<table>
<thead>
<tr>
<th>Title</th>
<th>A NOTE ON STRICTLY GALOIS EXTENSION OF PRIMARY RINGS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author(s)</td>
<td>Onodera, Takesi; Tominaga, Hisao</td>
</tr>
<tr>
<td>Citation</td>
<td>Journal of the Faculty of Science Hokkaido University. Ser. 1 Mathematics = 北海道大学理学部紀要, 15(3-4): 193-194</td>
</tr>
<tr>
<td>Issue Date</td>
<td>1961</td>
</tr>
<tr>
<td>Doc URL</td>
<td>http://hdl.handle.net/2115/56019</td>
</tr>
<tr>
<td>Type</td>
<td>bulletin (article)</td>
</tr>
<tr>
<td>File Information</td>
<td>JFSHIU_15_N3-4_193-194.pdf</td>
</tr>
</tbody>
</table>

Instructions for use
A NOTE ON STRICTLY GALOIS EXTENSION
OF PRIMARY RINGS

By

Takesi ONODERA and Hisao TOMINAGA

Let \(R \) be a primary ring with minimum condition (for one-sided ideals). One of the present authors proved in [1] that if \(R \) is strictly Galois with respect to \(\mathfrak{G} \) then \(R \) possesses a \(\mathfrak{G} \)-normal basis element. The purpose of this note is to present a slight generalization of this fact.

In what follows, \(R \) be always a primary ring with minimum condition which is strictly Galois with respect to (an \(F \)-group) \(\mathfrak{G} \) of order \(n \), \(N \mid 1 \) a subring of \(R \) with minimum condition such that \(N\mathfrak{G}=N \) and \(R \) possesses a linearly independent right \(N \)-basis consisting of \(t \) elements. Further, we set \(t=nq+r \), where \(0 \leq r < n \). Under this situation, our theorem can be stated as follows:

Theorem. There exist \(q \) elements \(x_1, \ldots, x_q \in R \) and a \(\mathfrak{G}N_r \)-submodule \(M \) of \(R \) such that

1. \(M \) is \(\mathfrak{G}N_r \)-homomorphic to \(\mathfrak{G}N_r \) and possesses a linearly independent right \(N \)-basis consisting of \(r \) elements,
2. \(R = \sum_{i=1}^{q} \bigoplus_{\sigma \in \mathfrak{G}^\oplus} \sum (x_i \sigma)N \oplus M \).

Proof. As is shown in [1], \(\text{Hom}_{\mathfrak{G}}(R, R) = \mathfrak{G}R_r = \sum_{\sigma \in \mathfrak{G}^\oplus} \sigma R_r \), where \(S = J(\mathfrak{G}, R) \). Since \([R:S] = n\), and so, since \(R \) is \(S \)-left regular, \(R \) is \(\text{Hom}_{\mathfrak{G}}(R, R) \)-right regular too. In fact, \(R^{(n)} \) is \(\mathfrak{G}R_r \)-isomorphic to \(\mathfrak{G}R_r \), where \(R^{(n)} \) means the direct sum of \(n \)-copies of \(R \) as \(\mathfrak{G}R_r \)-module. Accordingly, \(R^{(n)} \) is \(\mathfrak{G}N_r \)-isomorphic to \(\mathfrak{G}R_r \) of course. Now let \(R = u_1 N \oplus \cdots \oplus u_{\ell} N \).

Then, we have \(\mathfrak{G}R_r = \mathfrak{G} \sum_{i=1}^{\ell} u_i N, \mathfrak{G} = \sum_{i=1}^{\ell} u_i \mathfrak{G}N_r \). Hence, \(\mathfrak{G}R_r \) is \(\mathfrak{G}N_r \)-isomorphic to \((\mathfrak{G}N_r)^{(q)} \), and so we have eventually that \(R^{(n)} \) is \(\mathfrak{G}N_r \)-isomorphic to \((\mathfrak{G}N_r)^{(r)} \). Here let \(\mathfrak{p}_1, \ldots, \mathfrak{p}_s \) be all the non-isomorphic directly indecomposable direct summands of the \(\mathfrak{G}N_r \)-module \(R \) (or \(\mathfrak{G}N_r \) itself). And, in the Remak decompositions of \(\mathfrak{G}N_r \)-modules \(R \) and \(\mathfrak{G}N_r \), the re-

1) As to notations and terminologies used in this note, we follow [1]. And we will use freely the results cited in [1].

2) \(N \) does not necessarily contain the subring \(S = J(\mathfrak{G}, R) \).
spective numbers of directly indecomposable components which are isomorphic to \(v_i \) will be denoted by \(n_i \) and \(m_i \). Then, our isomorphism mentioned above yields at once \(n_i n = m_i t = m_i (nq + r) \), whence we have \(m_i r = nk_i \) with some non-negative integer \(k_i < m_i \). Consequently, it follows that \(n_i = m_i q + k_i (i = 1, \ldots, s) \). This proves clearly the existence of a \(\mathfrak{G}N_{r} \)-isomorphism \(\varphi \) of \(R \) onto \((\mathfrak{G}N_{r})^{(q)} \oplus T \), where \(T = \sum_{i=1}^{s} \oplus v_i^{(k_i)} \). Recalling here \(m_i > k_i \), we see that \(T \) is \(\mathfrak{G}N_{r} \)-homomorphic to \(\mathfrak{G}N_{r} \). Now, let \(y_i = (0, \ldots, 0, 1, \ldots, 0) \in (\mathfrak{G}N_{r})^{(q)} \). Then, one will easily verify that \(x_i = \varphi^{-1}[y_i] \) (\(i = 1, \ldots, q \)) and \(M = \varphi^{-1}[T] \) are desired ones.

Our theorem may be considered as a generalization of [1, Theorem 1]. Moreover, in case \(R \) is a division ring we obtain the following which secures the existence of the so-called semi-normal basis.

Corollary. Let \(R \) be a division ring which is strictly Galois with respect to \(\mathfrak{G} \) of order \(n \), and \(N \) a division subring of \(R \) with \(N \mathfrak{G} = N \) and \([R : N]_{r} = t \). If \(t = nq + r \) (\(0 \leq r < n \)) then there exist some \(x_0, x_1, \ldots, x_q \in R \) such that \(R \cong \sum_{i=1}^{q} \oplus_{\sigma \in \mathfrak{G}} \sum (x_i \sigma)N \oplus \sum_{\tau} (x_0 \tau)N \), where \(\tau \) runs over a suitable subset of \(\mathfrak{G} \) consisting of \(r \) elements.

References

Departments of Mathematics, Hokkaido Gakugei University Hokkaido University

(Received September 16, 1960)