<table>
<thead>
<tr>
<th>Title</th>
<th>MODULARS ON SEMI-Σ-ORDERED LINEAR SPACES I</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author(s)</td>
<td>Miyakawa, Michiyo; Nakano, Hidegorô</td>
</tr>
<tr>
<td>Citation</td>
<td>Journal of the Faculty of Science Hokkaido University. Ser. 1 Mathematics = 北海道大学理学部紀要, 13(2): 041-053</td>
</tr>
<tr>
<td>Issue Date</td>
<td>1956</td>
</tr>
<tr>
<td>Doc URL</td>
<td>http://hdl.handle.net/2115/55989</td>
</tr>
<tr>
<td>Type</td>
<td>bulletin (article)</td>
</tr>
<tr>
<td>File Information</td>
<td>JFSHIU_13_N2_041-053.pdf</td>
</tr>
</tbody>
</table>

Hokkaido University Collection of Scholarly and Academic Papers: HUSCAP
MODULARS ON SEMI-ORDERED LINEAR SPACES I

By

Michiyo MIYAKAWA and Hidegorô NAKANO

In an earlier paper [1], one of the authors defined modulars on linear spaces and discussed their properties: a functional $m(x)$ on a linear space R is said to be a modular on R, if

1) $m(0) = 0$;
2) $m(-a) = m(a)$ for every $a \in R$;
3) for any $a \in R$ we can find a positive number α such that $m(\alpha a) < +\infty$;
4) $m(\xi a) = 0$ for every positive number ξ implies $a = 0$;
5) $a + \beta = 1$, $a, \beta \geq 0$ implies for every $a, b \in R$ $m(\alpha a + \beta b) \leq \alpha m(a) + \beta m(b)$;
6) $m(a) = \sup_{0 \leq \xi < 1} m(\xi a)$ for every $a \in R$.

For universally continuous semi-ordered linear spaces R, modulars were considered with adding conditions: 7) $|a| \leq |b|$ implies $m(a) \leq m(b)$, 8) $|a| < |b| = 0$ implies $m(a + b) = m(a) + m(b)$, and 9) $0 \leq a_{\lambda} \uparrow \lambda \in \Lambda$ implies $m(a) = \sup_{\lambda \in \Lambda} m(a_{\lambda})$. (cf. [2])

In this paper we shall discuss modulars on lattice ordered linear spaces only with adding condition 7).

§1. Modulars on linear spaces

Firstly we shall give a rough sketch of the properties of modulars on linear spaces which are obtained in [1] and [3], and will be used in this paper. Let $m(x)$ ($x \in R$) be a modular on a linear space R. A linear functional $\bar{\alpha}(x)$ ($x \in R$) on R is said to be modular bounded, if we can find positive numbers α, β such that

$$\alpha \bar{\alpha}(x) \leq \beta + m(x)$$

for every $x \in R$.

The totality of modular bounded linear functionals on R also builds a linear space which will be called the modular associated space of R and denoted by \bar{R}. For each $\bar{a} \in \bar{R}$, putting
we obtain a modular \overline{m} on \overline{R}, which will be called the \textit{conjugate modular} of m. Then we have the reflexive relation:

$$m(a) = \sup_{\overline{x} \in \overline{R}} \{ \overline{\alpha}(a) - \overline{m}(\overline{x}) \} \quad (a \in R)$$

Putting

(1) \quad \left\| x \right\| = \inf_{m(x) \leq 1} \frac{1}{x} \quad (x \in R)

we obtain a norm on R, which will be called the \textit{second norm} of m. Concerning the second norm, we have

$$m(x) \leq \left\| x \right\| \quad \text{if} \quad \left\| x \right\| \leq 1,$$

$$m(x) \geq \left\| x \right\| \quad \text{if} \quad \left\| x \right\| \geq 1.$$

Putting

$$\| a \| = \sup_{\overline{m}(\overline{x}) \leq 1} | \overline{x}(a) | \quad (a \in R),$$

we also obtain another norm on R, which will be called the \textit{first norm} of m. Between the first and the second norms there is the relation:

$$\left\| x \right\| \leq \| x \| \leq 2 \left\| x \right\| \quad (x \in R).$$

The first norm also may be defined as

(2) \quad \left\| x \right\| = \inf_{\xi > 0} \frac{1 + m(\xi x)}{\xi} \quad (x \in R).

For the first and the second norm of the conjugate modular \overline{m} we have

$$\left\| x \right\| = \sup_{\| x \| \leq 1} | \overline{x}(x) |, \quad \left\| x \right\| = \sup_{\| x \| \leq 1} | \overline{x}(x) |$$

$$\left\| \overline{x} \right\| = \sup_{\| x \| \leq 1} | \overline{x}(x) |, \quad \left\| \overline{x} \right\| = \sup_{\| x \| \leq 1} | \overline{x}(x) | \quad (x \in R, \overline{x} \in \overline{R})).$$

A linear functional \overline{x} on R is modular bounded if and only if \overline{x} is norm bounded, that is,

$$\sup_{m(x) \leq 1} | \overline{x}(x) | < +\infty \quad (x \in R).$$

A sequence $x_{\nu} \in R \ (\nu = 1, 2, \cdots)$ is said to be \textit{modular convergent} to $x \in R$, if

$$\lim_{\nu \to \infty} m(\xi(x_{\nu} - x)) = 0 \quad \text{for every} \quad \xi > 0.$$
With this definition we have that a sequence \(x_\nu \in R \) \((\nu=1,2,\cdots)\) is modular convergent to \(x \in R \) if and only if it is norm convergent, that is,
\[
\lim_{\nu \to \infty} \|x_\nu - x\| = 0.
\]

A modular \(m \) on \(R \) is said to be complete, if
\[
\lim_{\nu,\mu \to \infty} m(\xi (x_\nu - x_\mu)) = 0 \text{ for every } \xi > 0
\]
implies the modular convergence of the sequence \(x_\nu \in R \) \((\nu=1,2,\cdots)\). With this definition, a modular \(m \) on \(R \) is complete if and only if the first or second norm of \(m \) is complete. The conjugate modular \(\overline{m} \) of any modular \(m \) on \(R \) is always complete on \(\overline{R} \).

From the postulate 5) we conclude easily for \(0 < \varepsilon \leq 1 \)
\[
(3) \quad m(x) \leq m(y) + \frac{\varepsilon}{1+\varepsilon} m((1+\varepsilon)y) + \frac{\varepsilon^2}{1+\varepsilon} m\left(\frac{1+\varepsilon}{\varepsilon^2} (x-y)\right).
\]

§ 2. Monotone modulars

Let \(R \) be a lattice ordered linear space. A modular \(m \) on \(R \) is said to be monotone if \(|x| \leq |y| \) implies \(m(x) \leq m(y) \). With this definition we have obviously by the formulas (1) and (2) in §1 that if a modular \(m \) on \(R \) is monotone, then both the first and the second norm of \(m \) are monotone too, that is, \(|x| \leq |y| \) implies \(\|x\| \leq \|y\| \) and \(\|x\| \leq \|y\| \).

A modular \(m \) on \(R \) is said to be upper semi-continuous, if \(m \) is monotone and \(0 \leq x_\lambda \uparrow \lambda \in \Lambda \) \(x \) implies
\[
m(x) = \sup_{\lambda \in \Lambda} m(x_\lambda).
\]

Theorem 2.1. If a modular \(m \) on \(R \) is upper semi-continuous, then the second norm of \(m \) is semi-continuous, that is, \(0 \leq x_\lambda \downarrow \lambda \in \Lambda \) \(x \) implies \(\sup_{\lambda \in \Lambda} \|x_\lambda\| = \|x\| \).

Proof. If \(0 \leq x_\lambda \uparrow \lambda \in \Lambda \) \(x \) and \(\sup_{\lambda \in \Lambda} \|x_\lambda\| < \|x\| \), then we can find a positive number \(\alpha \) such that
\[
\sup_{\lambda \in \Lambda} \|ax_\lambda\| < 1 < \|ax\|.
\]

Thus we have for such \(\alpha \)
\[
\sup_{\lambda \in \Lambda} m(ax_\lambda) \leq 1 < m(ax), \quad 0 \leq ax_\lambda \downarrow \lambda \in \Lambda \ ax.
\]

Therefore we obtain our assertion.

A modular \(m \) on \(R \) is said to be lower semi-continuous, if \(m \) is monotone and \(x_\lambda \downarrow \lambda \in \Lambda \) \(0 \), \(m(x_\lambda) < +\infty \) for every \(\lambda \in \Lambda \) implies \(\inf_{\lambda \in \Lambda} m(x_\lambda) = 0 \). If a
modular m on R is upper and lower semi-continuous simultaneously, then m is said to be semi-continuous.

A modular m on R is said to be continuous, if m is monotone and $x_{\lambda} \downarrow_{\lambda \in \Lambda} 0$ implies always $\inf_{\lambda \in \Lambda} m(x_{\lambda}) = 0$.

Theorem 2.2. Every continuous modular is semi-continuous.

Proof. If a modular m on R is continuous, then m is obviously lower semi-continuous by definition. Since m is monotone, we have for $0 \leq x_{\lambda} \downarrow_{\lambda \in \Lambda} x \in R$.

\[\sup_{\lambda \in \Lambda} m(x_{\lambda}) \leq m(x) \]

On the other hand we have by the formula (3) for $0 < \varepsilon \leq 1$

\[m\left(\frac{1}{1+\varepsilon} x\right) \leq m\left(\frac{1}{1+\varepsilon} x_{\lambda}\right) + \frac{\varepsilon}{1+\varepsilon} m(x_{\lambda}) + \frac{\varepsilon^{2}}{1+\varepsilon} m\left(\frac{1}{\varepsilon^{2}} (x-x_{\lambda})\right) \]

\[\leq \frac{1+2\varepsilon}{1+\varepsilon} \sup_{\lambda \in \Lambda} m(x_{\lambda}) + \frac{\varepsilon}{1+\varepsilon} m\left(\frac{1}{\varepsilon^{2}} (x-x_{\lambda})\right). \]

Since $\frac{1}{\varepsilon^{2}} (x-x_{\lambda}) \downarrow_{\lambda \in \Lambda} 0$, we obtain by assumption

\[m\left(\frac{1}{1+\varepsilon} x\right) \leq \frac{1+2\varepsilon}{1+\varepsilon} \sup_{\lambda \in \Lambda} m(x_{\lambda}). \]

This relation yields $m(x) \leq \sup_{\lambda \in \Lambda} m(x)$, because $\sup_{\lambda \in \Lambda} \frac{1}{1+\varepsilon} x = m(x)$ by the postulate 6). Therefore m is upper semi-continuous too.

Theorem 2.3. A monotone modular m on R is continuous, if and only if the first or the second norm of m is continuous: $x_{\lambda} \downarrow_{\lambda \in \Lambda} 0$ implies

\[\inf_{\lambda \in \Lambda} \|x\| = 0 \quad \text{or} \quad \inf_{\lambda \in \Lambda} \|x\| = 0. \]

Proof. It is obvious that $\inf_{\lambda \in \Lambda} \|x_{\lambda}\| = 0$ is equivalent to $\inf_{\lambda \in \Lambda} \|x_{\lambda}\| = 0$. If m is continuous, then for $x_{\lambda} \downarrow_{\lambda \in \Lambda} 0$ we have $x_{\lambda} \downarrow_{\lambda \in \Lambda} 0$ for every $\nu = 1, 2, \cdots$, and hence we can find $\lambda_{\nu} \in \Lambda$ ($\nu = 1, 2, \cdots$) such that $m(x_{\lambda_{\nu}}) \leq 1$ ($\nu = 1, 2, \cdots$). Then we have $\|\nu x_{\lambda_{\nu}}\| \leq 1$, namely $\|x_{\lambda_{\nu}}\| \leq \frac{1}{\nu}$ for every $\nu = 1, 2, \cdots$, and this relation yields $\inf_{\lambda \in \Lambda} \|x_{\lambda}\| = 0$. Thus the second norm of m is continuous.

Conversely, if the second norm of m is continuous, then for $x_{\lambda} \downarrow_{\lambda \in \Lambda} 0$ we can find $\lambda_{\nu} \in \Lambda$ ($\nu = 1, 2, \cdots$) such that $\|x_{\lambda_{\nu}}\| \leq 1$, and hence

\[m(x_{\lambda_{\nu}}) \leq \frac{1}{\nu} m(\nu x_{\lambda_{\nu}}) \leq \frac{1}{\nu}. \]
for every $\nu=1,2,\cdots$. This relation yields $\inf_{\lambda \in \Lambda} m(x_{\lambda}) = 0$. Thus m is continuous by definition.

A monotone modular m on R is said to be monotone complete, if

$$0 \leq x_{\lambda} \uparrow_{\lambda \in \Lambda}, \quad \sup_{\lambda \in \Lambda} m(x_{\lambda}) < +\infty$$

implies the existence of $\bigcup_{\lambda \in \Lambda} x_{\lambda}$. If m is monotone complete, then R must be universally continuous, because $0 \leq x_{\lambda} \uparrow_{\lambda \in \Lambda}, x_{\lambda} \leq x (\lambda \in \Lambda)$ implies $\sup_{\lambda \in \Lambda} m(ax_{\lambda}) < +\infty$ for some positive number a such that $m(ax) < +\infty$.

Theorem 2.4. A monotone modular m on R is monotone complete if and only if the first or the second norm of m is monotone complete.

Proof. If $\sup_{\lambda \in \Lambda} m(x_{\lambda}) \leq a$ for some $a > 1$, then we have

$$m\left(\frac{1}{a} x_{\lambda}\right) \leq \frac{1}{a} m(x_{\lambda}) \leq 1$$

for every $\lambda \in \Lambda$

and hence $\sup_{\lambda \in \Lambda} \|x_{\lambda}\| \leq 1$, that is, $\sup_{\lambda \in \Lambda} \|x_{\lambda}\| \leq a$. Conversely if $\sup_{\lambda \in \Lambda} \|x_{\lambda}\| \leq a$ for some $a > 0$, then we have

$$\sup_{\lambda \in \Lambda} m\left(\frac{1}{a} x_{\lambda}\right) \leq 1.$$

Therefore we can conclude our assertion.

Theorem 2.5. For any monotone modular m on R, its conjugate modular \overline{m} is upper semi-continuous and monotone complete.

Proof. The modular associated space \overline{R} of R is always universally continuous. (cf. [2]) The conjugate modular \overline{m} is obviously monotone by definition. If $0 \leq x_{\lambda} \uparrow_{\lambda \in \Lambda} x$, then we have

$$\overline{m}(x) = \sup_{x \in R} \{x - m(x)\} = \sup_{0 \leq x \in R} \{\sup_{\lambda \in \Lambda} x_{\lambda}(x) - m(x)\}$$

$$= \sup_{0 \leq x \in R} \{\sup_{\lambda \in \Lambda} (x_{\lambda}(x) - m(x))\} = \sup_{\lambda \in \Lambda} \overline{m}(x_{\lambda}).$$

Thus \overline{m} is upper semi-continuous. The first norm of \overline{m} is the conjugate norm of the second norm of m, and hence monotone complete. (cf. [2]) Thus \overline{m} is monotone complete by Theorem 2.4.

§ 3. Reflexivity of upper semi-continuous modulars

Now we suppose that R is a universally continuous linear space and m is a monotone modular on R. The totality of universally continuous linear functionals on R, which are modular bounded, is called
the modular conjugate space of R and denoted by \bar{R}. \bar{R} is a normal manifold of the modular associated space \bar{R} of R. If m is continuous, then the second norm of m also is continuous by Theorem 2.3, and hence $\bar{R} = R$.

Theorem 3.1. If R is semi-regular and m is upper semi-continuous, then m is reflexive, that is, we have for every $x \in R$

$$m(x) = \sup_{\bar{x} \in \bar{R}} \{ \bar{x}(x) - \overline{m(\bar{x})} \}$$

Proof. For any $0 \neq \bar{a} \in \bar{R}$ and $\nu=1,2,\ldots$, putting

$$m_{\nu}(x) = \inf_{|x|=|y|+|z|} \max \{ m(y), 2^\nu |\bar{a}|(|z|) \}$$

for $x \in [\bar{a}]R$, we obtain a monotone modular m_{ν} on $[\bar{a}]R$. Indeed we see easily that m_{ν} satisfies the all postulates except for 4). If $m_{\nu}(x)=0$ and $x \in [\bar{a}]R$, then we can find $0 \leq y_\mu, z_\mu \in R (\mu=1,2,\ldots)$ such that

$$|x| = y_\mu + z_\mu.$$

Max $\{ m(y_\mu), 2^\nu |\bar{a}|(z_\mu) \} \leq \frac{1}{2^{\nu\mu}}$

and putting $u_\mu = \cup z_\mu (\mu=1,2,\ldots)$, we have

$$2^\nu |\bar{a}|(u_\mu) \leq \frac{1}{2^{\nu\mu}} (\mu=1,2,\ldots)$$

and hence $2^\nu |\bar{a}|(\bigcap_{\mu=1}^\infty u_\mu) = 0$. This relation yields $\bigcap_{\mu=1}^\infty u_\mu = 0$, that is, $u_\mu \downarrow_{\mu=1}^\infty 0$. Thus we have $|x| - u_\mu \uparrow_{\mu=1}^\infty |x|$ and

$$m(|x| - u_\mu) \leq m(y_\mu) \leq \frac{1}{2^{\nu\mu}} (\mu=1,2,\ldots).$$

Therefore we obtain $m(x)=0$, because m is upper semi-continuous by assumption, and we conclude that $m_{\nu}(x)=0$ and $x \in [\bar{a}]R$ implies $m(x)=0$. Consequently the postulate 4) also is satisfied.

The modular m_{ν} on $[\bar{a}]R$ is continuous for every $\nu=1,2,\ldots$, because we have obviously

$$m_{\nu}(x) \leq 2^\nu |\bar{a}|(|x|)$$

for every $x \in [\bar{a}]R$.

Thus the modular associated space \bar{R}_ν of $[\bar{a}]R$ by m_{ν} coincides with the modular conjugate space of $[\bar{a}]R$ by m_{ν} and hence \bar{R}_ν is included in the modular conjugate space \bar{R} of R by m, because we have obviously

$$m_{\nu}(x) \leq m(x)$$

for every $x \in [\bar{a}]R$.

Therefore we have for every $x \in [\bar{a}]R$
Modulars on Semi-ordered Linear Spaces

\[m_\nu(x) = \sup_{\bar{x} \in \bar{R}_\nu} \{ \bar{x}(x) - m_\nu(\bar{x}) \} \leq \sup_{x \in [a]R} \{ \bar{x}(x) - m_\nu(x) \} = m_\nu(\bar{x}). \]

because we have for \(\bar{x} \in \bar{R}_\nu \)

\[m(\bar{x}) = \sup_{x \in [a]R} \{ \bar{x}(x) - m(x) \} \leq \sup_{x \in [a]R} \{ \bar{x}(x) - m_\nu(x) \} = m_\nu(\bar{x}). \]

On the other hand we have

\[\lim_{\nu \to \infty} m_\nu(x) = m(x) \quad \text{for every } x \in [\bar{a}]R. \]

Because, for any \(x \in [\bar{a}]R \) we can find \(0 \leq y_\nu, z_\nu \in R (\nu = 1, 2, \ldots) \) such that

\[|x| = y_\nu + z_\nu, \quad m(y_\nu) \leq m_\nu(x) + \frac{1}{2^\nu}, \quad 2^\nu |a| (z_\nu) \leq m_\nu(x) + \frac{1}{2^\nu}. \]

Then putting \(u_\nu = \bigcup_{\rho \geq \nu} z_\rho (\nu = 1, 2, \ldots) \), we conclude \(u_\nu \downarrow \nu = 1 \infty 0 \) and

\[m(|x| - u_\nu) \leq m(y_\nu) \leq m_\nu(x) + \frac{1}{2^\nu} \leq m(x) + \frac{1}{2^\nu}, \]

as obtained above. This relation yields \(m(x) = \lim_{\nu \to \infty} m_\nu(x) \). Therefore we conclude

\[m(x) \leq \sup_{x \in R} \{ \bar{x}(x) - m(\bar{x}) \} \quad \text{for every } x \in [\bar{a}]R. \]

Since \(R \) is semi-regular by assumption, we have \([\bar{a}]x \uparrow [\bar{a}] \in R \), and hence we obtain furthermore

\[m(x) \leq \sup_{x \in R} \{ \bar{x}(x) - m(\bar{x}) \} \quad \text{for every } x \in R. \]

On the other hand it is obvious by definition

\[m(x) \geq \sup_{x \in R} \{ \bar{x}(x) - m(\bar{x}) \} \quad \text{for every } x \in R. \]

Thus we conclude our assertion.

Recalling Theorem 2.4, we obtain immediately

Theorem 3.2. If \(R \) is semi-regular and \(m \) is upper semi-continuous and monotone complete, then \(R \) is reflexive and the modular conjugate space of \(R \) by \(m \) coincides with the conjugate space of \(R \).

\[\S \text{4. Semi-additive modulars} \]

A modular \(m \) on a lattice ordered linear space \(R \) is said to be upper semi-additive, if \(m \) is monotone and

\[m(a + b) \geq m(a) + m(b) \quad \text{for } 0 \leq a, b \in R. \]

Theorem 4.1. If an upper semi-additive modular \(m \) is upper semi-
continuous, then \(m \) is lower semi-continuous, and hence semi-continuous.

Proof. For \(x_{\lambda} \downarrow \lambda \in A, m(x_{\lambda}) < +\infty (\lambda \in A) \) we have

\[
m(x_{\lambda}) \leq m(x_{\lambda}) - m(x_{\lambda} - x_{\lambda}),
\]

for \(x_{\lambda} \leq x_{\lambda} \), because \(m \) is upper semi-additive by assumption. Since

\[
x_{\lambda} - x_{\lambda} \uparrow x_{\lambda} \leftarrow x_{\lambda} \\
\]

and \(m \) is upper semi-continuous by assumption, we have

\[
\sup_{x \leq x_{\lambda}} m(x_{\lambda} - x_{\lambda}) = m(x_{\lambda}).
\]

Thus we obtain \(m(x_{\lambda}) \downarrow \lambda \in A, 0 \).

A modular \(m \) on \(R \) is said to be lower semi-additive, if \(m \) is monotone and

\[
m(a \cdot b) \leq m(a) + m(b) \quad \text{for} \quad 0 \leq a, b \in R.
\]

A modular \(m \) on \(R \) is said to be additive, if \(m \) is upper and lower semi-additive simultaneously. Additive modulars are discussed in detail already in [2]. When \(R \) is universally continuous, if a modular \(m \) on \(R \) is upper semi-continuous and

\[
m(a + b) = m(a) + m(b) \quad \text{for} \quad a \leftrightarrow b = 0,
\]

then \(m \) is additive. (cf. [2])

Theorem 4.2. The conjugate modulars of the upper semi-additive modulars are lower semi-additive, and the conjugate modulars of the lower semi-additive modulars are upper semi-additive.

Proof. If a modular \(m \) on \(R \) is upper semi-additive, then for the conjugate modular \(\overline{m} \) of \(m \) and the modular associated space \(\overline{R} \) of \(R \) we have by definition for \(0 \leq x, y \in \overline{R} \)

\[
\overline{m}(x) + \overline{m}(y) = \sup_{x, y \in \overline{R}} \{ x(x) + y(y) - m(x) - m(y) \}
\]

\[
\geq \sup_{0 \leq x, y \in R} \sup_{a, y \geq 0} \{ x(a) + y(y) - m(x) - m(y) \}
\]

\[
= \sup_{a \in R} \{ x(a) - m(x) \} = \overline{m}(x),
\]

and hence \(\overline{m} \) is lower semi-additive by definition. If \(m \) is lower semi-additive, then we have by definition for \(0 \leq x, y \in \overline{R} \)

\[
\overline{m}(x) + \overline{m}(y) = \sup_{0 \leq x, y \in R} \{ x(x) + y(y) - m(x) - m(y) \}
\]

\[
\leq \sup_{0 \leq x, y \in R} \{ x(x) + y(y) - m(x) - m(y) \}
\]
Modulars on Semi-ordered Linear Spaces

\[\sup_{x \in R} \{ \bar{x}(z) + \bar{y}(z) - m(z) \} = \bar{m}(\bar{x} + \bar{y}) , \]

and hence \(\bar{m} \) is upper semi-additive by definition.

§ 5. Bimodulars

Let \(R, S \) be two lattice ordered linear spaces. A functional \(M(x, y) \) \((x \in R, y \in S)\) is said to be a bimodular, if \(M(x, y) \) is an additive upper semi-continuous modular on \(R \) for every fixed \(0 \leq y \in S \),

\[
M(x, |y_1| + |y_2|) = M(x, y_1) + M(x, y_2),
\]

and for any \(x \in R \) we can find a positive number \(\alpha \) such that

\[
M(\alpha x, y) < +\infty \quad \text{for every } y \in S.
\]

A bimodular \(M(x, y) (x \in R, y \in S) \) is said to be finite, if

\[
M(x, y) < +\infty \quad \text{for every } x \in R, y \in S.
\]

If \(S \) is a normed space and complete, then putting

\[
m(x) = \sup_{\|y\| \leq 1} M(x, y) \quad (x \in R, y \in S),
\]

we obtain a modular \(m \) on \(R \). This modular \(m \) is said to be a norm-modular of \(M \) by the norm of \(S \).

Theorem 5.1. Every norm-modular of a bimodular \(M(x, y) (x \in R, y \in S) \) is lower semi-additive and upper semi-continuous.

Proof. For \(0 \leq x_1, x_2 \in R \) we have by definition

\[
m(x_1 - x_2) = \sup_{\|y\| \leq 1} M(x_1 - x_2, y)
\]

\[
\leq \sup_{\|y\| \leq 1} M(x_1, y) + \sup_{\|y\| \leq 1} M(x_2, y) = m(x_1) + m(x_2),
\]

because \(M(x_1 - x_2, y) \leq M(x_1, y) + M(x_2, y) \). Thus the norm-modular \(m \) is lower semi-additive. For \(0 \leq x_{\lambda} \rfloor_{\lambda \in \Lambda} x \) we have by definition

\[
m(x) = \sup_{\|y\| \leq 1} M(x, y) = \sup \{ \sup_{\|y\| \leq 1} M(x_{\lambda}, y) \}
\]

\[
= \sup_{\lambda \in \Lambda} \{ \sup_{\|y\| \leq 1} M(x_{\lambda}, y) \} = \sup_{\lambda \in \Lambda} m(x_{\lambda}).
\]

Thus the norm-modular \(m \) is upper semi-continuous by definition.

Theorem 5.2. If a bimodular \(M(x, y) (x \in R, y \in S) \) is finite, then the norm-modular of \(M \) is finite.

Proof. For each \(x \in R \), since \(M(x, y) < +\infty \) by assumption, putting
$x(y) = M(x, y^+) - M(x, y^-) \quad (y \in S)$

we obtain a positive linear functional x on S. Since the norm of S is complete by assumption, this linear functional x on S is norm bounded, and hence

$$\sup_{\|y\| \leq 1} M(x, y) < +\infty \quad \text{for every } x \in R.$$

Thus the norm-modular of M is finite by definition.

For an additive complete modular m_s on S, putting

$$m(x) = \sup_{y \in S} \{M(x, y) - m_s(y)\} \quad (x \in R)$$

we obtain a monotone modular m on R. This modular m on R is said to be the double-modular of M by m_s.

Theorem 5.3. Every double-modular of a bimodular $M(x, y) (x \in R, y \in S)$ is upper semi-additive and semi-continuous.

Proof. For $0 \leq x_1, x_2 \in R$ we have by definition

$$m(x_1 + x_2) = \sup_{y \in S} \{M(x_1 + x_2, y) - m_s(y)\}$$

\[\geq \sup_{y \in S} \{M(x_1, y) + M(x_2, y) - m_s(y)\} \]

\[\geq \sup_{0 \leq y_1, y_2 \in S} \{M(x_1, y_1) + M(x_2, y_2) - m_s(y_1 \cup y_2)\} \]

\[\geq \sup_{0 \leq y_1, y_2 \in S} \{M(x_1, y_1) + M(x_2, y_2) - m_s(y_1) - m_s(y_2)\} \]

because

$$M(x_1 + x_2, y) \geq M(x_1, y) + M(x_2, y),$$

$$m_s(y_1 \cup y_2) \leq m_s(y_1) + m_s(y_2).$$

Thus the double-modular m is upper semi-additive. For $0 \leq x_\lambda \in \Lambda \in A \times x$ we have by definition

$$m(x) = \sup_{y \in S} \left\{ \sup_{\lambda \in \Lambda} \{M(x_\lambda, y) - m_s(y)\} \right\} = \sup_{\lambda \in \Lambda} m(x_\lambda).$$

Thus m is upper semi-continuous. Recalling Theorem 4.1, we conclude therefore that m is semi-continuous.

Theorem 5.4. Let m_s be a complete, additive modular on S. For a bimodular $M(x, y) (x \in R, y \in S)$, denoting by m_d the double-modular of M by m_s and by m_n the norm-modular of M by the first norm of m_s, then we have

$$m_d(x) \leq m_n(x) \quad \text{for} \quad m_n(x) \leq 1,$$

$$m_d(x) \geq m_n(x) \quad \text{for} \quad m_n(x) \geq 1,$$
and the second norm of m_d coincides with that of m_n.

Proof. If $M(x, y) < +\infty$ for every $y \in S$, then putting

$$x(y) = M(x, y^+) - M(x, y^-)$$

($y \in S$)

we obtain a positive linear functional x on S. Since the modular m_S is complete by assumption, this linear functional x is modular bounded. Thus we have by definition

$$m_d(x) = \overline{m}_S(x), \quad m_n(x) = \|x\|$$

for the conjugate modular \overline{m}_S of m_S and the second norm $\|x\|$ of \overline{m}_S. If $M(x, y) = +\infty$ for some $y \in S$, then we have obviously by definition

$$m_d(x) = m_n(x) = +\infty$$

Therefore we conclude that $m_n(x) \leq 1$ implies $m_d(x) \leq m_n(x)$, and that $m_n(x) \geq 1$ implies $m_d(x) \geq m_n(x)$. Consequently the second norm of m_d coincides with that of m_n.

§ 6. Proper bimodular

Let m be an additive upper semi-continuous modular on a universally continuous semi-ordered linear space R, and \mathcal{S} the proper space of R. We denote by D_m the totality of such dilatators T in R that for any $x \in R$ we can find a positive number a for which

$$\int_{\mathcal{S}} \left(\frac{|T|}{1}, p\right) m(dp_X) < +\infty.$$

Then, putting

$$M_m(x, T) = \int_{\mathcal{S}} \left(\frac{|T|}{1}, p\right) m(dp_X)$$

($x \in R$, $T \in D_m$)

we obtain a bimodular M_m. Here we see easily that D_m is a semi-normal manifold of the dilatator space and $1 \in D_m$, because $M_m(x, 1) = m(x)$. This bimodular M_m is said to be the proper bimodular of m.

For a semi-normal manifold D of D_m containing 1, and for a complete norm $\|T\|$ ($T \in D$) on D, putting

$$m_n(x) = \sup_{\|T\| \leq 1, T \in D} M_m(x, T)$$

($x \in R$), we obtain a norm-modular m_n of M_m.

Theorem 6.1. If the modular m on R is monotone complete, then every norm-modular of the proper bimodular M_m of m also is monotone complete.
Proof. If $0 \leq x_\lambda \uparrow_{\lambda \in \Lambda}$, $\sup_{\lambda \in \Lambda} m_n(x_\lambda) < +\infty$, then we have by definition
\[\sup_{\lambda \in \Lambda} m(x_\lambda) = \sup_{\lambda \in \Lambda} M_m(x_\lambda, 1) < +\infty \]
and hence x_λ ($\lambda \in \Lambda$) is bounded, because m is monotone complete by assumption. Therefore the norm-modular m_n also is monotone complete.

For a complete, additive modular $m_D(T)$ ($T \in D$) on D, putting
\[m_d(x) = \sup_{x \in D} \{ M_m(x, T) - m_D(T) \} \quad (x \in R), \]
we obtain a double-modular m_d of M_m.

Theorem 6.2. Every double-modular of the proper bimodular M_m of m also is additive.
Proof. If $M_m(x, T) < +\infty$ for every $T \in D$, then, putting
\[x(T) = \int_{\mathfrak{E}} \left(\frac{T}{1}, y \right) m(d\mathfrak{p}x) \quad (T \in D), \]
we obtain a positive linear functional $x(T)$ ($T \in D$) on D. Furthermore if $x \sim y = 0$, $M_m(x, T) < +\infty$, $M_m(y, T) < +\infty$ for every $T \in D$, then we also have $x \sim y = 0$ considering both x and y linear functionals on D, and hence
\[\overline{m}_D(x + y) = \overline{m}_D(x) + \overline{m}_D(y) \]
for the conjugate modular \overline{m}_D of m_D, because m_D is additive by assumption. On the other hand we have by definition
\[m_d(x) = \begin{cases} \overline{m}_D(x) & \text{if } M_m(x, T) < +\infty \quad \text{for every } T \in D, \\ +\infty & \text{if } M_m(x, T) = +\infty \quad \text{for some } T \in D. \end{cases} \]
Thus we conclude that $x \sim y = 0$ implies $m_d(x + y) = m_d(x) + m_d(y)$. Therefore the double-modular m_d is additive. (cf. [2])

Theorem 6.3. If the modular m on R is monotone complete, then every double-modular of the proper bimodular M_m of m also is monotone complete.
Proof. For an additive complete modular m_D on D, we can find a positive number α such that $m_D(\alpha) < +\infty$ considering α a dilatator in R. If $0 \leq x_\lambda \uparrow_{\lambda \in \Lambda}$ and $\sup_{\lambda \in \Lambda} m_d(x_\lambda) < +\infty$, then we have
\[\sup_{\lambda \in \Lambda} m(x_\lambda) = \frac{1}{\alpha} \sup_{\lambda \in \Lambda} M_m(x_\lambda, \alpha) \leq \frac{1}{\alpha} \left\{ \sup_{\lambda \in \Lambda} m_d(x_\lambda) + m_D(\alpha) \right\} < +\infty, \]
and hence x_λ ($\lambda \in \Lambda$) is bounded, because m is monotone complete by
assumption. Therefore the double-modular m_d also is monotone complete by definition.

References

