \(A \) of \(\mathbb{R} \) is said to be **order bound** or merely **bounded**, if we can find a positive element \(a \in \mathbb{R} \) such that \(|x| \leq a \) for every \(x \in A \). Every bounded manifold is obviously topologically bounded by every linear topology.

A linear topology \(\mathfrak{B} \) on \(\mathbb{R} \) is said to be **monotone complete**, if for any
topologically bounded manifold of positive elements $a_{\lambda}^{\uparrow}_{\lambda \in \Lambda}$, we can find $a \in R$ such that $a_{\lambda}^{\uparrow}_{\lambda \in \Lambda} a$.

Theorem 4.2. If a linear topology \mathfrak{B} on R is monotone complete, then R is complete by \mathfrak{B}.

Proof. Let $A_{\lambda} (\lambda \in \Lambda)$ be a Cauchy system by \mathfrak{B}. We suppose firstly that \mathfrak{B} is separative. As $A_{\lambda}^{+} (\lambda \in \Lambda)$ also is by Theorem 3.2 a Cauchy system, corresponding to every $x \geq 0$, we obtain uniquely by Theorem 3.3 a limit a_{x} of a Cauchy system $A_{\lambda}^{+} x (\lambda \in \Lambda)$. For this limit a_{x}, we have obviously by Theorem 3.1 $0 \leq a_{x}^{\uparrow}_{x \geq 0}$. Furthermore the system $a_{x} (x \geq 0)$ is topologically bounded by \mathfrak{B}. Because for any $V \in \mathfrak{B}$ we can find by definition $U \in \mathfrak{B}$ such that $U \times U \subset V$, and $\lambda \in \Lambda$ such that $\|y - z\|_{U} \leq 1$ for every $y, z \in A_{\lambda}^{+}$, and hence by §2(5) $\sup_{y \in A_{\lambda}^{+}} \|y\|_{\mathfrak{B}} < +\infty$.

For any $x \geq 0$ we $\|x \wedge y\|$ can find by definition, $\lambda \in \Lambda$ such that

$$\|a_{x} - z\|_{\mathfrak{B}} \leq 1 \quad \text{for every} \quad z \in A_{\lambda}^{+} x .$$

For an element $b \in A_{\lambda}^{+} A_{\lambda}^{+}$, we have then by §2(5)

$$\|a_{x}\|_{\mathfrak{B}} \leq \sup_{\lambda \in \Lambda} \|b_{\lambda} x\|_{\mathfrak{B}} \leq \sup_{\lambda \in \Lambda} \|b\|_{\mathfrak{B}} ,$$

and hence $\|a_{x}\|_{\mathfrak{B}} \leq \sup_{\lambda \in \Lambda} \|y\|_{\mathfrak{B}} \cdot v \leq \sup_{\lambda \in \Lambda} \|y\|_{\mathfrak{B}}$ for every $x \geq 0$.

Therefore there exists by assumption $a \in R$ such that $a_{x}^{\uparrow}_{x \geq 0} a$. As we have by Theorem 3.1

$$a_{x} \wedge y = a_{y \cap y} \quad \text{for every} \quad x, y \geq 0 ,$$

we obtain $a \wedge x = a_{x}$ for every $x \geq 0$. For any $V \in \mathfrak{B}$ we can find $U \in \mathfrak{B}$ such that $U \times U \subset V$, and further $\lambda \in \Lambda$ such that

$$\sup_{y \in A_{\lambda}^{+}} \|y - z\|_{U} \leq 1 .$$

Thus, for any $y \in A_{\lambda}^{+}$, putting $x = y \wedge a$, we can find $\lambda \in \Lambda$ such that

$$\sup_{\lambda \in \Lambda} \|z \wedge x - a_{x}\|_{\mathfrak{B}} = \sup_{\lambda \in \Lambda} \|z \wedge x - a_{x}\|_{\mathfrak{B}} \leq 1 ,$$

and for $z \in A_{\lambda}^{+} A_{\lambda}^{+}$, we have

$$\|y - z \wedge x\|_{U} = \|y \wedge x - z \wedge x\|_{U} \leq \|y - z\|_{U} \leq 1 .$$

Consequently we obtain by §2(5)

$$\|y - a\|_{\mathfrak{B}} \leq 1 \quad \text{for every} \quad y \in A_{\lambda}^{+} .$$

Therefore a is a limit of $A_{\lambda}^{+} (\lambda \in \Lambda)$. We obtain likewise a limit b of A_{λ}^{+}.
(λ ∈ Δ). Thus we see by Theorem 3.1 that α − β is a limit of \(A_λ (λ ∈ Δ) \).

In general, we can find by Theorem 2.3 a normal manifold \(N \) of \(R \), such that the system of pseudo-norms \(\|x\|_V (V ∈ ℱ) \) is proper in \(N \) and \(\|x\|_V = 0 \) for every \(x ∈ N^⊥ \) and \(V ∈ ℱ \). Then there exists a limit \(α ∈ [N] A_λ (λ ∈ Δ) \), as proved just above. This limit \(α \) also is a limit of \(A_λ (λ ∈ Δ) \), because for any \(V ∈ ℱ \) we can find \(U ∈ ℱ \) such that \(U × U ⊆ V \), and we have by §2 (5) for every \(x ∈ R \)

\[\|x − α\|_V ≤ ||[N] x − α||_V. \]

A linear topology \(ℱ \) on \(R \) is said to be complete, if \(R \) is complete by \(ℱ \). We can state then by Theorem 4.2 that every monotone complete linear topology is complete.

Theorem 4.3. If a linear topology \(ℱ \) on \(R \) is separative, convex, and complete, and a manifold \(A \) of \(R \) is topologically bounded by \(ℱ \), then we have for every positive vicinity \(W \)

\[\sup_{x ∈ A} \|x\|_W < +∞. \]

Proof. If \(\sup_{x ∈ A} \|x\|_W = +∞ \), then we can find \(x_ν ∈ A (ν = 1, 2, \cdots) \) such that \(\|x_ν\|_W ≥ ν 2^ν \) for every \(ν = 1, 2, \cdots \). As \(A \) is by assumption topologically bounded by \(ℱ \), we have obviously \(\sum_{ν=1}^{∞} \frac{1}{2^ν} \|x_ν\|_V < +∞ \) for every \(V ∈ ℱ \).

As \(ℱ \) is convex and complete by assumption, we can find \(α ∈ R \) such that

\[\lim_{μ → ∞} \left| \sum_{ν=1}^{μ} \frac{1}{2^ν} |x_ν| - α \right|_V = 0 \quad \text{for every } V ∈ ℱ. \]

As \(ℱ \) is separative by assumption, we conclude easily that \(α = \sum_{ν=1}^{∞} \frac{1}{2^ν} |x_ν| \), and hence we have

\[\|α\|_W ≥ \frac{1}{2^ν} \|x_ν\|_W ≥ ν \quad \text{for every } ν = 1, 2, \cdots, \]

contradicting \(\|α\|_W < +∞ \).

§ 5. Equivalence

A linear topology \(ℱ \) on \(R \) is said to be equivalent to a linear topology \(\Pi \) on \(R \), if \(ℱ \) has the same topologically bounded manifolds with \(\Pi \), that is, a manifold \(A \) is topologically bounded by \(ℱ \) if and only if \(A \) is so by \(\Pi \). With this definition, we have obviously

Theorem 5.1. If a linear topology \(ℱ \) is monotone complete, then every
linear topology equivalent to \(\mathfrak{B} \) is also monotone complete.

We shall say that a linear topology \(\mathfrak{B} \) on \(R \) is stronger than a linear topology \(\mathfrak{H} \) on \(R \), or that \(\mathfrak{H} \) is weaker than \(\mathfrak{B} \), if \(\mathfrak{B} \supseteq \mathfrak{H} \). With this definition we have obviously by Theorem 4.3.

Theorem 5.2. If a linear topology \(\mathfrak{B} \) is separative, convex, and complete, then every linear topology stronger than \(\mathfrak{B} \) is equivalent to \(\mathfrak{B} \).

By virtue of Theorem 1.1, we see easily that there exists uniquely a linear topology \(\mathfrak{B} \) of which the totality of convex vicinity in \(R \) is a basis. This linear topology \(\mathfrak{B} \) is called the strong topology of \(R \). With this definition, we have obviously that the strong topology of \(R \) is the strongest convex linear topology on \(R \), that is, the strong topology of \(R \) is stronger than every other convex linear topology on \(R \).

Recalling Theorem 5.2, we obtain at once

Theorem 5.3. If a linear topology \(\mathfrak{B} \) on \(R \) is separative, convex, and complete, then \(\mathfrak{B} \) is equivalent to the strong topology of \(R \).

Theorem 5.4. If a linear topology \(\mathfrak{B} \) on \(R \) is sequential and equivalent to a linear topology \(\mathfrak{H} \) on \(R \), then \(\mathfrak{B} \) is stronger than \(\mathfrak{H} \).

Proof. Let \(V_{\nu} \in \mathfrak{B} \) \((\nu=1, 2, \ldots)\) be a decreasing basis of \(\mathfrak{B} \). If \(\mathfrak{B} \) is not stronger than \(\mathfrak{H} \), then we can find \(U \in \mathfrak{H} \) such that \(U \in \mathfrak{B} \). For such \(U \), there is a sequence \(a_{\nu} \in R \) \((\nu=1, 2, \ldots)\) such that

\[
\nu U \ni a_{\nu} \in V_{\nu} \quad \text{for every } \nu=1, 2, \ldots,
\]

and hence we have by the formulas (2), (3) in §2

\[
\|a_{\nu}\|_{V_{\nu}} \leq 1, \quad \|a_{\nu}\|_{V} \geq \nu \quad \text{for every } \nu=1, 2, \ldots.
\]

Then \(\{a_{1}, a_{2}, \ldots\} \) is a boundedly \(\mathfrak{B} \) but not by \(\mathfrak{H} \); contradicting assumption.

On account of this Theorem 5.4, we conclude by Theorem 5.3.

Theorem 5.5. If a linear topology \(\mathfrak{B} \) on \(R \) is sequential, separative, convex, and complete, then \(\mathfrak{B} \) is the strong topology of \(R \).

§6. Continuous linear topologies

A pseudo-norm \(\|x\| \) on \(R \) is said to be continuous, if \(R \ni x_{\nu} \uparrow x, 0 \) implies \(\lim_{\nu \to \infty} \|x_{\nu}\| = 0 \). A linear topology \(\mathfrak{B} \) on \(R \) is said to be continuous, if the pseudo-norm \(\|x\|_{\nu} \) is continuous for every \(V \in \mathfrak{B} \). With this definition, we see at once by the formulas (3), (4) in §2 that \(\mathfrak{B} \) is continuous if and only if for a basis \(\mathfrak{B} \) of \(\mathfrak{B} \), the pseudo-norm \(\|x\|_{\nu} \) is continuous for every \(V \in \mathfrak{B} \).

Theorem 6.1. If a linear topology \(\mathfrak{B} \) on \(R \) is sequential, separative and
continuous, then \(R \) is superuniversally continuous, that is, for any system of positive elements \(a_\lambda \in R (\lambda \in \Lambda) \) we can find countable \(\lambda_\nu \in \Lambda (\nu=1,2,\cdots) \) such that
\[
\bigcap_{\nu=1}^\infty a_{\lambda_\nu} = \bigcap_{\lambda \in \Lambda} a_\lambda.
\]

Proof. Let \(V_\nu \in \mathfrak{B} (\nu=1,2,\cdots) \) be a decreasing basis of \(\mathfrak{B} \). If \(0 \leq x_\lambda \downarrow \lambda \in \Lambda \) implies then
\[
\inf_{\lambda \in \Lambda} \{ \sup_{\sigma \leq \lambda} ||x_\lambda - x_\sigma||_{V_\nu} \} = 0 \quad \text{for every } \nu=1,2,\cdots.
\]

Because, if \(0 \leq x_\lambda \downarrow \lambda \in \Lambda \) and
\[
\inf_{\lambda \in \Lambda} \{ \sup_{\sigma \leq \lambda} ||x_\lambda - x_\sigma||_{V_\nu} \} \geq \varepsilon > 0
\]
for some \(\nu \), then we can find \(\lambda_\mu \in \Lambda (\mu=1,2,\cdots) \) such that
\[
x_{\lambda_1} \geq x_{\lambda_2} \geq \cdots, \quad ||x_{\lambda_{\mu+1}} - x_{\lambda_\mu}||_{V_\nu} \geq \varepsilon \quad (\mu=1,2,\cdots).
\]
Then, putting \(x_0 = \bigcap_{\mu=1}^\infty x_{\lambda_\mu} \), we have \(x_{\lambda_{\mu+1}} - x_0 \downarrow \mu \geq 0 \), but
\[
||x_{\lambda_{\mu+1}} - x_0||_{V_\nu} \geq ||x_{\lambda_{\mu+1}} - x_{\lambda_{\mu+1}}||_{V_\nu} \geq \varepsilon
\]
for every \(\mu=1,2,\cdots \), contradicting the assumption that \(\mathfrak{B} \) is continuous.

Therefore for \(0 \leq x_\lambda \downarrow \lambda \in \Lambda \) we can find \(\lambda_\nu \in \Lambda (\nu=1,2,\cdots) \) such that \(x_{\lambda_\nu} \downarrow \nu = 0 \) and
\[
\sup_{\sigma \leq \lambda} ||x_{\lambda_{\nu}} - x_\sigma||_{V_\nu} \leq \frac{1}{2^\nu} \quad \text{for every } \nu=1,2,\cdots.
\]
Then, putting \(x_0 = \bigcap_{\nu=1}^\infty x_{\lambda_\nu} \), we have for every \(\sigma \in \Lambda \)
\[
||v_{\lambda_{\nu}} - x_0 ||_{V_\nu} \leq \frac{1}{2^\nu} \quad (\nu=1,2,\cdots),
\]
because \(x_{\lambda_{\nu}} - x_{\lambda_\mu} \cap x_\sigma \cup_{\mu=1}^\infty x_{\lambda_{\nu}} - x_0 \cap x_\sigma, \quad ||x_{\lambda_{\nu}} - x_{\lambda_\mu} \cap x_\sigma ||_{V_\nu} \leq \frac{1}{2^\nu} \) for \(\mu \geq \nu \).

Thus we obtain naturally for every \(\sigma \in \Lambda \)
\[
||x_0 - x_0 \cap x_\sigma||_{V_\nu} \leq \frac{1}{2^\nu} \quad (\nu=1,2,\cdots).
\]
As \(\mathfrak{B} \) is separative by assumption, we obtain hence \(x_0 - x_0 \cap x_\sigma = 0 \), and consequently \(x_0 \leq x_\sigma \) for every \(\sigma \in \Lambda \). Therefore \(x_0 \downarrow \lambda \in \Lambda \).

Theorem 6.2. If a linear topology \(\mathfrak{B} \) on \(R \) is continuous, then \(a_\lambda \downarrow \lambda \in \Lambda 0 \) implies
\[
\inf_{\lambda \in \Lambda} ||a_\lambda||_{V} = 0 \quad \text{for every } V \in \mathfrak{B}.
\]

Proof. For any \(V \in \mathfrak{B} \) we can find a decreasing sequence \(V_\nu \in \mathfrak{B} (\nu=1,2,\cdots) \) such that \(V_1 \times V_1 \subset V \). For such \(V_\nu \in \mathfrak{B} (\nu=1,2,\cdots) \), we can
find by Theorem 2.3 a normal manifold N of R such that the system of pseudo-norms $\|x\|_{r_{\nu}} (\nu =1, 2, \cdots)$ is proper in N and $\|x\|_{r_{\nu}} = 0$ for every $x \in N^{\perp}$ and $\nu =1, 2, \cdots$. Then the linear topology on N, of which $\{x : \|x\|_{r_{\nu}} \leq 1, 0 \leq x \in N\} (\nu =1, 2, \cdots)$ is a basis, is obviously sequential, separative, and continuous. Thus N is superuniversally continuous by Theorem 6.1. Therefore, if $R \ni a_{\lambda} \downarrow \lambda e \Lambda 0$, then we can find $\lambda_{\mu} \in \Lambda (\mu =1, 2, \cdots)$ such that $\|N\|a_{\lambda_{\mu}} \downarrow_{yAl}^{\infty} 0$, and hence $\lim_{\mu \rightarrow \infty} \|\alpha_{\lambda_{\mu}}\|_{V_{1}} = 0$, because \mathfrak{B} is continuous by assumption.

As $\|N\|a_{\lambda_{\mu}} \downarrow_{yAl}^{\infty} 0$, we obtain hence by §2 (5)

$1 \leq \mu =1, 2, \cdots$.

Consequently we have $\lim \|a_{\lambda_{\mu}}\|_{r_{1}} = 0$. Thus we have naturally

$\inf \|a_{\lambda}\|_{r} = 0$.

Theorem 6.3. If a linear topology \mathfrak{B} on R is sequential, separative, continuous, and complete, then R is regularly complete, that is, for any double sequence $a_{\nu, \mu} \downarrow_{yAl}^{\infty} 0 (\mu =1, 2, \cdots)$, we can find $\nu_{\mu} (\mu =1, 2, \cdots)$ such that $\sum_{\mu=1}^{\infty} a_{\nu_{\mu}, \mu} \in V_{\sigma}$ is convergent.

Proof. Let $V_{1} \in \mathfrak{B} (\nu =1, 2, \cdots)$ be a decreasing basis of \mathfrak{B}. If $a_{\nu, \mu} \downarrow_{yAl}^{\infty} 0 (\mu =1, 2, \cdots)$, then we have

$\lim_{\nu \rightarrow \infty} \|a_{\nu, \mu}\|_{r_{\mu}} = 0$ for every $\mu =1, 2, \cdots$,

because \mathfrak{B} is continuous by assumption. Thus we can find $\nu_{\mu} (\mu =1, 2, \cdots)$ such that $a_{\nu_{\mu}, \mu} \in V_{\mu}$ is convergent. Then we have obviously

$\sum_{\mu=1}^{\infty} a_{\nu_{\mu}, \mu} \in V_{\sigma-1}$ for $\rho > \sigma$.

As \mathfrak{B} is complete and separative, we see easily that $\sum_{\mu=1}^{\infty} a_{\nu_{\mu}, \mu}$ is convergent. Therefore R is regularly complete.

§ 7. Linear functionals

Let \mathfrak{B} be a linear topology on R. A linear functional φ on R is said to be *topologically bounded* by \mathfrak{B}, if $\sup_{x \in A} |\varphi(x)| < + \infty$ for every topologically bounded manifold A.

For any positive element $a \in R$, $\{x : 0 \leq x \leq a\}$ is obviously topologically bounded by \mathfrak{B}. Thus we have
Theorem 7.1. If a linear functional \(\varphi \) on \(R \) is topologically bounded by \(\mathcal{B} \), then \(\varphi \) is bounded, that is,
\[
\sup_{0 \leq x \leq a} |\varphi(x)| < +\infty \quad \text{for every } a \geq 0.
\]

Conversely we have

Theorem 7.2. If a linear topology \(\mathcal{B} \) on \(R \) is separative, convex, and complete, then every bounded linear functional \(\varphi \) on \(R \) is topologically bounded by \(\mathcal{B} \).

Proof. Let \(\varphi \) be a positive linear functional on \(R \). If \(\varphi \) is not topologically bounded by \(\mathcal{B} \), then we can find a sequence \(a_{\nu} \geq 0 (\nu = 1, 2, \cdots) \) such that \(\{a_{\nu}, a_{\nu}, \cdots\} \) is topologically bounded, but
\[
\varphi(a_{\nu}) \geq \nu 2^{\nu} \quad (\nu = 1, 2, \cdots).
\]
Then we have obviously \(\sum_{\nu=1}^{\infty} \frac{1}{2^{\nu}} ||a_{\nu}||_{V} < +\infty \) for every \(V \in \mathcal{B} \). As \(\mathcal{B} \) is separative, convex, and complete by assumption, we obtain hence that \(\sum_{\nu=1}^{\infty} \frac{1}{2^{\nu}} a_{\nu} \) is convergent, and putting \(a = \sum_{\nu=1}^{\infty} \frac{1}{2^{\nu}} a_{\nu} \), we have that \(\varphi(a) \geq \varphi \left(\frac{1}{2^{\nu}} a_{\nu} \right) \geq \nu \) for every \(\nu = 1, 2, \cdots \), contradicting \(\varphi(a) < +\infty \).

A linear functional \(\varphi \) on \(R \) is said to be \textit{topologically continuous} by a linear topology \(\mathcal{B} \), if we can find \(V \in \mathcal{B} \) such that
\[
|\varphi(x)| \leq ||x||_{V} \quad \text{for every } x \in R.
\]
With this definition, we see at once by the formulas (3), (4) in §2 that a linear functional \(\varphi \) on \(R \) is topologically continuous by \(\mathcal{B} \), if and only if for a basis \(\mathcal{B} \) of \(\mathcal{B} \) we can find \(V \in \mathcal{B} \) and \(a > 0 \) such that
\[
|\varphi(x)| \leq a ||x||_{V} \quad \text{for every } x \in R.
\]
If a linear functional \(\varphi \) on \(R \) is topologically continuous by \(\mathcal{B} \), then \(\varphi \) is obviously by definition topologically bounded by \(\mathcal{B} \).

If a linear functional \(\varphi \) on \(R \) is \textit{universally continuous}, that is, if \(x_{\lambda} \downarrow 0 \) implies \(\inf_{\lambda} |\varphi(x_{\lambda})| = 0 \), then, putting
\[
V = \{x: \sup_{|y| \leq 1} |\varphi(y)| \leq 1, x \geq 0\},
\]
we see easily that \(V \) is a convex positive vicinity. Thus we have

Theorem 7.3. If a linear functional \(\varphi \) on \(R \) is universally continuous, then \(\varphi \) is topologically continuous by the strong topology of \(R \).

Recalling Theorem 6.2, we obtain immediately
Theorem 7.4. If a linear topology \(\mathfrak{B} \) on \(R \) is continuous, then every topologically continuous linear functional on \(R \) is universally continuous.

If a convex pseudo-norm \(||x|| \) on \(R \) is not continuous, then we can find a linear functional \(\varphi \) on \(R \) such that
\[
\sup_{|x|\leq 1} |\varphi(x)| < +\infty,
\]
but there is a sequence \(a_{\nu} \downarrow 0 \) for which we have \(\lim_{\nu \to +\infty} \varphi(a_{\nu}) > 0 \). (c.f. MSLS Theorem 31.10). Therefore we have

Theorem 7.5. For a convex linear topology \(\mathfrak{B} \) on \(R \), if every topologically continuous linear functional on \(R \) is continuous, then \(\mathfrak{B} \) is continuous.

§ 8. Reflexive linear topologies

Let \(R \) be a reflexive semi-ordered linear space and \(\overline{R} \) the conjugate space of \(R \). For any positive \(\overline{a} \in \overline{R} \), putting
\[
V_{\overline{a}} = \{ x : \overline{a}(x) \leq 1, \ x \geq 0 \},
\]
we obtain obviously a convex positive vicinity \(V_{\overline{a}} \). For this \(V_{\overline{a}} \) we have obviously
\[
||x||_{V_{\overline{a}}} = \overline{a}(|x|)
\]
for every \(x \in R \), because
\[
||x||_{V_{\overline{a}}} = \inf_{\xi \in V_{\overline{a}}} \frac{1}{\xi} = \inf_{\xi \leq 1} \frac{1}{\xi} = \overline{a}(|x|).
\]

Recalling Theorem 1.1, we see easily that there exists uniquely a linear topology \(\mathfrak{W} \) on \(R \) such that the system \(V_{\overline{a}} (0 \leq \overline{a} \in \overline{R}) \) is a basis of \(\mathfrak{W} \). This linear topology \(\mathfrak{W} \) is called the absolute weak topology of \(R \). With this definition we have

Theorem 8.1. The absolute weak topology \(\mathfrak{W} \) of \(R \) is separative, convex, continuous, and monotone complete.

Proof. It is evident by definition that \(\mathfrak{W} \) is separative, convex, and continuous. If a system of positive elements \(x_{\lambda} \uparrow_{\lambda \in \Lambda} \) is topologically bounded by \(\mathfrak{W} \), then we have by the formula (2)
\[
\sup_{\lambda \in \Lambda} \overline{a}(x_{\lambda}) = \sup_{\lambda \in \Lambda} ||x_{\lambda}||_{\overline{a}} < +\infty
\]
for every positive \(\overline{a} \in \overline{R} \). Therefore there exists \(a \in R \) such that \(x_{\lambda} \uparrow_{\lambda \in \Lambda} a \).
(c.f. MSLS. Theorem 24.4)

Theorem 8.2. A manifold \(A \) of \(R \) is topologically bounded by the absolute weak topology \(\mathfrak{W} \) if and only if \(A \) is weakly bounded, that is,
\[
\sup_{x \in A} |\overline{x}(x)| < +\infty \quad \text{for every } \overline{x} \in \overline{R}.
\]
Proof. If A is weakly bounded, then we have
\[\sup_{x \in A} \overline{a}(|x|) < +\infty \quad \text{for} \quad 0 \leq \overline{a} \in \overline{R} \]
(MSLS. Theorem 24.15). Thus we obtain by (2)
\[\sup_{x \in A} \|x\|_{\overline{a}} < +\infty \quad \text{for} \quad 0 \leq \overline{a} \in \overline{R} , \]
and hence A is topologically bounded by \mathfrak{B}. Conversely, if A is topologically bounded by \mathfrak{B}, then we have by (2)
\[\sup_{x \in A} |\overline{a}(x)| \leq \sup_{x \in A} |\overline{a}|(|x|) = \sup_{x \in A} \|x\|_{\overline{a}} < +\infty , \]
and hence A is weakly bounded.

Recalling Theorem 5.3, we obtain by Theorem 8.1

Theorem 8.3. The strong topology of R is separative and equivalent to the absolute weak topology of R.

A pseudo-norm $\|x\|$ on R is said to be reflexive, if for
\[\overline{A} = \{\overline{x} : \sup_{|x| \leq 1} |\overline{x}(x)| \leq 1\} , \]
we have $\|x\| = \sup_{x \in A} |\overline{x}(x)|$ for every $x \in R$. With this definition, we see at once that every reflexive pseudo-norm is convex.

Let \mathfrak{B} be the absolute weak topology of the conjugate space \overline{R}. For every topologically bounded manifold \overline{A} of \overline{R} by \mathfrak{B}, putting
\[V = \{x : |\overline{x}|(x) \leq 1 \quad \text{for every} \quad \overline{x} \in \overline{A}, x \geq 0\} , \]
we see easily that V is a positive vicinity in R and the pseudo-norm $\|x\|_V$ is reflexive.

Theorem 8.4. If a pseudo-norm $\|x\| (x \in R)$ is convex and continuous, then it is reflexive.

Proof. By virtue of Banach's extension theorem, for any $a \in R$ we can find a linear functional φ on R such that
\[\varphi(a) = \|a\| , \quad |\varphi(x)| \leq \|x\| \quad \text{for every} \quad x \in R . \]
As $\|x\| (x \in R)$ is convex and continuous by assumption, we see by Theorem 6.2 that φ is universally continuous, and hence $\varphi \in \overline{R}$. Furthermore, putting
\[\overline{A} = \{\overline{x} : \sup_{|x| \leq 1} |\overline{x}(x)| \leq 1\} , \]
we have obviously $\varphi \in \overline{A}$, and hence
\[\sup_{x \in \overline{A}} |\overline{x}(a)| \geq \varphi(a) = \|a\| . \]
On the other hand, it is evident that $||a|| \geq \sup_{x \in A} |\overline{x}(a)|$. Thus we conclude $||a|| = \sup_{x \in A} |\overline{x}(a)|$ for every $a \in R$, that is, the pseudo-norm $||x||$ ($x \in R$) is reflexive by definition.

A linear topology \mathfrak{B} on R is said to be reflexive, if there is a basis \mathfrak{B} of \mathfrak{B} such that $||x||_V$ is reflexive for every $V \in \mathfrak{B}$. With this definition, we have obviously by Theorem 8.4

Theorem 8.5. If a linear topology \mathfrak{B} on R is convex and continuous, then \mathfrak{B} is reflexive.

Consequently we obtain by Theorem 8.1

Theorem 8.6. The absolute weak topology of R is reflexive.

Theorem 8.7. If the strong topology of R is sequential, then it is reflexive.

Proof. Let $V_\nu (\nu = 1, 2, \cdots)$ be the convex decreasing basis of the strong topology of R. Putting

$$\overline{A}_\nu = \{\overline{x} : \sup_{z \in \overline{V}_\nu} \overline{\alpha}(z) \leq 1, \ 0 \leq \overline{x} \in \overline{R}\},$$

we see easily that every $\overline{A}_\nu (\nu = 1, 2, \cdots)$ is topologically bounded by the absolute weak topology \mathfrak{B} of \overline{R}. Thus, putting

$$U_\nu = \{x : \sup_{z \in \overline{A}_\nu} \overline{\alpha}(z) \leq 1, \ 0 \leq x \in R\},$$

we obtain a convex positive vicinity U_ν in R such that $||x||_{U_\nu}$ is reflexive. For any positive $\overline{a} \in \overline{R}$, putting

$$V_\overline{a} = \{x : \overline{\alpha}(x) \leq 1, \ 0 \leq x \in R\},$$

we obtain a convex vicinity $V_\overline{a}$ and hence we can find ν such that $V_\overline{a} \supset V_\nu$, because $V_\nu (\nu = 1, 2, \cdots)$ is a basis of the strong topology of R. For such ν, we have obviously $\overline{a} \in \overline{A}_\nu$, and consequently $U_\nu \subset V_\overline{a}$. Therefore the convex linear topology \mathfrak{B}, of which $U_\nu (\nu = 1, 2, \cdots)$ is a basis, is stronger than the absolute weak topology of R. Recalling Theorem 5.2, we see that \mathfrak{B} is monotone complete, and hence \mathfrak{B} coincides by Theorem 7.5 with the strong topology of R. Furthermore \mathfrak{B} is obviously reflexive. Consequently the strong topology of R is reflexive.

If a norm $||x||$ on R is complete, that is, if the linear topology \mathfrak{B}, of which $\{x : ||x|| \leq 1, \ 0 \leq x \in R\}$ is a basis, is complete, then \mathfrak{B} is by Theorem 5.5 the strong topology of R, and hence reflexive by Theorem 8.7. Therefore we obtain

Theorem 8.8. If there is a complete norm on R, then there exists a complete reflexive norm on R.