<table>
<thead>
<tr>
<th>Item</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author(s)</td>
<td>Nakada, Osamu</td>
</tr>
<tr>
<td>Citation</td>
<td>Journal of the Faculty of Science Hokkaido University. Ser. 1 Mathematics, 15(1-2), 139-144</td>
</tr>
<tr>
<td>Issue Date</td>
<td>1960</td>
</tr>
<tr>
<td>Doc URL</td>
<td>http://hdl.handle.net/2115/56012</td>
</tr>
<tr>
<td>Type</td>
<td>bulletin (article)</td>
</tr>
<tr>
<td>File Information</td>
<td>JFSHIU_15_N1-2_139-144.pdf</td>
</tr>
</tbody>
</table>

Hokkaido University Collection of Scholarly and Academic Papers: HUSCAP
PARTIALLY ORDERED ABELIAN SEMIGROUPS. III
ON THE REVERSIBLE PARTIAL ORDER DEFINED
ON AN ABELIAN SEMIGROUP

By
Osamu NAKADA

In their paper,¹ Ben Dushnik and E. W. Miller introduced the concept of the reversible partial order and expressed the theorem about this concept. In this Part III, I shall show that the same one is held in the partially ordered abelian semigroup by adding the certain condition.

Definition 1. A set S is said to be a partially ordered abelian semigroup (p.o. semigroup), when S is (I) an abelian semigroup (not necessarily contains the unit element), (II) a partially ordered set, and satisfies (III) the homogeneity: $a \geq b$ implies $ac \geq bc$ for any c of S.

A partial order which satisfies the condition (III) is called a partial order defined on an abelian semigroup.

Moreover, if a partial order defined on an abelian semigroup S is a linear order, then S is said to be a linearly ordered abelian semigroup (l.o. semigroup). (Definition 1, O.I.)

Definition 2. Let $\mathcal{S} = \{P_a\}$ be any set of partial orders, each defined on the same abelian semigroup S. We define the new partial order P on S as follows: For any two elements a, b, we put $a \geq b$ in P if and only if $a \geq b$ in every P_a of the set \mathcal{S}. Indeed, P is again a partial order defined on S. This partial order P is said to be the product of the partial orders P_a or to be realized by the set \mathcal{S} of partial orders P_a. (Definition 9, O.I.)

By the dimension of a partial order P defined on an abelian semigroup S is meant the smallest cardinal number \mathfrak{m} such that P is realized by \mathfrak{m} linear orders defined on S.

Definition 3. Let P and Q be two partial orders defined on the same

abelian semigroup S, and suppose that any two distinct elements of S are comparable in just one of these partial orders; in such a case we shall say that P and Q are conjugate partial orders. A partial order will be called reversible if and only if it has a conjugate. 2)

If P is a partial order defined on S, then the partial order obtained from P by inverting the sense of all ordered pairs will be called a dual order, which is denoted by P^*.

Theorem 1. Let P and Q are conjugate partial orders defined on an abelian semigroup S. Then we can define a linear order L_1 on S such that $a>b$ in L_1 if and only if $a>b$ in either P or Q; denoted by $L_1=P+Q$. Similary $L_2=P+Q^*$ is a linear order defined on S.

Proof. We shall prove only the transivity of L_1.

From $a>b$, $b>c$ in L_1, we can consider the following four cases:

(i) $a>b$, $b>c$ in P, (ii) $a>b$, $b>c$ in Q, (iii) $a>b$ in P, $b>c$ in Q, (iv) $a>b$ in Q, $b>c$ in P.

In cases (i) and (ii), $a>c$ in L_1 is cleary. In case (iii), if $c>a$ in P or Q, then $c>b$ in P or $b>a$ in Q respectively, which is assured, therefore $a>c$ in P or Q and hence in L_1. Similary, in case (iv) $a>c$ in L_1 is held.

Theorem 2. The following two properties of a partial order P defined on an abelian semigroup S are equivalent to each other:

1. P is reversible.
2. The dimension of P is 2.

Proof. We shall show first that (1) implies (2). Suppose that the partial order P defined on S is reversible, and let Q be a partial order defined on S conjugate to P and Q^* be the dual order of Q. Then by Theorem 1, $L_1=P+Q$ and $L_2=P+Q^*$ are linear extensions of P and it is obvious that P is realized by linear orders L_1 and L_2.

Next we show that (2) implies (1). Let L_1 and L_2 be any two linear orders defined on S which together realize P. We define the other order Q as follows: $a>b$ in Q if and only if a and b are non-comparable in P and $a>b$ in L_1 (likewise $a>b$ in L_1 and $b>a$ in L_2). Then $a>b$ and $b>a$ in Q are contradictory. If $a>b$ and $b>c$ in Q, then we have $a>b>c$ in L_1 and $c>b>a$ in L_2, hence $a>c$ in Q. $a>b$ in Q implies that $ac\geq bc$ in L_1 and $bc\geq ac$ in L_2, i.e. $ac\geq bc$ in Q. Therefore Q is a partial order defined on S. Evidently P and Q are conjugate.

Definition 4. A linear extension L of a partial order P defined on

an abelian semigroup S will be called separating if and only if there
exist three elements a, b and c in S such that $a>c$ in P, and b is not
comparable with either a or c in P, while in L we have $a>b>c$.

Theorem 3. Let P be a partial order defined on an abelian semi-
group S which satisfies the condition (E). Then the following three
properties of a partial order P are equivalent to each other:

1. P is reversible.
2. The dimension of P is 2.
3. There exists a linear extension of P which is non-separating.

Proof. (1) and (2) are equivalent by Theorem 2.

We show now that (2) implies (3) without the condition (E). Let
L_1 and L_2 be any two linear orders defined on S which together realize
$P: P = L_1 \times L_2$. If L_1 is separating, then there exist three elements a, b
and c such that $a>c$ in P, $a>b>c$ in L_1 and b is not comparable with
either a or c in P. Hence we have $c>b>a$ in L_2 which is impossible.

To show that (3) implies (1) we shall suppose that L is a non-
separating linear extension of P. We define the other order Q as follows:
$a>b$ in Q if and only if a and b are non-comparable in P and $a>b$ in L.
Then clearly $a>b$ and $b>a$ in Q are contradictory. If $a>b$ and $b>c$ in
Q, then we have $a>b>c$ in L and a and c are non-comparable in P, for
otherwise $a>c$ in P would imply that L is separating contrary to the
assumption, hence we have $a>c$ in Q. $a>b$ in Q implies that $ac\geq bc$ in
L. If $ac>bc$ in P, then by the condition (E) $a>b$ in P which is impos-
sible. Hence $ac=bc$ or ac and bc are non-comparable in P, and hence
$ac\geq bc$ in Q. Therefore Q is a partial order defined on S. Clearly P
and Q are conjugate.

Definition 5. Let S be a p.o. semigroup and P be the partial order
defined on S. For any element a of S, we denote the set of all elements
x such that $x \leq a$ in P by \bar{a}. Then the correspondence $a \rightarrow \bar{a}$ is one-to-one.
We put $\bar{a} \supseteq \bar{b}$ if and only if \bar{b} is a subset of \bar{a}, likewise $a \geq b$ in P, then
the family $\bar{S} = \{ \bar{a} \}$ is become a partially ordered set. Next we define the
product $\bar{a} \cdot \bar{b} = \bar{ab}$, then the family \bar{S} is a commutative semigroup, more-
over \bar{S} become a p.o. semigroup. Clearly S and \bar{S} are order-isomorphic.

More generally, if there exists a one-to-one correspondence between

4) Condition (E) (order cancellation law):
 \[ac > bc \text{ in } P \text{ implies } a > b \text{ in } P. \]
5) See Definition 3, O.I.
the elements of the p.o. semigroup S and the family \Re of subsets of the certain set \mathcal{R} (a subset of \mathcal{R} which corresponds with an element a of \mathcal{R}, denote by $s(a)$), and $a \geq b$ in P if and only if $s(a) \supseteq s(b)$ (in the sense of set-inclusion), then by the defining the product $s(a) \cdot s(b) = s(ab)$, two p.o. semigroups S and \Re are order-isomorphic.

Any family \Re of the subsets of the set \mathcal{R} which has the above properties will be called a representation of P.

Theorem 4. Let P be a partial order defined on an abelian semigroup S which satisfies the condition (E). Then the following two properties are equivalent to each other:

1. P is reversible.
2. There exists a representation of P by means of a family $\Re = \{I_a\}$ of closed intervals on some l.o. semigroup \mathcal{R}, and let $I_a = [\alpha_1, \alpha_2], I_b = [\beta_1, \beta_2], I_{ac} = [\gamma_1, \gamma_2], I_{bc} = [\delta_1, \delta_2]$, and if a and b are non-comparable in P, then $\alpha_1 < \beta_1$ (and $\alpha_2 < \beta_2$) implies $\gamma_1 \leq \delta_1$ (and $\gamma_2 \leq \delta_2$) or its dual.

Proof. We shall show (1) implies (4). Let P be reversible, and hence the dimension of P is 2. Let A and B be any two linear orders defined on S which together realize P.

Let S' be a l.o. semigroup which is anti-order-isomorphic to the l.o. semigroup S in the linear order B, where the set S' is disjoint from S, and the linear order defined on S' is denoted by B'.

Let R be the union of S, S' and the new element 0 which belongs to neither S nor S'.

We define the multiplication in R as follows:

$$0 \cdot 0 = 0,$$

$$x \cdot 0 = 0 \cdot x = 0 \quad \text{for any } x \in S \text{ or } S',$$

$$a \cdot a' = a' \cdot a = 0 \quad \text{for any } a \in S \text{ and } a' \in S',$$

and for any two elements x and y of $S(S')$ the product is the same as in $S(S')$.

Thus R becomes the abelian semigroup under the multiplication introduced above.

Let us now define the order-relation L in R as follows:

$$x > y \text{ in } L \quad (x, y \in S) \quad \text{if and only if } x > y \text{ in } A,$$

$$x > y \text{ in } L \quad (x, y \in S') \quad \text{if and only if } x > y \text{ in } B',$$

and we put

$$a > 0 > a' \text{ in } L \quad (a \in S, a' \in S').$$

Then R becomes a l.o. semigroup.
For each a in S denote by a' the image of a in S', and denote by I_a the closed interval $[a', a]$ of R.

We will show that the family $\mathfrak{R} = \{I_a\}$ of all such intervals is a representation of P. Suppose first that $a > b$ in P. Then $a > b$ in A and $a' < b'$ in B', so that we have $a' < b' < a$ in L. This means that I_b is a proper subset of I_a.

Let $I_a = [a', a], I_b = [b', b], I_{ac} = [a'c', ac], I_{bc} = [b'c', bc]$. If a and b are non-comparable in P, then from $a > b$ ($a' > b'$) in L we have $ac \geq bc$ ($a'c' \geq b'c'$) in L or its dual.

We prove that (4) implies (1). Suppose that P is a partial order which is represented by a family \mathfrak{R} of intervals taken from some l.o. semigroup R, whose linear order is denoted by L. For each a in S, denote by I_a the interval of the family \mathfrak{R} which corresponds to a. We notice first that if a and b are distinct elements of S which are not comparable in P, then I_a and I_b cannot have the same left (right)-hand end-point.

Suppose that $I_a = [\alpha_1, \alpha_2], I_b = [\beta_1, \beta_2], I_c = [\gamma_1, \gamma_2], \cdots$.

We define a new partial order Q defined on S as follows:

(i) a and b are not comparable in P,
(ii) $\alpha_1 < \beta_1$ (and $\alpha_2 < \beta_2$) in L.

It is easy to see that Q is the partial order defined on the set S. We shall now prove the homogeneity. Let $a > b$ in Q and $I_{ac} = [\lambda_1, \lambda_2], I_{bc} = [\mu_1, \mu_2]$. If ac and bc are distinct and comparable in P, then by the condition (E) a and b are comparable in P which is impossible. If ac and bc are non-comparable in P, then $\lambda_1 < \mu$, $\lambda_2 < \mu_2$ and hence $ac > bc$ in Q.

Example 1. Let S_1 be an abelian semigroup generated by two elements a and b with the relation

$$a^m b^n = ab^n$$

for any positive integers m and n.

By putting the order-relation

$$P: \begin{cases} a^{m+1} > a^m \\ b^n > ab^n \end{cases}$$

for any positive integer n

S_1 becomes a p.o. semigroup, and the partial order P is reversible. Its conjugate order Q is as follows:

$$Q: \begin{cases} a^m > b^n > b^{n+1} > ab^{n+1} \\ a^m > ab^n > b^{n+1} \end{cases}$$

for any positive integers m and n.

The linear orders which together realize P are
$a^{m+1} > a^m > b^n > ab^n > b^{n+1} > ab^{n+1}$
and
$b^{n+1} > ab^{n+1} > b^n > ab^n > a^{m+1} > a^m$
for any positive integers m and n.

Example 2. Let S_2 be an abelian semigroup generated by two elements a and b with the relation
\[a^m b^n = b^n \]
for any positive integers m and n.

By putting the two order-relations A and B
\[
A:\quad a^{m+1} > a^m > b^n > b^{n+1}
B:\quad b^{n+1} > b^n > a^{m+1} > a^m
\]
for any positive integers m and n,
S_2 becomes a l.o. semigroup in the orders A and B respectively. Let P be the partial order which is the product of A and B, that is
\[
P:\quad a^{m+1} > a^m.
\]
Then P has the conjugate order Q such that
\[
Q:\quad a^m > b^n > b^{n+1}.
\]

Example 3. Let S'_3 and S''_3 be free abelian semigroups generated by elements a and b respectively. And by defining the order-relations
\[
a^{m+1} > a^m \quad (m \geq 1), \quad b^{n+1} > b^n \quad (n > 1),
\]
S'_3 and S''_3 becomes a l.o. semigroup and a p.o. semigroup respectively. Let S_3 be the direct product of S'_3 and S''_3. Then S_3 becomes a p.o. semigroup by introducing the following order-relation P:
\[
a^ib^j > a^m b^n
\]
if and only if
\[
a^i > a^m \quad \text{or} \quad a^i = a^m \quad \text{and} \quad b^j > b^n.
\]

Since ab^2 and ab are non-comparable in P in spite of $(ab^2)(ab) = a^2b^3 > a^2b^2 = (ab)(ab)$, P does not satisfy the condition (E).

Now, in S''_3 we define the another order-relation:
\[
b^{n+1} > b^n \quad (n \geq 1),
\]
then we get the non-separating linear extension of P.
But we cannot realize the partial order P by two linear orders.

Mathematical Institute,
Hokkaido University.