A GENERALIZATION OF MAZUR-ORLICZ THEOREM
ON FUNCTION SPACES

By

Takashi Itô

1. Introduction. Let \(\Omega(B, \mu) \) be a locally finite measure space. By
many investigators various function spaces consisting of locally almost
finite \(B \)-measurable functions on \(\Omega \) have been considered as a generaliza-
tion of the so-called \(L_p \)-spaces on \(\Omega \) \((1 \leq p \leq +\infty) \). One of them is \(L_{M(u, \omega)} \)-
space (Musielak-Orlicz [3], [4]).

Let \(M(u, \omega) \) be a function on \([0, +\infty] \times \Omega \) with the following
properties (it will be called (M)-function);
1) \(0 \leq M(u, \omega) \leq +\infty \) for all \((u, \omega) \in [0, +\infty] \times \Omega \),
2) \(\lim_{u \to 0} M(u, \omega) = 0 \) for all \(\omega \in \Omega \),
3) \(M(u, \omega) \) is a non-decreasing and left continuous function of \(u \)
(M)
4) \(\lim_{u \to +\infty} M(u, \omega) > 0 \) for all \(\omega \in \Omega \),
5) \(M(u, \omega) \) is locally \(B \)-measurable as a function of \(\omega \) for all
\(u \in [0, +\infty] \).

Using this function \(M(u, \omega) \) we can define a functional \(\rho_M(x) \) on locally
almost finite \(B \)-measurable functions \(x(\omega) \) \((\omega \in \Omega) \) by the formula

\[
(1) \quad \rho_M(x) = \int_{\Omega} M(|x(\omega)|, \omega) d\mu
\]

If \(L_{M(u, \omega)} \) denotes the set of all \(x(\omega) \) such that \(\rho_M(\alpha x) < +\infty \) for a positive
number \(\alpha = \alpha(x) \) depending on \(x \), \(L_{M(u, \omega)} \) is a vector space.

As special cases, \(L_{M(u, \omega)} \) coincides with four typical spaces respectively:

1) \(\Omega \) is covered by the family of measurable sets of finite measure.
2) Correctly speaking, we shall consider only the functions which are almost finite
real valued and \(B \)-measurable in every measurable set of finite measure. And two functions
\(x(\omega) \) and \(y(\omega) \) are identified if \(x(\omega) = y(\omega) \) except on a set of measure zero in every measurable
set of finite measure.
3) Since \(M(u, \omega) \) can be replaced by \(M(u-0, \omega) \), the left side continuity is not essential
for the definition of the space \(L_{M(u, \omega)} \).
4) It is unnecessary for \(M(u, \omega) \) to be almost finite valued.
5) (M)-2) and 3) imply the measurability of a function \(M(|x(\omega)|, \omega) \). The integration
on \(\Omega \) means the supremum of integrations on every finite measured set.
1) L_p-space ($0 < p \leq +\infty$), when $M(u, \omega) = u^p$,
2) $L_{N(u)}$-space (Orlicz [7]), when $M(u, \omega) = N(u)$ and $N(u)$ is a convex function of u,
3) $L_{M(u)}$-space (Mazur-Orlicz [2]), when $M(u, \omega) = M(u)$,
4) $L_{N(u, \omega)}$-space (Nakano [5]), when $M(u, \omega) = N(u, \omega)$ and $N(u, \omega)$ is a convex function of u for all $\omega \in \Omega$.

In view of generalization of a constructive method, the relation between above four spaces is shown with the following schema,

$$ L_p (1 \leq p \leq +\infty) \downarrow $$

(2)

$$ L_{N(u)} \rightarrow L_{N(u, \omega)} $$

$$ L_p (0 < p < 1) \rightarrow L_{M(u)} \downarrow \rightarrow L_{M(u, \omega)} $$

In the spaces $L_{N(u)}$ and $L_{N(u, \omega)}$, if we put

$$ \| x \|_N = \inf \{ \varepsilon > 0 ; \rho_N(x/\varepsilon) \leq 1 \} , $$
we have a complete norm (B-norm) on $L_{N(u)}$ and $L_{N(u, \omega)}$ respectively ([1], [5]). In the spaces $L_{M(u)}$ and $L_{M(u, \omega)}$, putting

$$ \| x \|_M = \inf \{ \varepsilon > 0 ; \rho_M(x/\varepsilon) \leq \varepsilon \} , $$
we have a complete quasi-norm (F-norm) on $L_{M(u)}$ and $L_{M(u, \omega)}$ respectively ([2], [3]). We can see easily

$$ \lim_{n \to \infty} \rho_M(\alpha x_n) = 0 \text{ (for all } \alpha \geq 0). $$

Mazur-Orlicz has shown in [2] the following result:

"Given $L_{M(u)}$-space, the necessary and sufficient condition for to exist a convex (M)-function $N(u)$ such as $L_{M(u)} = L_{N(u)}$ is that the linear topology induced by the quasi-norm $\| x \|_M$ is locally convex."

The purpose of this paper is to generalize this result to the problem of the relation between $L_{M(u, \omega)}$ and $L_{N(u, \omega)}$. In §2 we shall define the abstract $L_{M(u, \omega)}$-space, and in §3 the problem will be studied in an abstract form. If $\Omega(B, \mu)$ is non-atomic, we obtain a similar result to the above Mazur-Orlicz theorem (Theorem 2). Although in general it does not hold in an atomic case, under some assumption it can be proved also (Theorem 3).

6) If $p = +\infty$, then we put $u^{+\infty} = 0 (0 \leq u \leq 1)$ and $= +\infty (u > 1)$.
7) H. Nakano calls $L_{N(u, \omega)}$ a modulared function space in [5] (appendix).
8) It has been proved under an additional condition: $M(2u) \leq KM(u)$ for all $u \geq u_0 > 0$ (non-atomic case) or $M(2u) \leq KM(u)$ for all $0 \leq u \leq u_0$ (atomic case).
2. Modulated vector lattice. First of all, we shall define a modulated vector lattice \(R(\rho) \) as the abstraction of \(L_{M(u,\omega)} \)-spaces. Let \(R \) be a conditionally complete\(^9\) vector lattice. A functional on \(R \) with values \(0 \leq \rho(x) \leq +\infty \) will be called a modular\(^{10}\) \([4],[5],[6]\) when the following conditions are satisfied;

1) \(\rho(\alpha x) = 0 \) for all \(\alpha \geq 0 \) if and only if \(x = 0 \),
2) \(\inf_{x > 0} \rho(\alpha x) = 0 \) for all \(x \in R \),
3) \(|x| \leq |y| \) implies \(\rho(x) \leq \rho(y) \),
4) \(x \leq y = 0 \) implies \(\rho(x+y) = \rho(x) + \rho(y) \),
5) \(0 \leq x_{\lambda} \uparrow_{\lambda \in \Lambda} x \)\(^{11}\) implies \(\sup_{\lambda \in \Lambda} \rho(x_{\lambda}) = \rho(x) \),
6) for any orthogonal system \(x_{\lambda} \geq 0 \) \((\lambda \in \Lambda)\) such as \(\sum_{\lambda \in \Lambda} \rho(x_{\lambda}) < +\infty \) we can find \(x \in R \) and \(x = \sum_{\lambda \in \Lambda} x_{\lambda} \)\(^{12}\) (orthogonal completeness).

Moreover, if \(\rho \) satisfies the following condition (C), \(\rho \) will be called a convex modular;

\[
\rho(\alpha x) \text{ is a convex function of } \alpha \text{ for all } x \in R.
\]

We shall call \(R \) where a (convex) modular is defined a (convex) modulated vector lattice. A convex modulated vector lattice will be said briefly the Nakano space\(^{13}\). We can see easily that \(L_{M(u,\omega)}(\rho_{N}) \) is a modulated vector lattice and \(L_{N(u,\omega)}(\rho_{N}) \) is the Nakano space.

The \((\rho)\)-condition implies some properties;

\[
(5) \quad \rho(x \leq y) + \rho(x \leq y) = \rho(x) + \rho(y) \text{ for } x, y \geq 0,
\]

\[
(6) \quad \rho(\alpha x + \beta y) \leq \rho(x) + \rho(y) \text{ for } x, y \in R, \alpha, \beta \geq 0, \alpha + \beta = 1.
\]

It has been shown in \([3]\) and \([4]\) that the property (6) defines a ordered\(^{14}\) quasi-norm \(\|x\|_{\rho} \) on \(R \) by the formula

\[
(7) \quad \|x\|_{\rho} = \inf \{\epsilon > 0 ; \rho(x/\epsilon) \leq \epsilon\} \quad (x \in R).
\]

We can see easily \(\lim_{n \to +\infty} \|x_{n}\|_{\rho} = 0 \) if and only if \(\lim_{n \to +\infty} \rho(\alpha x_{n}) = 0 \) for all \(\alpha \geq 0 \).

\(10\) For the first time the name ‘modular’ was used by H. Nakano, when \((\rho)\)-1\(\sim 5\) and \((\rho)\) were satisfied. The convex modular defined in this paper coincides with the monotone-complete modular in Nakano’s terminology \((\[5]\))\). The orthogonal completeness \((\rho)-6\) implies the monotone completeness (cf. Remark of Lemma 1). The condition \((\rho)\) is stronger than that in \([4]\) and of the quasi-modular in \([8]\).

\(11\) For any \(\lambda_{1}, \lambda_{2} \in \Lambda \) there exists \(\lambda_{3} \in \Lambda \) such as \(x_{\lambda_{1}} \cup x_{\lambda_{2}} \leq x_{\lambda_{3}} \) and \(\cup_{\lambda \in \Lambda} x_{\lambda} = x \).

\(12\) \(\sum_{\lambda \in \Lambda} x_{\lambda} = \bigcup_{\Lambda \subset \Lambda'} \sum_{\lambda \in \Lambda} x_{\lambda} \), where \(\Lambda' \) is a finite subset of \(\Lambda \).

\(13\) In \([5]\) it is called a monotone-complete modulated semi-ordered linear space.

\(14\) \(|x| \leq |y| \) implies \(\|x\|_{\rho} \leq \|y\|_{\rho} \).
In this section we shall prove that \(\| x \|_\rho \) is a complete quasi-norm on \(R \).

Lemma 1. The necessary and sufficient condition for a directed system of positive elements \(0 \leq x_{\lambda} \uparrow_{\lambda \in A} \) to be order-bounded is that the following two conditions are satisfied:

(i) \(\sup_{\lambda \in A} \rho(\alpha x_{\lambda}) < +\infty \) for some \(\alpha > 0 \),

(ii) for any \(p \in R \) (\(p \neq 0 \)) we can find two positive numbers \(\beta_2 > \beta_1 > 0 \) such that \(\sup_{\lambda \in A} (\beta_1 [p] x_{\lambda}) < \rho(\beta_2 p) \).

Proof. Supposing \(0 \leq x_{\lambda} \uparrow_{\lambda \in A} x \), then (\(\rho \)-2) and (3) imply (i). Since
\[
\sup_{\alpha > 0} \rho(\alpha p) > 0 \quad (p \neq 0) \quad \text{and} \quad \inf_{\alpha > 0} \rho(\alpha [p] x) = 0,
\]
we have easily (\(\rho \)-11).

Sufficiency: First, (ii) implies the fact that for a given \(p > 0 \) we can find \(0 < [q] \leq [p] \) such that \([q] x_{\lambda} (\lambda \in \Lambda) \) is order-bounded. Because; in the contrary case, we can obtain the decomposition of \([p] \), \([p] = [q_1] \oplus \cdots \oplus [q_n] \), and \(\lambda_i \in \Lambda \) (\(1 \leq i \leq n \)) such that \(\beta_2 [q_i] p < \beta_1 [q_i] x_{\lambda_i} (1 \leq i \leq n) \), hence \(\beta_2 [p] = \sum_{i=1}^{n} \beta_2 [q_i] p \leq \sum_{i=1}^{n} \beta_1 [q_i] x_{\lambda_i} \leq \beta_1 [p] x_{\lambda_0} \) for some \(\lambda_0 \in \Lambda \). This implies the contradiction:
\[
\rho(\beta_2 p) \leq \rho(\beta_1 [p] x_{\lambda_0}) < \rho(\beta_2 p).
\]
Therefore, if we put \([p_\gamma] (\gamma \in \Gamma) \) a maximal orthogonal system of projectors such as \([p_\gamma] x_{\lambda} (\lambda \in \Lambda) \) is order-bounded, then we have \(\sum [p_\gamma] = I \).

Putting \([p_\gamma] x_{\lambda} \uparrow_{\lambda \in A} y_\gamma \), since \(\rho(\alpha y_\gamma) = \sup_{\lambda \in A} \rho(\alpha [p_\gamma] x_{\lambda}) \), we see \(\sum \rho(\alpha y_\gamma) = \sup_{\lambda \in A} \rho(\alpha [p_\gamma] x_{\lambda}) = \sup_{\lambda \in A} \rho(\alpha x_{\lambda}) < +\infty \) ((i)). Hence the orthogonal completeness ((\(\rho \)-6)) implies the existence \(x \in R \) such as \(x = \sum_{\gamma \in \Gamma} \alpha y_\gamma = \bigcup_{\lambda \in A} \alpha X_{\lambda} \), that is \(x_{\lambda} \uparrow_{\lambda \in A} x/\alpha \).

Remark. When \(\sup_{\alpha > 0} \rho(\alpha p) = +\infty \) (\(p \neq 0 \)) is satisfied, (ii) follows from (i).

Theorem 1. \(\| x \|_\rho \) (\(x \in R \)) is a complete quasi-norm on \(R(\rho) \).

Proof. Let \(x_{\nu} (\nu = 1, 2, \ldots) \) be a Cauchy sequence, and we assume \(\| x_{\nu+1} - x_{\nu} \|_{\rho} \leq 1/2^\nu \) (\(\nu = 1, 2, \ldots \)). Putting \(|x_2 - x_1| + \cdots + |x_n - x_{n-1}| = z_n \) (\(n \geq 2 \)) and \(\sum_{\nu=m}^{n} |x_{\nu+1} - x_{\nu}| = y_{n,m} \) (\(n \geq 1, m \geq n \)), we see \(y_{1,n} = z_n \) and \(\| y_{1,n} \|_{\rho} \leq 1/2^{n-1} \), that

\[15) \quad [p] \text{ is a projection operator and defined as follows } [p] x = \bigcup_{v=1}^{\infty} (x \ominus v \ | \ p \ |) \text{ for all } x \geq 0, \]
\[16) \quad [q] x \leq [p] x \text{ for all } x \geq 0. \]
\[17) \quad [p] x = \sum_{i=1}^{\infty} [q_i] x \text{ for all } x \in R \text{ and } [q_i] [q_j] = 0 \text{ (} i \neq j \text{).} \]
\[18) \quad \sum_{\gamma \in \Gamma} [p_\gamma] x = x \text{ for all } x \geq 0. \]
A Generalization of Mazur-Orlicz Theorem on Function Spaces

225

is, $\rho(2^{n-1}y_{n,m}) \leq 1/2^{n-1}$, and $y_{n,m} \uparrow_{n \geq m \geq 1}$. The non-decreasing sequence $y_{1,m} \uparrow_{m \geq 1}$ satisfies (i) and (ii) in the previous Lemma 1. First, $\sup_{m \geq 1} \rho(y_{1,m}) \leq 1$ follows from $\|y_{1,m}\|_{\rho} \leq 1 (m \geq 1)$. Next for any $p \neq 0$ we can find a positive number $\beta_{2}>0$ and an integer $n \geq 1$ such as $1/2^{n-1} < \rho(\beta_{2}p)$, and further $\beta_{1}>0$ such as $2\beta_{1} < 2^{n-1}$ and $\rho(2\beta_{1}x_{n}) < 1/2^{n-1}$. Hence $\rho(\beta_{1}[p]y_{1,m}) \leq \rho(2\beta_{1}y_{n,m}) \leq 1/2^{n-1} + \rho(2^{n-1}y_{n,m}) \leq 1/2^{n-1} + 1/2^{n-1} = 1/2^{n-2} < \rho(\beta_{2}p)$. By Lemma 1 we can put $\sum_{\nu=n}^{\infty} |x_{\nu+1} - x_{\nu}| = \bigcup_{m \geq n} y_{n,m} = y_{n}$ $(n \geq 1)$. This implies also that the sequence $x_{\nu}(\nu=1,2, \cdots)$ converges to an element x_{0} in order, that is, $0-\lim_{\nu \to \infty} x_{\nu} = x_{0}$. We see $|x_{0} - x_{n}| = |0-\lim_{m \to \infty} \sum_{\nu=n}^{m} (x_{\nu+1} - x_{\nu})| \leq \bigcup_{m \geq n} y_{n,m} = y_{n}$, hence $\|x_{0} - x_{n}\|_{\rho} \leq \|y_{n}\|_{\rho}^{20)} = \sup_{m \geq n} \|y_{n,m}\|_{\rho} \leq 1/2^{n-1}$, that is, $\lim_{n \to \infty} \|x_{0} - x_{n}\|_{\rho} = 0$. Q.E.D.

3. Local convexity of the linear topology in modulared vector lattices.

A. Non-atomic case. Let $R(\rho)$ be a non-atomic modulared vector lattice, we have the following main theorem.

Theorem 2. In a non-atomic modulared vector lattice $R(\rho)$ the following four conditions are equivalent each other;

a) the metric linear topology induced by $\|x\|_{\rho}$ is normable,
b) the metric linear topology induced by $\|x\|_{\rho}$ is locally convex,
c) there exists a convex modular $m(x)$ on $R(\rho)$ (R is the Nakano space),
d) there exists a complete ordered norm $\|\|x\||$ on $R(\rho)$ (R is a Banach lattice).

Proof. (b)\to(c). First, we shall prove the following fact:
For any $\varepsilon > 0$ we can find a positive number $\delta = \delta(\varepsilon) > 0$ such that

(*) $\rho(x/\varepsilon) > \varepsilon$ implies $\sum_{i=1}^{l} \rho(n_{i}x_{i}/\delta)/n_{i} > \delta$,

where $\{x_{i} ; 1 \leq i \leq l\}$ is an arbitrary orthogonal decomposition of x, $x = \sum_{i=1}^{l} \oplus x_{i}$, and n_{i} $(1 \leq i \leq l)$ are arbitrary positive integers.

19) $\bigcap_{n=1}^{\infty} \bigcup_{\nu \geq n} x_{\nu} = \bigcup_{n=1}^{\infty} \bigcap_{\nu \geq n} x_{\nu}$ and it is denoted by $0-\lim_{n \to \infty} x_{\nu} = x_{0}$.
20) (\rho)-5 implies $\sup_{x_{\nu} \in E} \|x_{\nu}\|_{\rho} = \|x\|_{\rho}$ for all $0 \leq x_{\nu} \in E$.
21) For every $a \in R$, $a \geq 0$ we can find $b, c > 0$ such as $a = b + c$ and $b \cap c = 0$.
22) $x = \sum_{i=1}^{l} x_{i}$ and $|x_{i} \cap x_{j}| = 0$ $(i \neq j)$.

Because, from the local convexity of $\|x\|_r$ for any $\varepsilon > 0$ we can find a positive number $\delta = \delta(\varepsilon) > 0$ such that $\|x_i\|_r \leq \delta$ ($1 \leq i \leq l$) imply $\|\sum_{i=1}^{l} x_i/l\|_r \leq \varepsilon$, that is,

$$\rho(x_i/\delta) \leq \delta \quad (1 \leq i \leq l) \text{ imply } \rho\left(\sum_{i=1}^{l} x_i/\varepsilon l\right) \leq \varepsilon .$$

Hence, if $\sum_{i=1}^{l} \rho(n_i x_i/\delta)/n_i \leq \delta$, $x = \sum_{i=1}^{l} \oplus x_i$ and n_i ($1 \leq i \leq l$) are positive integers, then in view of the assumption that R is non-atomic, we can find an orthogonal decomposition of x_i such that

$$\left\{ \begin{array}{l} x_i = \sum_{\nu=1}^{n_i} \oplus x_{i,\nu} \quad (1 \leq i \leq l) \\ \rho(n_i x_{i,\nu}/\delta) = \rho(n_i x_i/\delta)/n_i \quad (1 \leq \nu \leq n_i, 1 \leq i \leq l) \end{array} \right).$$

If we put $y_{\nu_1,\nu_2,\ldots,\nu_l} = \sum_{i=1}^{l} \oplus n_i x_{i,\nu_i}$ ($1 \leq \nu_i \leq n_i$), then the total number of elements $y_{\nu_1,\nu_2,\ldots,\nu_l}$ is $n_1 n_2 \cdots n_l$ and the sum of them equals to $n_1 n_2 \cdots n_l x$, because the multiplicity of $n_i x_{i,j}$ in the summation is $n_1 n_2 \cdots n_i$, we have

$$\sum_{1 \leq \nu_i \leq n_i} y_{\nu_1,\nu_2,\ldots,\nu_l} = \sum_{i=1}^{l} \sum_{j=1}^{n_i} n_1 n_2 \cdots n_i x_{i,j} \quad 1 \leq i \leq l$$

$$= \sum_{i=1}^{l} n_1 n_2 \cdots n_i x = n_1 n_2 \cdots n_l x .$$

On the other hand

$$\rho(y_{\nu_1,\nu_2,\ldots,\nu_l}/\delta) = \sum_{i=1}^{l} \rho(n_i x_{i,\nu_i}/\delta) = \sum_{i=1}^{l} \rho(n_i x_i/\delta)/n_i \leq \delta .$$

Therefore from (8), (10) and (11) we see

$$\rho\left(\sum_{1 \leq \nu_i \leq n_i} y_{\nu_1,\nu_2,\ldots,\nu_l}/\varepsilon n_1 n_2 \cdots n_i \right) = \rho(x/\varepsilon) \leq \varepsilon .$$

Thus (*) has been proved.

And the following fact is a direct consequence of (*),

$$\sup_{x \geq 0} \rho(\alpha x) < + \infty \text{ if and only if } x = 0.$$

Since $\sup_{x \geq 0} \rho(\alpha x) = \gamma < + \infty$ implies $\inf_{n \geq 1} \rho(n x/\delta)/n = 0$ for all $\delta > 0$, by (*)

$$\rho(x/\varepsilon) \leq \varepsilon$$

for all $\varepsilon > 0$, hence $\|x\|_r = 0$, that is, $x = 0$.

Putting, for $\delta_1 = \delta(1) > 0$,

23) This is a method used oftenly in non-atomic cases. Confer [4] or [5].
The functional $\overline{\rho}(x)$ $(x \in R)$ has the following properties:

1) $\overline{\rho}(x) \leq 1/\delta_1 \cdot \rho(2x/\delta_1)$ for all $x \in R$,
2) $|x| \leq |y|$ implies $\overline{\rho}(x) \leq \overline{\rho}(y)$,
3) $x \perp y = 0$ implies $\overline{\rho}(x + y) = \overline{\rho}(x) + \overline{\rho}(y)$,
4) $x \cap y = 0$ implies $\overline{\rho}(x + y) = \overline{\rho}(x) + \overline{\rho}(y)$,
5) $\overline{\rho}(tx)/t$ $(t > 0)$ is a non-decreasing function of $t > 0$ for all $x \in R$,
6) $\sup_{\lambda \in \Lambda} \overline{\rho}(\lambda x) = \overline{\rho}(x)$.

($\overline{\rho}$-1) is obvious from the definition of $\overline{\rho}$. ($\overline{\rho}$)-2 is a simple consequence of (\ast); if $\rho(x) > 1$, $x = \sum_{i=1}^{l} \bigoplus_{1} x_i$ and $\eta_i \geq 1$ $(1 \leq i \leq l)$, then we see $\sum_{i=1}^{l} \rho(2\eta_i x_i/\delta_1) \eta_i \geq \sum_{i=1}^{l} \rho(2n_i x_i/\delta_1) 2\delta_i n_i$ where $n_i, 1 \leq i \leq l$ are positive integers such as $n_i \leq \eta_i < n_i + 1$ $(1 \leq i \leq l)$. ($\overline{\rho}$)-3 and 4 are easily implied from ($\overline{\rho}$)-3 and 4 respectively.

Next we shall check ($\overline{\rho}$)-5; for $t_2 > t_1 > 0$ we have

$$\overline{\rho}(t_1 x)/t_1 = \inf_{\xi \geq 1} \sum_{i=1}^{l} \rho(2t_1 \eta_i x_i/\delta_i) \eta_i / t_1 \delta_i \leq \inf_{\xi \geq 1} \sum_{i=1}^{l} \rho(2\xi_i x_i/\delta_i) / \xi_i \delta_i = \overline{\rho}(t_2 x)/t_2.$$

($\overline{\rho}$)-6 is shown as follows; $\overline{\rho}(x) < +\infty$ if and only if $\rho(2x/\delta_1) < +\infty$. Hence

$$0 \leq \overline{\rho}(x) - \overline{\rho}(\lambda x) = \overline{\rho}(x - \lambda x) \leq \rho(2(x - \lambda x)/\delta_1) \delta_1 < +\infty,$$

and inf $\rho(2(x - \lambda x)/\delta_1) = 0$ is effected by ($\overline{\rho}$)-5.

Next we put $\overline{\rho}(x)$ $(x \in R)$ as follows:

$$\overline{\rho}(x) = \begin{cases} \sup \overline{\rho}(\lambda x), & \text{if there exists } \lambda \in \Lambda \text{ and } [p_\lambda] \uparrow y \in R \text{ and } [x] \\ +\infty, & \text{elsewhere.} \end{cases}$$

We see obviously $\overline{\rho}(x) \leq \overline{\rho}(x)$ $(x \in R)$ and $\overline{\rho}(x) = \overline{\rho}(x)$, if $\overline{\rho}(x) < +\infty$. The functional $\overline{\rho}(x)$ $(x \in R)$ has the same properties as ($\overline{\rho}$) and moreover has the stronger property than 6) of ($\overline{\rho}$):

If $\lambda = \lambda x$, then sup $\overline{\rho}(\lambda x) = \overline{\rho}(x)$.

Now we can construct a convex modular $m(x)$ $(x \in R)$:

$$m(x) = \int_{0}^{x} \overline{\rho}(tx) dt \quad (x \in R).$$

24) $[p_\lambda] y \uparrow y \in R \text{ for all } y \geq 0.$
Evidently we see
(17) \[\overline{\rho}(x/2) \leq m(x) \leq \rho(x) \quad (x \in R). \]

It is obvious also that this functional \(m(x) \) on \(R \) satisfies (C) from the fact that \(\overline{\rho}(tx)/t \) is a non-decreasing function of \(t > 0 \).

We shall check the modular condition \((\rho)\) about \(m(x) \) on \(R \) from the fact that \(\overline{\rho}(tx)/t \) is a non-decreasing function of \(t > 0 \).

We shall check the modular condition \((\rho)\) about \(m(x) \) on \(R \).

\[\sup_{\alpha \geq 0} m(\alpha x) = 0 \]
implies \[\sup_{\alpha \geq 0} = \rho(\alpha x) = 0, \]

hence from the definition of \(\overline{\rho} \) and \((\overline{\rho})\) we can see \[\sup_{\alpha \geq 0} \rho(\alpha x) \leq 1, \]

therefore \(x = 0 \) follows from (12).

\[\overline{\rho}(x) - 1) \]

is evident from (17) and \((\overline{\rho})\) and \((\overline{\rho})\) are almost evident. \((\overline{\rho})\).

\[\sup_{\alpha \geq 0} m(\alpha x) = 0 \]
implies \[\sup_{\alpha \geq 0} = \rho(\alpha x) = 0, \]

and since \(m(\alpha x) = \int_{0}^{\alpha} \rho(tx)/dt \)

is a left-continuous function of \(\alpha \geq 0 \),

therefore \[\sup_{\alpha \geq 0} \rho(\alpha x) \leq 1, \]

therefore \[x = 0 \] follows from (12).

\[\overline{\rho}(x/2) \leq m(x) \leq \rho(x) \quad (x \in R). \]

It is obvious also that this functional \(m(x) \) on \(R \) satisfies (C) from the fact that \(\overline{\rho}(tx)/t \) is a non-decreasing function of \(t > 0 \).

We shall check the modular condition \((\rho)\) about \(m(x) \) on \(R \) from the fact that \(\overline{\rho}(tx)/t \) is a non-decreasing function of \(t > 0 \).

We shall check the modular condition \((\rho)\) about \(m(x) \) on \(R \).

\[\sup_{\alpha \geq 0} m(\alpha x) = 0 \]
implies \[\sup_{\alpha \geq 0} = \rho(\alpha x) = 0, \]

hence from the definition of \(\overline{\rho} \) and \((\overline{\rho})\) we can see \[\sup_{\alpha \geq 0} \rho(\alpha x) \leq 1, \]

therefore \(x = 0 \) follows from (12).

\[\overline{\rho}(x) - 1) \]

is evident from (17) and \((\overline{\rho})\) and \((\overline{\rho})\) are almost evident. \((\overline{\rho})\).

\[\sup_{\alpha \geq 0} m(\alpha x) = 0 \]
implies \[\sup_{\alpha \geq 0} = \rho(\alpha x) = 0, \]

and since \(m(\alpha x) = \int_{0}^{\alpha} \rho(tx)/dt \)

is a left-continuous function of \(\alpha \geq 0 \),

therefore \[\sup_{\alpha \geq 0} \rho(\alpha x) \leq 1, \]

therefore \(x = 0 \) follows from (12).
\[\sum_{v=1}^{\infty} ||x_{v}||_{1}\leq 1, \text{ from the completeness of } ||x||_{1}, \text{ we can find } x_{0}\in R \text{ and } \lim_{n\to 0} ||x_{0} - \sum_{v=1}^{n} x_{v}||_{1} = 0. \] And
\[0 \leq ||x_{0\cap}x_{v} - x_{v}||_{1} = ||x_{0\cap}x_{v} - \left(\sum_{i=1}^{n} x_{i}\right)_{\cap}x_{v}||_{1} \leq ||x_{0} - \sum_{i=1}^{n} x_{i}||_{1} \to 0 (n\to \infty), \]
hence \(x_{0\cap}x_{v} = x_{v} \), that is, \(x_{0} \geq x_{v} \) \((v = 1, 2, \ldots)\). Therefore we have a contradiction:
\[||x_{0}/\nu||_{2} \leq ||x_{v}/\nu||_{2} \geq \varepsilon_{0} \text{ and } \lim_{n\to \infty} ||x_{0}/\nu||_{2} \geq \varepsilon_{0} > 0. \]
Thus, given \(\lim_{n\to \infty} ||y_{n}||_{1} = 0 \), for any \(\varepsilon > 0 \) we have \(||y_{n}/\gamma_{*}||_{1} \leq \delta \), for almost all \(n \), hence \(||\gamma_{*}y_{n}/\gamma_{*}||_{2} = ||y_{n}||_{2} \leq \varepsilon \) for almost all \(n \), that is, \(\lim_{n\to \infty} ||y_{n}||_{2} = 0 \).

Q.E.D.

Remark. Under the assumption \(\sup_{x>0} \rho(\alpha x) = +\infty \) \((x \neq 0)\), the condition b) in the above Theorem 2 may be replaced with the following.

b') for some \(\varepsilon_{0} > 0 \) \(\{x; ||x||_{\rho} \leq \varepsilon_{0}\} \) contains a convex neighbourhood of 0.

The application to function spaces. The detailed proof will be omitted. Let \(m(x) \) be a convex modular \(L_{M(u, \omega)} \). By Radon-Nikodym's theorem we can find a convex \((M)\)-function \(N(u, \omega) \) and \(m(x) \) can be represented as follows
\[m(x) = \int_{\Omega} \int_{\Omega} N[|x(\omega)|, \omega]\,d\mu. \]
The orthogonal completeness of \(m \) implies \(L_{N(u, \omega)} = L_{M(u, \omega)} \). Thus by Theorem 2 Mazur-Orlicz's result in \S 1 can be generalized;

\[\text{Given } L_{M(u, \omega)}-\text{space on non-atomic measure space } \Omega(B, \mu), \text{ the necessary and sufficient condition to exist a convex \((M)\)-function } N(u, \omega) \text{ such as } L_{M(u, \omega)} = L_{N(u, \omega)} \text{ is that the linear topology induced by } ||x||_{M} \text{ on } L_{M(u, \omega)} \text{ is locally convex.} \]

B. Atomic case. In an atomic modulared vector lattice \(R(\rho) \) the above Theorem 2 does not hold in general. The so-called \(S \)-space is a counter example. Putting \(\Omega = \{\omega_{1}, \omega_{2}, \cdots\} \), \(\mu(\omega_{n}) = 1 \) and \(M(u, \omega_{n}) = u/2^{n}(1+u) \) \((n = 1, 2, \cdots)\), then \(L_{M(u, \omega)} \) is \(S \)-space on \(\Omega \). It is easily proved that \(||x||_{M} \) on \(S(\Omega) \) is locally convex, but not normable.

Now we shall consider the following assumption:
\[(**): \quad R = \bigoplus_{\nu=1}^{\infty} R_{\nu}, \text{ and } R(\rho) = R_{\nu}(\rho)_{\nu} \geq 1, \]

26) Since \(|x\cap y - x \cap y| = |x - y| \) \(([5])\), we have \(||x\cap y - x \cap z||_{\rho} \leq ||x - y||_{\rho}. \)

27) Every \(R_{\nu} \) is a normal subspace of \(R \), that is, \(R_{\nu} \) is a linear subspace and if \(R_{\nu} \ni x \) and \(|x| \leq |y| \), then \(y \in R_{\nu} \) and \(\exists x_{1} \in R_{\nu}, (x_{1} \in R_{\nu}, \exists x \) imply \(x \in R_{\nu} \) \(([5])\). \(R = \bigoplus_{\nu=1}^{\infty} R_{\nu} \) means that \(|x|_{\nu} \leq |x|_{\rho} \) \((\nu \geq 1) \).

28) There exists an isomorphism \(I_{\nu} \) from \(R \) onto \(R_{\nu} \) such as \(\rho(x) = \rho(I_{\nu}x) \) for all \(x \in R. \)
where \(R_{\nu} \)\((\nu=1,2, \cdots)\) are normal subspaces and orthogonal each other.

For instance, if \(\Omega(2^\nu, \mu) \) is an atomic measure space and for any \(\omega_0 \in \Omega \), \(\Omega_{\omega_0} = \{ \omega ; M(u, \omega_0) = M(u, \omega) \mu(\omega) \} \) for all \(u \geq 0 \) is an infinite set, then \(L_{\Omega(\omega_0)} \) satisfies (**) . As a special case, \(L_{\Omega(\omega)} \) on an atomic measure \(\Omega(2^\nu, \mu) \), where \(\mu(\omega) = 1 (\omega \in \Omega) \) and \(\Omega \) is infinite, satisfies (**).

Theorem 3. In the modulared vector lattice \(R(\rho) \) satisfying the assumption (**), four conditions in Theorem 2 are equivalent each other. Moreover the condition b) can be replaced by the weaker condition:

b’) for some \(\varepsilon_0 > 0 \) \(\{ x ; \| x \|_\rho \leq \varepsilon_0 \} \) contains a convex neighbourhood of 0.

Proof. It is sufficient to show b’)→c). It follows from b’) that there is \(\delta_0 > 0 \) such that

\[
\rho(x_i/\delta_0) \leq \delta_0 \quad (1 \leq i \leq l)
\]

Using the assumption (**), we shall show

\[
(*) \quad \rho(x/\delta_0) \leq \delta_0 \implies \sum_{\nu=1}^{n_i} \rho(x_i/\varepsilon_0 n_i) \leq \varepsilon_0,
\]

where \(\{ x_i ; 1 \leq i \leq l \} \) is an arbitrary orthogonal decomposition of \(x \), \(x = \sum_{i=1}^{l} \oplus x_i \), and \(n_i \) \((1 \leq i \leq l)\) are arbitrary positive integers.

Because; from (**) we can find \(x_{i_{\nu}} \in R_{\nu} \) \((1 \leq \nu \leq n_i, 1 \leq i \leq l)\) such that

\[
(21) \begin{cases}
x_{i_{\nu}} \cdot x_{j_{\mu}} = 0 \quad ((i, \nu) \neq (j, \mu)) \\
\rho(\alpha x_{i_{\nu}}) = \rho(\alpha x_i) \quad \text{for all } \alpha \geq 0 \quad (1 \leq \nu \leq n_i, 1 \leq i \leq l).
\end{cases}
\]

If we put \(y_{\nu_{1},\nu_{2},\ldots,\nu_{l}} = \sum_{i=1}^{l} \oplus x_{i_{\nu_{i}}} \), then the total number of elements \(y_{\nu_{1},\nu_{2},\ldots,\nu_{l}} \) is \(n_1 n_2 \cdots n_l \) and we have

\[
(22) \sum_{1 \leq \nu_1 \leq n_1, 1 \leq \nu_2 \leq n_2, \ldots, 1 \leq \nu_l \leq n_l} y_{\nu_{1},\nu_{2},\ldots,\nu_{l}}/n_1 n_2 \cdots n_l = \sum_{i=1}^{l} \oplus \sum_{\nu=1}^{n_i} \oplus x_{i_{\nu}}/n_i.
\]

On the other hand

\[
(23) \rho(y_{\nu_{1},\nu_{2},\ldots,\nu_{l}}/\delta_0) = \sum_{i=1}^{l} \rho(x_{i_{\nu_{i}}}/\delta_0)
\]

\[= \sum_{i=1}^{l} \rho(x_i/\delta_0) = \rho(x/\delta_0) \leq \delta_0,
\]

therefore (20) and (22) imply

\[
(24) \sum_{i=1}^{l} n_i \rho(x_i/\varepsilon_0 n_i) = \sum_{i=1}^{l} \sum_{\nu=1}^{n_i} \rho(x_{i_{\nu}}/\varepsilon_0 n_i)
\]

\[\leq \rho\left(\sum_{1 \leq \nu_1 \leq n_1, 1 \leq \nu_2 \leq n_2, \ldots, 1 \leq \nu_l \leq n_l} y_{\nu_{1},\nu_{2},\ldots,\nu_{l}}/\varepsilon_0 n_1 n_2 \cdots n_l \right) \leq \varepsilon_0.
\]
Next, we put
\begin{equation}
\tilde{\rho}(x) = \sup_{x=\sum_{i} \xi_{i}x_{i}} \sum_{0<\xi_{i}\leq 1} \rho(\xi_{i}x_{i}/\epsilon_{0})/\xi_{i} (x\in R).
\end{equation}

The functional \(\tilde{\rho}(x) (x\in R)\) has the following properties:

1) \(\rho(x/\epsilon_{0})\leq\tilde{\rho}(x)\) for all \(x\in R\),

2) \(\rho(x/\delta_{0})\leq\delta_{0}\) implies \(\tilde{\rho}(x)\leq 2\epsilon_{0}\),

3) \(|x|\leq|y|\) implies \(\tilde{\rho}(x)\leq\tilde{\rho}(y)\),

4) \(x\cap y=0\) implies \(\tilde{\rho}(x+y)=\tilde{\rho}(x)+\tilde{\rho}(y)\),

5) \(\tilde{\rho}(tx)/t (t>0)\) is a non-decreasing function of \(t>0\) for all \(x\in R\).

6) \([p_{\lambda}]\uparrow_{\lambda\in\Lambda} [x]\) implies \(\sup\tilde{\rho}(\lambda p_{\lambda} x)=\tilde{\rho}(x)\).

\((\tilde{\rho})-2)\) is a direct consequence of \((**)*\), and other properties are obvious from the definition of \(\tilde{\rho}\).

Now we can construct a convex modular \(m(x)\) on \(R\):
\begin{equation}
m(x) = \int_{0}^{1} \tilde{\rho}(tx)/t \, dt (x\in R).
\end{equation}

Evidently we see
\begin{equation}
\rho(x/2\epsilon_{0})\leq\tilde{\rho}(x/2)\leq m(x)\leq\tilde{\rho}(x) (x\in R).
\end{equation}

It is easy to check the convex modular condition: \((\rho)\) and \((C)\). \((C)\) follows from \((\tilde{\rho})-5)\), \((\rho)\)-1) and 6) are implied by \((26)\). \((\rho)\)-3), 4) and 5) are almost obvious. \((\rho)\)-2): It is sufficient to see \(m(\alpha x)<+\infty\) for some \(\alpha=\alpha(x)>0\). For \(x\) we can find \(\alpha>0\) such as \(\rho(\alpha x/\delta_{0})\leq\delta_{0}\), hence from \((\tilde{\rho})-2)\) and \((26)\) we have \(m(\alpha x)\leq\tilde{\rho}(\alpha x)\leq 2\epsilon_{0}<+\infty\).

Finally we remark that in an atomic modulared vector lattice \(R(\rho)\) it can be proved that \(\|x\|_{\rho}\) is normable if and only if there is a convex modular on \(R(\rho)\) (cf. \([8]\)). It will be studied in another paper.

References

Department of Mathematics,
Hokkaido University

(Received November 26, 1960)