<table>
<thead>
<tr>
<th>Title</th>
<th>ON THE UNCONDITIONAL CONVERGENCE IN SEMI-σ-ORDERED LINEAR SPACES</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author(s)</td>
<td>Amemiya, Ichiro</td>
</tr>
<tr>
<td>Citation</td>
<td>Journal of the Faculty of Science Hokkaido University. Ser. 1 Mathematics = 北海道大学理学部紀要 シーエオーダーラインスベース</td>
</tr>
<tr>
<td>Issue Date</td>
<td>1956</td>
</tr>
<tr>
<td>Doc URL</td>
<td>http://hdl.handle.net/2115/55990</td>
</tr>
<tr>
<td>Type</td>
<td>bulletin (article)</td>
</tr>
<tr>
<td>File Information</td>
<td>JFSHIU_13_N2_054-059.pdf</td>
</tr>
</tbody>
</table>

Hokkaido University Collection of Scholarly and Academic Papers : HUSCAP
ON THE UNCONDITIONAL CONVERGENCE
IN SEMI-ORDERED LINEAR SPACES

By

Ichiro AMEMIYA

In continuous semi-ordered linear spaces, an unconditionally convergent series is not, in general, absolutely convergent. In this paper we shall give on the one hand, a sufficient condition of the space for this with some examples of the spaces satisfying it; the space of M-type, the space of all functions on a set, the sequence space c_0 and etc.. On the other hand, we shall show in every infinite-dimensional space of L_p-type there exists a series which is unconditionally and not absolutely convergent. On account of it, we shall give a necessary and sufficient condition for monotone complete normed spaces under which two notions of convergence are equivalent.

Let R be a continuous semi-ordered linear space throughout the paper.

1. Let $a_\nu (\nu =1,2, \cdots)$ be a sequence of elements in R. For every finite set J of natural numbers, we write $\sigma (J)$ for $\sum_{\nu \in J} a_\nu$, then the absolute convergence of the series $\sum_{\nu =1}^\infty a_\nu$ is equivalent to the order-boundness of all $\sigma (J)$, because we have always

$$\{ \bigcup_{J \subset J_0} \sigma (J) \}^+ = \sum_{\nu \in J_0} a_\nu^+ .$$

If $\sum a_\nu$ is unconditionally convergent, then for every mutually orthogonal J_ν, $\sigma (J_\nu)$ is order-bounded, since there exists a rearrangement of the series in which every J_ν consists of some successive

1) Convergence means order-convergence. Cf. [1].
2) The space with the norm and an element $e \geq 0$ for which $\| x \| \leq 1$ is equivalent to $| x | \leq e$.
3) The space of all numerical sequences that converge to 0.
4) A normed space is said to be L_p-type if we have $\| x+y \|_p = | x |^p + | y |^p$ for every mutually orthogonal x, y.
5) A norm is said to be monotone complete if $0 \leq a_\lambda$ for all λ, $\sup_{\lambda \in A} \| a_\lambda \| < +\infty$, imply the existence of $\bigcap_{\lambda \in A} a_\lambda$.
On the Unconditional Convergence in Semi-ordered Linear Spaces

55

numbers.

Let \mathcal{B} be the collection of all order-bounded sets, then \mathcal{B} is an ideal in the lattice of all subsets in \mathcal{L}. For an ideal \mathcal{I}, we write \mathcal{I}^\perp for the ideal generated by all the sets

$$A + B = \{x + y; \ x \in A, \ y \in B\} \quad \text{for } A, B \in \mathcal{I}.$$

Now we shall prove that if \mathcal{B} is the intersection of all the ideal \mathcal{I}, such that \mathcal{I} has a countable basis and $\mathcal{B} \subset \mathcal{I}$, then every unconditionally convergent series converges also absolutely.

In fact, suppose the set $\{\sigma(J)\}$ is not order-bounded, and an ideal \mathcal{I} generated by all the sets $A + B = \{x + y; x \in A, y \in B\}$ for $A, B \in \mathcal{B}$. Then for every \mathcal{I}, the set $\{\sigma(J); J \sim J_0 = 0\}$ is not in \mathcal{I}, and so we can find a mutually orthogonal J_ν such that $\sigma(J_\nu) \in A_\nu (\nu = 1, 2, \cdots)$, that is, a sequence $\{\sigma(J_\nu)\}$ is not order-bounded. Thus the series can not be unconditionally convergent.

If the order-boundness coincides with the topological boundness by some linear topology in \mathcal{L}, then the condition above for \mathcal{B} is evidently satisfied. The space of M-type and the space of all functions on a set have this property.

If \mathcal{L} is generated by countable order-bounded sets, then \mathcal{B} itself has a countable basis. The "Stufenraum" of G. Köthe [2] is an example of the space of this type (it also satisfies the topological condition above).

The sequence space c_0 is also in our case. In fact, for every $\epsilon > 0$, let \mathcal{I}_ϵ be the totality of the set A for which there exists a fixed natural number ν_0 such that $\{\xi_\nu\} \in A$ implies $|\xi_\nu| < \epsilon$ for every $\nu \geq \nu_0$, then \mathcal{I}_ϵ is an ideal with countable basis and we have $\mathcal{B} = \bigcap_{\epsilon < 0} \mathcal{I}_\epsilon$ since $\mathcal{I}_{2\epsilon} \subset \mathcal{I}_{\epsilon}$.

2. In the sequel we shall restrict ourselves to the case \mathcal{L} is a normed semi-ordered linear space where the norm is monotone complete. We put

$$\alpha = \alpha(R) = \inf_{a_1, a_2, \cdots, a_n} \sup_{i_1, i_2, \cdots, i_n} \frac{||a(\hat{i}_1, \hat{i}_2, \cdots, \hat{i}_n)||}{|||a_1| + |a_2| + \cdots + |a_n|||},$$

where the infimum is taken for every finite set a_1, a_2, \cdots, a_n in \mathcal{L}, the supremum for every permutation i_1, i_2, \cdots, i_n of 1, 2, \cdots, n and $a(\hat{i}_1, \hat{i}_2, \cdots, \hat{i}_n) = |a_{i_1}| |a_{i_2} + a_{i_1}| \cdots |a_{i_2} + a_{i_1} + \cdots + a_{i_n}|$. We have always $0 \leq \alpha \leq \frac{1}{2}$ and for every space of M-type, as easily be seen, $\alpha = \frac{1}{2}$.

\[a(N) \] is also defined for every normal manifold \(N \) of \(R \) and we can prove easily the following relations:

1. \(a(N), a(M) \geq \varepsilon \) and \(N \perp M \) imply \(a(N + M) \geq \frac{\varepsilon}{2} \),

2. \(N \uparrow \lambda \in A N \) and \(a(N) = 0 \) imply \(\inf_{\lambda} a(N_{\lambda}) = 0 \).

Now we shall prove that the two notions of convergence are equivalent if and only if \(a > 0 \).

If \(a > 0 \) and \(\sum a_{\nu} \) is not absolutely convergent, then by the monotone completeness of the norm, we have
\[
\| a_{\mu+1} + |a_{\mu+2}| + \cdots |a_{\mu+n}| \uparrow \nu + \infty \quad \text{for every } \mu = 1, 2, \ldots .
\]
Since for some permutation \(i_{1}, i_{2}, \ldots i_{\nu} \) of \(1, 2, \ldots \nu \) we have
\[
\| a(i_{1}, i_{2}, \ldots i_{\nu}) \| \geq \frac{a}{2} \| a_{\mu+1} + |a_{\mu+2}| + \cdots |a_{\mu+n}| \|
\]
where \(a(i_{1}, i_{2}, \ldots i_{\nu}) \) is as defined above for \(a_{\nu+1}, a_{\mu+2}, \ldots a_{\mu+n} \), we can find a rearrangement of \(a_{\nu}(\nu = 1, 2, \ldots) \) such that all the sum of successive elements are not order-bounded, and hence, \(\sum a_{\nu} \) is not unconditionally convergent.

Next we suppose \(a = 0 \). If for every normal manifold \(N \), either \(a(N) \) or \(a(N^\perp) \) is not 0 (anyway one of them is 0 by (1)), then \(\{N; a(N) = 0\} \) is a maximal dual ideal of the Boolean algebra of all normal manifolds and this ideal is not atomic since \(a = \frac{1}{2} \) for every one dimensional space, and hence we have by (2) \(\inf_{a(N) > 0} a(N) = 0 \). Therefore for every \(N \) such that \(a(N) = 0 \), we can devide \(N \) into two orthogonal normal manifolds \(N', N'' \) where one of \(a(N') \) and \(a(N'') \) is 0 and the other is either 0 or arbitrarily small, and hence we can find mutually orthogonal normal manifolds \(N_{\nu} \neq 0 (\nu = 1, 2, \ldots) \) such that \(a(N_{\nu}) < \frac{1}{\nu 2^{\nu}} \).

Now from every \(N_{\nu} \) we take a finite sequence of elements \(a_{1}, a_{2}, \ldots a_{n} \) such that \(\| a_{1} + a_{2} + \cdots + a_{n} \| = \nu \) and for every permutation \(i_{1}, i_{2}, \ldots i_{n} \), \(\| a(i_{1}, i_{2}, \ldots i_{n}) \| \leq \frac{1}{2^{\nu-1}} \) then putting such a sequence \(a_{1}, a_{2}, \ldots a_{n} \) one after another for \(\nu = 1, 2, \ldots \), we obtain an infinite sequence of which the series is obviously unconditionally and not absolutely convergent.

\[\alpha \] To prove this we may make use of the following property of the monotone complete norm, that is, there exists \(\varepsilon > 3 \) such that
\[
0 \leq a_{\lambda} \uparrow A a \quad \text{implies always } \sup_{\lambda} a_{\lambda} \geq \varepsilon \| a \|. \quad \text{Cf. [3].} \]
Thus the proof was completed.

3. Here we shall show \(a = 0 \) for every infinite-dimensional space of \(L_p \)-type \((1 \leq p < \infty) \).

For this purpose we shall compute \(a = a_n \) for the \(2^n \)-dimensional space where the norm of an element \(x \equiv \{ \xi_m \} \) is defined as

\[
||x|| = \sum_{m=1}^{2^n} |\xi_m|^p .
\]

Let \(M_n \) be the \((n, 2^n)\)-matrix below

\[
\begin{pmatrix}
+1 & +1 & \cdots & +1 & -1 & -1 & \cdots & -1 \\
+1 & +1 & \cdots & +1 & -1 & -1 & \cdots & -1 \\
\cdots & \cdots \\
+1 & -1 & -1 & +1 & +1 & \cdots & \cdots & \cdots \\
+1 & 1 & -1 & 1 & +1 & \cdots & \cdots & \cdots \\
\end{pmatrix}
\]

that is, for the \(i^{th} \) row, the first \(2^{i-1} \) are all \(+1 \) and the next \(2^{i-1} \) are \(-1 \) and so on alternatively. Let \(a_i \) be the \(i^{th} \) row-vector, then for every permutation \(i_1, i_2, \cdots i_n \) of \(1, 2, \cdots n \), there exists a permutation of the co-ordinate axes by which the sequence \(a_1, a_2, \cdots a_n \) is transformed to \(a_{i_1}, a_{i_2}, \cdots a_{i_n} \), since any of \(2^n \) possible sequences of \(\pm 1 \) emerges as a column of \(M_n \).

Consequently we have

\[
||a(i_1, i_2, \cdots i_n)|| = ||a(1, 2, \cdots n)|| ,
\]

making use of the same notation as in 2.

Putting

\[
a(+) = a_{1}^{+} \cup (a_{1} + a_{2})^{+} \cup \cdots (a_{1} + a_{2} + \cdots a_{n})^{+} ,
\]

and

\[
a(-) = a_{1}^{-} \cup (a_{1} + a_{2})^{-} \cup \cdots (a_{1} + a_{2} + \cdots a_{n})^{-} ,
\]

we have

\[
a(1, 2, \cdots n) = a(+) \cup a(-) , \quad ||a(+)|| = ||a(-)|| ,
\]

and hence

\[
||a(i_1, i_2, \cdots i_n)|| \leq 2||a(+)|| , \quad \text{or by the definition of} \ a_n ,
\]

(1) \(2^{n-1}n^p a_n \leq ||a(+)|| .

In the sequel we write \(a^{(n)} \) for \(a(+) \) and \(\beta_n \) for \(||a^{(n)}|| \).

The matrix \(M_{n+1} \) has the form

\[
\begin{pmatrix}
+1 & +1 & \cdots & +1 & -1 & -1 & \cdots & -1 \\
M_n & M_n \\
\end{pmatrix}
\]

so if \(a^{(n)} \equiv \{ \xi_1, \xi_2, \cdots \xi_{2^n} \} \), then we can see easily that
\[a^{(n+1)} \equiv \{ \xi_1 + 1, \xi_2 + 1, \cdots \xi_{2^n} + 1, \xi_1 + \epsilon_1, \xi_2 + \epsilon_2, \cdots \} \]

where \[\epsilon_m = \begin{cases} -1 & \text{for every } m \text{ such that } \xi_m > 0 \\ 0 & \text{elsewhere} \end{cases} \]

Since \[\beta_n = \sum_{m=1}^{2^n} \xi_m \]
we have

\[\beta_{n+1} = 2\beta_n + \tau_n + \sum_{\xi_m > 0} \{(\xi_m + 1)^p + (\xi_m - 1)^p - 2\xi_m^p\} \]

where \(\tau_n \) is the number of those \(m \)'s for which \(\xi_m = 0 \).

Now we divide the three cases.

(i) \(1 < p < 2 \): Then \((x + 1)^p + (x - 1)^p - 2x^p\) is a decreasing function of \(x \geq 1 \), and hence the third term in the right side of (2) is smaller than \(2^n(2^p - 2) \). Therefore we have the inequality

\[\beta_{n+1} \leq 2\beta_n + 2^n(2^p - 1), \]

or since \(\beta_1 = 1 \),

\[\beta_{n+1} \leq 2^n + n2^n(2^p - 1) = 2^nO(n), \]

and hence by (1)

\[a_n = O(n^{1-p}). \]

(ii) \(2 \leq p \): Then \((x + 1)^p + (x - 1)^p - 2x^p\) is increasing and so we have, since \((n + 1)^p + (n - 1)^p - 2n^p = O(n^{p-2})\),

\[\beta_{n+1} \leq 2\beta_n + 2^nO(n^{p-2}) \]

or

\[\beta_{n+1} \leq 2^n + n2^nO(n^{p-2}) = 2^nO(n^{p-1}) \]

that is,

\[a_n = O(n^{-1}). \]

(iii) \(p = 1 \): Here the third term in the right side of (2) vanishes and we have

\[\beta_{n+1} = 2^n + \sum_{r=1}^{n} 2^{n-r}\tau_r. \]

If we had proved that the second term of the right side does not exceed \(2^{n+1}\sqrt{n} \), then we can conclude from that

\[a_n = O(n^{-\frac{1}{2}}). \]

Let \(\epsilon_1, \epsilon_2, \cdots \epsilon_n (\epsilon_i = \pm 1) \) be the \(m^{th} \) column of \(M_n \) for an arbitrary \(m = 1, 2, \cdots 2^n \), then \(\xi_m = 0 \) if and only if
On the Unconditional Convergence in Semi-ordered Linear Spaces

\[\varepsilon_1 + \varepsilon_2 + \cdots + \varepsilon_i \leq 0 \quad \text{for every } i = 1, 2, \ldots \]

If \(r \) is the smallest of those numbers for which \(\varepsilon_1 + \varepsilon_2 + \cdots + \varepsilon_r \) has the least value of all \(\varepsilon_1 + \varepsilon_2 + \cdots + \varepsilon_i \), then \(\varepsilon_r = -1 \) and both the sequence \(-\varepsilon_{r+1}, -\varepsilon_{r+2}, \ldots -\varepsilon_n \) and \(\varepsilon_{r-1}, \varepsilon_{r-2}, \ldots \varepsilon_1 \) has the same property as mentioned above, that is, every partial sum of them does not exceed 0, and these conditions determine \(r \). If we put \(\varphi(m) = r \) where \(r \) is defined above, then since there exist \(r_{n-r} \) number of possible case for \(\varepsilon_{r+1}, \varepsilon_{r+2}, \ldots \varepsilon_n \), and \(r_{r-1} \) for \(\varepsilon_{r-1}, \varepsilon_{r-2}, \ldots \varepsilon_1 \), the number of those \(m \)'s for which \(\varphi(m) = r \) is \(r_{n-r} r_{r-1} (r_0 = 1) \). Since then \(\sum_{r=1}^{n} r_{n-r} r_{r-1} = 2^n \) we have, putting \(r = \sum_{r=1}^{n} 2^{n-r} \gamma_r \),

\[\gamma^2 = \sum_{r,s=1}^{n} 2^{2n-r-s} \gamma_r \gamma_s \leq \sum_{r=1}^{2n} \sum_{s=1}^{r} 2^{2n-r+1} \gamma_r \gamma_{r-1} = 2n 2^{2n+1}, \]

that is, \(\gamma \leq 2^{n+1} \sqrt{n} \) as required.

Therefore we have always

\[\lim_{n \to \infty} a_n = 0, \]

and since in our space we can find a subspace which is isomorphic to the \(2^n \)-dimensional space considered above for every \(n \), the proof was completed.

To construct an example of the series which is unconditionally and not absolutely convergent in the sequence space \(l_p \), let us decompose the space into mutually orthogonal normal manifolds \(N_n (n = 1, 2, \ldots) \) where \(N_n \) is of \(2^n \)-dimension, and in every \(N_n \) take a sequence \(a_1, a_2, \ldots a_n \) as constructed above but multiplying them by \(2^{-\frac{n}{p}} n^{-\frac{1}{p} + \frac{1}{p}} \), then the union of all such sequences for \(n = 1, 2, \ldots \) provides our example.

(September, 1954)

References