PARTIALLY ORDERED ABELIAN SEMIGROUPS. IV

ON THE EXTENTION OF THE CERTAIN NORMAL PARTIAL ORDER DEFINED ON ABELIAN SEMIGROUPS

By

Osamu NAKADA

In Part I\(^1\) of this series, I noted that for any two elements \(x\) and \(y\) non-comparable in the strong partial order \(P\) defined on an abelian semigroup \(S\) there exists an extension \(Q\) of \(P\) such \(x>y\) in \(Q\) if and only if \(P\) is normal. In this Part IV, I shall discuss the extension of the partial order under the weak condition than strongness.

Definition 1. A set \(S\) is said to be a partially ordered abelian semigroup (p.o. semigroup), when \(S\) is (I) an abelian semigroup (not necessarily contains the unit element), (II) a partially ordered set, and satisfies (III) the homogeneity: \(a \geq b\) implies \(ac \geq bc\) for any \(c\) of \(S\).

A partial order which satisfies the condition (III) is called a partial order defined on an abelian semigroup.

Moreover, if a partial order defined on an abelian semigroup \(S\) is a linear order, then \(S\) is said to be a linearly ordered abelian semigroup (l.o. semigroup).

We write \(a//b\) in \(P\) for \(a\) and \(b\) are non-comparable in \(P\).

Definition 2. Let \(P\) be a partial order defined on an abelian semigroup \(S\). We consider the following conditions for the partial order \(P\):

- (E): \(ac \geq bc\) in \(P\) implies \(a \geq b\) in \(P\). (order cancellation law)
- (G): Let \(x\) and \(y\) be any two elements non-comparable in \(P\). Then there exists an extension of \(P\) in which \(x>y\).
- (H): If \(a//b\) in \(P\), then \(ua \neq ub\) for any \(u\) in \(S\).
- (K): If \(a//b\) in \(P\), then \(ua//ub\) in \(P\) for any \(u\) in \(S\).
- (L): Let \(a//b\) and \(u//v\) in \(P\) respectively. If \(au \neq bv\), then \(au//bv\) in \(P\).

Strongness: \(ac \geq bc \) in \(P \) implies \(a \geq b \) in \(P \).

Normality: \(a^n \geq b^n \) in \(P \) for some positive integer \(n \) implies \(a \geq b \) in \(P \).

Theorem 1. Let \(P \) be a partial order defined on an abelian semigroup \(S \). Then \(P \) satisfies the condition (K) if and only if \(P \) satisfies the conditions (E) and (H).

Proof. Clearly the condition (K) implies the condition (H). If \(P \) satisfies the condition (K) and \(ac > bc \) in \(P \), then \(a \) and \(b \) are comparable in \(P \). And hence we have \(a > b \) in \(P \).

Conversely, let \(P \) satisfy the conditions (H) and (E) and let \(a \parallel b \) in \(P \). Then we have \(ua = ub \) for any \(u \) in \(S \) by the condition (H). If \(ac \) and \(bc \) are comparable in \(P \) for some \(c \) in \(S \), say that \(ac > bc \) in \(P \), then we have \(a > b \) in \(P \) by the condition (E), this is impossible.

Theorem 2. Let \(P \) be a normal partial order defined on abelian semigroup \(S \) which satisfies the condition (K). If \(a \parallel b \) in \(P \), then \(u'a' \parallel u'b' \) in \(P \) for any \(u \) in \(S \) and any integers \(i (\geq 0) \) and \(j (> 0) \), where if \(i = 0 \), \(u'a' \parallel u'b' \) means that \(a' \parallel b' \).

Proof. By the normality, \(a \parallel b \) in \(P \) implies \(a' \parallel b' \) in \(P \) for any positive integer \(j \). And hence we have \(u'a' \parallel u'b' \) in \(P \) by the condition (K).

Theorem 3. Let \(P \) be a normal partial order defined on an abelian semigroup \(S \) which satisfies the condition (K) and \(x \) and \(y \) be any two elements non-comparable in \(P \). Then there exists a normal extension \(Q \) of \(P \) such that \(x > y \) in \(Q \).

Proof. Let \(P \) be a normal partial order defined on \(S \) and the elements \(x \) and \(y \) are not comparable in \(P \). Let us define a relation \(Q \) as follows:

We put \(a > b \) in \(Q \) if and only if \(a \parallel b \) and there exist two non-negative integers \(n \) and \(m \), such that not both zero and

\[(\S) \quad a^n y^m \geq b^n x^m \quad \text{in} \quad P,\]

where if \(m = 0 \) or \(n = 0 \) \((\S)\) means that \(a^n \geq b^n \) or \(y^m \geq x^m \) in \(P \) respectively.

First we note that \(n \) is never zero, for otherwise we should have \(y^m \geq x^m \) in \(P \), whence by the normality we have \(y \geq x \) in \(P \) against the hypothesis.

(i) We begin with verifying that \(a > b \) and \(b > a \) in \(Q \) are contradictory. Suppose that \(a > b \) and \(b > a \) in \(Q \), namely \(a^n y^m \geq b^n x^m \) and \(b^i y^j \geq a^i x^j \) in \(P \) for some non-negative integers \(n \), \(m \), \(i \), \(j \). By multiplying \(i \) times the first, \(n \) times the second inequality, we obtain \((ab)^{mi+nj}x^mj \geq (ab)^{mi+nj}x^mj \) in \(P \), which contradicts the condition (K). If \(m = j = 0 \), then we have \(a > b \) and \(b > a \) in \(P \), which is impossible.
(ii) We show the transitivity of \(Q \). Assume that \(a > b \) and \(b > c \) in \(Q \), i.e., for some non-negative integers \(n, m, i, j \), \(a^n y^m \geq b^n x^m \) and \(b^j y^i \geq c^i x^j \) in \(P \). By multiplying as in (i) we get \(a^{ni} y^{mi+nj} \geq b^{ni} x^{mi+nj} \) in \(P \). Here \(ni \) is not zero, and \(a = c \) is impossible by the condition (K), so that \(a > c \) in \(Q \). If \(m = j = 0 \), then we have \(a > b \), \(b > c \) in \(P \), and hence \(a > c \) in \(P(Q) \).

(iii) We prove next the homogeneity of \(Q \). Suppose that \(a > b \) in \(Q \). If \(ac \neq bc \), from \((ac)^n y^m \geq (bc)^n x^m \) in \(P \) we have \(ac > bc \) in \(Q \). Therefore \(a > b \) in \(Q \) implies \(ac \geq bc \) in \(Q \) for any \(c \) of \(S \).

(iv) \(Q \) is an extension of \(P \), for if \(a > b \) in \(P \), then \(ay^0 > bx^0 \) in \(P \), therefore \(a > b \) in \(Q \).

(v) It is clear that \(x > y \) in \(Q \). In fact, \(xy \geq yx \) in \(P \).

(vi) We may prove the normality of \(Q \). Indeed, supposing \(a^n > b^n \) in \(Q \) for some positive integer \(n \), i.e., \((a^n)^i y^i \geq (b^n)^i x^i \) in \(P \), we see at once that \(a > b \) in \(Q \).

(vii) If \(a \parallel b \) in \(Q \), then \(a \parallel b \) in \(P \), and hence \(ua \equiv ub \) for any \(u \) in \(S \). Therefore, \(Q \) satisfies the condition (H).

Theorem 4. Let \(P \) be a partial order defined on an abelian semigroup \(S \) which satisfies the condition (G) and let \(a \parallel b, u \parallel v \) in \(P \). If \(au \neq bv \) and \(av = bu \), then \(au \parallel bv \) in \(P \).

Proof. Suppose that \(au \) and \(bv \) are comparable in \(P \), say that \(au > bv \) in \(P \). There exists an extension \(Q \) of \(P \) such that \(v > u \) in \(Q \). Then we have \(bv \geq bu = av \geq au \) in \(Q \), that is, we have \(bv \geq au \) in \(Q \). This contradicts the assumption.

Theorem 5. Let \(P \) be a partial order defined on an abelian semigroup \(S \) which satisfies the condition (G) and let \(a \parallel b, u \parallel v \) in \(P \). If \(au \neq bv \) and \(av = bu \), then \(au \parallel bv \) or \(av \parallel bu \) in \(P \).

Proof. Suppose that \(au \) and \(bv \) are comparable in \(P \), say that \(au > bv \) in \(P \). If \(bu > av \) in \(P \), then we consider an extension \(Q \) of \(P \) such that \(v > u \) in \(Q \). Then we have \(bv \geq bu > av \geq au \) in \(Q \), that is, \(bv > au \) in \(Q \), this is absurd. If \(av > bu \) in \(P \), then we consider an extension \(Q \) of \(P \) such that \(b > a \) in \(Q \). Then we have \(bv \geq av > bu \geq au \) in \(Q \), that is, \(bv > au \) in \(Q \), which leads the contradiction also. Therefore, \(bu \parallel av \) in \(P \).

Theorem 6. Let \(P \) be a normal partial order defined on an abelian semigroup \(S \) which satisfies the condition (K). If \(a \parallel b \) and \(x \parallel y \) in \(P \), then \(a^n y^m > b^n x^m \) or \(a^n y^m \parallel b^n x^m \) in \(P \) \((a^n x^m > b^n y^m \) or \(a^n x^m \parallel b^n y^m \) in \(P \)) for any integers \(m (\geq 0) \) and \(n (> 0) \).

Proof. If \(a^n y^m = b^n x^m \) for some positive integers \(m \) and \(n \), then we
have \(a^n x^m \geqq b^n x^m = a^n y^m \geqq b^n y^m \) in \(P \), that is, \(b^n x^m \geqq b^n y^m \) in \(P \) which contradicts the condition (K).

By the existence of the extension \(Q \) of \(P \) such that \(y > x \) in \(Q \), we have \(a^n y^m \geqq b^n x^m \) in \(Q \). Hence, if \(a^n y^m \) and \(b^n x^m \) are comparable in \(P \), then we have \(a^n y^m > b^n x^m \) in \(P \).

Theorem 7. Let \(P \) be a normal partial order defined on an abelian semigroup \(S \) which satisfies the conditions (K) and (L) and let \(x \parallel y \) in \(P \). For two distinct elements \(a \) and \(b \), the following two properties are equivalent to each other:

1. \(a > b \) in \(P \) or \(a^n y^m = b^n x^m \)
2. \(a^n y^m \geqq b^n x^m \) in \(P \)

for some integers \(m \) (\(\geqq 0 \)) and \(n \) (\(> 0 \)), where if \(m = 0 \), \(a^n y^m \) and \(b^n x^m \) means that \(a^n \) and \(b^n \) respectively.

Proof. (1) implies (2): If \(a > b \) in \(P \), then we can write \(a y^o \geqq b x^o \) in \(P \).

(2) implies (1): If \(a \parallel b \) in \(P \), then by the normality we have \(m > 0 \) and \(a^n \parallel b^n \), \(y^m \parallel x^m \) in \(P \). Therefore, \(a^n y^m = b^n x^m \) by the condition (L).

If \(m = 0 \), then \(a^n \geqq b^n \), and hence \(a > b \) in \(P \).

If \(m > 0 \) and \(b > a \) in \(P \), then \(b^n > a^n \), and hence we have \(b^n x^m \geqq b^n x^m \), \(b^n y^m \geqq a^n y^m \) in \(P \). Therefore, we have \(b^n x^m \geqq a^n y^m \geqq b^n x^m \geqq a^n x^m \) in \(P \), that is, \(b^n y^m \geqq b^n x^m \) in \(P \) which contradicts the condition (K). Therefore, we have \(a > b \) in \(P \).

Moreover, in this case, \(a > b \) in \(P \) if and only if \(a^n y^m > b^n x^m \) in \(P \) for some integers \(m \) (\(\geqq 0 \)) and \(n \) (\(> 0 \)).

Theorem 8. Let \(P \) be a normal partial order defined on an abelian semigroup \(S \) which satisfies the conditions (K) and (L) and \(x \) and \(y \) be any two elements non-comparable in \(P \). Then there exists a normal extension \(Q \), which satisfies the condition (K), of \(P \) such that \(x > y \) in \(Q \).

Proof. By Theorem 3, there exists the normal extension \(Q \) of \(P \) which satisfies the condition (H) such that \(x > y \) in \(Q \).

The order-relation \(Q \) is as follows:

- \(a > b \) in \(Q \) if and only if \(a > b \) in \(P \), or \(a \parallel b \) in \(P \) and \(a^n y^m = b^n x^m \) for some positive integers \(m \) and \(n \).

- (viii) Suppose that \(ac > bc \) in \(Q \). If \(ac > bc \) in \(P \), then we have \(a > b \) in \(P(Q) \). If \(ac \parallel bc \) in \(P \), then \(a \parallel b \) in \(P \) and \((ac)^n y^m = (bc)^n x^m \), i.e., \(c^n(a^n y^m) = c^n(b^n x^m) \) for some positive integers \(m \) and \(n \). By the condition (K) of \(P \), \(a^n y^m \) and \(b^n x^m \) are comparable in \(P \). And hence we have \(a^n y^m = b^n x^m \)
by the condition (L) of P. Therefore, we have $a \succ b$ in Q. Thus Q satisfies the conditions (H) and (E), that is, the condition (K).

Mathematical Institute,
Hokkaido University

(Received December 10, 1960)