<table>
<thead>
<tr>
<th>Title</th>
<th>CONTINUOUS FILTERING AND ITS SPECTRAL SEQUENCE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author(s)</td>
<td>Numata, Hisashi</td>
</tr>
<tr>
<td>Citation</td>
<td>Journal of the Faculty of Science Hokkaido University. Ser. 1 Mathematics = 北海道大学理学部紀要, 15(1-2): 134-138</td>
</tr>
<tr>
<td>Issue Date</td>
<td>1960</td>
</tr>
<tr>
<td>Doc URL</td>
<td>http://hdl.handle.net/2115/56011</td>
</tr>
<tr>
<td>Type</td>
<td>bulletin (article)</td>
</tr>
<tr>
<td>File Information</td>
<td>JFSHIU_15_N1-2_134-138.pdf</td>
</tr>
</tbody>
</table>

Hokkaido University Collection of Scholarly and Academic Papers : HUSCAP
CONTINUOUS FILTERING AND ITS SPECTRAL SEQUENCE

By

Hisashi NUMATA

0. A filtering f of a ring A is a integer valued function on A satisfying the following three conditions:

\begin{align}
(0.1) & \quad f(x+y) \geq \min\{f(x), f(y)\}, \quad x, y \in A, \\
(0.2) & \quad f(xy) \geq f(x)+f(y), \\
(0.3) & \quad f(0) = +\infty.
\end{align}

Thus, the notion of filtering can be regarded as a generalization of discrete valuation of a field. For purely algebraic interest, it seems to be natural to consider a continuous filtering as the generalization of continuous valuation.

In this note, we consider a real valued function F on A satisfying the above three conditions. We call F a continuous filtering of A, and the ring A is said to be a continuously filtered ring.

Sections 1 and 2 are devoted to describe analogous definitions notations and relations to those of J. Leray [1], and the main parts of this note are sections 3 and 4.

1. A ring A is called a continuously graded ring if

\[A = \sum_{p \in R} A^{[p]} \] (direct sum, R is the set of reals)

where $\{A^{[p]}\}$ are submodules of A and satisfy

\[A^{[p]} \cdot A^{[q]} \subset A^{[p+q]} \]

A continuously filtered ring A is called a continuously filtered differential ring if A has a differentiation (d, a) subjected to

\begin{align}
& d^2 = 0, \\
& adx + dax = 0, \quad x, y \in A, \\
& d(xy) = dx \cdot y + ax \cdot dy, \quad (a \text{ is an automorphism of } A), \\
& F(ax) = F(x).
\end{align}

A differentiation (d, a) is called homogeneous of degree r ($r \in R$) if
(d, a) is a differentiation of a continuously graded ring A and
\[
d A^{[p]} \subset A^{[p+r]} \quad \text{for any } p \in R.
\]

If B is an ideal of a continuously filtered ring A, then A/B becomes a continuously filtered ring if we define
\[
\bar{F}(\bar{x}) = \sup_{x \in \bar{x}} F(x) \quad \text{for } \bar{x} \in A/B.
\]

1. If B is an ideal of A, then A/B becomes a continuously filtered ring if we define
\[
(1.1) \quad \overline{F}(\overline{x})=\sup_{x \in \overline{x}} F(x) \quad \text{for } \overline{x} \in A/B.
\]

2. From now on, A means a continuously filtered differential ring. We set
\[
A^p = \{ x \mid x \in A, F(x) \geq p \} \quad p \in R,
\]
then this is a submodule of A, and
\[
A^p \subset A^q \quad \text{if } p \geq q, \quad \bigcup_p A^p = A,
\]
\[
A^p \cdot A^q \subset A^{p+q}.
\]
Define, for $\epsilon > 0$,
\[
G_\epsilon(A) = \sum_p A^p / A^{p+\epsilon}
\]
and define the multiplication by
\[
(x^p \mod A^{p+\epsilon})(x^q \mod A^{q+\epsilon}) = x^p \cdot x^q \mod A^{p+q+\epsilon},
\]
Then $G_\epsilon(A)$ becomes a continuously graded ring, called the ϵ-graded ring of A. If we put
\[
C = \text{kernel of } d, \quad D = \text{image of } d,
\]
\[
C^p = A^p \cap C, \quad D^p = A^p \cap D,
\]
\[
C^p = \{ x \mid x \in A^p, \; dx \in A^{p+r} \}, \quad dC^p = D^p + r,
\]
then we have
\[
(2.1) \quad D^p \subset D^{p+r}, \quad \bigcup_{r \in R} D^p = D^p, \quad D^p \subset C^p, \quad C^{p+r} \subset C^p,
\]
\[
(2.2) \quad C^{p+r} = C^p \cap A^{p+r} \subset C^p,
\]
\[
(2.3) \quad D^{p+r} = D^p \cap A^{p+r} \subset D^p,
\]
\[
(2.4) \quad C^p \cdot C^q \subset C^{p+q},
\]
\[
(2.5) \quad C^p \cdot D^q \subset C^{p+q} + D^{p+q}, \quad D^{p+q} \cdot C^p \subset C^{p+q} + D^{p+q},
\]
(2.4) implies that $\sum_{p \in R} C^p$ (direct sum of modules C^p) can be considered to be a continuously graded ring, while (2.5) means that
\[
\sum_{p \in R} (C^{p+r} + D^{p+r})
\]
is an ideal of $\sum_{p \in R} C^p$.

We define
\[H_{r+\epsilon}(A) = \sum_p C^p_{r+\epsilon}/(C^p_{r-\epsilon} + D^p_{r-\epsilon}) \cdot \]

Then \(H_{r+\epsilon}(A) \) has a differentiation \((d_{r,\epsilon}, a_{r,\epsilon})\) of homogeneous of degree \(r \) by

\[
d_{r,\epsilon}h_{r,[p]} = dc^p \mod (C^p_{r-\epsilon} + D^p_{r-\epsilon}) ,
\]

\[
a_{r,\epsilon}h_{r,[p]} = ac^p \mod (C^p_{r-\epsilon} + D^p_{r-\epsilon}) ,
\]

where \(h_{r,[p]} \in H_{r+\epsilon}(A) \) is homogeneous of degree \(p \) and \(c^p \in h_{r,[p]} \). Next, we define the cohomology ring of \(H_{r+\epsilon}(A) \), we use the notation \(H(H_{r+\epsilon}(A)) \).

A parallel argument to that of J. Leray [1] Chap. I, \S 9 shows that

\[
C(H_{r+\epsilon}(A)) = \text{kernel of } d_{r,\epsilon} = \sum_p (C^p_{r+\epsilon} + C^p_{r-\epsilon})/(C^p_{r-\epsilon} + D^p_{r-\epsilon}) ,
\]

\[
D(H_{r+\epsilon}(A)) = \text{image of } d_{r,\epsilon} = \sum_p (C^p_{r-\epsilon} + D^p_{r+\epsilon} + D^p_{r-\epsilon})/(C^p_{r-\epsilon} + D^p_{r-\epsilon})
= \sum_p (C^p_{r-\epsilon} + D^p_{r-\epsilon})/(C^p_{r-\epsilon} + D^p_{r-\epsilon}) ,
\]

whence

\[
H(H_{r+\epsilon}(A)) = \sum_p (C^p_{r-\epsilon} + C^p_{r-\epsilon})/(C^p_{r+\epsilon} + D^p_{r-\epsilon})
= \sum_p C^p_{r+\epsilon}/[C^p_{r+\epsilon} \cap (C^p_{r+\epsilon} + D^p_{r-\epsilon})]
= \sum_p C^p_{r+\epsilon}/(C^p_{r+\epsilon} + D^p_{r-\epsilon}) = H_{r+\epsilon+\epsilon}(A) .
\]

3. In this section, we proceed to define an inverse mapping system of \(\{H_{r+\epsilon}(A)\}_{\epsilon>0} \) and consider the projective limit of this system. Since

\[
C^p_{r+\epsilon} + D^p_{r+\epsilon} \supset C^p_{r+\epsilon} + D^p_{r-\epsilon},
\]

for \(0<\sigma<\tau \), we can define a natural inverse mapping \(\pi^\tau_{\epsilon} : H_{r+\epsilon}(A) \to H_{r+\epsilon}(A) \).

The projective limit of this system is denoted by

\[
\text{p-lim}_{\epsilon} H_{r+\epsilon}(A) = H_r ,
\]

and we define a differentiation \((d_r, a_r)\) by

\[
d_r h_r = (\cdots, d_{r,\epsilon} h_{r,\epsilon}, \cdots) ,
\]

\[
a_r h_r = (\cdots, a_{r,\epsilon} h_{r,\epsilon}, \cdots)
\]

for

\[
h_r = (\cdots, h_{r,\epsilon}, \cdots) \in H_r (\pi^\tau_{\epsilon} h_{r,\epsilon} = h_{r,\epsilon}) .
\]

It is easy to see that the above definition of \((d_r, a_r)\) has no inconvenience. Also we can define naturally an inverse system of \(\{H_{r+\epsilon}(A)\} \) and the projective limit

\[
\text{p-lim}_{\epsilon} H_{r+\epsilon}(A) ,
\]

because of
Continuous Filtrating and Its Spectral Sequence

\[C^{p}_{r+\sigma} \supset C^{p}_{r-\sigma} \quad \text{and} \quad C^{p+\sigma}_{r} + D^{p}_{r} \supset C^{p+\tau}_{r} + D^{p}_{r}. \]

For (3.1) and (3.2), the following relation is true:

\[H(H_{r}) = H(p\lim \limits_{\sigma} H_{r,\sigma}(A)) = p\lim \limits_{\sigma} H(H_{r,\sigma}(A)) \]

\[= p\lim \limits_{\sigma} H_{r+\sigma,\sigma}(A). \]

For the proof, a straightforward computation shows that

\[C(H_{r}) = \text{kernel of } d_{r} = p\lim \limits_{\sigma} C(H_{r,\sigma}(A)) \]

\[D(H_{r}) = \text{image of } d_{r} = p\lim \limits_{\sigma} D(H_{r,\sigma}(A)), \]

so that we get

\[H(H_{r}) = C(H_{r})/D(H_{r}) \cong p\lim \limits_{\sigma} \{C(H_{r,\sigma}(A))/D(H_{r,\sigma}(A))\}. \]

(\pi_{\tau}^{\sigma} \text{ induce the natural inverse system of } C(H_{r,\sigma}(A))/D(H_{r,\sigma}(A)).)

4. We define another continuously graded ring

\[H_{\infty,\sigma}(A) = \sum_{p} C^{p}/(C^{p+\sigma} + D^{p}). \]

Then we have

(4.1) \[H_{\infty,\sigma}(A) = G_{\sigma}(H(A)), \]

where \(H(A) \) is the cohomology ring of \(A \) with the filtering defined as (1.1). The proof is analogous to that for discrete filtration and is omitted.

Next we consider

\[I_{r,\sigma} = \sum_{p} \left(\bigcap_{n>0} C^{p}_{r+n\sigma} \right)/(C^{p+\sigma}_{r-\sigma} + D^{p}_{r-\sigma}) \]

and an ideal of \(I_{r,\sigma} \)

\[J_{r,\sigma} = \sum_{p} (C^{p+\sigma} + D^{p})/(C^{p+\sigma}_{r-\sigma} + D^{p}_{r-\sigma}). \]

Then we have easily

\[I_{r,\sigma}/J_{r,\sigma} \cong I_{r+\tau,\sigma}/J_{r+\tau,\sigma} \quad \text{for } t > \sigma, \]

therefore we identify all \(I_{r+t,\sigma} \), and denote

\[\lim \limits_{r\rightarrow\infty} H_{r,\sigma}(A). \]

An analogous relation to (4.1) holds

\[G_{\sigma}(H(A)) \subset \lim \limits_{r\rightarrow\infty} H_{r,\sigma}(A). \]

Again, if we use the natural inverse system, then we get

\[p\lim \limits_{\sigma} (G_{\sigma}(H(A))) \subset p\lim \limits_{\sigma} (\lim \limits_{r\rightarrow\infty} H_{r,\sigma}(A)). \]
5. In 3 and 4, we defined two limits of $H_{r,\sigma}(A)$, p-lim and \lim. These two operations are not commutative, because $\lim (\lim_{r \to \infty} H_{r,\sigma}(A))$ can be always defined, while $\lim_{r \to \infty} (p\text{-}\lim_{\sigma} H_{r,\sigma}(A))$ cannot be defined so far as we use only the natural procedure.

Hokkaido University

References
