ON SEMI-LOWER BOUNDED MODULARS

By

Masahumi SASAKI

W. Orlicz and Z. Birnbaum proved in [7] that an Orlicz space $L_{\phi}(G)$ is finite if and only if the function Φ satisfies the following condition: for some $\gamma>0$ and $t_0>0$, $\Phi(2t) \leq \gamma \Phi(t)$ for every $t \geq t_0$. (In case of $\text{mes}(G) = +\infty$, $\Phi(2t) \leq \gamma \Phi(t)$ for all $t \geq 0$.)

This fact was generalized for arbitrary monotone complete modulars on non-atomic space by I. Amemiya in [1], that is, suppose that R is a universally continuous semi-ordered linear space and has no atomic element, then every monotone complete finite modular on R is semi-upper bounded. T. Shimogaki showed in [8] a new simple proof of this Amemiya's Theorem. In this paper we investigate the properties of the conjugate modular of a semi-upper bounded modular, i.e. the semi-lower bounded modular. Throughout this paper we use the terminologies and notations used in [5].

In §1 we give corollaries of Amemiya's Theorem and a theorem relate to Amemiya's Theorem. In §2 we investigate the relations between a modular or the modular norms and semi-lower bounded modular. In §3 we express the properties of a semi-upper and semi-lower bounded modular.

§1. Let R be a universally continuous semi-ordered linear space and m be a modular on R^1. A modular m is said to be "finite", if $m(x) < +\infty$ for every $x \in R$. A modular m is said to be "monotone complete", if for $0 \leq a_i \uparrow_{i \in A}$, \(\sup_{i \in A} m(a_i) < +\infty \) there exists $a \in R$ for which $a_i \uparrow_{i \in A} a$.

And a modular m is said to be "semi-upper bounded", if for every $\varepsilon > 0$ there exists $\gamma = \gamma(\varepsilon) > 0$ such that $m(x) \geq \varepsilon$ implies $m(2x) \leq \gamma m(x)$.

In [1] I. Amemiya proved:

Theorem 1.1. Suppose that R has no atomic element, then every monotone complete, finite modular on R is semi-upper bounded.

We say a modular m on R to be "domestic", if for any $a \in \{a : m(a) < +\infty, a \in \mathbb{R}\}$ there exists $\xi = \xi(a) > 1$ such that $m(\xi a) < +\infty$. On R, we define the two functionals $\|a\|$, $\|\|a\||$ ($a \in R$) as follows:

1) For the definition of the modular see H. Nakano [5].
On Semi-Lower Bounded Modulars

\[||a|| = \inf_{\xi > 0} \frac{1 + m(\xi a)}{\xi}, \quad |||a||| = \inf_{m(\xi a) \leq 1} \frac{1}{|\xi|}. \]

Then it is easily seen that both \(||a|| \) and \(|||a||| \) are norms on \(R \) and satisfy always \(|||a||| \leq ||a|| \leq 2|||a||| \) for all \(a \in R \) (cf. [6]). The norms \(||a|| \) and \(|||a||| \) are called the first norm and the second (or modular) norm by \(m \) respectively.

Remark 1.1. (i) If a modular \(m \) on \(R \) is finite, then \(m \) is domestic; (ii) if \(m \) is domestic, then \(\inf_{0 \neq x \in R} m\left(\frac{x}{|||x|||}\right) = 1 \); (iii) \(\inf_{0 \neq x \in R} m\left(\frac{x}{|||x|||}\right) > 0 \) implies \(||\cdot||| \) is continuous; (iv) if \(||\cdot||| \) is continuous, then \(m \) is finite, when \(R \) has no atomic element.

Because, (i) is trivial. (iii) and (iv) is well known\(^2\). Therefore we have only to prove (ii). If \(m\left(\frac{x}{|||x|||}\right) < 1 \) for some \(x \in R \), there exists \(\varepsilon > 0 \) by domesticness such that

\[1 < m\left((1+\varepsilon)\frac{x}{|||x|||}\right) < +\infty. \]

Thus there exists \(\gamma < 1 \), for which \(m\left(\gamma(1+\varepsilon)\frac{x}{|||x|||}\right) = 1 \). Therefore we obtain \(\gamma(1+\varepsilon) = \left\|\gamma(1+\varepsilon)\frac{x}{|||x|||}\right\| = 1 \), and hence \(m\left(\frac{x}{|||x|||}\right) = 1 \), contradicting \(m\left(\frac{a}{|||x|||}\right) < 1 \).

A modular norm \(||x||| (x \in R) \) is said to be "finitely monotone" (cf. [9]), if for every \(\varepsilon > 0 \), there exists an integer \(n_0 = n_0(\varepsilon) \) such that \(x = \oplus \sum_{i=1}^{n} x_i, \quad |||x||| \leq 1, \quad ||x_i||| \geq \varepsilon \ (i = 1, 2, \ldots, n) \) implies \(n \leq n_0 \). A modular \(m \) is said to be "uniformly finite", if

\[\sup_{m(x) \leq 1} m(\xi x) < +\infty \quad \text{for all } \xi \geq 0. \]

In [9, Theorems 1.1, 2.1 and 2.2], it is shown that if a norm on \(R \) is uniformly monotone\(^3\), then it is finitely monotone; if a modular \(m \) is uniformly finite, then the modular norm by \(m \) is finitely monotone; if the modular norm by \(m \) is finitely monotone, then \(m \) is uniformly finite when \(R \) has no atomic element; if a norm is finitely monotone, then the every norms which is equivalent to it is also finitely monotone.

2) T. Andō obtained (iii). For (iv) see [1].

3) A norm on \(R \) is said to be uniformly monotone, if for any \(\varepsilon > 0 \) there exists \(\delta = \delta(\varepsilon) > 0 \) such that \(a \cap b = 0, \quad ||a|| = 1, \quad ||b|| \geq \varepsilon \) implies \(||a+b|| \geq 1 + \delta \) (cf. [4]).
\(\overline{R}^m \) denotes the totality of all universally continuous linear functionals\(^4\) on \(R \) which are bounded under the modular norm \(|||\cdot||| \) by \(m \). On \(\overline{R}^m \) the conjugate modular of \(m(x) \) is defined as follows
\[
\overline{m}(\overline{a}) = \sup_{x \in R} \{ \overline{a}(x) - m(x) \} \quad \text{for every } \overline{a} \in \overline{R}^m.
\]
\(\overline{m}(\overline{a}) \) satisfies the modular conditions and is monotone complete (cf. [5, §38]).

It has been known that if \(R \) is semi-regular\(^5\), the first norm by the conjugate modular \(\overline{m} \) is the conjugate norm of the second norm by \(m \) and the second norm by the conjugate modular \(\overline{m} \) is the conjugate norm of the first norm by \(m \).

Lemma 1 ([5, Theorem 39.4]). If \(R \) is semi-regular, then \(R \) is isometric\(^6\) to a complete semi-normal manifold of the conjugate space \(\overline{R}^m \) of \(\overline{R}^m \) by the correspondence
\[
R \ni a \rightarrow a^{R^{-m}} \in \overline{R}^m, \quad a^{R^{-m}}(\overline{x}) = \overline{a}(a) \quad \text{for } \overline{x} \in \overline{R}^m.
\]

Corollary 1 of Theorem 1.1. Suppose that \(R \) has no atomic element. If the modular norm \(|||\cdot||| \) by \(m \) is finitely monotone, then \(m \) is semi-upper bounded.

Proof. Since \(m \) is uniformly finite by assumption, \(\overline{m} \) is uniformly finite on \(\overline{R}^m \) ([5, Theorems 48.4, 48.5]). Since \(\overline{m} \) is monotone complete and \(\overline{R}^m \) has no atomic element, we obtain by Theorem 1.1 \(\overline{m} \) is semi-upper bounded on \(\overline{R}^m \). Therefore \(m \) is semi-upper bounded by Lemma 1. Q.E.D.

Remark 1.2. If a modular \(m \) is semi-upper bounded and semi-simple, then \(m \) is uniformly finite.

Because, if for some \(\gamma > 1 \) we have \(m(2x) \leq \gamma m(x) \) for every \(x \) such that \(m(x) \geq 1 \), then we have obviously \(m(2^\nu x) \leq \gamma^\nu m(x) \) \((\nu = 1, 2, \cdots)\) for every \(x \) such that \(m(x) \geq 1 \). Since \(m \) is finite by assumption, we obtain
\[
\sup_{m(x) \leq 1} m(2^\nu x) \leq \sup_{1 \leq m(x) \leq 2} m(2^\nu x) \\
\leq \sup_{1 \leq m(x) \leq 2} \gamma^\nu m(x) \leq 2\gamma^\nu < +\infty \quad (\nu = 1, 2, \cdots).
\]

4) A linear functional \(L \) on \(R \) is said to be universally continuous, if for any \(a_1 |_{\subseteq 0} \) we have \(\inf_{1 \leq a_1} | L(a_1) | = 0 \).

5) \(R \) is said to be semi-regular, if \(\overline{a}[p] = 0 \) for all \(\overline{a} \in \overline{R}^m \) implies \(p = 0 \). For \(p \in R \), \([p]\) denotes the projection operator defined by \([p]x = \bigcup_{x' \sim p} x' \) for all \(x \geq 0 \).

6) A modulared space \(\hat{R} \) with a modular \(m \) is said to be isometric to a modulared space \(\hat{R} \) with a modular \(\overline{m} \) by a correspondence \(R \ni a \rightarrow a^{R^{-m}} \in \hat{R} \), if \(R \) is isomorphic to \(\hat{R} \) by this correspondence and \(m(a) = \overline{m}(a^{\hat{R}}) \) for all \(a \in R \).
Thus, m is uniformly finite.

A norm on R is said to be "monotone", if $0 \leq a < b$ implies $||a|| < ||b||$. A norm on R is said to be "universally monotone complete", if for $0 \leq a_i \uparrow_{i \in A}$, sup $||a_i|| < +\infty$ there exists $a \in R$ such that $a_i \uparrow_{i \in A} a$; if $A = \{1,2, \cdots\}$ we say to be "monotone complete".

Corollary 2 of Theorem 1.1. If the modular norm $|||\cdot|||$ by m is monotone and monotone complete, then m is uniformly simple\(^7\), and m is semi-upper bounded when R has no atomic element.

Proof. (i) If the modular norm $|||\cdot|||$ by m is monotone, than $|||\cdot|||$ is continuous.

Because, if $\inf_{0 \neq x \in R} m\left(\frac{x}{|||x|||}\right) < 1$, there exists $a \in R$ such that $|||a|||=1$ and $m(a)<1$, therefore we can suppose $[a]<1$ without difficulty, and hence there exists $0 < b \in R$ such that $a \uparrow b = 0$, $m(a+b) \leq 1$. Thus, we obtain obviously $|||a+b|||=|||a|||=1$, which is contradicting $|||\cdot|||$ is monotone. Consequently we obtain $\inf_{0 \neq x \in R} \left(\frac{x}{|||x|||}\right) = 1$, and hence $|||\cdot|||$ is continuous by Remark 1.1.

(ii) If the modular norm $|||\cdot|||$ by m is monotone, then m is simple\(^8\). Because, if m is not simple there exists $a \in R$ such that $0 < a$ and $m(a) = 0$, then $m(a+b) = m(b) \leq 1$ for any $0 < b$, $a \uparrow b = 0$ and $|||b|||=1$. Thus we have $|||a+b|||=|||b|||=1$, contradicting assumption that $|||\cdot|||$ is monotone. Thus m is simple.

If the modular norm $|||\cdot|||$ by m is continuous and monotone complete, then m is monotone complete (cf. [5, Theorems 30.20, 40.7]). Thus we obtain m is monotone complete, simple and $|||\cdot|||$ is continuous by (i) and (ii). Therefore m is uniformly simple (cf. [11, Theorem 2.1]).

If R has no atomic element, then uniformly simple modular m is uniformly finite ([10, Theorem 1.2]), and hence we obtain m is semi-upper bounded by Corollary 1 of Theorem 1.1.

Theorem 1.2. Suppose that R has no atomic element. Each of the following conditions implies that m is semi-upper bounded

\[(1): \quad \inf_{0 \neq x \in R} m\left(\frac{x}{|||x|||}\right) > 0 \quad \text{for some } 0 < a < 1,\]

\[7\) A modular m is said to be uniformly simple, if $\inf_{\xi > 0} m(\xi x) > 0$ for all $\xi > 0$, that is, $\lim_{\nu \to \infty} m(a_\nu) = 0$ implies $\lim_{\nu \to \infty} |||a_\nu||| = 0$.

\[8\) A modular m on R is said to be simple, if $m(a) = 0$ implies $a = 0$.\]
\[
(2): \quad \sup_{0 \neq x \in R} m(\frac{\alpha}{|||x|||} x) > 0 \quad \text{for some } \alpha \geq 1.
\]

Proof. (1): We prove first that the condition:
\[
\inf_{0 \neq x \in R} m(\frac{1-\varepsilon}{|||x|||} x) = \xi > 0 \quad \text{for some } 1 > \varepsilon > 0
\]
implies the condition:
\[
\inf_{0 \neq \overline{x} \in \overline{R}^m} m(\frac{1-\varepsilon'}{|||\overline{x}|||} \overline{x}) > 0 \quad \text{for some } \varepsilon > \varepsilon' > 0.
\]

For \(\overline{x} \in \overline{R}^m \) with \(|||\overline{x}||| = 1 \) there exists \(x_\lambda \in R \) (\(\lambda \in \Lambda \)) such that \(x_\lambda \uparrow_{\lambda \in \Lambda} \overline{x} \) (cf. [5, Theorem 5.34]), because \(R \) is a complete semi-normal manifold of \(\overline{R}^m \) by Lemma 1. Since the modular norm is semi-continuous and reflexive (cf. [3]), we obtain \(|||x_\lambda||| \uparrow_{\lambda \in \Lambda} \overline{x} \), and hence we have
\[
(1-\frac{\varepsilon}{2}) |||x_\lambda||| \uparrow_{\lambda \in \Lambda} \left(1-\frac{\varepsilon}{2}\right).
\]
Consequently there exists \(\lambda_0 \) such that \((1-\frac{\varepsilon}{2}) |||x_\lambda||| \geq 1-\varepsilon \) for \(\lambda \geq \lambda_0 \).

If \(\inf_{0 \neq x \in R} m(\frac{1-\varepsilon}{|||x|||} x) = \xi > 0 \), we obtain easily \(m(x) \geq \xi \) for every \(x \) such that \(|||x||| \geq 1-\varepsilon \), thus we have obviously \(m\left((1-\frac{\varepsilon}{2})x_\lambda\right) \geq \xi \) for \(\lambda \geq \lambda_0 \).

Therefore we have
\[
\inf_{0 \neq \overline{x} \in \overline{R}^m} m\left(\frac{1-\varepsilon}{|||\overline{x}|||} \overline{x}\right) > 0.
\]

Therefore, we obtain \(|||\overline{a}||| \) (\(\overline{a} \in \overline{R}^m \)) is continuous by Remark 1.1, and, since \(\overline{R}^m \) is non-atomic, \(\overline{m} \) is finite on \(\overline{R}^m \) by Remark 1.1. As \(\overline{m} \) is monotone complete, we obtain \(\overline{m} \) is semi-upper bounded by Theorem 1.1, and hence we obtain finally that \(m \) is semi-upper bounded by Lemma 1.

The proof for the condition (2) is similar.

Q.E.D.

§2. Let \(R \) be a modulared semi-ordered linear space with a modular \(m \) and be semi-regular. In this section, our aim is to consider the relations between properties of a modular or the modular norms and its semi-lower boundedness.

A modular \(m \) on \(R \) is said to be "semi-lower bounded" if for every \(\varepsilon > 0 \), there exist \(1 < a = a(\varepsilon) < \gamma(\varepsilon) = \gamma \) such that \(m(x) \geq \varepsilon \) implies \(m(ax) \geq \gamma m(x) \).

Theorem 2.1. If a modular \(m \) is semi-upper bounded and semi-simple, then the conjugate modular \(\overline{m} \) of \(m \) is semi-lower bounded.
Proof. Since the case $\overline{m}(\overline{a})=+\infty$ is trivial, we can assume that $\overline{m}(\overline{a})<+\infty$. For every $\epsilon>0$ there exists $\gamma=\gamma(\epsilon)>0$ such that $m(x)\geq\frac{\epsilon}{3}$ implies $m(2x)\leq\gamma m(x)$, by assumption. Then we have definition

$$\overline{m}\left(\overline{\frac{\gamma}{2}a}\right)=\sup_{x\in R}\left\{ \overline{\frac{\gamma}{2}a(2x)}-m(2x) \right\} \geq \sup_{m(x)\geq\frac{\epsilon}{3}}\left\{ \overline{\frac{\gamma}{2}a(2x)}-m(2x) \right\}
\geq \gamma \sup_{m(x)\geq\frac{\epsilon}{3}}\{\overline{a(x)}-m(x)\} \ (\overline{a}\in\overline{R}^m).$$

For every $0\leq\overline{a}\in\overline{R}^m$ such that $\epsilon\leq\overline{m}(\overline{a})<+\infty$, we have to consider the case

$$\overline{m}(\overline{a})=\sup_{m(x)<\frac{\epsilon}{3}}\{\overline{a(x)}-m(x)\}.$$

For any $\delta>0$ there exists $x\in R$ such that $m(x)<\frac{\epsilon}{3}$ and $\overline{a(x)}-m(x)\geq\overline{m}(\overline{a})-\delta$. Since m is uniformly finite by Remark 1.2 there exists $\beta=\beta(a)>1$ such that $m(\beta x)=\frac{\epsilon}{3}$.

Therefore we obtain

$$\overline{a}(\beta x)-m(\beta x)\geq\overline{a}(x)-m(x)-m(\beta x)\geq\overline{m}(\overline{a})-\delta-\frac{\epsilon}{3}.$$

Thus we have

$$\gamma \sup_{m(x)\geq\frac{\epsilon}{3}}\{\overline{a(x)}-m(x)\} \geq \gamma\left(\overline{m}(\overline{a})-\frac{\epsilon}{3}\right) \geq \gamma\left(\overline{m}(\overline{a})-\frac{\overline{m}(\overline{a})}{3}\right) = \frac{2}{3}\gamma\overline{m}(\overline{a}),$$

and hence $\overline{m}\left(\overline{\frac{\gamma}{2}a}\right)\geq\frac{2}{3}\gamma\overline{m}(\overline{a})$ for every \overline{a} such that $\overline{m}(\overline{a})\geq\epsilon$. Q.E.D.

Theorem 2.2. If a modular m is semi-lower bounded, then \overline{m} is semi-upper bounded.

Proof. If for every $\epsilon>0$ there exist $\gamma>\alpha>1$ such that $m(x)\geq\epsilon$ implies $m(\alpha x)\geq\gamma m(x)$, then we have by definition

$$\overline{m}\left(\overline{\frac{\gamma}{\alpha}a}\right)=\sup_{x\in R}\left\{ \overline{\frac{\gamma}{\alpha}a(ax)}-m(ax) \right\} \leq \gamma \sup_{m(x)\geq\epsilon}\{\overline{a(x)}-m(x)\} + \sup_{m(x)<\epsilon}\{\gamma\overline{a(x)}-m(ax)\}
\leq \gamma\overline{m}(\overline{a})+\gamma \sup_{m(x)<\epsilon}\{\overline{a(x)}-m(x)\} \leq \gamma\overline{m}(\overline{a})+\gamma\overline{m}(\overline{a})+\epsilon = \gamma(2\overline{m}(\overline{a})+\epsilon),$$

since by definition $|\overline{a(x)}|\leq\overline{m}(\overline{a})+m(x)$ for $\overline{a}\in\overline{R}^m$, $x\in R$.

Thus we have $\overline{m}\left(\overline{\frac{\gamma}{\alpha}a}\right)\leq3\gamma\overline{m}(\overline{a})$ for every \overline{a} such that $\overline{m}(\overline{a})\geq\epsilon$. Q.E.D.
The "conjugate" of "uniformly finite" is "uniformly increasing", i.e.
\[
\lim_{\xi \to \infty} \inf_{m(x) \geq 1} \frac{m(\xi x)}{\xi} = +\infty \quad (\text{cf. } [5, \S 48]).
\]

Theorem 2.3. If a modular \(m \) is semi-lower bounded, then \(m \) is uniformly increasing.

Proof. By assumption there exist \(1 < \alpha < \gamma \) such that \(m(x) \geq 1 \) implies \(m(\alpha^\nu x) \geq \gamma^\nu m(x) (\nu = 1, 2, \cdots) \).
Therefore we obtain \(\frac{1}{\alpha^\nu} m(\alpha^\nu x) \geq (\frac{\gamma}{\alpha})^\nu m(x) (\nu = 1, 2, \cdots) \) for every \(x \) such that \(m(x) \geq 1 \), and consequently \(m \) is uniformly increasing. Q.E.D.

Since the "conjugate" of "finitely monotone" is "finitely flat", i.e.
\[
|||\cdot||| \text{ by } m \text{ is finitely flat, then } m \text{ is uniformly increasing.}
\]

Theorem 2.4. Suppose that \(R \) has no atomic element. If the modular norm \(|||\cdot||| \) by \(m \) is finitely flat, then \(m \) is semi-lower bounded.

Remark 2.1. If a modular \(m \) is uniformly increasing, then the modular norm is finitely flat. The converse of this is valid, if we suppose that \(R \) has no atomic element (cf. [9]).

A norm \(||\cdot|| \) on \(R \) is said to be "flat", if for any \(a \neq 0 \), \(a \cap b = 0 \) we have
\[
\lim_{\xi \to 0} \frac{||a + \xi b|| - ||a||}{\xi} = 0.
\]

The "conjugate" of "uniformly simple" is "uniformly monotone", i.e.
\[
\lim_{\xi \to 0} \frac{1}{\xi} \sup_{m(x) \leq 1} m(\xi x) = 0 \quad (\text{cf. } [5, \S 48]).
\]

Theorem 2.5. If the first norm \(||\cdot|| \) by \(m \) is flat and the first norm \(||\cdot|| \) by conjugate modular \(\overline{m} \) of \(m \) is continuous, then \(m \) is uniformly monotone, and \(m \) is semi-lower bounded when \(R \) has no atomic element.

Proof. Using Banach's theorem (cf. [6, \S 44]) and reflexivity of the norm \(||\cdot|| \), we can prove that flatness of \(||\cdot|| \) implies monotony of \(||\cdot|| \). Thus we have \(\overline{m} \) is simple by (ii) in proof of Corollary 2 of Theorem 1.1. Since \(||\overline{a}|| \) is continuous by assumption and \(\overline{m} \) is monotone complete, we obtain \(\overline{m} \) is uniformly simple ([11, Theorem 2.1]). Thus \(m \) is uniformly monotone.
On the other hand, if m is uniformly monotone then m is uniformly increasing when R has no atomic element ([10, Theorem 1.3]). By Theorem 2.4 and Remark 2.1 the proof is completed.

A manifold K of R is said to be "equi-continuous", if for any $\overline{a}_{\nu_{0}}\downarrow_{\nu=1}^{\infty} 0$, $\overline{a}_{\nu}\in \overline{R}^{m}$ and $\varepsilon>0$ there exists ν_{0} for which we have $\overline{a}_{\nu_{0}}(x)\leq \varepsilon$ for all $x\in K$.

Theorem 2.6. If a modular m is semi-lower bounded, then a manifold $K=\{x:m(x)\leq 1, x\in R\}$ is equi-continuous. The converse of this is true, if we suppose that R has no atomic element.

Proof. If m is semi-lower bounded, m is uniformly increasing by Theorem 2.3. Then we have \overline{m} is uniformly finite, and hence the conjugate norm of the modular norm by m is continuous by Remark 1.1. Therefore we obtain for any $\varepsilon>0$ and $\overline{R}^{m}\ni \overline{a}_{\nu_{0}}\downarrow_{\nu=1}^{\infty} 0$ there exists ν_{0} such that $\overline{a}_{\nu_{0}}(x)\leq \varepsilon$ for all $x\in K$ ([5, Theorem 31.12]). That is, K is equi-continuous.

Conversely we suppose that R has no atomic element and the manifold $K=\{x:m(x)\leq 1\}$ is equi-continuous. Since we have obviously by definition $\{x:\|x\|\leq 1\}=\{x:m(x)\leq 1\}$, the first norm by \overline{m} is continuous ([5, Theorem 31.12]). Thus we obtain \overline{m} is monotone complete and finite, because \overline{R}^{m} is non-atomic by assumption. Thus we have \overline{m} is semi-upper bounded by Theorem 1.1, therefore we obtain by Theorem 2.1 and Lemma 1 m is semi-lower bounded.

A manifold K of R is said to be "weakly bounded", if

$$\sup_{x\in K} |\overline{a}(x)| < +\infty \text{ for all } \overline{a}\in \overline{R}^{m}.$$

Theorem 2.7. If a modular m is semi-lower bounded, then every weakly bounded manifold is equi-continuous. The converse of this is truth, if we suppose that R has no atomic element.

Proof. If m is semi-lower bounded, the conjugate norm of a norm by m is continuous. Consequently every manifold K for which $\sup_{x\in \overline{K}} \|x\| < +\infty$ is equi-continuous ([5, Theorem 33.10]). Therefore we have $\sup_{x\in \overline{K}} |\overline{a}(x)| \leq \sup_{x\in \overline{K}} \|\overline{a}\| \cdot \|x\|$ for all $\overline{a}\in \overline{R}^{m}$, and hence K is weakly bounded by definition.

Conversely we suppose that R has no atomic element. Since the norm $\|\cdot\|$ is reflexive (cf. [3]), if a manifold K is weakly bounded, then K is norm bounded, i.e. $\sup_{x\in \overline{K}} \|x\| < +\infty$ ([5, Theorem 32.6]), and equi-continuous by assumption. Then the first norm by the conjugate modular \overline{m} of m is continuous ([5, Theorem 33.10]). Thus we have obviously our conclusion by the method applied to Theorem 2.6. Q.E.D.
Theorem 2.7. Suppose that \(R \) has no atomic element. Each of the following conditions implies \(m \) is semi-lower bounded

\[
\inf_{0 \neq x \in R} \frac{1}{\gamma} m\left(\frac{\gamma}{||x||} x \right) \geq 1 + \delta \quad \text{for some } \gamma, \delta > 0,
\]

\[
\sup_{0 \neq x \in R} m\left(\frac{x}{||x||} \right) < 1.
\]

Proof. (1) For every \(\bar{a} \in \bar{R}^m \) with \(||\bar{a}|| = 1 \), we have
\[
(1 + \delta)\bar{a}(\xi a) - m(\xi a) \leq \xi(1 + \delta) - \xi(1 + \delta) = 0
\]
for every \(a \in R, ||a|| = 1 \) and \(\xi \geq \gamma \).

Thus we have
\[
\bar{m}((1 + \delta)\bar{a}) = \sup_{||x|| \leq \gamma} \{(1 + \delta)\bar{a}(x) - m(x)\} \leq \gamma(1 + \delta).
\]

Suppose that \(\bar{R}^m \ni \bar{a}_\nu \downarrow_{\nu=1}^\infty 0 \) and \(\inf_{\nu \geq 1} ||\bar{a}_\nu|| = \alpha > 0 \),
then there exist \(\epsilon_0 > 0, \nu_0 \) such that
\[
\frac{||\bar{a}_\nu||}{\alpha - \epsilon_0} \leq 1 + \delta \quad \text{for every } \nu \geq \nu_0.
\]

Since we have
\[
1 + \bar{m}\left(\frac{\bar{a}_\nu}{\alpha - \epsilon_0} \right) \geq \frac{||\bar{a}_\nu||}{\alpha - \epsilon_0} \geq \frac{\alpha}{\alpha - \epsilon_0}
\]
for every \(\nu \geq \nu_0 \).

we obtain
\[
1 + \lim_{\nu \to \infty} \bar{m}\left(\frac{\bar{a}_\nu}{\alpha - \epsilon_0} \right) \geq \frac{\alpha}{\alpha - \epsilon_0} > 1.
\]

Since
\[
\lim_{\nu \to \infty} \bar{m}\left(\frac{\bar{a}_\nu}{\alpha - \epsilon_0} \right) = 0,
\]
this is a contradiction.

Therefore \(||\bar{a}|| \) is continuous. Thus we have our conclusion by the method applied to Theorem 2.6.

The proof for the condition (2) is similar. Q.E.D.

§3. Let \(R \) be a modulared semi-ordered linear space with a semi-simple modular \(m \). In this section, we express the properties of a semi-upper and semi-lower bounded modulars.

If a modular \(m \) is semi-upper and semi-lower bounded, then \(m \) is said to be "semi-bounded".

Lemma 3.1. Suppose that \(R \) has no atomic element. If the norms by a modular \(m \) have the property:
\[
\inf_{0 \neq x \in R} \frac{||x||}{|||x|||} = \gamma, \quad \text{where } \gamma > 1 \text{ is a fixed constant, then } m \text{ is semi-bounded.}
\]

Proof. We have \(m \) is uniformly finite and uniformly increasing by the assumption (cf. [10, Theorem 1.1]). Therefore we obtain our conclu-
On Semi-Lower Bounded Modulars

Lemma 3.2. If a modular \(m \) is semi-bounded, then the norms by \(m \) have the property:
\[
\inf_{0 \neq x \in R} \frac{||x||}{|||x|||} = \gamma
\]
for some \(\gamma > 1 \).

Proof. Since \(m \) is uniformly finite and uniformly increasing by Remark 1.2 and Theorem 2.3, we have our conclusion (cf. [10, Theorem 1.4]).

Q.E.D.

From these Lemmata, we obtain the following theorem.

Theorem 3.1. Suppose that \(R \) has no atomic element. A modular is semi-bounded, if and only if the norms by the modular have the property:
\[
\inf_{0 \neq x \in R} \frac{||x||}{|||x|||} = \gamma
\]
for some \(\gamma > 1 \).

In the case when a modular \(m \) on \(R \) is of unique spectra (cf. [5, §54]), semi-boundedness of \(m \) implies boundedness\(^9\) of \(m \). In fact we have

Theorem 3.2. If a modular \(m \) on \(R \) is of unique spectra\(^{10}\), then semi-boundedness of \(m \) is equivalent to boundedness of \(m \).

Proof. If \(m \) is semi-bounded, then \(m \) is uniformly finite and uniformly increasing by Remark 1.2 and Theorem 2.3. Therefore \(m \) has the upper exponent\(^{10}\) \(\rho_u \) and the lower exponent\(^{10}\) \(\rho_l \) such that \(1 \leq \rho_l \leq \rho_u < +\infty \) (cf. [5, Theorems 54.8, 54.10]). Thus \(m \) is bounded ([5, Theorems 54.4, 54.5]).

Q.E.D.

A modular \(m \) of unique spectra is uniformly convex\(^{10}\) (or uniformly even\(^{10}\)) if and only if \(1 < \rho_l \leq \rho_u < +\infty \) for the upper exponent \(\rho_u \) and the lower exponent \(\rho_l \) (cf. [5, §50, §54]). Therefore we obtain also:

Theorem 3.3. A modular \(m \) of unique spectra is uniformly convex (or uniformly even), if and only if \(m \) is semi-bounded.

Theorem 3.4. Suppose that \(R \) has no atomic element. If a modular \(m \) is uniformly convex (or uniformly even), then \(m \) is semi-bounded.

Proof. Let \(m \) be uniformly convex. Then \(m \) is uniformly simple ([5, Theorem 50.1]). Since \(R \) is non-atomic by assumption, \(m \) and \(\overline{m} \) are uniformly finite ([10, Theorem 1.2]), and hence \(m \) and \(\overline{m} \) are semi-upper

9) A modular \(m \) on \(R \) is said to be upper bounded, if there exist \(\omega, \gamma > 1 \), for which we have \(m(\omega x) \leq \gamma m(x) \) for all \(x \in R \); and \(m \) is said to be lower bounded, if there exist \(\gamma > \omega > 1 \) such that \(m(\omega x) \geq \gamma m(x) \) for all \(x \in R \); if a modular \(m \) is upper and lower bounded, then \(m \) is said to be bounded.

10) For the definitions see [5].
bounded by Corollary 1 of Theorem 1.1. Thus m is semi-bounded.

Let m be uniformly even. Then m is uniformly finite and uniformly monotone ([5, Theorems 51.1, 51.2]), and hence m is semi-bounded by Corollary 1 of Theorem 1.1 and Theorem 2.4. Q.E.D.

(Mathematical Institute, Hokkaidô University)

References

