A GENERALIZATION OF THE THEOREM OF ORLICZ AND BIRNBAUM

By

Ichiro AMEMIYA

Orlicz and Birnbaum have proved in [1] that an Orlicz-space L_Φ is finite if and only if the function Φ satisfies the following condition for some $r > 0$:

$$\Phi(2t) \leq r\Phi(t) \quad \text{for every } t \geq t_0$$

This fact can be generalized for arbitrary monotone complete modulars on non-discrete spaces, and the modular $m(x)$ satisfying the corresponding condition is said to be semi-upper bounded, that is, by definition, if for some $\epsilon, r > 0$ we have

$$m(2x) \leq r m(x) \quad \text{for every } x \text{ such that } m(x) \geq \epsilon.$$

(Here always we can take ϵ arbitrarily small varying r).

It is obvious that in this case m is also uniformly finite.

In discrete spaces, a finite modular is not necessarily be semi-upper bounded nor uniformly finite, and we shall give the necessary and sufficient conditions for them.

In the sequel, R is a modularized semi-ordered linear space with the modular m which we suppose to be monotone complete throughout the paper.

1. A set U of R will be said to involve the modular m, if there exists $\epsilon > 0$ for which $m(x) \leq \epsilon$ implies $x \in U$. Such a set U must belong to every filtre which is order-convergent to 0, since m is order-continuous.

1) For the definition of the modular see H. Nakano [2].

2) The upper bonded modular was defined in [2]. The "conjugate" of "semi-upper bounded" is: for some ϵ, α, r such that $\epsilon > 0$ and $1 < \alpha < r$, we have $m(ax) \geq r m(x)$ for every x such that $m(x) \geq \epsilon$.

3) m is said to be uniformly finite if for every $r > 0$ we have

$$\sup_{||x|| \leq r} m(x) < +\infty,$$

where $||x||$ is the modular norm which is defined as $||x|| \leq 1$ is equivalent to $m(x) \leq 1$.

1) For the definition of the modular see H. Nakano [2].

2) The upper bonded modular was defined in [2]. The "conjugate" of "semi-upper bounded" is: for some ϵ, α, r such that $\epsilon > 0$ and $1 < \alpha < r$, we have $m(ax) \geq r m(x)$ for every x such that $m(x) \geq \epsilon$.

3) m is said to be uniformly finite if for every $r > 0$ we have

$$\sup_{||x|| \leq r} m(x) < +\infty,$$

where $||x||$ is the modular norm which is defined as $||x|| \leq 1$ is equivalent to $m(x) \leq 1$.

1) For the definition of the modular see H. Nakano [2].
Conversely, as the fact playing the fundamental roll in this paper, for every order-closed set U which belongs to every filtre order-convergent to 0, there exist mutually orthogonal normal manifolds $N_i(i=0,1,\cdots,n)$ such that $R=N_0+N_1+\cdots+N_n$, N_0 is finite-dimensional and the set $N_0+N_1\cap U+\cdots+N_n\cap U$ involves m.

The last statement is equivalent to say that $N_i\cap U$ involves m in the space N_i for every $i=1,2,\cdots,n$, so what is to prove is the existence of a normal manifold N in which $N\cap U$ involves m and which belongs to an arbitrarily given non-atomic maximal dual ideal of the Boolean algebra of all normal manifolds. Let this given ideal be \mathfrak{p} and suppose there exists no normal manifold in \mathfrak{p} satisfying the condition. Now we construct consecutively an orthogonal sequence of elements $x_{\nu}\in R (\nu=1,2,\cdots)$ such that $m(x_{\nu})\leq \frac{1}{2^\nu}$, $x_{\nu}\not\in U$, and $[x_1,x_2,\cdots x_{\nu}] R\in \mathfrak{p}$ for every $\nu=1,2,\cdots$. If $x_1,x_2,\cdots x_{\nu}$ had been taken, then we can find x in $(1-[x_1,x_2,\cdots x_{\nu}]) R$ such that $m(x)\leq \frac{1}{2^{\nu+1}}$ and $x\not\in U$, so we can put $x_{\nu+1}=[N]x^\nu$ where N is not in \mathfrak{p} and sufficiently large to keep $[N]x$ outside of U. The existence of such a sequence x_{ν} is, however, a contradiction since the monotone completeness of m implies the convergence of the series $\sum_{\nu=1}^\infty x_{\nu}$ and so x_{ν} is order-convergent to 0. Thus the proof was completed.

2. If there exists another modular m_i on R which is finite, then the set $\{x: m_i(x)\leq 1\}$ satisfies the condition of U in 1. Therefore making use of the same notations, there exist $N_i(i=0,1,\cdots,n)$ and since for every x in $N_1\cap U+N_2\cap U+\cdots+N_n\cap U$ we have obviously $m_i(x)\leq n$ and for some $r>0$, a set $N_{r}\{x: m_i(x)\leq r\}$ involves m in N_r, we see that a set $\{x: m_i(x)\leq a\}$ involves m for some $a>0$.

If m is itself finite, a modular $m_i(x)=m(rx)$ is also finite for every $r>0$, and hence for some ε and $a>0$, $m(x)\leq \varepsilon$ implies $m(2x)\leq a$.

3. Now we can prove the following

Theorem. Every monotone complete finite modular on a space without discrete part\(^5\) is semi-upper bounded and uniformly finite, and in the case there exists no complete element, the modular is upper bounded in some normal manifold different from $\{0\}$.

4) For a set $A\subset R$, $[A] R$ means the least normal manifold containing A and $[A]$ is its projection.

5) That is to say, there exist no atomic element $\neq 0$ in R.
Let $\varepsilon, \gamma > 0$ be such that $m(x) \leq 2\varepsilon$ implies $m(2x) \leq \varepsilon \gamma$, then every element x such that $m(x) > \varepsilon$ can be decomposed orthogonally as $x = x_1 + x_2 + \cdots + x_n$ such that $\varepsilon \leq m(x_i) \leq 2\varepsilon (i = 1, 2, \cdots, n)$ and hence we have $m(2x) \leq \gamma m(x)$ summing up the inequalities $m(2x_i) \leq \gamma \varepsilon \leq \gamma m(x_i)$. Therefore m is semi-upper bounded and fortiori uniformly finite.

Now we fix $\gamma > 0$, and for every normal manifold N, let $\varepsilon (N)$ be the least number of $\varepsilon \geq 0$ such that $m(x) \geq \varepsilon$ and $x \in N$ imply $m(2x) \leq \gamma m(x)$. We suppose γ is sufficiently large so that $\varepsilon (R)$ exists. For every orthogonal system of normal manifolds $N_\lambda (\lambda \in \Lambda)$, we have $\varepsilon (N_\lambda) > 0$ except a countable number of λ, because $\sum_{\lambda \in \Lambda} \varepsilon (N_\lambda) > \varepsilon (R)$ is a contradiction as easily be seen. Therefore if m is not upper bounded in every N, then we have $\varepsilon (N_\lambda) > 0$ for every $\lambda \in \Lambda$, that is, there exists no orthogonal decomposition of R into more than countable number of factors, and this is equivalent to the existence of complete element in our case. Thus the theorem was proved.

If m is moreover constant and the space has no complete element, then m is upper bounded. This particular case of the theorem was proved in [2] (Theorem. 55.10).

In general m is not upper bounded even for simple finite ORLICZ-spaces.

4. If the modular norm is continuous (in non-discrete case this is equivalent to say that m is finite), then every infinite orthogonal sequence $\{x_\nu\}$ for which $\{|x_\nu|\}$ has a non-zero lower bound is not order-bounded, as the same is true for every continuous norm. Here we shall show that the modular norm, in case it is continuous satisfies a stronger condition than above, that is, for every $\varepsilon > 0$ there exists an integer n such that the norm of the sum of n mutually orthogonal elements having their norm more than ε is always ≥ 1. To see that the existence of n as above for some $\varepsilon < 1$ is sufficient, because then for ε^n where m is an arbitrary integer we can take n^n in place of n. If the condition is satisfied in both normal manifolds N and M, then we can see easily that the same is also true in $N + M$. Since the sphere $\{x : ||x|| \leq \frac{1}{2}\}$ satisfies the condition of U in 1, and since the finite-dimensional case is trivial, we may restrict ourselves to the case that the sphere involves m, that is, for some $\delta > 0$, $m(x) \leq \delta$ implies $||x|| \leq \frac{1}{2}$. Then the sum of n mutually orthogonal elements whose norm are all
more than 1/2 has its modular more than nδ, so in case n > 1/δ, more than 1, that is, its norm is \(\geq 1 \).

5. In the sequel we shall deal with discrete spaces and for this we prefer the concrete treatment as follows: let \(\Lambda \) be an abstract set and for every \(\lambda \in \Lambda, \varphi_{\lambda} \) be a convex function satisfying the conditions of the modular on real number, \(R \) is the totality of real function \(x = \{ \xi_{\lambda} \} \) on \(\Lambda \) such that

\[
m(ax) = \sum_{\lambda \in \Lambda} \varphi_{\lambda}(a \xi_{\lambda}) < +\infty \quad \text{for some } a > 0.
\]

The modular \(m \) on \(R \) is defined by the equation above, and we can see easily that \(m \) is monotone complete.

Now we shall prove that \(m \) is semi-upper bounded if and only if \(m \) is finite and for some \(\varepsilon, r > 0, \varphi_{\lambda}(\xi) \geq \varepsilon \) implies \(\varphi_{\lambda}(2\xi) \leq r\varphi_{\lambda}(\xi) \) for every \(\lambda \in \Lambda \).

The necessity is obvious. To prove the sufficiency, we proceed as in the proof of the foregoing theorem. For the same \(\varepsilon, r > 0 \), though we can not, in general, decompose \(x \) into \(x_{i} \) such that \(\varepsilon \leq m(x_{i}) \leq 2\varepsilon \), the following decomposition is possible:

\[
x = x_{1} + x_{2} + \cdots + x_{n} + y_{1} + y_{2} + \cdots + y_{m} + z,
\]

where \(\varepsilon \leq m(x_{i}) \leq 2\varepsilon \), \(y_{j} (j=1,2,\cdots m) \) is atomic and \(m(y_{j}) \geq 2\varepsilon \) and \(m(z) \leq \varepsilon \). Then summing up the inequalities \(m(2x_{i}) \leq r m(x_{i}), m(2y_{j}) \leq r m(y_{j}) \) and \(m(2z) \leq \varepsilon r \leq r m(x) \) we have \(m(2x) \leq 2r m(x) \).

6. Concerning the uniformly finiteness of modulars on discrete spaces, we shall prove that \(m \) is uniformly finite if and only if \(m \) is finite and

\[
\sup_{\lambda \in \Lambda} \varphi_{\lambda}(\xi a_{\lambda}) < +\infty \quad \text{for every } \xi > 0,
\]

where \(a_{\lambda} \) is the number such that \(\varphi_{\lambda}(a_{\lambda}) = 1 \).

What is to prove is only the sufficiency. If \(m \) is finite, then the modular norm is continuous and so the result obtained in 4 is applicable. For every element \(x \) such that \(\|x\| \leq r \), we can decompose it orthogonally as

\[
x = x_{1} + x_{2} + \cdots + x_{n} + y_{1} + y_{2} + \cdots + y_{m} + z,
\]

where \(\frac{1}{2} \leq \|x_{i}\| \leq 1 (i=1,2,\cdots n), y_{j} (j=1,2,\cdots m) \) are atomic and \(\|y_{j}\| > 1 \),
and finally $||z|| < \frac{1}{2}$. In this case the number $n+m$ has an upper bound which depends only to r. If $y \equiv \{\eta_\lambda\}$ is atomic and $||y|| < r$, then $\eta_\lambda = 0$ except for one λ, say λ_0, and we have $\eta_\lambda < r a_\lambda$, or $m(y) < \varphi_\lambda(ra_\lambda)$. Therefore we have

$$m(x) \leq n + m \sup_{\lambda \in \Lambda} \varphi_\lambda(ra_\lambda) + 1,$$

and this completes the proof.

7. In both case 5 and 6, the conditions for φ_λ are not superfluous and this can be seen by the following fact which displays the essential difference between discrete space and non-discrete one.

For another system $\varphi_\lambda(\lambda \in \Lambda)$, if we have for every λ $\varphi_\lambda(\xi) = \psi_\lambda(\xi)$, for every ξ such that $\varphi_\lambda(\xi)$ or $\psi_\lambda(\xi) \leq 1$, then we obtain the same space R and in general a different modular $m_i(x) = \sum_{\lambda \in \Lambda} \varphi_\lambda(\xi_\lambda)$ which coinsides with $m(x)$ in case $m(x) \leq 1$, and so their modular norms are the same.

If m is finite and all φ_λ are finite, then m_i is also finite. Thus we can vary "larger part of values" of a given finite modular rather arbitrarily without the loss of the finiteness.

Contrarily in non-discrete spaces m is determined by its values on the set $\{x : m(x) \leq \varepsilon\}$ for whatever small $\varepsilon > 0$.

(September, 1954)

References
