<table>
<thead>
<tr>
<th>Title</th>
<th>ON THE WIRTINGER'S CONNECTIONS IN HIGHER ORDER SPACES</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author(s)</td>
<td>Ide, Saburo</td>
</tr>
<tr>
<td>Citation</td>
<td>Journal of the Faculty of Science Hokkaido University. Ser. 1 Mathematics, 13(2): 075-119</td>
</tr>
<tr>
<td>Issue Date</td>
<td>1956</td>
</tr>
<tr>
<td>Doc URL</td>
<td>http://hdl.handle.net/2115/55991</td>
</tr>
<tr>
<td>Type</td>
<td>bulletin (article)</td>
</tr>
<tr>
<td>File Information</td>
<td>JFSHIU_13_N2_075-119.pdf</td>
</tr>
</tbody>
</table>
ON THE WIRTINGER’S CONNECTIONS IN HIGHER ORDER SPACES

By

Saburo IDE

Contents

§ 0. Introduction. ... 75
§ 1. Theory of the WIRTINGER’s connection. 76
§ 2. Generalized WIRTINGER’s connections. 79
§ 3. WIRTINGER’s connections introduced in KAWAGUCHI spaces. 83
§ 4. Covariant derivatives. 93
§ 5. Covariant derivatives in a special KAWAGUCHI space. 96
§ 6. Curvature tensors and identities in a special KAWAGUCHI space. 108
References. ... 118

§ 0. Introduction

The concept of connection introduced by W. WIRTINGER [1] was given as a generalization of Weyl’s connection [2] under the consideration of the possibility of its application to physics and astronomy. He thought at that time that his theory was ample enough to stand for any mathematical requirement in some branches of them.

Nowadays, the progress of physics and astronomy is so remarkable that his idea can not be fully accepted, but from the geometrical point of view his concept of connection itself is very interesting, various generalizations have been performed by many students and moreover the study of his concept is being carried on even now.

Geometrically the WIRTINGER’s connection contains two important concepts, the one is that of double vectors, the other is that of non-linear connections.

In the former case H. EYRAUD [3] generalized the parallel displacement of Weyl but his research has no direct relation with WIRTINGER. Later from a different point of view A. KAWAGUCHI [4] pointed out that as a special case of his general theory, the WIRTINGER’s connection was derived. In addition to these papers the present author [5] has de-

(1) Numbers in brackets refer to the references at the end of the paper.
S. Ide

developed the theory in higher order spaces.

V. V. Vagner [6] in the Soviet Union has established the theory of Strip as a method of discussing the differential geometry. His method seems to us to be a special case of Wirtinger's point of view.

In the matter of non-linear connections, after Wirtinger, G. Y. Rainich [7] studied it and H. Friesenke [8], E. Bortolotti [9], M. Mikami [10] and others have followed.

The purpose of the present paper is to develop a general theory of Wirtinger's connections introducing some kinds of Wirtinger's connections in higher order spaces and discussing the relations between Kawaguchi's connections and Wirtinger's in view of the previous papers of the present author.

§1 is devoted to the abridgment of the classical theory of Wirtinger's connections. In §2 Wirtinger's connections in higher order spaces are introduced and in addition, the modified forms will be found. §3 involves the discussion of Wirtinger's connections in Kawaguchi spaces. The definition of covariant derivatives in our spaces is given in §4. The covariant derivatives in a special Kawaguchi spaces will be stated in detail in §5 and in §6 various tensors and identities are derived in the space.

§1. Theory of the Wirtinger's connection

With each point of an n-dimensional space $X_n(x^a)$ we associate a fibre (η^a, v_a) consisting of a pair of a contravariant vector η^a and a covariant vector v_a provided that our fibre is characterized by the incidence condition

$$\eta^a \cdot v_a = 0.$$

In other words, our manifold consists of a bundle where (η^a, v_a) with incidence condition is an element of the fibre in the base manifold X_n. Hereafter, such manifold will be called Wirtinger manifold. The (η^a, v_a) with the condition $\eta^a \cdot v_a = 0$ is called double vector by Schouten, and Wirtinger named it E_{n-1}-element. E_{n-1}-elements form a $(2n-3)$-dimensional manifold.

Let us consider the infinitesimal displacement of any point in the base manifold X_n then η^a, v_a which are attached to that point are affected by infinitesimal variations. We indicate such variations by
the symbols \(\delta_{\xi} \eta^{a}, \delta_{\xi} v_{a} \) where \(\delta_{\xi} \) means the variation of \(\xi^{a} \)-direction.

On the other hand, differentials of \(\eta^{a}, v_{a} \) which belong to double vectors of any fixed point are indicated by the symbols \(d\eta^{a}, dv_{a} \). It is remarkable that \(\delta \)-differential and \(d \)-differential are commutative:

\[
\delta_{\xi} d\eta^{a} = d\delta_{\xi} \eta^{a}, \quad \delta_{\xi} dv_{a} = d\delta_{\xi} v_{a}.
\]

Double vectors \((\eta^{a}, v_{a}) \) associated with a point 0 remain double vectors after all under a contact transformation in accordance with the infinitesimal displacement of the point 0. Therefore, in order to introduce our connection we take the contact condition

\[
\delta_{\xi} (\eta^{a} \cdot v_{a}) = \delta_{\xi} \eta^{a} \cdot dv_{a} + \eta^{a} \cdot \delta_{\xi} v_{a} = \rho \eta^{a} \cdot dv_{a} + \sigma v_{a} d\eta^{a}.
\]

From the incidence condition we have

\[
\delta_{\xi} \eta^{a} \cdot v_{a} + \eta^{a} \cdot \delta_{\xi} v_{a} = 0, \quad d\eta^{a} \cdot v_{a} + \eta^{a} \cdot dv_{a} = 0, \quad \delta_{\xi} (d\eta^{a} \cdot v_{a}) = \delta_{\xi} \left(-\eta^{a} \cdot dv_{a} \right),
\]

and by use of \((1.2) \)

\[
\delta_{\xi} (v_{a} d\eta^{a}) = \delta_{\xi} v_{a} \cdot d\eta^{a} + v_{a} \cdot \delta_{\xi} d\eta^{a} = -\rho \eta^{a} \cdot dv_{a} - \sigma d\eta^{a} \cdot v_{a}
\]

are given.

Where \(\delta_{\xi} \eta^{a}, \delta_{\xi} v_{a}, \rho, \sigma \) are linear homogeneous functions of \(\xi^{a} \), \(\delta_{\xi} \eta^{a} \) are homogeneous of degree one in \(\eta^{a} \) and of degree zero in \(v_{a} \). Vice versa, \(\delta_{\xi} v_{a} \) are homogeneous of degree one in \(v_{a} \), homogeneous of degree zero in \(\eta^{a} \). On the other hand \(\rho, \sigma \) are both homogeneous function of degree zero in \(\eta^{a}, v_{a} \). Such assumptions are all valid in general.

We put

\[
\eta^{a} \delta_{\xi} v_{a} \equiv W(x, \eta, v, \xi).
\]

then under the above assumptions, \(W(x, \eta, v, \xi) \) is linear homogeneous of \(\xi^{a} \) and homogeneous of degree one in \(\eta^{a}, v_{a} \). Differentiate \((1.3) \) partially by \(\eta^{6}, v_{6} \),

\[
\frac{\partial W(x, \eta, v, \xi)}{\partial \eta^{6}} = \delta_{\xi} v_{6} + \eta^{6} \frac{\partial \delta_{\xi} v_{a}}{\partial \eta^{6}},
\]

\[
\frac{\partial W(x, \eta, v, \xi)}{\partial v_{6}} = \eta^{6} \frac{\partial \delta_{\xi} v_{a}}{\partial v_{6}},
\]

are obtained.

From \((1.1) \) we get

\[
d_{\xi} d\eta^{a} = \frac{\partial \delta_{\xi} \eta^{a}}{\partial \eta^{6}} d\eta^{6} + \frac{\partial \delta_{\xi} \eta^{a}}{\partial v_{6}} dv_{6},
\]

\[
\delta_{\xi} dv_{a} = \frac{\partial \delta_{\xi} v_{a}}{\partial \eta^{6}} d\eta^{6} + \frac{\partial \delta_{\xi} v_{a}}{\partial v_{6}} dv_{6}.
\]
therefore (1.2) is rewritten as
\[\delta_{\xi} \eta^{a} \cdot dv_{a} + \eta^{a} \frac{\partial \delta_{\xi} v_{a}}{\partial \eta^{b}} \cdot dv_{b} + \eta^{a} \frac{\partial \delta_{\xi} u_{a}}{\partial \eta^{b}} \cdot du_{b} = \rho \eta^{a} \cdot dv_{a} + \sigma \eta^{a} \cdot du_{a} . \]

In the above expression, comparing the coefficients of $d\eta^{a}$, dv_{a} in both sides and by use of (1.4) one obtains
\[\delta_{\xi} \eta^{a} = -\frac{\partial W(x, \eta, v, \xi)}{\partial v_{a}} + \rho \eta^{a} , \]
\[\delta_{\xi} v_{a} = \frac{\partial W(x, \eta, u, \xi)}{\partial \eta^{a}} - \sigma v_{a} . \]

The final Wirtinger’s formulae are given putting $\rho = \sigma$ in the above formulae as follows:
\begin{align*}
(1.5) \quad & \delta_{\xi} \eta^{a} = -\frac{\partial W(x, \eta, v, \xi)}{\partial v_{a}} + \rho \eta^{a} , \quad \delta_{\xi} v_{a} = \frac{\partial W(x, \eta, u, \xi)}{\partial \eta^{a}} - \rho v_{a} .
\end{align*}

Formulae (1.5) satisfy the most general assumption for a δ-transformation affecting the relation in double vectors in the infinitesimally near points (0) and $(0')$ subjected to the contact condition.

By the point transformation, W and ρ vary as
\[\bar{W}(\bar{x}, \bar{\eta}, \bar{v}, \bar{\xi}) = W(x, \eta, v, \xi) - \frac{\partial^{2} \bar{x}^{a}}{\partial x^{b} \partial x^{r}} \cdot \bar{v}_{b} \eta^{r} \xi^{r} , \]
\[\bar{\rho}(\bar{x}, \bar{\eta}, \bar{v}, \bar{\xi}) = \rho(x, \eta, v, \xi) . \]

In use of (1.5) we can define the Wirtinger’s covariant differential as follows:
\begin{align*}
D\eta^{a} = \delta_{\xi} \eta^{a} + & \frac{\partial W(x, \eta, v, \xi)}{\partial v_{a}} - \rho \eta^{a} , \\
(1.6) \quad & Dv_{a} = \delta_{\xi} v_{a} - \frac{\partial W(x, \eta, u, \xi)}{\partial \eta^{a}} + \rho v_{a} .
\end{align*}

Clearly formulae (1.6) are a contact transformation in the double vector (η^{a}, v_{a}) and as connection they are one kind of non-linear connections.

If we put the assumption that $W(x, \eta, v, \xi)$ is a linear homogeneous function in η^{a}, v_{a} then (1.6) gives a linear connection and is reduced to an incidence invariant displacement, therefore in our case the Wirtinger’s connections seem to be a generalization of an incidence invariant displacement.
§ 2. Generalized WIRTINGER's connections

Elements of the base manifold in a WIRTINGER manifold are points \((x^a)\), but here we assume the elements of our base manifold are line-elements of order \(m\), that is, \((x^a, x^{(1)a}, \ldots, x^{(m)a})\) and we again call them points.

With each point of the base manifold we associate double vectors consisting of a contravariant vector \(\eta^a\) and a covariant \(u_a\), therefore the incidence condition

\[\eta^a \cdot u_a = 0 \]

holds good always.

We call such manifold the WIRTINGER manifold in higher order and indicate it by the symbol \(W_n^{(m)}\). The symbol \(W_n^{(0)}\) means the classical WIRTINGER manifold in our case.

We indicate the differentials of \(\eta^a, u_a\) in double vectors associated to a point \((x^a, x^{(1)a}, \ldots, x^{(m)a})\) by the symbols \(d\eta^a, du_a\) and the differentials of \(\eta^a, u_a\) caused by \(x^a\) of that point by the symbols \(\delta_{\epsilon}^{(i)}\eta^a, \delta_{\epsilon}^{(i)}u_a\), where \(\xi^{(a)}\) means the variation of \(x^a\), that is \(dx^a\).

On the other hand, as the base manifold of \(W_n^{(m)}\) is a manifold of line-elements of \(m\)-th order, we have to consider the variations of \(x^{(1)a}, x^{(2)a}, \ldots, x^{(m)a}\), that is \(dx^{(1)a}, dx^{(2)a}, \ldots, dx^{(m)a}\). Now we take the symbols \(\xi^{(1)a}, \xi^{(2)a}, \ldots, \xi^{(m)a}\) instead of the above symbols, then

\[\delta_{\epsilon}^{(i)}\eta^a, \delta_{\epsilon}^{(i)}u_a, \ldots, \delta_{\epsilon}^{(m)}\eta^a, \delta_{\epsilon}^{(i)}u_a, \ldots, \delta_{\epsilon}^{(m)}u_a \]

are variations of \(\eta^a, u_a\) respectively caused by \(\xi^{(1)a}, \xi^{(2)a}, \ldots, \xi^{(m)a}\). It is needless to say that \(\partial\)-differential and \(\delta\)-differential are commutative undoubtedly as in §1, that is to say

\[d\delta_{\epsilon}^{(i)}\eta^a = \delta_{\epsilon}^{(i)}d\eta^a, \quad d\delta_{\epsilon}^{(i)}u_a = \delta_{\epsilon}^{(i)}du_a \quad (i = 0, 1, 2, \ldots, m). \]

We denote the variations of \(\eta^a, u_a\) by \(\delta_{\xi}\eta^a, \delta_{\xi}u_a\) respectively corresponding to an infinitesimal displacement from an element \((x, x^{(1)}, \ldots, x^{(m)})\) to a neighboring element \((x + dx, x^{(1)} + dx^{(1)}, \ldots, x^{(m)} + dx^{(m)})\), then the relation

\[\delta_{\xi} = \delta_{\xi}^{(0)} + \delta_{\xi}^{(1)} + \cdots + \delta_{\xi}^{(m)} \]

holds good always.

As the condition to introducing connections in our manifold involving the case of \(W_n^{(0)}\) we take the following, that is
\[
\delta_{\xi(0)}(\eta^a \cdot d\nu_a) = \delta_{\xi(0)} \eta^a \cdot d\nu_a + \eta^a \cdot \delta_{\xi(0)} d\nu_a = \rho \eta^a \cdot d\nu_a + \sigma \nu_a \cdot d\eta^a,
\]

\[
\delta_{\xi(1)}(\eta^a \cdot d\nu_a) = \delta_{\xi(1)} \eta^a \cdot d\nu_a + \eta^a \cdot \delta_{\xi(1)} d\nu_a = \rho \eta^a \cdot d\nu_a + \sigma \nu_a \cdot d\eta^a.
\]

Conditions in (2.1) indicate that the incidence condition holds good always not only in whole variations together of line-elements but also in one by one variations. Moreover, it is assumed that \(\delta_{\xi(i)} \eta^a\ (i = 0, 1, 2, \cdots, m)\) are homogeneous functions of degree one in \(\eta^a\), of degree zero in \(\nu_a\), linear homogeneous functions in \(\xi^{(i)a}\), \(\delta_{\xi(i)} \nu_a\ (i = 0, 1, 2, \cdots, m)\) are homogeneous functions of degree one in \(\nu_a\), of degree zero in \(\eta^a\), linear homogeneous functions in \(\xi^{(i)a}\), \(\rho, \sigma\ (i = 0, 1, \cdots, m)\) are homogeneous functions of degree zero in \(\eta^a, \nu_a\), linear homogeneous functions in \(\xi^{(i)a}\).

By a transformation of coordinates \(\delta_{\xi(i)} \eta^a, \delta_{\xi(i)} \nu_a, \rho, \sigma\) transform in similar manner to the transformation laws of \(\frac{\partial T^a}{\partial x^{(i)a}} dx^{(i)b}, \frac{\partial T_a}{\partial x^{(i)b}} dx^{(i)b}\), \(\frac{\partial T}{\partial x^{(i)b}} dx^{(i)b}\) provided that \(T^a, T_a, T\) are respectively contravariant, covariant, scalar in higher order spaces.

We put

\[
(2.2) \quad \eta^a \cdot \delta_{\xi(i)} \nu_a \equiv W(x, x^{(1)}, x^{(2)}, \cdots, x^{(m)}, \eta, u, \xi^{(i)}) \quad (i = 0, 1, \cdots, m)
\]

then \(W(x, x^{(1)}, \cdots, x^{(m)}, \eta, u, \xi^{(i)})\) are homogeneous functions in \(\eta^a, \nu_a\), linear homogeneous functions in \(\xi^{(i)a}\).

Differentiate (2.2) partially in \(\eta^b, \nu_b\) respectively. We obtain

\[
(2.3) \quad \eta^a \frac{\partial \delta_{\xi(i)} \nu_a}{\partial \eta^b} = \frac{\partial W}{\partial \eta^b} - \delta_{\xi(i)} \nu_a,
\]

\[
\eta^a \frac{\partial \delta_{\xi(i)} \nu_a}{\partial \nu_b} = \frac{\partial W}{\partial \nu^b}.
\]

By use of commutative law between the \(d\)-differential and \(\delta\)-differential

\[
\delta_{\xi(0)} d\eta^a = d\delta_{\xi(0)} \eta^a = \frac{\partial \delta_{\xi(0)} \eta^a}{\partial \eta^b} d\eta^b + \frac{\partial \delta_{\xi(0)} \eta^a}{\partial \nu_b} d\nu_b,
\]

\[
\delta_{\xi(1)} d\nu_a = d\delta_{\xi(1)} \nu_a = \frac{\partial \delta_{\xi(1)} \nu_a}{\partial \eta^b} d\eta^b + \frac{\partial \delta_{\xi(1)} \nu_a}{\partial \nu_b} d\nu_b.
\]
are given.
Substituting (2.4) in (2.1) and applying (2.3), we obtain from
\[
 \left(\frac{\partial W}{\partial \eta^a} - \delta_{\epsilon^{(i)}} u_{\alpha} - \sigma u_{\alpha} \right) d\eta^a + \left(\delta_{\epsilon^{(i)}} \eta^a + \frac{\partial W}{\partial u_{\alpha}} - \rho_{\eta^a} \right) du_{\alpha} = 0,
\]
the formulae
\[
\delta_{\epsilon^{(i)}} \eta^a = - \frac{\partial W(x, x^{(i)}, \cdots, x^{(m), \eta, u, \xi^{(i)})}}{\partial u_{\alpha}} + \rho(x, x^{(i)}, \cdots, x^{(m)}, \eta, u, \xi^{(i)}) \eta^a,
\]
\[
\delta_{\epsilon^{(i)}} u_{\alpha} = \frac{\partial W(x, x^{(i)}, \cdots, x^{(m), \eta, u, \xi^{(i)})}}{\partial \eta^a} - \sigma(x, x^{(i)}, \cdots, x^{(m)}, \eta, u, \xi^{(i)}) u_{\alpha}
\]
\[(i = 0, 1, 2, \cdots, m), \]
Therefore the covariant differentials \(\eta^a, u_{\alpha} \) in \(W_n^{(m)} \) are
\[
D\eta^a = \delta_{\epsilon} \eta^a + \sum_{\ell=0}^{m} \frac{\partial W_{\ell}}{\partial u_{\alpha}} dx^{(\ell)} + \frac{\partial W_{\ell}}{\partial \eta^a} dx^{(\ell)} - \rho_{\eta^a},
\]
\[
Du_{\alpha} = \delta_{\epsilon} u_{\alpha} - \sum_{\ell=0}^{m} \frac{\partial W_{\ell}}{\partial \eta^a} dx^{(\ell)} - \frac{\partial W_{\ell}}{\partial \eta^a} dx^{(\ell)} + \sigma u_{\alpha},
\]
where \(W = \sum_{\ell=0}^{m} W_{\ell} dx^{(\ell)}, \rho = \sum_{\ell=0}^{m} \rho_{\ell}, \sigma = \sum_{\ell=0}^{m} \sigma_{\ell}. \)
The covariant differentials in \(W_n^{(m)} \) corresponding to (1.6) are
\[
D\eta^a = \delta_{\epsilon} \eta^a + \sum_{\ell=0}^{m} \frac{\partial W_{\ell}}{\partial u_{\alpha}} dx^{(\ell)} - \rho_{\eta^a},
\]
\[
Du_{\alpha} = \delta_{\epsilon} u_{\alpha} - \sum_{\ell=0}^{m} \frac{\partial W_{\ell}}{\partial \eta^a} dx^{(\ell)} + \rho u_{\alpha}.
\]
The formulae (2.5) or (2.6) seem to be the most natural generalization of the classical WIRTINGER's connection, but as these formulae are not applicable directly to the KAWAGUCHI space when we intend later to introduce WIRTINGER's connections in the space, we have to consider the following special case for that.
In \(W_n^{(m)} \) we assume especially that the double vector \((\eta^a, u_{\alpha}) \) has such relation as
\[
\begin{align*}
\eta^a & \equiv u_{\alpha}(x, x^{(1)}, \cdots, x^{(m)}, \eta),
\end{align*}
\]
where \(u_{\alpha} \) are homogeneous functions of degree \(k \) in \(\eta^a \). The \(d \)-differential and \(\delta \)-differential of \(u_{\alpha} \) are respectively
$d_{U_{a}} = \frac{av_{a}}{a\eta^{6}} d\eta^{6}$,

(2.7)

$$
\delta_{\xi^{(i)}} v_{a} = \frac{a/J_{a}}{ax^{(i)\mathcal{B}}} \xi^{(i)6} + \frac{a_{U_{a}}}{a\eta^{6}} \delta_{\xi^{(i)}} \eta^{6} \quad (i=0, 1, \cdots, m),$$

accordingly putting

$$u_{a} \delta_{\xi^{(i)}} \eta^{a} \equiv -W(x, x^{(i)} \cdots, x^{(m)}, \eta, \xi^{(i)}, u, \xi^{(i)}) ,$$

and differentiating them partially by η^{a}, ν_{a} we can easily obtain

$$
\frac{\partial 0_{\alpha}}{a\eta^{6}} \delta_{\xi^{(i)}} \eta^{\alpha} + o_{a} \frac{\partial \delta_{\epsilon^{(i)}} \eta^{a}}{av_{6} d\eta^{6} + \frac{a\delta_{\epsilon^{(i)}} \eta^{a}}{a\eta^{6} d\eta^{6}} = -\frac{aW(i)}{a\eta^{\mathcal{B}}} - \frac{aW(i)}{a_{U_{\gamma}}} \frac{av_{\gamma}}{a\eta^{6}} \delta_{\xi^{(i)}} \eta^{a} \delta_{\xi^{(i)}} \eta^{6},$$

(2.8)

$$
\eta^{\mathcal{B}} \frac{a_{U_{\gamma}}}{a\eta^{\alpha}} = -u_{a},$$

On the other hand, under the contact condition

$$
\delta_{\xi^{(i)}} (\eta^{a} \cdot d\eta^{a}) = \delta_{\xi^{(i)}} (-u_{a} d\eta^{a}) = -\delta_{\xi^{(i)}} (-u_{a} d\eta^{a}) - u_{a} \delta_{\xi^{(i)}} \eta^{a} = \frac{(t)}{\eta^{a}} \cdot du_{a} + \sigma u_{a} d\eta^{a},$$

we get

$$
\delta_{\xi^{(i)}} (\eta^{a} \cdot du_{a}) = \delta_{\xi^{(i)}} (-u_{a} d\eta^{a}) = -\delta_{\xi^{(i)}} (-u_{a} d\eta^{a}) - u_{a} \delta_{\xi^{(i)}} \eta^{a} - \frac{(t)}{\eta^{a}} \cdot du_{a} + \sigma u_{a} d\eta^{a},$$

(2.9)

applying (2.8). Substitution of (2.7) in (2.9) gives rise to

$$
\left(\frac{\partial u_{a}}{\partial x^{(i)\mathcal{B}}} \delta_{\xi^{(i)}} \eta^{a} + \frac{\partial u_{a}}{\partial \eta^{\alpha}} \delta_{\xi^{(i)}} \eta^{a} \right) d\eta^{a} - \left(\frac{\partial W}{\partial \eta^{\alpha}} + \frac{\partial W}{\partial \eta^{\alpha}} \right) du_{a} \delta_{\xi^{(i)}} \eta^{a} \delta_{\xi^{(i)}} \eta^{6} - \left(\frac{\partial W}{\partial \eta^{\alpha}} + \frac{\partial W}{\partial \eta^{\alpha}} \right) du_{a} \delta_{\xi^{(i)}} \eta^{a} \delta_{\xi^{(i)}} \eta^{6} - \left(\frac{\partial W}{\partial \eta^{\alpha}} + \frac{\partial W}{\partial \eta^{\alpha}} \right) du_{a} \delta_{\xi^{(i)}} \eta^{a} \delta_{\xi^{(i)}} \eta^{6},$$

(2.10)

By the use of the incidence condition, we get the following relation

$$
\eta^{\mathcal{B}} \frac{\partial u_{a}}{\partial \eta^{\alpha}} = -u_{a},$$

(2.11)

and substitute (2.11) in (2.10) then (2.10) yields

$$
\left(\frac{\partial u_{a}}{\partial \eta^{\alpha}} - 2 \frac{\partial u_{a}}{\partial \eta^{\alpha}} \right) \delta_{\xi^{(i)}} \eta^{a} = -\frac{\partial u_{a}}{\partial \eta^{\alpha}} \xi^{(i)} \eta^{a} + \frac{\partial W}{\partial \eta^{\alpha}} \eta^{a} + 2 \frac{\partial W}{\partial \eta^{\alpha}} \frac{\partial u_{a}}{\partial \eta^{\alpha}} \eta^{a} - (\rho - \sigma) \frac{\partial u_{a}}{\partial \eta^{\alpha}} \eta^{a},$$

(2.12)
From (1.5) and (2.12) we are led at once to

\[\delta_{\xi^{(i)}} \eta^{a} = g^{\gamma a} \left(\frac{\partial v_{\gamma}}{\partial x^{(i)6}} \xi^{(i)6} + \frac{\partial W}{\partial \eta^{\tau}} + 2 \frac{\partial W}{\partial \eta^{\tau}} \frac{\partial v_{\gamma}}{\partial \eta^{\tau}} \right), \]

where

\[g_{a6} = \frac{\partial \ell}{\partial \eta^{a}} - 2 \frac{\partial}{\partial \eta^{a}} W_{a6} \]

and

\[g_{a6} g^{1^6} = \delta_{a}^{\gamma} \]

provided that the determinant \(|g_{a6}|\) does not vanish identically. Substitute (2.7) in (2.13)

\[\delta_{\xi^{(i)}} 0_{a} = \frac{\partial v_{a}}{\partial x^{(i)6}} \xi^{(i)6} + \frac{\partial v_{a}}{\partial \eta^{\gamma}} g^{\gamma a} \left(\frac{\partial v_{a}}{\partial x^{(i)6}} \xi^{(i)6} + \frac{\partial W}{\partial \eta^{\gamma}} + 2 \frac{\partial W}{\partial \eta^{\gamma}} \frac{\partial v_{a}}{\partial \eta^{\gamma}} \right) \]

is obtained easily.

The covariant differentials in such special Wirtinger manifold \(W_{n}^{(m)} \) are defined by use of (2.13) and (2.14) as

\[D\eta^{a} = \delta_{\xi^{(i)}} \eta^{a} + g^{\gamma a} \sum_{i=0}^{m} \left(\frac{\partial v_{\gamma}}{\partial x^{(i)6}} \xi^{(i)6} + \frac{\partial W}{\partial \eta^{\gamma}} + 2 \frac{\partial W}{\partial \eta^{\gamma}} \frac{\partial v_{\gamma}}{\partial \eta^{\gamma}} \right) dx^{(i)6}, \]

\[D\eta^{a} = \delta_{\xi^{(i)}} \eta^{a} g^{\gamma a} \sum_{i=0}^{m} \left(\frac{\partial v_{\gamma}}{\partial x^{(i)6}} \xi^{(i)6} + \frac{\partial W}{\partial \eta^{\gamma}} + 2 \frac{\partial W}{\partial \eta^{\gamma}} \frac{\partial v_{\gamma}}{\partial \eta^{\gamma}} \right) dx^{(i)6}. \]

§ 3. Wirtinger's connections introduced in Kawaguchi spaces

An \(n \)-dimensional space with the arc length

\[s = \int F(x, x^{(1)}, x^{(2)}, \ldots, x^{(m)}) \, dt \]

is named a Kawaguchi space by J. L. Synge and H. V. Craig, hereafter we denote it by the symbol \(K_{n}^{(m)} \).

In order that the arc length should be related intrinsically to the curve, we have the so-called Zermelo's conditions, namely

\[\sum_{k=1}^{m} \lambda^{a} F_{(\lambda)6} = F, \quad \sum_{k=1}^{m} \left(\frac{\lambda}{\delta} \right)^{s} x^{(s+1)6} F_{(\lambda)6} = 0 \quad (m \geq s \geq 1) \]

where we put

\[F_{(r)6} \equiv \frac{\partial F}{\partial x^{(r)6}} (r = 1, 2, \ldots, m) \]

Putting \(m = s \) in the second expression in (3.1) one obtains
The relation (3.2) is nothing but an incidence condition between the contravariant vector $x^{(i)}$ and the covariant vector $F_{(m)i}$. This fact means in general that, in the KAWAGUCHI space, with each point (x^i) the double vector $(x^{(i)}, F_{(m)i})$ is associated always.

In some special KAWAGUCHI spaces, we find that $F_{(m)i}$ involves x^i and $x^{(i)}$ only and the incidence condition

$$x^{(i)} F_{(m)i} = 0$$

exists. It is clear that our such case is almost the same as the classical WIRTINGER's case.

In such a point of view, the KAWAGUCHI spaces give various examples of $W_{n}^{(m)}$, therefore various WIRTINGER's connections are introduced according to various points of view. We shall take up some interesting cases later on.

With the object of introducing a connection in $K_{n}^{(m)}$, KAWAGUCHI [12] considered a manifold with line-elements of order $2n-1$ and adopted

$$(3.3) \quad g_{ij} \equiv m F_{(m)j}^{(m),i} + \mathfrak{E}_{i}^{m} \mathfrak{E}_{j} + \mathfrak{E}_{i} \mathfrak{E}_{j} + n \ast m 1$$

as the fundamental tensor in the space.

$\mathfrak{E}_{i}^{m}, \mathfrak{E}_{i}$ in (3.3) are intrinsic SYNGE's vectors modified by

$$\tilde{E}_{i} \equiv \sum_{\lambda=0}^{m} (-1)^{\lambda} \binom{\lambda}{r} F_{(\lambda)i}^{(f-7)} + \frac{1}{m} \frac{F^{(1)}}{F'} (\delta_{j}^{i} + \frac{1}{F} x^{(1)i} \mathfrak{E}_{j}^{m}) + \frac{x^{(i)}}{F} \Xi_{j}$$

Here we assume that the rank of a matrix

$$((m F_{(m)i}, \mathfrak{E}_{i}^{m} \mathfrak{E}_{j} + \mathfrak{E}_{i} \mathfrak{E}_{j} + n \ast m 1))$$

is $n-1$, then the determinant $|g_{ij}|$ does not vanish identically, so we can derive the contravariant tensor g^{ij} from which a geometrical quantity Γ_{j}^{i} of class 1, and of order $2m-1$ is defined as

$$\Gamma_{j}^{i} \equiv g^{ik} (F_{(m)j}^{m,i} + \frac{1}{m} F_{(m)k} F_{(m-1)i})$$

This geometrical quantity Γ_{j}^{i} is transformed in the same way as an affine parameter by the extended point transformation, that is
On the Wirtinger's Connections in Higher Order Spaces

\[\Gamma_{\alpha}^{\beta} = \Gamma_{j}^{i} \left(\frac{\partial x^{a}}{\partial x^{i}} \frac{\partial x^{j}}{\partial x^{\beta}} - \frac{\partial x^{a}}{\partial x^{\beta}} \frac{\partial x^{j}}{\partial x^{i}} \right). \]

By means of the \(\Gamma_{j}^{i} \) we can introduce connection parameters as follows. If we put

\[\bar{D} \Gamma_{j}^{i} \equiv \sum_{p=1}^{2m-1} \left(\begin{array}{l} \lambda \vspace{1mm} \\
p \end{array} \right) \Gamma_{j(l)k}^{i} dx^{(R-p)k} \quad (p=1, 2, \ldots, 2m-1), \]

then except \(\bar{D} \Gamma_{j}^{i} \), all of \(\bar{D} \Gamma_{j}^{i} \) are quantities with tensor character, therefore we can define the connection parameters as

\[F^{-1} \left(\sum_{p=1}^{m} F^{(p-1)p} \bar{D} \Gamma_{j}^{i} + \sum_{p=1}^{m-1} \Psi p \bar{D} \Gamma_{j}^{i} \right) \equiv \sum_{a=0}^{m-2} r_{jk}^{a_{i}} dx^{(a)k}, \]

where \(\Psi p \) \((p=1, 2, \ldots, 2m-1)\) are scalar quantities of order \(2m-1 \).

Making use of these quantities, the intrinsic covariant differential \(\delta X^{i} \) of an intrinsic vector \(X^{i} \) of order \(2m-1 \) can be defined as

\[(3.4) \quad \delta X^{i} = dX^{i} + \sum_{a=0}^{m-2} \Gamma_{jk}^{i} X^{j} dx^{(a)k}. \]

The above stated is the connection theory in the line-elements space of order \(2m-1 \) given by Kawaguchi.

In the first place, we shall embody the special Wirtinger's connection in a Kawaguchi space making use of the general Kawaguchi's connection.

Let a pair \((\eta^{a}, u_{a})\) be the double vector in the Kawaguchi space \(K_{n}^{(m)} \) in \(W_{n}^{(m)} \), then the Kawaguchi's connections concerning the vectors \(\eta^{a}, u_{a} \) are

\[\begin{align*}
\delta \eta^{a} &= d\eta^{a} + \sum_{i=0}^{2m-2} \Gamma_{s}^{r} (x, x^{(i)}, \ldots, x^{(2m-1)}) \eta^{s} dx^{(i)}_{r} , \\
\delta u_{a} &= d u_{a} - \sum_{i=0}^{2m-2} \Gamma_{s}^{r} (x, x^{(i)}, \ldots, x^{(2m-1)}) u_{s} dx^{(i)}_{r} ,
\end{align*} \]

with the aid of (3.4) and we find at once

\[\begin{align*}
u_{r} \delta \xi^{(i)} &\eta^{r} = -\Gamma^{r}_{s} \eta^{s} \nu_{r} dx^{(i)}_{s} = -W_{s} dx^{(i)}_{s} \quad (i=0, 1, 2, \ldots, 2m-2), \\
u_{r} \delta \xi^{(2m-1)} &\eta^{r} = -W_{s} dx^{(2m-1)}_{s} = 0 .
\end{align*} \]

from (3.5).

The relations in (3.6) give rise to
Accordingly the covariant differentials based on the special Wirtinger’s connection are

\[
D\eta^a = d\eta^a + g^r a^{2m-2} \sum_{\ell=0}^{2m-2} \left(\frac{\partial \eta^r}{\partial x^{(\ell)}} - 2 \Gamma^r_{\ell \beta} \eta^\beta \right) dx^{(\ell)8},
\]

(3.8)

\[
D\nu_a = d\nu_a - \sum_{\ell=0}^{2m-2} \left(\frac{\partial \nu_a}{\partial x^{(\ell)}} - \frac{\partial \nu_a}{\partial \eta^a} g^r a \sum_{\ell=0}^{2m-2} \left(\frac{\partial \nu_a}{\partial \eta^a} - 2 \Gamma^r_{\ell \beta} \eta^\beta \right) \right) dx^{(\ell)8},
\]

by substitution of (3.7) in (2.15).

In use of (3.8) we can find the relations between the Wirtinger’s connection and the Kawaguchi’s connection, namely

\[
D\eta^a = d\eta^a + g^r a^{2m-2} \sum_{\ell=0}^{2m-2} \left(\frac{\partial \eta^r}{\partial x^{(\ell)}} - 2 \Gamma^r_{\ell \beta} \eta^\beta \right) dx^{(\ell)8},
\]

(3.8)

\[
D\nu_a = d\nu_a - \sum_{\ell=0}^{2m-2} \left(\frac{\partial \nu_a}{\partial x^{(\ell)}} - \frac{\partial \nu_a}{\partial \eta^a} g^r a \sum_{\ell=0}^{2m-2} \left(\frac{\partial \nu_a}{\partial \eta^a} - 2 \Gamma^r_{\ell \beta} \eta^\beta \right) \right) dx^{(\ell)8},
\]

and

\[
D_\nu_a = d\nu_a - \sum_{\ell=0}^{2m-2} \left(\frac{\partial \nu_a}{\partial x^{(\ell)}} - \frac{\partial \nu_a}{\partial \eta^a} g^r a \sum_{\ell=0}^{2m-2} \left(\frac{\partial \nu_a}{\partial \eta^a} - 2 \Gamma^r_{\ell \beta} \eta^\beta \right) \right) dx^{(\ell)8},
\]

(3.8)

\[
D_\nu_a = d\nu_a - \sum_{\ell=0}^{2m-2} \left(\frac{\partial \nu_a}{\partial x^{(\ell)}} - \frac{\partial \nu_a}{\partial \eta^a} g^r a \sum_{\ell=0}^{2m-2} \left(\frac{\partial \nu_a}{\partial \eta^a} - 2 \Gamma^r_{\ell \beta} \eta^\beta \right) \right) dx^{(\ell)8},
\]

So that
\[D\eta^a = \delta\eta^a + g^{\tau a} \left(\delta\eta^\tau - \frac{\partial u^\tau}{\partial\eta^8} \delta\eta^8 \right), \]
\[D\nu_a = \delta\nu_a - \left(\delta_\tau - \frac{\partial u^\tau}{\partial\eta^8} g^{\tau a} \right) \left(\delta\eta^\tau - \frac{\partial u^\tau}{\partial\eta^8} \delta\eta^8 \right) \]

are relations between them.

The formulae (3.8) are the special (or modified) Wirtinger's connection introduced in the general Kawaguchi space.

In a special Kawaguchi space with the arc length

\[s = \int \left\{ A_i(x, x') x''^i + B(x, x') \right\}^{1/p} \, dt, \]

Kawaguchi [13] introduced two kinds of connections, say connection \(C \) and connection \(C' \).

Connection \(C \):

We put

\[F \equiv A_i(x, x') x''^i + B(x, x'), \]

where \(F \) is a scalar and covariant vector \(A_i \) is a homogeneous function of degree \(p-2 \) in \(x'' \).

With the exception of \(2p=3 \), the determinant of the tensor

\[G_{ij} \equiv 2A_{(j)} - A_{i(j)} \]

does not vanish identically.

Let us introduce a covariant vector defined by

\[T_i \equiv -2 \frac{d}{dt} \frac{aF}{ax^i} + \frac{aF}{ax^i} = (A_k(i) - 2A_i(k)) x^;;k - 2A_{ik} x^{'k} + B_{(i)} \]

where \(A_{k(i)} \equiv \frac{aA_k}{ax^i} \), \(A_{ik} \equiv \frac{aA_i}{ax^k} \), \(B_{(i)} \equiv \frac{aB}{ax^i} \),

and contract \(T_i \) with \(G^{ij} \) then we have at once

\[x^{\[2\]j} \equiv -T_i G^{ij} = x^{;/j} + 2\Gamma^j, \]

where \(2\Gamma^j \equiv (2A_{ik} x^{'k} - B_{(i)}) G^{ij}, \ G_{ij} G^{ik} = \delta^i_j \).

The vector \(T_i \) defined by (3.10) is nothing but the so-called Craig vector and among \(x^{[2]j}, A_i \) and \(F \) there exists the following relation

\[A_i x^{[2]i} = F. \]

It is remarkable that although this space is a Kawaguchi space of order 2, it can be treated in the same manner as \(K_n \),
The covariant differentials of a contravariant vector u^i and a covariant vector u_i are defined as

\begin{align}
\partial u^i &= d_{\omega} + \Gamma_{(j)(k)}^{i} o^j dx^k, \\
\partial u_i &= du_i - \Gamma_{(i)(k)}^{j} o_j dx^k,
\end{align}

with the base connection

\begin{equation}
\partial x'^i = dx'^i + 2\Gamma^{i}.
\end{equation}

The connection given by (3.12) is the connection C in our space.

Connection C':

Theorem. Let Φ_i be a covariant vector subjected to line-elements $(x, x^{(1)}, \ldots, x^{(m)})$ then

\begin{equation}
D_{ij}^{m-n}(\Phi)\nu^j \equiv \sum_{\alpha}^{m} \left[\sum_{\rho}^{n} \left(\frac{\partial \Phi_i}{\partial x^{(\alpha)\beta}}\frac{d\nu^j}{dt^{\alpha-\rho}}\right)\right],
\end{equation}

are components of a covariant vector provided ν^i be a contravariant vector.

From this theorem given by KAWAGUCHI we see

\begin{equation}
-D_{ij}^{[1]}(T)\nu^j = 2G_{ij}\frac{d\nu^j}{dt} + G_{ik(l)}x'^{j}o^{i} + 2\Gamma_{i(l)}o^{i},
\end{equation}

where $\Gamma_{i} \equiv G_{ik}\Gamma^{k}$, and by use of the above formulae we can introduce, excepting the case $2p=3$, an absolute differential along a curve as follows. Putting

\begin{equation}
D_{ij}^{[1]}\nu^j \equiv \frac{d\nu^j}{dt} + G^{M}\left(\frac{1}{2}G_{hi(j)}x'^{i} + \Gamma_{i(j)}\right)\nu^j,
\end{equation}

and being aided by

\begin{equation}
G^{M}\left(\frac{1}{2}G_{ik(l)}x'^{i} + \Gamma_{i(l)}\right) = \frac{1}{2} G^{M}G_{ik(l)}(x'^{i} + 2\Gamma^{i}) + \Gamma_{i(l)}
\end{equation}

we can define the absolute differential of a vector corresponding to a displacement from a line element (x, x') to a neighboring line element $(x+dx, x'+dx')$ as

\begin{equation}
D_{ij}^{[1]}\nu^j = d\nu^j + \Gamma_{i(k)}^{j} o^k dx^k + \frac{1}{2} G^{M}G_{ik(l)} o^k \partial x'^{j}.
\end{equation}

This reduces to (3.12), when $\partial x'^{i}=0$.

The absolute differential defined by (3.14) is not intrinsic, so that we have to introduce an intrinsic absolute differential. For the purpose, we adopt the following notations

\[
\begin{align*}
I_{ij} & = A_{ij} + A_{j}^{(i)} + (p-3) A_{i}^{(j)} , \\
J_{i} & = A_{i} + (p-2) A_{(i)} , \\
\bar{C}_{ij}^{k} & = (p-3) G^{lk} I_{lji} + (p-4) G_{(j)}^{lk} J_{li} , \\
C_{ij}^{k} & = 1/(p-3)^{2} C_{ij}^{k} \quad p \neq 3 , \\
& = C_{ij}^{k} \quad p = 3 ,
\end{align*}
\]

where \(I_{ij} \) is homogeneous of degree \(p-4 \) in \(x'^{i} \) and \(J_{i} \) is homogeneous of degree \(p-3 \) in \(x'^{i} \).

The tensor \(C_{ij}^{k} \) is constructed from only \(A_{i} \). By the use of this tensor an absolute differential is defined as

\[
\begin{align*}
\delta^{*} \eta^{a} & = d \eta^{a} + (\Gamma_{(6)(r)}^{a} + C_{6r}^{a} \Gamma_{(7)}^{6}) \eta^{6} dx^{r} + C_{6r}^{a} \eta^{6} dx'^{r} , \\
\delta^{*} o & = d o - (\Gamma_{(6)(r)}^{a} + C_{6r}^{a} \Gamma_{(7)}^{6}) o_{6} dx^{r} - C_{6r}^{a} u_{6} dx'^{r} ,
\end{align*}
\]

provided \(\eta^{a} \), \(o \) are contravariant and covariant vector in our space. The connection given by (3.15) is the connection \(C' \) in our space.

The concrete forms of Wirtinger's connections corresponding to (3.8) are introduced in two ways, the one is obtained by use of the connection \(C \), the other making use of the connection \(C' \).

Now we are going to explain these cases. The ZERMELO's conditions applied to the special KAWAGUCHI space are

\[
A_{i}(x, x') x'^{i} = 0 ,
\]

\[
2A_{i} x'^{i} + (A_{k(i)} x'^{k} + B_{(i)}) x^{;i} = p (A_{i} x'^{i} + B) ,
\]

in which the former is nothing but an incidence condition between \(x'^{i} \) and \(A_{i} \) associated to each point in our space, therefore all conditions are satisfied for introduction of the Wirtinger's connection provided that we have the \((x'^{i}, A_{i}) \) as double vectors.

For the sake of introducing a concrete Wirtinger's connection based on the connection \(C \), we put \(m = 1 \) in (2.15) and especially put \(o_{a} = o_{a} (x, \eta) \) then the connection is defined as

\[
D \eta^{a} = \delta_{a} \eta^{a} + g^{ra} \left(\frac{\partial o_{r}}{\partial x^{a}} - \frac{\partial W_{a}}{\partial \eta^{r}} - 2 \frac{\partial W_{a}}{\partial \eta^{r}} \frac{\partial o_{b}}{\partial \eta^{b}} \right) dx^{b} + g^{ra} \left(- \frac{\partial W_{a}}{\partial \eta^{r}} - 2 \frac{\partial W_{a}}{\partial \eta^{r}} \frac{\partial o_{b}}{\partial \eta^{b}} \right) dx'^{b} ,
\]

(3.16)
\[Du_a = \delta_{\xi^a}u_a - \left\{ \frac{\partial u_a}{\partial \xi^a} - \frac{\partial u_a}{\partial \eta^b} g^{\gamma b} \left(\frac{\partial u_r}{\partial \eta^r} - \frac{\partial W_{\delta \gamma}}{\partial \eta^r} - 2 \frac{\partial \xi^b}{\partial \eta^r} \frac{\partial \xi^a}{\partial \eta^b} \right) \right\} dx^b \]

\[+ \frac{\partial u_a}{\partial \eta^b} g^{\gamma b} \left(- \frac{\partial W_{\delta \gamma}}{\partial \eta^r} - 2 \frac{\partial \xi^b}{\partial \eta^r} \frac{\partial \xi^a}{\partial \eta^b} \right) dx^b \]

On the other hand, since KAWAGUCHI's connections in the case are

\[\delta \eta^a = d\eta^a + \Gamma^a_{(b)(r)} \eta^b dx^r, \quad \delta u_a = d\nu_a - \Gamma^a_{(b)(r)} \nu_b dx^r, \]

the relations

\[u_a \delta_{\xi^a} \eta^a = - \Gamma^a_{(b)(r)} \eta^b u_a dx^r = - W(x, x', \eta, \nu, \xi^{(0)}), \]

\[u_a \delta_{\xi^a} \eta^a = - W(x, x', \eta, \nu, \xi^{(1)}) = 0 \]

which lead to

\[\frac{\partial W}{\partial \eta^r} = \Gamma^a_{(b)(r)} \eta^b dx^b, \quad \frac{\partial W}{\partial \xi^b} = \Gamma^a_{(b)(r)} \eta^b dx^b, \]

accordingly

\[D\eta^a = d\eta^a + g^{\gamma b} \left(\frac{\partial u_r}{\partial \eta^r} - \nu_b \Gamma^b_{(\gamma)(r)} - 2 \nu_b \Gamma^b_{(r)(\gamma)} \eta^r \right) dx^b, \]

\[(3.17) \]

\[D\nu_a = d\nu_a - \left\{ u_{a \beta} - u_{a (b)} g^{\gamma b} (\nu_{\beta \gamma} - \nu_{\gamma \epsilon} \Gamma^\epsilon_{(b)(r)} - 2 I_{(b)(\epsilon)} \eta^r) \right\} dx^b \]

are obtained at once.

Substituting \(\gamma^a = x^a, \ nu_a = A_a \) in (3.17) we have

\[Dx^a = dx^a + g^{\gamma a} A_{\gamma b} - A_{b \gamma} \Gamma^b_{(\gamma)(r)} - 2 A_{b \gamma} \Gamma^b_{(r)(\gamma)} dx^b, \]

\[DA_a = dA_a - \left\{ A_{a \beta} - A_{a (b)} g^{\gamma b} (A_{\gamma \beta} - A_{\gamma \epsilon} \Gamma^\epsilon_{(b)(r)} - 2 I_{(b)(\epsilon)} A_{r \gamma}) \right\} dx^b. \]

If we adopt the notation

\[\varphi_{a \beta} \equiv A_{a \beta} - A_{\gamma} \Gamma^\gamma_{(a)(\beta)} - 2 A_{\gamma} \Gamma^\gamma_{(a)(\beta)}, \]

the relation

\[\varphi_{a \beta} = \varphi_{\beta a} + g_{a \gamma} \Gamma^\gamma_{(a)(\beta)}, \]

can be easily obtained with the aid of KAWAGUCHI's covariant derivatives

\[\varphi_{a \beta} A_a = A_{a \beta} - A_{\gamma} \Gamma^\gamma_{(a)(\beta)} - A_{\gamma} \Gamma^\gamma_{(a)(\beta)}. \]

Therefore (3.18) gives rise to
\[D x^a = d x^a + g^a \phi_r \delta x^a = d x^a + g^a (\nabla_\beta A_r + g_{\gamma \beta} \Gamma^r_{\delta \beta}) \delta x^a, \]
\[D A_a = d A_a - (A_{a \beta} - A_{a (\delta)} g^{\gamma \delta}) \delta x^a, \]
\[= d A_a - \{ A_{a \beta} - A_{a (\delta)} g^{\gamma \delta} (\nabla_\beta A_{\gamma} + g_{\delta \epsilon} \Gamma^{\delta \epsilon}_{\beta \gamma}) \} \delta x^a, \]
\[= d A_a - \Gamma^r_{\alpha \beta \gamma} A_r \delta x^a + A_{a (\beta \gamma)} g^r \nabla_\beta A_{\gamma} \delta x^a - \nabla_\beta A_r \delta x^a. \]

Finally, the relations between both connections are obtained as follows
\[(3.19) \]
\[D x^a = \delta x^a + g^a \phi_r A_r \delta x^a, \]
\[D A_a = \delta A_a - (\delta^a_{a} - A_{a (\delta)} g^{\gamma \delta})(\delta A_{\gamma} - A_{\gamma (\delta)} \delta x^\beta), \]

Then paying attention to the following relation
\[\delta A_r - A_{r (\delta)} \delta x^\beta = d A_r - \Gamma^r_{\alpha \beta \gamma} A_r \delta x^a - A_{r (\delta)} (\delta x^\beta + \Gamma^{\delta}_{\beta \epsilon} \delta x^\epsilon), \]
\[= (\Gamma^r_{\alpha \beta \gamma} A_r + \Gamma^{\delta}_{\beta \epsilon} \delta x^\epsilon) \delta x^a, \]
we can attain our object.

As the general form of the Wirtinger's connection is indicated in (3.16) and that of the Kawaguchi's in (3.15) we obtain
\[\nu_a \delta_{\epsilon}^{(\alpha)} \eta^a = - (\Gamma^r_{\gamma \beta \delta} + C^a_{\gamma \beta} \Gamma^r_{\beta \delta}) \eta^r \nu_a = - \frac{\partial W}{\partial \eta^r} (x, x', \eta, \nu), \]
\[\nu_a \delta_{\epsilon}^{(\gamma)} \eta^a = - C^a_{\gamma \beta \delta} \eta^r \nu_a = - \frac{\partial W}{\partial \nu^r} (x, x', \eta, \nu), \]

form which
\[(3.20) \]
\[\frac{\partial W_{\delta}}{\partial \eta^r} = (\Gamma^r_{\gamma \beta \delta} + C^r_{\gamma \beta \delta} \Gamma^r_{\eta \beta}) \nu_a , \quad \frac{\partial W_{\delta}}{\partial \nu^r} = (\Gamma^r_{\gamma \beta \delta} + C^r_{\gamma \beta \delta} \Gamma^r_{\eta \beta}) \eta^r , \]
\[\frac{\partial W_{\delta}}{\partial \eta^r} = C^r_{\gamma \beta \delta} \nu_a , \quad \frac{\partial W_{\delta}}{\partial \nu^r} = C^r_{\gamma \beta \delta} \eta^r \]

are derived.

By the substitution of (3.20) in (3.16)
\begin{align}
D\eta^a &= \delta_\xi \eta^a + g^{a \beta} \left\{ \frac{\partial \eta^\gamma}{\partial x^\delta} - (\Gamma^\rho_{(\gamma)(\delta)} + C^\rho_{(\gamma)(\delta)} \Gamma^\delta_{(\beta)}) \nu_\rho \right\} - 2(\Gamma^\rho_{(\gamma)(\delta)} + C^\rho_{(\gamma)(\delta)} \Gamma^\delta_{(\beta)}) \nu_\rho \\
&\quad + C^\rho_{(\beta)(\delta)} \Gamma^\delta_{(\gamma)} \frac{\partial \eta^\gamma}{\partial \eta^\rho} \right\} dx^{(1)\beta}, \\
(3.20)'
D \nu_a &= \delta_\xi \nu_a - \left[\frac{\partial \nu_a}{\partial x^\delta} \frac{\partial \nu_a}{\partial \eta^\gamma} g^{a \gamma} \right] dx^\delta + g^{a \gamma} \left\{ \frac{\partial \nu_a}{\partial x^\delta} - (\Gamma^\beta_{(\gamma)(\delta)} + C^\beta_{(\gamma)(\delta)} \Gamma^\delta_{(\beta)}) \nu_\beta \right\} dx^{(1)\delta} + \frac{\partial \nu_a}{\partial \eta^\gamma} g^{a \gamma} \left\{ \frac{\partial \nu_a}{\partial \eta^\rho} \right\} dx^{(1)\rho},
\end{align}

are given. Putting \(\eta^a = x^\alpha \), \(\nu_a = A_a \) then the final formulae of the connection are
\begin{align}
Dx^{;a} &= dx^{;a} + g^{a \beta} \left\{ A_{(\beta \epsilon)} -(\Gamma^\rho_{(\beta)(\epsilon)} + C^\rho_{(\beta)(\epsilon)} \Gamma^\epsilon_{(\beta)}) \right\} A_\rho \\
&\quad - 2(\Gamma^\rho_{(\beta)(\epsilon)} + C^\rho_{(\beta)(\epsilon)} \Gamma^\epsilon_{(\beta)}) \frac{\partial A_{(\beta \epsilon)}}{\partial x^\delta} dx^{\delta}, \\
(3.21)
DA_a &= dA_a - \left[A_{(a \epsilon)} + A_{(a \beta)} g^{a \beta} \right] dx^\epsilon - 2(\Gamma^\rho_{(a)(\epsilon)} + C^\rho_{(a)(\epsilon)} \Gamma^\epsilon_{(a)}) A_\rho \\
&\quad + 2(\Gamma^\rho_{(a)(\epsilon)} + C^\rho_{(a)(\epsilon)} \Gamma^\epsilon_{(a)}) \frac{\partial A_{(a \epsilon)}}{\partial x^\delta} g^{a \beta} C^\beta_{(a \beta)} A_\beta dx^{(1)\delta}.
\end{align}

They clearly demonstrate that the formulae (3.21) are a concrete form of the Wirtinger’s connection in the special Kawaguchi space.

In order to obtain the relations between the Wirtinger’s connection and the Kawaguchi’s we adopt again the notation \(\delta^* \) as the Kawaguchi’s covariant differential based on the connection \(C \), then
\begin{align}
\delta^*x^\alpha &= dx^\alpha + (\Gamma^\beta_{(\alpha)(\gamma)} + C^\beta_{(\alpha)(\gamma)} \Gamma^\gamma_{(\beta)}) x^\beta dx^\gamma + C^\beta_{(\alpha)} x^\beta dx^\gamma \\
&= dx^\alpha + \Gamma^\alpha_{(\beta)(\gamma)} x^\gamma \\
(3.22)
\delta^*A_a &= dA_a - (\Gamma^\beta_{(a)(\gamma)} + C^\beta_{(a)(\gamma)} \Gamma^\gamma_{(a)}) A_\beta dx^\gamma - C^\alpha_{(a)} A_\beta dx^\gamma \\
&= dA_a - (\Gamma^\beta_{(a)(\gamma)} + C^\beta_{(a)(\gamma)} \Gamma^\gamma_{(a)}) A_\beta dx^\gamma - C^\beta_{(a)} A_\beta dx^\gamma = \delta A_a - C^\beta_{(a)} A_\beta dx^\gamma
\end{align}

are the covariant differentials defined by Kawaguchi. Formulae (3.21) are rewritten as
\begin{align}
Dx^{;a} &= dx^{;a} + g^{a \beta} \Phi^{\beta \epsilon} dx^\epsilon + g^{a \beta} \left(\frac{\partial \Phi^{\beta \epsilon}}{\partial x^\delta} - A_{(\beta \epsilon)} \right) dx^{\delta} \\
&\quad + g^{a \beta} \Gamma^\delta_{(\beta)} \left(\Phi^{\delta \epsilon} - A_{(\beta \epsilon)} \right) dx^\epsilon, \\
DA_a &= dA_a + \left[-A_{(a \epsilon)} + A_{(a \beta)} g^{a \beta} \Phi^{\beta \epsilon} \right] dx^\epsilon \\
&\quad - A_{(a \beta)} g^{a \beta} C^\beta_{(a \beta)} A_\beta (dx^\alpha + \Gamma^\alpha_{(\epsilon)} dx^\epsilon),
\end{align}

by the use of
On the Wirtinger's Connections in Higher Order Spaces

\[\phi_{\beta\epsilon} \equiv A_{\beta\epsilon} - 2A_{r(\beta)}\Gamma_{r(\epsilon)}^{r} - A_{7}\Gamma_{(6)(6)}^{r} , \]
\[\vec{\phi}_{\beta\epsilon} \equiv A_{\beta\epsilon} - A_{r}\Gamma_{(6)\beta\epsilon}^{r} . \]

On the other hand, (3.21) leads us to
\[Dx^{a'} = dx^{a'} + \Gamma_{(\beta)}^{a}\delta x^{\beta} + g^{a'a}V_{a}dx^{r} - g^{a'a}A_{r}C_{\beta\epsilon}^{r}dx^{\epsilon} , \]
\[DA_{a} = dA_{a} - \Gamma_{(a)(\gamma)}^{6}A_{6}dx^{\gamma} - \nabla_{6}A_{a}dx^{6} - A_{a(6)}g^{\delta 6}(V_{\epsilon}A_{\delta}dx^{\epsilon} - C_{\beta\epsilon}^{r}A_{a}\delta x^{r}) , \]
by use of \(V_{\epsilon}A_{a} \).

In consequence of (3.22) and (3.23) the relations between both connections are expressed as
\[Dx^{a'} = \delta^{*}x^{a'} + g^{a'a}(V_{a}A_{6}dx^{r} - A_{r}C_{\beta\epsilon}^{r}\delta x^{\epsilon}) , \]
\[DA_{a} = \delta^{*}A_{a} - (\delta_{a}^{0} - A_{a(6)}g^{06})(\nabla_{\epsilon}A_{0}dx^{\epsilon} - A_{\epsilon}C_{0\epsilon}^{r}\delta x^{r}) . \]

Of course, the formulae (3.24) are easily derived from (3.9). Besides this there are many special Kawaguchi spaces in which such a connection as in (3.23) can be introduced, for example, in Kawaguchi spaces with matrices
\[s = \int\left\{ a_{i}(x, x') a_{j}(x, x') x''^{i}x''^{j} + 2b(x, x') a_{i}(x, x') x''^{i} + c(x, x') \right\}^{1/p} dt , \]
\[s = \int\left\{ A_{i}(x, x') x''^{i} + B(x, x', x'') \right\}^{1/p} dt , \]
we can introduce concrete Wirtinger's connections into the spaces.

§ 4. Covariant derivatives

To \(\eta^{a} \) and \(u_{a} \) in double vectors \((\eta^{a}, u_{a}) \), the covariant derivatives based on the special Wirtinger's connection which is introduced in \(K_{n}^{(m)} \) can be defined making use of Kawaguchi's covariant derivatives.

The base connections in the Kawaguchi space are defined by
\[F_{2m-1}g^{ij} \delta^{1}\mathcal{E}_{i} \equiv \delta x^{(2m-1)j} = \left(\delta_{i}^{j} + \frac{\mathcal{E}_{i}^{1}x^{(a)j}}{\mathcal{F}^{1}} \right) dx^{(2m-1)j} + \sum_{a=0}^{2m-2} A_{i}^{j} dx^{a} , \]
\[\left(\begin{array}{c}
2m-1 \\
p
\end{array}\right) F_{2m-p-1}g^{ij} \sum_{\beta=p}^{2m-1} A_{i}^{p+1} \sum_{\lambda=p+1}^{2m-1} \left(\frac{1}{\mathcal{E}_{i}^{1}} \right) \delta x^{(p+1)j} + \sum_{a=0}^{2m-2} A_{i}^{j} dx^{a} \equiv \delta x^{(2m-p-1)j} . \]

Making use of these connections, one may rewrite (3.4) as
\[(4.1) \delta X^{j} = \sum_{a=0}^{2m-1} P_{(a)}^{(j)}X^{(a)} \delta x^{(a)} \]
\[(\delta x^{a})^{j} \equiv dx^{j} , \]
\[\nabla_{j}^{(2m-1)}X^{i} = X_{(2m-1)j}^{i} \]

\[\nabla_{j}^{(p)}X^{l} = X_{(p)j}^{i} - \sum_{\iota=p+l}^{2m-1} \nabla_{k}^{(l)}X^{l} \Lambda_{j}^{k} + \Gamma_{kj}^{i}X^{k} \quad (p=0, 1, 2, \cdots, 2m-1). \]

It should be noticed that

\[x'^{j}f^{(p)}X^{i} = 0 \quad (p = 1, 2, \cdots, 2m-1). \]

By use of Kawaguchi's covariant derivatives

\[\nabla_{j}^{(p)}X^{i} \quad (p=0, 1, 2, \cdots, 2m-1), \]

the covariant derivatives in our case can be defined as follows.

From (3.9) the relations between the Kawaguchi's connection and the Wirtinger's connection are

\[D\eta^{a} = \frac{\delta\eta^{a}}{\delta v_{a}} + g^{\gamma a} \left(\frac{\partial v_{a}}{\partial \eta^{\gamma}} \cdot \delta x^{(\lambda)\beta} \right), \]

\[D\nu_{a} = \frac{\delta\nu_{a}}{\delta v_{a}} + \left(\frac{\partial\nu_{a}}{\partial \eta^{\gamma}} - g^{\gamma a} \frac{a_{U_{\gamma}}}{a_{\eta^{a}}} \right) \left(\frac{\partial v_{a}}{\partial \eta^{\gamma}} \cdot \delta x^{(\lambda)\beta} \right). \]

Therefore, corresponding to (4.1) we have the following expressions

\[\delta\eta^{a} = \sum_{l=0}^{2m-1} \nabla_{l} \eta^{a} \cdot \delta x^{(\lambda)\beta}, \quad \delta\nu_{a} = \sum_{l=0}^{2m-1} \nabla_{l} \nu_{a} \cdot \delta x^{(\lambda)\beta}. \]

Making use of the above expressions, one derives

\[D\eta^{a} = \sum_{l=0}^{2m-1} \nabla_{l} \eta^{a} \cdot \delta x^{(\lambda)\beta} + g^{\gamma a} \left(\sum_{l=0}^{2m-1} \nabla_{l} \nu_{a} \cdot \delta x^{(\lambda)\beta} \right) - \frac{\partial\nu_{a}}{\partial \eta^{\gamma}} \sum_{l=0}^{2m-1} \nabla_{l} \eta^{a} \cdot \delta x^{(\lambda)\beta} \]

\[= \sum_{l=0}^{2m-1} \left(\frac{\partial \eta^{a}}{\partial v_{a}} \cdot \delta x^{(\lambda)\beta} \right) \delta x^{(\lambda)\beta} - \sum_{l=0}^{2m-1} \nabla_{l} \eta^{a} \cdot \delta x^{(\lambda)\beta}, \]

where we put

\[\nabla_{l} \eta^{a} = \eta^{a} + g^{\gamma a} \left(\frac{\partial \nu_{a}}{\partial \eta^{\gamma}} \cdot \delta x^{(\lambda)\beta} \right). \]

Similarly

\[\nabla_{l} \nu_{a} = \nu_{a} + g^{\gamma a} \left(\frac{\partial \nu_{a}}{\partial \eta^{\gamma}} \cdot \delta x^{(\lambda)\beta} \right). \]
\[D_{\alpha} = \sum_{\lambda=0}^{2m-1} \frac{1}{\lambda!} \nabla_{\gamma} x^{\lambda} \cdot \delta \nabla_{\gamma} x^{\lambda} \]
\[\partial^0_\epsilon A_a = \nabla_\epsilon A_a - (\partial^\gamma A_a - A_{a(\beta)} g^{r6}) (\partial^\gamma A_r - A_{r(\beta)} g^{r6}) = A_{a(\beta)} g^{r6} \partial^\gamma A_r , \]
\[\partial^1_\epsilon A_a = \nabla^\prime_\epsilon A_a - (\partial^\gamma A_a - A_{a(\beta)} g^{r6}) (\partial^\gamma A_r - A_{r(\beta)} g^{r6}) = A_{a(\epsilon)} , \]
we can derive
\[(4.6) \quad DA_a = A_{a(\beta)} g^{r6} \partial^\gamma A_r dx^\gamma + \nabla^\prime_\epsilon A_a dx^\epsilon . \]

In like manner, applying (4.3), (4.4) to the special Kawaguchi space with the connection \(C' \),
\[\partial^0_\beta x^\alpha = \nabla_\beta x^\alpha + g^{\gamma a} \left(\nabla_\beta A_{\gamma} - \frac{\partial A_{\gamma}}{\partial x^{\alpha}} \nabla_\beta x^\gamma \right) , \]
\[\partial^1_\beta x^\alpha = \nabla^\prime_\beta x^\alpha + g^{\gamma a} \left(\nabla^\prime_\beta A_{\gamma} - \frac{\partial A_{\gamma}}{\partial x^{\alpha}} \nabla^\prime_\beta x^\gamma \right) , \]
\[\partial^0_\epsilon A_a = \nabla_\epsilon A_a - (\partial^\gamma - A_{a(\delta)} g^{r6}) (\partial^\gamma A_r - A_{r(\delta)} g^{r6}) = A_{a(\epsilon)} , \]
\[\partial^1_\epsilon A_a = \nabla^\prime_\epsilon A_a - (\partial^\gamma - A_{a(\delta)} g^{r6}) (\partial^\gamma A_r - A_{r(\delta)} g^{r6}) = A_{a(\epsilon)} , \]
are derived, so that paying attention to
\[\nabla_j x^\alpha = 0 , \quad \nabla_j x^\epsilon = \delta_j^\epsilon , \quad \nabla_j A_i = A_{i(j)} - C_{ij}^k A_k , \]
we have
\[\partial^0_\beta x^\alpha = g^{\gamma a} \nabla_\beta A_{\gamma} , \]
\[\partial^1_\beta x^\alpha = \delta_\beta^\alpha + g^{\gamma a} (A_{\gamma(\beta)} - C_{i\beta}^{a} A_i - A_{\gamma(\beta)} \delta^\beta) , \]
\[\partial^0_\epsilon A_a = \nabla_\epsilon A_a - (\partial^\gamma - A_{a(\delta)} g^{r6}) (\partial^\gamma A_r - A_{r(\delta)} g^{r6}) = A_{a(\epsilon)} , \]
\[\partial^1_\epsilon A_a = A_{a(\epsilon)} - C_{a\epsilon}^\beta A_\beta - (\partial^\gamma - A_{a(\delta)} g^{r6}) (A_{\gamma(\epsilon)} - C_{\gamma\epsilon}^\delta A_\delta - A_{\gamma(\delta)} \delta^\epsilon) = A_{a(\epsilon)} - A_{a(\delta)} g^{r6} C_{\gamma\epsilon\delta} A_\delta . \]

From these results we get at once
\[(4.7) \quad Dx^\alpha = g^{\gamma a} \nabla_\gamma A_{\gamma} dx^\gamma + (\partial^\gamma - g^{\gamma a} C_{\gamma\beta} A_\beta) \partial x^\gamma \]
\[DA_a = A_{a(\beta)} g^{r6} \nabla_\gamma A_{\gamma} dx^\gamma + (A_{a(\epsilon)} - A_{a(\beta)} g^{r6} C_{\gamma\epsilon\delta} A_\delta) \partial x^\epsilon . \]
Other covariant derivatives in our special Kawaguchi space can be defined but the details will be stated in §5.

§ 5. Covariant derivatives in a special Kawaguchi space

On the connection of a special Kawaguchi space with the metrics
\[s = \int \left\{ A_i x^\alpha + B \right\}^{\gamma/p} dt , \]
we have developed the outline in §3 and on the other hand, on the covariant derivatives coming in contact with them we have touched very briefly in §4.

In §5 covariant derivatives subjected to the Wirtinger's connection and relations with the Kawaguchi's derivatives will be stated somewhat in detail.

The Kawaguchi's differentials in the case of connection C are

$$\delta^{(C)}v^i = dv^i + \Gamma^i_{jk}v^j dx^k, \quad \delta^{(C)}u^i = du^i - \Gamma^i_{jk}u^j dx^k,$$

(base connection) $$\delta x^k = dx^k + \Gamma^i_{ij} dx^i,$$

so that we have

$$\delta^{(C)}v^i = \left(\frac{\partial v^i}{\partial x^k} - \frac{\partial v^i}{\partial x^l} \Gamma^i_{(k)} + \Gamma^i_{(k)} v^j dx^k \right) + \frac{\partial v^i}{\partial x^k} \delta x^k$$

$$= \tilde{P}^i_j v^j dx^i + \tilde{P}^i_j v^j \delta x^j,$$

where we put

(5.1) $\tilde{P}^i_j v^j \equiv \frac{\partial v^i}{\partial x^j} - \frac{\partial v^i}{\partial x^l} \Gamma^i_{(j)} + \Gamma^i_{(j)} v^j$.

Similarly

$$\delta^{(C)}u^i = \left(\frac{\partial u^i}{\partial x^k} - \frac{\partial u^i}{\partial x^l} \Gamma^i_{(k)} - \Gamma^i_{(k)} u^j dx^k \right) + \frac{\partial u^i}{\partial x^k} \delta x^k$$

$$= \tilde{P}^i_j u^j dx^i + \tilde{P}^i_j u^j \delta x^j,$$

where we put

(5.2) $\tilde{P}^i_j u^j \equiv \frac{\partial u^i}{\partial x^j} - \frac{\partial u^i}{\partial x^l} \Gamma^i_{(j)} + \Gamma^i_{(j)} u^j$.

From (3.15) Kawaguchi's differentials in the case of connection C' expressed by

$$\delta^{(C')}v^i = dv^i + \Gamma^*_{jk} v^j dx^k + C'_{jk} v^j dx^k,$$

$$\delta^{(C')}u^i = du^i - \Gamma^*_{jk} u^j dx^k - C'_{jk} u^j dx^k,$$

(base connection) $$\delta x^k = dx^k + \Gamma^i_{ij} dx^i,$$

where we put

$$\Gamma^*_{jk} \equiv \Gamma^i_{(j)k} + C'_{jk} \Gamma^i_{(k)}.$$

Rewriting the above expressions we have
\[\delta^{(C)}v^i = dv^i + \Gamma^i_\ell j_k v^j dx^k + C^i_\ell j_k v^j \delta x^\ell, \]
\[\delta^{(C')}v^i = dv^i - \Gamma^i_\ell j_k v^j dx^k - C^i_\ell j_k v^j \delta x^\ell, \]
so that
\[\delta^{(C')}v^i = v^i dx^j + \Gamma^i_\ell j_k v^j dx^k + C^i_\ell j_k v^j \delta x^\ell, \]
\[= \nabla^i v^j dx^j + \nabla^i \delta x^\ell \]
are given, where we put
\[\nabla^i v^j \equiv \frac{\partial v^i}{\partial x^j} - \frac{\partial v^i}{\partial x^k} \Gamma^i_\ell j_k, \]
\[\nabla^i \delta x^\ell \equiv \frac{\partial \delta x^\ell}{\partial x^i} + C^i_\ell j_k \delta x^\ell. \]
Quantities given by (5.1), (5.2) and (5.3) are Kawaguchi's derivatives from which the next relations can be obtained easily
\[(5.4) \]
\[\nabla^i v^j = \nabla^i \delta x^\ell \]
are given by (5.4).
Since
\[D^{(C)}\eta^i = dv^i + g^i j (\frac{\partial v^i}{\partial x^j} - \Gamma^i_\ell j_k v^j) dx^\ell, \]
\[D^{(C)}v^i = dv^i - \frac{\partial v^i}{\partial \eta^i} - g^i j (\frac{\partial v^i}{\partial x^j} - \Gamma^i_\ell j_k v^j) dx^\ell, \]
are derived by use of (3.9) or (3.17) in our special Kawaguchi space.
applying the Wirtinger's connection based on the connection C to a double vector $(\eta'(x'), u,(x, \eta))$, one obtains

$$D^{(Cy} \eta^{i} = \frac{\partial \eta^{i}}{\partial x^{j}} dx^{j} + g^{ki} \left(\frac{\partial \eta^{i}}{\partial x^{j}} - u_{i} \Gamma^{i}_{(j)(k)} - 2 \frac{\partial v_{k}}{\partial \eta^{j}} \Gamma^{i}_{(j)(k)} \right) dx^{j}$$

$$= \left\{ - \frac{\partial \eta^{i}}{\partial x^{j}} \Gamma^{i}_{(j)} + g^{ki} \left(\frac{\partial v_{k}}{\partial x^{j}} - u_{i} \Gamma^{i}_{(j)(k)} - 2 \frac{\partial v_{h}}{\partial \eta^{j}} \Gamma^{i}_{(j)(k)} \right) \right\} dx^{j} + \frac{\partial \eta^{i}}{\partial x^{j}} \delta x^{j}$$

$$= \nabla_{j} \eta^{l} dx^{j} + \nabla_{j} \eta^{l} \delta x^{j}$$

where we put

$$\nabla_{j} \eta^{l} \equiv \frac{\partial \eta^{i}}{\partial x^{j}}$$

(5.6)

$$\nabla_{j} \eta^{l} \equiv \frac{\partial \eta^{l}}{\partial x^{j}}$$

Similarly

$$D^{(\sigma)} u_{i} = \frac{\partial \eta^{i}}{\partial x^{j}} dx^{j} - \frac{\partial \eta^{i}}{\partial \eta^{l}} \frac{\partial \eta^{l}}{\partial x^{j}} dx^{j} - \left\{ \frac{\partial \eta^{i}}{\partial x^{j}} - \frac{\partial \eta^{i}}{\partial \eta^{l}} g^{kl} \left(\frac{\partial \eta^{i}}{\partial x^{j}} - u_{m} \Gamma^{i}_{(j)(k)} \right) - 2 \frac{\partial \eta^{i}}{\partial \eta^{l}} \Gamma^{i}_{(j)(k)} \right\} dx^{k}$$

$$= \left\{ - \frac{\partial \eta^{i}}{\partial x^{j}} \frac{\partial \eta^{l}}{\partial \eta^{m}} \Gamma^{m}_{(j)} + \frac{\partial \eta^{i}}{\partial \eta^{l}} g^{kl} \left(\frac{\partial \eta^{i}}{\partial x^{j}} - u_{m} \Gamma^{i}_{(j)(k)} \right) + \frac{\partial \eta^{i}}{\partial \eta^{l}} \Gamma^{i}_{(m)(j)} \eta^{m} \right\} dx^{j} + \frac{\partial \eta^{i}}{\partial \eta^{l}} \frac{\partial \eta^{l}}{\partial x^{j}} \delta x^{j}$$

$$\equiv \nabla_{j} \eta^{l} dx^{j} + \nabla_{j} \eta^{l} \delta x^{j}$$

where we put

$$\nabla_{j} \eta^{l} \equiv \frac{\partial \eta^{i}}{\partial x^{j}}$$

(5.7)

$$\nabla_{j} \eta^{l} \equiv \frac{\partial \eta^{i}}{\partial x^{j}}$$

Put $\eta' \equiv x'$, $u_{i} \equiv A_{i}$ and substitute them in (5.6) then we have

$$\nabla_{j} x^{i} = - \Gamma^{i}_{(j)} + g^{kl} \left(A_{k} - A_{i} \Gamma^{i}_{(j)(k)} - 2 A_{i} \Gamma^{i}_{(j)(k)} \right)$$

By the use of

$$\nabla_{j} A_{i} = A_{k} - A_{i} \Gamma^{i}_{(j)(k)} - \Gamma^{i}_{(k)(j)} A_{i}$$

we have such other forms of the above expressions as
\[\nabla_{j}x^{;i} = W - \Gamma_{(j)}^{i} + g^{ki}(\nabla_{j}A_{k} + \Gamma_{(j)}^{l}g_{kl}) = g^{ki}\nabla_{j}A_{k} \]

On the other hand, from (5.7) we are led to
\[\nabla_{j}^\prime x^{Jl}W = \delta_{j}^{i} = \nabla_{j}^\prime x^{\prime i}c \]

The expressions (5.8) and (5.9) give rise to relations between KAWAGUCHI's derivatives and WIRTINGER's derivatives in the special KAWAGUCHI space, and it goes without saying that these relations coincide with those shown already in (4.5) and (4.6).

With the aid of
\[\delta^{(c\cdot\eta}x^{\prime i} = D^{(C)}x^{\prime i} - g^{ki}\nabla_{j}A_{k}c \]

\[D^{(C)}\eta^{i}, D^{(C)}\nu_{i} \] are expressed respectively by
\[D^{(C)}\eta^{i} = \nabla_{j}\eta^{i}dx^{j} + \nabla_{j}^\prime\nu_{i}(D^{(C)}x^{\prime j} - g^{kj}\nabla_{l}A_{k}dx^{l}) \]

The geometrical meaning of (5.10) and (5.11) is that if the WIRTINGER's differential \(D^{(C)}x^{\prime i} \) is adopted as the base connection, the covariant derivatives are given by (5.10) and (5.11). Denoting covariant derivatives by symbols
\[\nabla_{j}\eta^{i}, \nabla_{j}^\prime\eta^{i}, \nabla_{j}\nu_{i}, \nabla_{j}^\prime\nu_{i} , \]

we have
\[\nabla_{j}\eta^{i} = \nabla_{j}\eta^{i} - \nabla_{l}^\prime\nu_{i}g^{kj}\nabla_{j}A_{k}c \]

From (5.8), (5.9), (5.10) and (5.11) the relations among each kind of
covariant derivatives can be derived.

Now we put $\eta^i \equiv x^i$, $\nu_i \equiv A_i$ in (5.12) and we have

\begin{align*}
\check{\nabla}_j x^i &= \check{\nabla}_j x^i - \check{\nabla}_i x^i g^{kl} \check{\nabla}_k A_k = 0, \\
\check{\nabla}_j A_i &= \check{\nabla}_j A_i - \check{\nabla}_i A_i g^{kl} \check{\nabla}_k A_k = 0.
\end{align*}

(5.13)

In the Kawaguchi's covariant differentials $\delta^{(C)} \eta^i$, $\delta^{(C)} \nu_i$ with the connection C we take the Wirtinger's covariant differential $D^{(C)} x^i$ in place of the base connection $\delta^{(C)} x^i$. Then we have

\begin{align*}
\delta^{(C)} \eta^i &= \check{\nabla}_j \eta^i dx^j + \check{\nabla}_j \eta^i D^{(C)} x^j, \\
\delta^{(C)} \nu_i &= \check{\nabla}_j \nu_i dx^j + \check{\nabla}_j \nu_i D^{(C)} x^j.
\end{align*}

Putting

\begin{align*}
\delta^{(C)} \eta^i &= \check{\nabla}_j \eta^i dx^j + \check{\nabla}_j \eta^i D^{(C)} x^j, \\
\delta^{(C)} \nu_i &= \check{\nabla}_j \nu_i dx^j + \check{\nabla}_j \nu_i D^{(C)} x^j
\end{align*}

(5.14)

one obtains

\begin{align*}
\check{\nabla}_j \eta^i &= \check{\nabla}_j \eta^i - \check{\nabla}_i \eta^i g^{kl} \check{\nabla}_k A_k, \\
\check{\nabla}_j \nu_i &= \check{\nabla}_j \nu_i - \check{\nabla}_i \nu_i g^{kl} \check{\nabla}_k A_k.
\end{align*}

(5.15)

Therefore, in the case of $\eta^i \equiv x^i$ and $\nu_i \equiv A_i$ (5.15) becomes

\begin{align*}
\check{\nabla}_j x^i &= \check{\nabla}_j x^i - \check{\nabla}_i x^i g^{kl} \check{\nabla}_k A_k = -g^{kl} \check{\nabla}_k A_k, \\
\check{\nabla}_j A_i &= \check{\nabla}_j A_i - A_{ik} g^{kl} \check{\nabla}_k A_k = (\delta_i^k - A_{ik}) \check{\nabla}_k A_k.
\end{align*}

(5.16)

The above stated are relations between two kinds of covariant derivatives in the Kawaguchi space with the connection C.
When we take the connection C' in place of connection C, (3.9) or (3.20)$'$ gives rise to

\[D^{(C')} \eta' = d\eta' + g^{kl} \left\{ \frac{\partial y_k}{\partial x^l} - (\Gamma^h_{(k)(j)} + C^h_{kl} \Gamma^l_{(j)}) \eta_h - 2(\Gamma^h_{(k)(j)} + C^h_{kl} \Gamma^l_{(j)}) \eta_h \right\} \eta^k \]

\[\times \frac{\partial y_l}{\partial y^k} \right\} dx^j + g^{kl} \left(-C^l_{k,j} \eta_l - 2C^l_{i,j} \eta^i \eta_l \right) dx^j \]

\[= V_j \eta^i dx^j + V_j \eta^i \partial x^j, \]

\[D^{(C')} u_i = du_i - \left[\frac{\partial u_k}{\partial x^j} - \frac{\partial u_l}{\partial x^j} g^{kl} \left\{ \frac{\partial y_k}{\partial x^j} - (\Gamma^h_{(k)(j)} + C^h_{kl} \Gamma^l_{(j)}) \eta^h \right\} \eta^k \right] \]}

\[\times \frac{\partial u_l}{\partial \eta^k} \right\} dx^j + \frac{\partial u_k}{\partial \eta^l} g^{kl} \left(-C^m_{k,j} \eta_m - 2C^m_{i,j} \eta^i \eta_m \right) dx^j \]

\[= V_j u_i dx^j + V_j u_i \partial x^j, \]

where we put

\[V_j \eta^i \equiv \frac{\partial \eta^i}{\partial x^j} + g^{kl} \left\{ \frac{\partial y_k}{\partial x^j} - (\Gamma^h_{(k)(j)} + C^h_{kl} \Gamma^l_{(j)}) \eta_h - 2(\Gamma^h_{(k)(j)} + C^h_{kl} \Gamma^l_{(j)}) \eta_h \right\} \eta^k \]

\[- \left\{ \frac{\partial \eta^i}{\partial \eta^k} + g^{kl} \left(-C^l_{k,j} \eta_l - 2C^l_{i,j} \eta^i \eta_l \right) \right\} \eta^i \]

\[V_j u_i \equiv \frac{\partial u_k}{\partial x^j} + g^{kl} \left\{ \frac{\partial y_k}{\partial x^j} - (\Gamma^h_{(k)(j)} + C^h_{kl} \Gamma^l_{(j)}) \eta_h - 2(\Gamma^h_{(k)(j)} + C^h_{kl} \Gamma^l_{(j)}) \eta_h \right\} \eta^k \]

\[- \left\{ \frac{\partial u_i}{\partial \eta^k} + \frac{\partial u_k}{\partial \eta^i} g^{kl} \left(-C^m_{k,j} \eta_m - 2C^m_{i,j} \eta^i \eta_m \right) \right\} \eta^k \]

\[V_j u_i \equiv \frac{\partial u_k}{\partial x^j} + \frac{\partial u_k}{\partial \eta^i} g^{kl} \left(-C^m_{k,j} \eta_m - 2C^m_{i,j} \eta^i \eta_m \right) \eta^k. \]

Taking $\eta^i \equiv x_i^i$, $u_i \equiv A_i$ in the above expressions we have

\[V_j x_i = g^{kl} \left\{ A_{k,j} - (\Gamma^h_{(k)(j)} + C^h_{kl} \Gamma^l_{(j)}) A_h - 2(\Gamma^h_{(k)(j)} + C^h_{kl} \Gamma^l_{(j)}) x^h A_{i(k)} \right\} \]

\[- \left\{ \delta^l_h + g^{kl} \left(-C^l_{k,h} A_l - 2C^l_{i,h} x^i A_{l(k)} \right) \right\} \Gamma^h_{(k)} \]

\[= g^{kl} \left\{ A_{k,j} - (\Gamma^h_{(k)(j)} + C^h_{kl} \Gamma^l_{(j)}) A_h - 2\Gamma^h_{(j)} A_{i(k)} \right\} \Gamma^l_{(j)} + g^{kl} C^l_{k,h} \Gamma^l_{(j)} \]

\[= g^{kl} (A_{k,j} - A_h \Gamma^h_{(k)(j)} - 2\Gamma^h_{(j)} A_{i(k)} - A_h C^h_{kl} \Gamma^l_{(j)}) \]
\[\nabla_{j}^\prime W'' = g^{ki} \nabla_{j} A_{k} C^{r} - g^{kl} A_{l} \delta_{i}^{l}, \]

(5.17) yields at once

\[W'' \nabla_{j} A_{i} = A_{l(k)} \nabla_{j} x^{rk} W, \]

\[\nabla_{j}^\prime A_{i} = WA_{i(k)} \nabla_{j} x^{rk} W. \]

Moreover the following relations

(5.19)
come into existence, but in fact $\tilde{V}_j A_i$ and $\tilde{V}_j x'^i$ are both zero. Apparently (5.17) corresponds to the Wirtinger's covariant derivatives given by (5.8) and (5.9).

Now we are going to define covariant derivatives when we take the Wirtinger's differential in place of the base connection $\delta^{(C)} x'^i$. From (3.24) we have
\[
D^{(C)} x'^i = \delta x'^i + \delta^i_j (\Gamma_{k} A_j dx^k - A_k C_{jl} dx^l)
\]
\[
= (\delta^i_j - g^{ij} A_k C_{jl} dx^l) \delta x'^j + g^{ij} \Gamma_{k} A_j dx^k = \Lambda^i_l \delta x'^l + g^{ij} \hat{V}_k A_j dx^j,
\]
where we put
\[
\Lambda^i_l \equiv \delta^i_j - g^{ij} A_k C_{jl} dx^l, \\
\delta^{(C)} x'^i \equiv \delta x'^i, \\
\hat{V}_k A_j \equiv \hat{V}_k A_j.
\]

Since the determinant $|\Lambda^i_l|$ does not vanish in general, there exists the conjugate tensor Δ^i_j, and $\Lambda^i_l \Delta^l_j = \delta^i_j$ holds good.
Thus we have
\[
(5.20)' \quad \delta x'^i = \Lambda^i_l \Delta^l_j D^{(C)} x'^j - \Lambda^i_j g^{jkl} \hat{V}_k A_j dx^l,
\]
and (5.16)' brings into existence
\[
D^{(C)} \gamma^i = \tilde{V}_j \gamma^i dx^j + \tilde{V}_j \gamma^i \delta x'^j = \tilde{V}_j \gamma^i dx^j + \tilde{V}_j \gamma^i (\Lambda^i_l \Delta^l_j D^{(C)} x'^j - \Lambda^i_l g^{jkl} \hat{V}_k A_j d\lambda^m)
\]
\[
= (\tilde{V}_j \gamma^i \tilde{V}_j \gamma^i \Lambda^i_l \Delta^l_j D^{(C)} x'^j - \tilde{V}_j \gamma^i \Lambda^i_l g^{jkl} \hat{V}_k A_j d\lambda^m)
\]
\[
= \tilde{V}_j \gamma^i dx^j + \tilde{V}_j \gamma^i D^{(C)} x'^j,
\]
\[
D^{(C)} \omega^i = \tilde{V}_j \omega^i dx^j + \tilde{V}_j \omega^i \delta x'^j = \tilde{V}_j \omega^i dx^j + \tilde{V}_j \omega^i (\Lambda^i_l \Delta^l_j D^{(C)} x'^j - \Lambda^i_l g^{jkl} \hat{V}_k A_j d\lambda^m)
\]
\[
= (\tilde{V}_j \omega^i \tilde{V}_j \omega^i \Lambda^i_l \Delta^l_j D^{(C)} x'^j - \tilde{V}_j \omega^i \Lambda^i_l g^{jkl} \hat{V}_k A_j d\lambda^m)
\]
\[
= \tilde{V}_j \omega^i dx^j + \tilde{V}_j \omega^i D^{(C)} x'^j,
\]
where we put
\[
(5.21) \quad \tilde{V}_j \gamma^i \equiv \tilde{V}_j \gamma^i - \tilde{V}_j \gamma^i \Lambda^i_l \Lambda^l_j, \\
\tilde{V}_j \gamma^i \equiv \tilde{V}_j \gamma^i \Lambda^i_j, \\
\tilde{V}_j \omega^i \equiv \tilde{V}_j \omega^i - \tilde{V}_j \omega^i \Lambda^i_l \Lambda^l_j, \\
\tilde{V}_j \omega^i \equiv \tilde{V}_j \omega^i \Lambda^i_j.
\]

Making use of
in (5.21), then we are led to

\[\nabla^w_j x^i = \nabla^w_j x^i - W^w_j \delta^i_k, \]
\[\nabla^w_j A_i = \nabla^w_j A_i - W^w_j \delta^i_k, \]
\[\nabla^w_j A_i = \nabla^w_j A_i - W^w_j \delta^i_k, \]

therefore in consideration of (5.17) the relations between them and KAWAGUCHI's covariant derivatives are expressed by

\[\nabla^w_j x^i = \nabla^w_j x^i - W^w_j (\delta^i_k - g^{i_k} C^{i_k} A_k), \]
\[\nabla^w_j x^i = \nabla^w_j x^i - W^w_j (\delta^i_k - g^{i_k} C^{i_k} A_k), \]
\[\nabla^w_j A_i = \nabla^w_j A_i - W^w_j (\delta^i_k - g^{i_k} C^{i_k} A_k), \]
\[\nabla^w_j A_i = \nabla^w_j A_i - W^w_j (\delta^i_k - g^{i_k} C^{i_k} A_k). \]
covariant differential taking the Wirtinger's differential as the base connection

\[D^{(W)}u^i = du^i + \Gamma^i_{(j)(k)} u^j dx^k + C^i_{jk} u^j D^{(C^r)}x^k, \]
\[D^{(W)}u^i = du^i - \Gamma^i_{(j)(k)} u^j dx^k - C^i_{jk} u^j D^{(C^r)}x^k, \]
so we have

\[D^{(W)}u^i = \frac{\partial u^i}{\partial x^k} dx^k + \frac{\partial u^i}{\partial x^l} dx^l + \Gamma^i_{(j)(k)} u^j dx^k + C^i_{jk} u^j D^{(C^r)}x^k. \]

On the other hand, multiplying

\[D^{(C)}x^i = \Lambda^i_j \delta x^i + g^{ik} V_j A_k dx^i, \quad \Lambda^i_j \]
we have

\[dx^i = \Lambda^i_j D^{(C^r)}x^i - (\Gamma^i_{(k)} + g^{lj} \Delta^i_j V_k A_l) dx^k, \]

by the use of

\[\Delta^i_j D^{(C^r)}x^i = \delta x^i + g^{jk} \Lambda^i_j V_k A_k dx^i = dx^i + \Gamma^i_{(k)} dx^k + g^{jk} \Lambda^i_j V_k A_k dx^i. \]

Substituting the above result in (5.25)' and putting in order, then

\[D^{(W)}u^i = \left\{ \frac{\partial u^i}{\partial x^k} + \Gamma^i_{(j)(k)} u^j - \frac{\partial u^i}{\partial x^h} (\Gamma^i_{(k)} + g^{lj} \Delta^i_j V_k A_l) \right\} dx^k + \left(\frac{\partial u^i}{\partial x^j} \Lambda^i_j + C^i_{jk} u^j \right) D^{(C^r)}x^k \]
is obtained.

Then, after some calculations we have

\[D^{(W)}u^i = \frac{\partial u^i}{\partial x^k} dx^k + \frac{\partial u^i}{\partial x^l} dx^l - \Gamma^i_{(j)(k)} u^j dx^k - C^i_{jk} u^j D^{(C^r)}x^k \]
\[= \left\{ \frac{\partial u^i}{\partial x^k} - \Gamma^i_{(j)(k)} u^j - \frac{\partial u^i}{\partial x^h} (\Gamma^i_{(k)} + g^{lj} \Delta^i_j V_k A_l) \right\} dx^k + \left(\frac{\partial u^i}{\partial x^j} \Lambda^i_j - C^i_{jk} u^j \right) D^{(C^r)}x^k. \]

After substitution of

\[D^{(C^r)}x^i = \Lambda^i_j \delta x^i + g^{ik} V_j A_k dx^i, \quad \delta x^i = \delta x^i - \Gamma^i_{(j)} dx^j, \]
in (5.25) we get

\[D^{(W)}u^i = \frac{\partial u^i}{\partial x^j} dx^j + \frac{\partial u^i}{\partial x^j} \delta x^j + \Gamma^i_{(j)(k)} u^j dx^k + C^i_{jk} u^j D^{(C^r)}x^k \]
\[= \frac{\partial u^i}{\partial x^j} dx^j + \frac{\partial u^i}{\partial x^j} (\delta x^j - \Gamma^i_{(j)} dx^j) + \Gamma^i_{(j)(k)} u^j dx^k \]
On the Wirtinger's Connections in Higher Order Spaces

\[C_{ijk} v^i (\Lambda^i_k \partial \delta x^i + g^{jk} v_j A_l dx^l) \]

\[= \left(\frac{\partial v^i}{\partial x^j} - \frac{\partial v^i}{\partial x^l} \right) \Gamma^i_{(j)} + \Gamma^i_{(k)j} v^k A_l dx^l + C_{ijk} v^j g^{hk} v_j A_h \]

\[= (\partial v^i + C^{jkl} v^j g^{hk} v_k A_h) dx^l + \left(\frac{\partial v^j}{\partial x^i} + \lambda^j C^{ijkl} v^l \right) \delta x^l, \]

similarly

\[D^{(W)} v_i = (\nabla_j v^i - C^{ijkl} v^j g^{hk} v_k A_h) dx^k + \left(\frac{\partial v^i}{\partial x^j} - \lambda^i C^{ijkl} v^j \right) \delta x^j \]

is obtained.

The covariant derivatives in this case can be defined as usual, namely

\[D^{(W)} o^i = V_j v^i dx^j + \nabla^j o^i \delta x^j = V_j v^i dx^j + \nabla^j o^i D^{(W)} x^j, \]

\[D^{(W)} o_i = V_j o^i dx^j + \nabla^j o^i \delta x^j = V_j o^i dx^j + \nabla^j o^i D^{(W)} x^j, \]

where we put

\[\nabla_j x^i = \nabla_j x^i = 0, \]

\[\nabla_j A_i = \nabla_j A_i - C^{ijkl} A_k g^{hk} A_h, \]

\[\nabla_j x^i = -g^{lm} A^i_m, \]

\[\nabla_j A_i = \nabla_j A_i - A_k^{(h)} g^{hk} A_h, \]

\[\nabla_j x^i = -g^{lm} A^i_m, \]

\[\nabla_j A_i = \nabla_j A_i - A_k^{(h)} g^{hk} A_h, \]

\[= \nabla_j A_i - A_k^{(h)} W^i_j, \]

Taking \(v^i = x^i, \ o_i = A_i \) in the above expressions we have

\[\nabla_j x^i = \nabla_j x^i = 0, \]

\[\nabla_j A_i = \nabla_j A_i - C^{ijkl} A_k g^{hk} A_h, \]

\[\nabla_j x^i = -g^{lm} A^i_m, \]

\[\nabla_j A_i = \nabla_j A_i - A_k^{(h)} g^{hk} A_h, \]

\[\nabla_j x^i = -g^{lm} A^i_m, \]

\[\nabla_j A_i = \nabla_j A_i - A_k^{(h)} g^{hk} A_h, \]

\[= \nabla_j A_i - A_k^{(h)} W^i_j, \]
Various covariant derivatives related to the special Wirtinger’s connections in the Kawaguchi space have been defined and it goes without saying that various tensors or identities should be derived corresponding to these covariant derivatives.

§ 6. Curvature tensors and identities in a special Kawaguchi space

Of the special Kawaguchi space we have discussed in §5 concerning its proper covariant derivatives given by Kawaguchi and other covariant derivatives based on the Wirtinger’s connection. Also we have treated the relation between them.

The covariant derivatives in the special Kawaguchi space introduced with the connection C are expressed by

\[
\nabla_{j}^{C}v^{i} = \frac{\partial v^{i}}{\partial x^{j}} - \frac{a_{U_{i}}}{ax^{l}}\Gamma_{(j)}^{l} + \Gamma_{(k)j}^{i}v_{k}, \quad \nabla_{j}^{C}v^{i} = \frac{\partial v^{i}}{\partial x^{j}} - \frac{a_{U^{j}}}{ax^{l}}\Gamma_{(j)}^{l} + \Gamma_{(k)j}^{i}v_{k},
\]

which are shown already in (5.1) and (5.2).

From the parenthesis of Poisson for the covariant derivatives, we find

\[
(\nabla_{j}\nabla_{k} - \nabla_{k}\nabla_{j})v^{i} = -R_{jkl}^{C}v^{i} + K_{jk}^{l}\nabla_{l}^{C}v^{i},
\]

(6.1)

where

\[
B_{jkl}^{C} \equiv \Gamma_{(j)(k)(l)}^{i},
\]

\[
R_{jkl}^{C} \equiv \frac{\partial \Gamma_{(j)k}^{i}}{\partial x^{l}} - \frac{\partial \Gamma_{(j)k}^{i}}{\partial x^{l}} + \Gamma_{(j)(k)}^{i} \Gamma_{(l)(h)}^{i} - \Gamma_{(j)(k)}^{i} \Gamma_{(l)(h)}^{i},
\]

\[
K_{jkl}^{C} \equiv \frac{\partial \Gamma_{(j)k}^{i}}{\partial x^{l}} - \frac{\partial \Gamma_{(j)k}^{i}}{\partial x^{l}} + \Gamma_{(j)(k)}^{i} \Gamma_{(l)(h)}^{i} - \Gamma_{(j)(k)}^{i} \Gamma_{(l)(h)}^{i}.
\]

are all curvature tensors in our space.

The identities among these curvature tensors can be found easily as follows:
\[R_{jkl}^{i} + R_{j_{l}^{i}} + R_{i_{l}^{j}} + R_{k_{l}^{j}} = 0, \]
\[R_{j_{k}^{l}} + R_{k_{i}^{j}} + R_{l_{j}^{k}} + R_{c_{l}^{j}} + R_{c_{j}^{k}} = 0, \]
\[R_{[jkl]}^{i} = 0, \]
\[K_{j_{k}^{l}} = R_{jk_{l}^{i}} x^{l}, \]
\[B_{j_{k}^{i}} = 0, \]
\[R_{jk_{l}^{i}} = K_{jk_{l}^{i}} = -\frac{1}{2} K_{jk_{l}^{i}} [dx^{j} dx^{k}]\]
\[B_{j_{k}^{i}} = 0. \]

These curvature tensors
\[R_{j_{k}^{l}}, B_{j_{k}^{i}}, K_{j_{k}^{i}} \]
are all found in the equations of structure of the connection \(C \)
\[\tilde{\omega}^t = \omega^t = dx^t + \Gamma_{(j)}^{i} dx^j, \quad \omega^t = \Gamma_{(0)}^{j} dx^j. \]

About the connection \(C' \) it is the same as in the case of connection \(C \) and from (5.4), the covariant derivatives
\[\tilde{\nabla}_{j}^t = \tilde{\nabla}_{j}^t + \tilde{\nabla}_{j}^t v^k, \quad \tilde{\nabla}_{j}^t = \tilde{\nabla}_{j}^t v^k - C_{k_{j}^{i}} v^k. \]

are derived.

The parentheses of POISSON are
\[(\tilde{\nabla}_{j}^t v^k - \tilde{\nabla}_{k}^t v^j) v^t = -R_{j_{k}^{i}} v^t + K_{j_{k}^{i}} v^t, \]
\[(\tilde{\nabla}_{j}^t v^k - \tilde{\nabla}_{k}^t v^j) v^t = -B_{j_{k}^{i}} v^t + C_{k_{j}^{i}} v^t, \]
$(\nabla_{jk}^\prime \nabla^\prime - \nabla_{t}^\prime \nabla_{j}^\prime) o^{i} C^{J} C^\prime C^\prime C^\prime = -P_{jk} i^{i} v^{l} - 2C_{[kj]}^{h} \nabla_{h}^\prime v^{i} C^\prime ... C^{r}$,

where

$R_{jkl}^{i} C^\prime ... = R_{jl}^{i} + K_{jk}^{h} C_{lh}^{i} \text{ c.c.}$,

$\Gamma_{(l)(j)(k)}^{i} = \Gamma_{(l)(j)(k)}^{i} - \nabla_{j} C_{lk}^{i} C^{J}$.

$P_{jk\iota^{i}} = C^\prime ... C_{lj(3)}^{i} - C_{lk(j)}^{i} + C_{hk}^{l} C_{lj}^{h} - C^\iota_{hj} C_{lk}^{h}$

are curvature tensors and identities and

$\bar{\Omega}^{i} \equiv \left[dx^{j} \omega_{j}^{i} \right] = C_{jk}^{i} \left[dx^{j} \omega^{k} \right]$,

$\bar{\omega}^{i} \equiv (\omega_{j}^{i})^{\prime} + [\omega_{j}^{i} \omega^{j}] = -\frac{1}{2} K_{jk}^{i} [dx^{j} dx^{k}] - C^{i}_{[fk]} \left[\omega^{j} C^{k} \right]$,

$\Omega_{j}^{i} \equiv (\omega_{j}^{i})^{\prime} + [\omega_{j}^{i} \omega^{k}] = -\frac{1}{2} R_{jkl}^{i} [dx^{k} dx^{l}] - B_{klj}^{i} [dx^{k} \omega^{l}],

\frac{1}{2} \bar{P}_{jkl}^{i} [\omega^{k} \omega^{l}]$

under the differential forms

$dx^{j}, \quad \omega^{k} = dx^{i} + \Gamma_{i}^{j} dx^{i}, \quad \omega_{j}^{i} = \Gamma_{(j)(k)}^{i} dx^{k} + C_{jk}^{i} \omega^{k}$.

Based upon these preliminary considerations we are going to discuss the cases Wirtinger's connections.

Since

$\delta^{(C)} v^{i} = \bar{\nu}_{j} v^{i} dx^{j} + \bar{v}_{j} v^{i} D^{(C)} x^{j}$,

and the relation between $\bar{\nu}_{j} v^{i}$ and $\bar{v}_{j} v^{i}$ is
\[\bar{\nu}_j v^i = \nabla_j v^i - \nabla_i v^j g^{ji} \nabla_j A_k = \nabla_j v^i + S^i_j \bar{\nu}_j v^i, \]

where we put
\[S^i_j \equiv -g^{ji} \nabla_j A_k, \]
so that we have
\[\bar{\nu}_j \bar{\nu}_j v^i = \nabla_j \nabla_i v^i + S^i_j \nabla_j v^i + \nabla_i v^j + S^{i'}_j \bar{\nu}_j \nabla_j v^i, \]
the parenthesis of Poisson is expressed as
\[\left(\nabla_j \nabla_k v^i \right) = \nabla_j \nabla_k v^i + S^i_j \nabla_j v^i - S^i_k \nabla_k v^i, \]
where we put
\[U^t_k \equiv S^i_k \nabla_i v^t. \]

From (6.1) and the following expressions
\[\nabla_j \nabla_k v^i \equiv \frac{\partial v^i}{\partial x^j} \frac{\partial v^i}{\partial x^k} - \frac{\partial v^i}{\partial x^j} \frac{\partial v^i}{\partial x^k} \Gamma_{(j)}^{(k)(n)} + \Gamma_{(k)}^{(j)(n)} + \Gamma_{(j)(n)}^{(k)} \frac{\partial v^i}{\partial x^l}, \]
the parenthesis of Poisson is led to
\[(6.4) \quad \left(\nabla_j \nabla_k v^i \right) = \left(-\bar{\nabla}_j \nabla_k v^i + \nabla_j \nabla_k v^i \right) + \left(\bar{\nabla}_j \nabla_k v^i - \nabla_j \nabla_k v^i \right) + \frac{\partial v^i}{\partial x^j} \frac{\partial v^i}{\partial x^k} \Gamma_{(j)}^{(k)(n)} + \Gamma_{(k)}^{(j)(n)} \frac{\partial v^i}{\partial x^l} \]
where we put
\[-\bar{\nabla}_j \nabla_k v^i \equiv \bar{\nabla}_j \nabla_k v^i + 2 \Gamma_{(j)(k)(n)}^{(l)} S^i_{jn}, \]
\[\equiv \bar{K}_{jk}^{i} \equiv \bar{K}_{jk}^{i} + 2 \Gamma_{(j)(k)(n)}^{(l)} S^i_{jn} + 2 \frac{\partial S^i_{jn}}{\partial x^m} \frac{\partial v^i}{\partial x^l} + 2 \frac{\partial S^i_{jn}}{\partial x^m} \frac{\partial v^i}{\partial x^l} + 2 S^i_{jn} \frac{\partial v^i}{\partial x^l}. \]

Since
\[
\frac{c}{\nabla} \nabla' \frac{c}{\nabla} k o^i = \frac{a^2 v^i}{\partial x^j \partial x^k} - \frac{a_{0^i}^2}{\partial x^n \partial x^l} + \frac{a S_{j}^{l}}{\partial x^k} \frac{a v^i}{\partial x^l} + S_{j}^{l} \frac{a z_{U^i}}{\partial x^l \partial x^k},
\]

another parenthesis of Poisson is computed as

\[
(6.4') \quad \frac{c}{\nabla} j v^i = \frac{c}{\nabla'} j v^i = -\frac{c}{\nabla'} j v^i - \frac{c}{\nabla'} j v^i,
\]

where we put

\[
\frac{c}{\nabla} j v^i = \frac{c}{\nabla'} j v^i = \frac{a S_{j}^{l}}{\partial x^k}.
\]

The identities which correspond to (6.2) or (6.3) are

\[
\frac{c}{R} j_{k}^{i} + \frac{c}{K} j_{k}^{i} = 0,
\]

\[
\frac{c}{R} j_{k}^{i} + \frac{c}{K} j_{k}^{i} = 0,
\]

\[
\frac{c}{R} j_{k}^{i} x^l = K j_{k}^{i}
\]

\[
\frac{c}{K} j_{k}^{i} + \frac{c}{K} j_{k}^{i} = 0,
\]

Similar treatment is allowed in the case of the connection \(C' \). As we have

\[
\frac{c}{\nabla} j v^i = \frac{c}{\nabla'} j v^i = \frac{c}{\nabla'} j v^i,
\]

the parenthesis of Poisson is computed as follows:

\[
(\frac{c}{\nabla} j v^i - \frac{c}{\nabla'} j v^i) u^i = (\frac{c}{\nabla} j v^i - \frac{c}{\nabla'} j v^i) u^i + (\frac{c}{\nabla'} j v^i - \frac{c}{\nabla'} j v^i) u^i + \frac{c}{\nabla'} j v^i - \frac{c}{\nabla'} j v^i u^i
\]

\[
- \frac{c}{\nabla'} j v^i - \frac{c}{\nabla'} j v^i u^i + (\frac{c}{\nabla'} j v^i - \frac{c}{\nabla'} j v^i) u^i
\]

\[
+ \frac{c}{\nabla'} j v^i - \frac{c}{\nabla'} j v^i u^i
\]
On the Wirtinger’s Connections in Higher Order Spaces

\[= -R_{jk}i^{l}v^{i} + \overline{C}_{k}^{j}v_{i}v^{i} + (\overline{C}_{k}^{j} - \overline{C}_{k}^{j})v_{i}v^{i} + \overline{S}_{i}^{j}(-B_{k}i^{m} + C_{m}^{j}v^{m}) \]

\[-\overline{S}_{k}^{j}(-B_{j}i^{m} + C_{m}^{j}v^{m}) + (\overline{S}_{j}^{m}v_{m} - \overline{S}_{j}^{m})v_{i}v^{i} \]

\[+ \overline{S}_{j}^{m}v_{i}v^{i} = -R_{jk}i^{l}v^{i} + \overline{C}_{k}^{j}v_{i}v^{i} + \overline{S}_{i}^{j}(-B_{k}i^{m} + C_{m}^{j}v^{m}) \]

therefore the above expressions give rise to

\[(6.5) \quad (\overline{C}_{j}^{k}v_{i}v^{i}) = -R_{jk}i^{l}v^{i} + \overline{C}_{k}^{j}v_{i}v^{i} \]

where we put

\[
\overline{R}_{jk}i^{l}v^{i} = \overline{R}_{jk}i^{l} + 2\overline{S}_{j}^{m}v_{m}v^{i} - \overline{S}_{j}^{m}v_{m}v^{i} \]

\[
\overline{K}_{jk}^{l} = \overline{K}_{jk}^{l} + 2\overline{S}_{j}^{m}v_{m}v^{i} - \overline{S}_{j}^{m}v_{m}v^{i} \]

Making use of

\[
(\overline{C}_{j}^{k}v_{i}v^{i}) = \overline{A}_{l}^{b}v_{b}v^{i} \]

we substitute \(\overline{C}_{j}^{k}v_{i}v^{i}\) in (6.5). Then we have

\[(6.6) \quad (\overline{C}_{j}^{k}v_{i}v^{i}) = -R_{jk}i^{l}v^{i} + \overline{C}_{k}^{j}v_{i}v^{i} \]

where we put

\[
\overline{A}_{l}^{b} = \overline{A}_{l}^{b} + \overline{S}_{l}^{m}J_{jk}^{m} \]

The parenthesis of Poisson (6.6) corresponds to (6.4) and what corresponds to (6.4)' is obtained as follows.

Since

\[
(\overline{C}_{j}^{k}v_{i}v^{i}) = \overline{C}_{j}^{k}v_{i}v^{i} - \overline{S}_{j}^{m}v_{j}v_{i}v^{i} \]

\[= \overline{A}_{l}^{b}v_{b}v^{i} + \overline{A}_{l}^{b}v_{j}v_{i}v^{i} - \overline{S}_{j}^{m}v_{j}v_{i}v^{i} \]

accordingly
\[
\begin{align*}
(\tilde{\nabla}_k \tilde{\nabla}_i - \tilde{\nabla}_i \tilde{\nabla}_k) \nu^i &= \Delta^i_j (V_k \nu_j - V_j \nu_k) \nu^i + \Delta^i_j \tilde{S}^i_{lj} (V_j \nu_l - V_l \nu_j) \nu^i \\
&+ (\nabla_k \Delta^i_j - \tilde{S}^i_{lj} \Delta^j_l - \Delta^j_l \tilde{S}^i_{lj}) \nabla^i \nu^j \\
&= -\Delta^i_j (B_{kjh} + \tilde{S}^i_{kh} P_{jh}^i) \nu^i + (\Delta^i_j C_{kh}^j) \nabla^i \nu^j + (-2 \Delta^i_j \tilde{S}^i_{kh} C^h_{ljj}) \\
&+ \nabla_k \tilde{S}^i_{lj} - \tilde{S}^i_{lj} \nabla_k \nu^i + \Delta^i_j \tilde{S}^i_{lj} \nu^j \\
&= -B_{khi} \nu^h + \tilde{C}^h_{kh} \nu^k + E_{khi} \nu^i ,
\end{align*}
\]

where we put
\[
\begin{align*}
\tilde{B}_{khi} &= \Delta^i_j (B_{kjh} + \tilde{S}^i_{kh} P_{jh}^i) , \\
\tilde{C}^h_{kh} &= \Delta^i_j C_{kh}^j , \\
E_{khi} &= -2 \Delta^i_j \tilde{S}^i_{kh} C_{[jk]}^h + \nabla_k \tilde{S}^i_{lj} - \tilde{S}^i_{lj} \nabla_k \nu^i - \Delta^i_j \tilde{S}^i_{lj} S^h_{jk} .
\end{align*}
\]

So that, from
\[
(\tilde{\nabla}_k \tilde{\nabla}_i - \tilde{\nabla}_i \tilde{\nabla}_k) \nu^i = -\tilde{B}_{khi} \nu^h + \tilde{C}^h_{kh} \nabla^i \nu^j + \tilde{E}_{khi} A^m_{h} \nabla^i \nu^m ,
\]
we get at once
\[
(\tilde{\nabla}_k \tilde{\nabla}_i - \tilde{\nabla}_i \tilde{\nabla}_k) \nu^i = -\tilde{B}_{khi} \nu^h + \tilde{C}^h_{kh} \nabla^i \nu^j + \tilde{E}_{khi} \nabla^i \nu^j ,
\]
where we put
\[
\tilde{E}_{khi} = \tilde{C}^h_{kh} S^m_{h} + E_{khi} A^m_{h} .
\]

In the same manner one obtains
\[
(\tilde{\nabla}_k \tilde{\nabla}_i - \tilde{\nabla}_i \tilde{\nabla}_k) \nu^i = -\tilde{P}_{khi} \nu^h + \tilde{C}^m_{khi} \nu^m \nu^i ,
\]
where we put
\[
\tilde{P}_{khi} = \Delta^i_j \Delta^j_l P_{jh}^i , \\
\tilde{C}^m_{khi} = (-\Delta^i_j \tilde{V}^i_j \Delta^j_l + \Delta^i_j \tilde{V}^i_j \Delta^j_l + 2 \Delta^i_j \tilde{V}^i_j C_{[jk]}^h) A^m_{h} .
\]

From the KAWAGUCHI's differentials \(\delta^{(C)} \nu^i\), \(\delta^{(C')} \nu^i\) based on the connection \(C\) and the connection \(C'\) respectively, two kinds of covariant derivatives are introduced according to the selection of base connections, i.e. the one represents KAWAGUCHI's proper base connections and the other WIRTINGER's base connections.

In these cases the relations between KAWAGUCHI's curvature tensors
and Wirtinger's have been already developed, moreover the same consideration is applicable to the Wirtinger's covariant derivatives derived from $D^{(W)}u^i$.

But we should devote our attention to the cases of $D^{(C)}u^i$ and $D^{(C')}u^i$, in which the vector u^i is not a general vector but a vector included in the double vector (u^i, u_k), therefore it is impossible to continue our discussion as was done above.

In the case of $D^{(W)}u^i$ we have

$$D^{(W)}u^i = \tilde{P}_j u^i \, dx^j + \tilde{P}_j u^i \, D^{(C')}x^j$$

where we put

$$\tilde{P}_j u^i = \frac{\partial u^i}{\partial x^j} - \frac{\partial u^k}{\partial x^j} \left(\Gamma_{(j)}^{k} - \overline{S}_{j}^{i} \right) + \Gamma_{(k)(j)k}^{i} \overline{Q}_{\delta}^{k} - \Gamma_{(k)(j)}^{i} \overline{Q}_{\delta}^{k}$$

and the parenthesis of Poisson is expressed by

$$\frac{\partial u^k}{\partial x^j} = \Lambda_{ljk}^{i} \overline{Q}_{\delta}^{k} - \Lambda_{ljk}^{i} \overline{Q}_{\delta}^{k}$$

Substituting

$$\frac{\partial u^k}{\partial x^j} = \Lambda_{ljk}^{i} \overline{Q}_{\delta}^{k} - \Lambda_{ljk}^{i} \overline{Q}_{\delta}^{k}$$

in the above expression, then we have

$$2 \tilde{P}_j \tilde{P}_k u^i = - \tilde{R}_{jkl} u^i + \tilde{R}_{jkl} \tilde{P}_j u^i$$

where we put
\[
\tilde{R}_{jkl}^i = 2 \frac{\partial \tilde{\Gamma}_{(l)(j)}^{i}}{\partial x^k} + 2 \tilde{\Gamma}_{(l)(j)}^{i} \tilde{\Gamma}_{\{(l)(j)\}}^{h} + 2 \tilde{\Gamma}_{(l)(j)}^{i} \tilde{\Gamma}_{\{(l)(j)\}}^{h} + 2 \left(\frac{\partial \tilde{\Gamma}_{(l)(j)}^{i}}{\partial x^h} + \tilde{\Gamma}_{\{(l)(j)\}}^{h} \right) A_{h}^{i} C_{l}^{t} \mu ,
\]

Similarly since
\[
(\tilde{\varphi}_{j} \tilde{\varphi}_{k} - \tilde{\varphi}_{k} \tilde{\varphi}_{j}) \nu^i = \left(-\left(\frac{1}{2} \Gamma_{\{(l)(j)\}}^{i} - \Gamma_{\{(l)(j)\}}^{i} C_{j}^{i} \tilde{\varphi}_{h} + C_{j}^{i} \tilde{\varphi}_{h} \right) u^h + C_{j}^{i} \tilde{\varphi}_{h} \tilde{\Gamma}_{h}^{i} \right) v^h + \left(\frac{\partial \tilde{\Gamma}_{h}^{i}}{\partial x^h} \tilde{\varphi}_{h}^{i} + \tilde{\varphi}_{h}^{i} \tilde{\varphi}_{h}^{i} \right) A_{h}^{i} \nu^i,
\]
we get
\[
(\tilde{\varphi}_{j} \tilde{\varphi}_{k} - \tilde{\varphi}_{k} \tilde{\varphi}_{j}) \nu^i = -B_{jkl}^{i} \nu^i + C_{j}^{i} \tilde{\varphi}_{h}^{i} A_{h}^{i} \nu^i ,
\]
where we put
\[
\tilde{B}_{jkl}^{i} = \tilde{A}_{j}^{i} \Gamma_{\{(l)(j)\}}^{i} - \Gamma_{\{(l)(j)\}}^{i} C_{j}^{i} \tilde{\varphi}_{h} + C_{j}^{i} \tilde{\varphi}_{h} \Gamma_{\{(l)(j)\}}^{i} + \frac{\partial C_{hj}^{i}}{\partial x^i} \tilde{\varphi}_{h}^{i} + C_{lj}^{i} C_{hk}^{l} - C_{lk}^{i} C_{hl}^{i} - C_{lk}^{i} C_{hj}^{i} + C_{jk}^{i} C_{hl}^{i} - C_{kj}^{i} C_{hl}^{i} - C_{jk}^{i} \tilde{\varphi}_{h}^{i} + \frac{\partial \tilde{\varphi}_{h}^{i}}{\partial x^i} A_{h}^{i} \tilde{\varphi}_{h}^{i} ,
\]

Another parenthesis of Poisson can be computed as follows: since
\[
(\tilde{\varphi}_{j} \tilde{\varphi}_{k} - \tilde{\varphi}_{k} \tilde{\varphi}_{j}) \nu^i = \left\{ \frac{\partial C_{hj}^{i}}{\partial x^i} \tilde{\varphi}_{h}^{i} + \frac{\partial C_{hj}^{i}}{\partial x^i} \tilde{\varphi}_{h}^{i} + C_{lj}^{i} C_{hk}^{l} - C_{lk}^{i} C_{hl}^{i} - C_{lk}^{i} C_{hj}^{i} + C_{jk}^{i} C_{hl}^{i} - C_{kj}^{i} C_{hl}^{i} - C_{jk}^{i} \tilde{\varphi}_{h}^{i} + \frac{\partial \tilde{\varphi}_{h}^{i}}{\partial x^i} A_{h}^{i} \tilde{\varphi}_{h}^{i} \right\} \nu^i + \left(\frac{\partial C_{hj}^{i}}{\partial x^i} \tilde{\varphi}_{h}^{i} - C_{jk}^{i} \tilde{\varphi}_{h}^{i} \right) A_{h}^{i} \tilde{\varphi}_{h}^{i} ,
\]
one obtains
\[
(\tilde{\nabla}^\prime_{j} \tilde{\nabla}^\prime_{k} - \tilde{\nabla}^\prime_{k^\prime} \tilde{\nabla}^\prime_{j}) u^\prime = -\tilde{\nabla}^\prime_{jkh} + 2C_{tjk} \tilde{\nabla}^\prime_{t} u^\prime ,
\]
where we put
\[
\tilde{\nabla}^\prime_{jkh} \equiv \frac{\partial C^i_{kh}}{\partial \nu^i} A^j_j - \frac{\partial C^i_{hl}}{\partial \nu^i} A^j_k + C^i_{lj} C^j_{lk} - C^i_{lk} C^j_{lj} .
\]
Identities which correspond to Bianchi's identities can be obtained from coefficients of the bracket expressions
\[
[dx^j dx^l dx^k] , \quad [dx^j dx^l \omega^k] , \quad [dx^j \omega^l \omega^k] , \quad [\omega^i \omega^j \omega^k]
\]
involved in the Pfaffian form
\[
(\Omega^l - [\omega^j \Omega^l] + [\Omega^j \omega^l]) = 0
\]
or can be derived from covariant derivatives.

For example, the Bianchi's identities in the case of the Wirtinger's connection based on the connection \(C\) can be computed as follows.

Since
\[
(\tilde{\nabla}^\prime_{j} \tilde{\nabla}^\prime_{k} - \tilde{\nabla}^\prime_{k} \tilde{\nabla}^\prime_{j}) u^\prime = -\tilde{\nabla}^\prime_{jkh} + 2C_{tjk} \tilde{\nabla}^\prime_{t} u^\prime ,
\]
one obtains
\[
-\tilde{\nabla}^\prime_{jl} + \tilde{\nabla}^\prime_{kj} = 0 .
\]
Then we have at once
\[
(6, 7) \quad \tilde{\nabla}^\prime_{jl} + \tilde{\nabla}^\prime_{kj} = 0 .
\]

The former of these identities corresponds formally to the Kawaguchi's, while the latter adds the term involving
\[
S^i_{l^\prime j^\prime} \equiv \frac{\partial S^i_{l^\prime j^\prime}}{\partial \nu^i}
\]
in the Kawaguchi's form.
Similarly, from

$$\tilde{\nabla}_{h} (\tilde{\nabla}_{j} \tilde{\nabla}_{k} - \check{\nabla}_{k} \tilde{\nabla}_{j}) o^{i}$$

one obtains

$$-(2 \tilde{\nabla}_{\subset h} B_{j \supset kl^{+}_+}^{i} j_{l}^{i} - S_{j(k)}^{r} B_{hrl} + S_{h(k)}^{r} j_{r}i^{i})_{U^{l}} = 0 ,$$

so that the identities

$$(6.8)$$

are the required result.

Identities (6.7) and (6.8) are the Bianchi's identities in our case, in which the tensor S_{j}^{l} characterizes the Wirtinger's connection based on the connection C and our identities correspond completely to Kawaguchi's identities except the tensor S_{j}^{l}.

The present author is grateful to Prof. A. Kawaguchi for his constantly kind advice.

*Faculty of Science, Hokkaido Univ., Sapporo, Japan

REFERENCES

On the Wirtinger's Connections in Higher Order Spaces

[13] A. KAWAGUCHI: Geometry in an n-dimensional space with the arc length
\[s = \sqrt{\langle \alpha \omega''^t + B \rangle}^{1/p} dt, \]
Trans. A. M. S., 44 (1938).