<table>
<thead>
<tr>
<th>Title</th>
<th>ON F-NORMS OF QUASI-MODULAR SPACES</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author(s)</td>
<td>Koshi, Shôzô; Shimogaki, Tetsuya</td>
</tr>
<tr>
<td>Citation</td>
<td>Journal of the Faculty of Science Hokkaido University. Ser. 1 Mathematics, 15(3-4): 202-218</td>
</tr>
<tr>
<td>Issue Date</td>
<td>1961</td>
</tr>
<tr>
<td>Doc URL</td>
<td>http://hdl.handle.net/2115/56023</td>
</tr>
<tr>
<td>Type</td>
<td>bulletin (article)</td>
</tr>
<tr>
<td>File Information</td>
<td>JFSHIU_15_N3-4_202-218.pdf</td>
</tr>
</tbody>
</table>

Hokkaido University Collection of Scholarly and Academic Papers : HUSCAP
ON F-NORMS OF QUASI-MODULAR SPACES

By
Shôzô KOSHI and Tetsuya SHIMOGAKI

§1. Introduction. Let R be a universally continuous semi-ordered linear space (i.e. a conditionally complete vector lattice in Birkhoff's sense [1]) and ρ be a functional which satisfies the following four conditions:

(\rho.1) $0 \leq \rho(x) = \rho(-x) \leq +\infty$ for all $x \in R$;

(\rho.2) $\rho(x+y) = \rho(x) + \rho(y)$ for any $x, y \in R$ with $x \perp y$;

(\rho.3) If $\sum_{\lambda \in \Lambda} \rho(x_{\lambda}) < +\infty$ for a mutually orthogonal system $\{x_{\lambda}\}_{\lambda \in \Lambda}$, there exists $x_{0} \in R$ such that $x_{0} = \sum_{\lambda \in \Lambda} x$ and $\rho(x_{0}) = \sum_{\lambda \in \Lambda} \rho(x_{\lambda})$;

(\rho.4) $\limsup_{\xi \to 0} \rho(\xi x) < +\infty$ for all $x \in R$.

Then, ρ is called a quasi-modular and R is called a quasi-modular space.

In the previous paper [2], we have defined a quasi-modular space and proved that if R is a non-atomic quasi-modular space which is semi-regular, then we can define a modular m on R for which every universally continuous linear functional is continuous with respect to the norm defined by the modular m [2; Theorem 3.1].

Recently in [6] J. Musielak and W. Orlicz considered a modular ρ on a linear space L which satisfies the following conditions:

(A.1) $\rho(x) \geq 0$ and $\rho(x) = 0$ if and only if $x = 0$;

(A.2) $\rho(-x) = \rho(x)$;

(A.3) $\rho(\alpha x + \beta y) \leq \rho(x) + \rho(y)$ for every $\alpha, \beta \geq 0$ with $\alpha + \beta = 1$;

(A.4) $\alpha_{n} \to 0$ implies $\rho(\alpha_{n} x) \to 0$ for every $x \in R$;

(A.5) for any $x \in L$ there exists $\alpha > 0$ such that $\rho(\alpha x) < +\infty$.

They showed that L is a quasi-normed space with a quasi-norm $||\cdot||_{0}$ defined by the formula;

\begin{enumerate}
\item $x \perp y$ means $|x| \cap |y| = 0$.
\item A system of elements $\{x_{\lambda}\}_{\lambda \in \Lambda}$ is called mutually orthogonal, if $x_{\lambda} \perp x_{\gamma}$ for $\lambda \neq \gamma$.
\item For the definition of a modular, see [3].
\item A linear functional f is called universally continuous, if $\inf_{\lambda \in \Lambda} f(a_{\lambda}) = 0$ for any $a_{\lambda} \downarrow 0$.
\item R is called semi-regular, if for any $x \neq 0$, $x \in R$, there exists a universally continuous linear functional f such that $f(x) \neq 0$.
\item This modular ρ is a generalization of a modular m in the sense of Nakano [3 and 4]. In the latter, there is assumed that $m(\xi x)$ is a convex function of $\xi \geq 0$ for each $x \in R$.
\end{enumerate}

\[(1.1) \quad \|x\|_0 = \inf \left\{ \xi ; \rho \left(\frac{1}{\xi} x \right) \leq \xi \right\}^{6}\]

and \(\|x_n\|_0 \to 0\) is equivalent to \(\rho(\alpha x_n) \to 0\) for all \(\alpha \geq 0\).

In the present paper, we shall deal with a general quasi-modular space \(R\) (i.e. without the assumption that \(R\) is non-atomic or semi-regular). The aim of this paper is to construct a quasi-norm on \(R\) and to investigate the condition under which \(R\) is an \(F\)-space with this quasi-norm by making use of the above formula (1.1). Since a quasi-modular \(\rho\) on \(R\) does not satisfy the conditions (A.1), (A.2), (A.4) and (A.5) in general, as is seen by comparing the conditions: \((\rho.1)\sim(\rho.4)\) with those of \(\rho\) [6], we can not apply the formula (1.1) directly to \(\rho\) to obtain a quasi-norm. We shall show, however, that we can construct always a quasi-modular \(\rho^*\) which satisfies (A.2)\~(A.5) on an arbitrary quasi-modular space \(R\) in §2 (Theorems 2.1 and 2.2). Since \(R\) may include a normal manifold \(R_o = \{x : x \in R, \rho^*(\xi x) = 0\} \forall \xi \geq 0\} \) and we can not define a quasi-norm on \(R_o\) in general, we have to exclude \(R_o\) in order to proceed with the argument further. We shall prove in §3 that a quasi-norm \(\|\cdot\|_o\) on \(R_o^+\) defined by \(\rho^*\) according to the formula (1.1) is semi-continuous, and in order that \(R_o^+\) is an \(F\)-space with \(\|\cdot\|_o\) (i.e. \(\|\cdot\|_o\) is complete), it is necessary and sufficient that \(\rho\) satisfies

\[(\rho.4') \quad \sup_{x \in R} \lim_{\alpha \to 0} \rho(\alpha x) < +\infty \quad .\]

(Theorem 3.2).

In §4, we shall show that we can define another quasi-norm \(\|\cdot\|_1\) on \(R_o^+\) which is equivalent to \(\|\cdot\|_o\) such that \(\|x\|_0 \leq \|x\|_1 \leq 2\|x\|_0\) holds for every \(x \in R_o^+\) (Formulas (4.1) and (4.3)). \(\|\cdot\|_1\) has a form similar to that of the first norm (due to I. Amemiya) of (convex) modular in the sense of Nakano [4 ; §83]. At last in §5 we shall add shortly the supplementary results concerning the relations between \(\|\cdot\|_o\)-convergence and order-convergence. The matter does not essentially differ from the case of the (convex) modular on semi-ordered linear spaces and the results stated in §5 are already known in those cases [8].

Throughout this paper \(R\) denotes a universally continuous semi-ordered linear space and \(\rho\) a quasi-modular defined on \(R\). For any \(p \in R\), \([p]\) is a projector: \([p]x = \bigcup_{n=1}^{\infty} (n|p| \cap x)\) for all \(x \geq 0\) and \(1-[p]\) is a projection operator onto the normal manifold \(N=\{p\}^1\), that is, \(x=[p]x+(1-[p])x\).

6) This quasi-norm was first considered by S. Mazur and W. Orlicz [5] and discussed by several authors [6 or 7].
§2. The conversion of a quasi-modular. From the definition of a quasi-modular in §1, the following lemma is immediately deduced.

Lemma 1. For any quasi-modular \(\rho \), we have

\[
\begin{align*}
(2.1) & \quad \rho(0) = 0; \\
(2.2) & \quad \rho([p]x) \leq \rho(x) \text{ for all } p, x \in R; \\
(2.3) & \quad \rho([p]x) = \sup_{\lambda \in \Lambda} \rho([p_{\lambda}]x) \text{ for any } [p_{\lambda}]_{\lambda \in \Lambda} \uparrow [p].
\end{align*}
\]

In the argument below, we have to use the additional property of \(\rho \):

\[
(\rho.5) \quad \rho(x) \leq \rho(y) \text{ if } |x| \leq |y|, \quad x, y \in R,
\]

which is not valid for an arbitrary \(\rho \) in general.

The next theorem, however, shows that we may suppose without loss of generality that a quasi-modular \(\rho \) satisfies \((\rho.5)\).

Theorem 2.1. Let \(R \) be a quasi-modular space with quasi-modular \(\rho \). Then there exists a quasi-modular \(\rho' \) for which \((\rho.5)\) is valid.

Proof. We put for every \(x \in R \),

\[
\rho'(x) = \sup_{0 \leq |y| \leq |x|} \rho(y).
\]

It is clear that \(\rho' \) satisfies the conditions \((\rho.1)\), \((\rho.2)\) and \((\rho.5)\).

Let \(\{x_{i}\}_{i \in A} \) be an orthogonal system such that \(\sum_{i \in A} \rho'(x_{i}) < +\infty \), then

\[
\sum_{i \in A} \rho(x_{i}) < +\infty,
\]

because

\[
\rho(x) \leq \rho'(x)
\]

for all \(x \in R \).

We have

\[
x_{0} = \sum_{i \in A} x_{i} \in R
\]

and

\[
\rho(x_{0}) = \sum_{i \in A} \rho(x_{i})
\]

in virtue of \((\rho.3)\).

For such \(x_{0} \),

\[
\rho'(x_{0}) = \sup_{0 \leq |y| \leq |x_{0}|} \rho(y) = \sup_{0 \leq |y| \leq |x_{0}|} \sum_{i \in A} \rho([x_{i}]y) = \sum_{i \in A} \sup_{0 \leq |y| \leq |x_{0}|} \rho([x_{i}]y) = \sum_{i \in A} \rho'(x_{i})
\]

holds, i.e. \(\rho' \) fulfils \((\rho.3)\).

If \(\rho' \) does not fulfil \((\rho.4)\), we have for some \(x_{0} \in R \),

\[
\rho'(\frac{1}{n} x_{0}) = +\infty
\]

for all \(n \geq 1 \).

By \((\rho.2)\) and \((\rho.4)\), \(x_{0} \) cannot be written as \(x_{0} = \sum_{\nu=1}^{s} \xi_{\nu} e_{\nu} \), where \(e_{\nu} \) is an atomic element for each \(\nu \) with \(1 \leq \nu \leq s \), namely, we can decompose \(x_{0} \) into
an infinite number of orthogonal elements. First we decompose into
\[x_0 = x_1 + x_1', \quad x_1 \perp x_1', \]
where \(\rho'(\frac{1}{\nu} x_1) = +\infty \) (\(\nu = 1, 2, \ldots \)) and \(\rho'(x_1') > 1 \). For the definition of \(\rho' \), there exists \(0 \leq y_1 \leq |x_1'| \) such that \(\rho(y_1) \geq 1 \). Next we can also decompose \(x_1 \) into
\[x_1 = x_2 + x_2', \quad x_2 \perp x_2', \]
where
\[\rho'(\frac{1}{\nu} x_2) = +\infty \) (\(\nu = 1, 2, \ldots \))
and
\[\rho'(\frac{1}{2} x_2') > 2. \]

There exists also \(0 \leq y_2 \leq |x_2'| \) such that \(\rho(\frac{1}{2} y_2) \geq 2. \) In the same way, we can find by induction an orthogonal sequence \(\{y_\nu\}_{\nu=1,2}, \ldots \) such that
\[\rho(\frac{1}{\nu} y_\nu) \geq \nu \]
and
\[0 \leq |y_\nu| \leq |x| \]
for all \(\nu \geq 1. \)

Since \(\{y_\nu\}_{\nu=1,2}, \ldots \) is order-bounded, we have in virtue of (2.3)
\[y_0 = \sum_{\nu=1}^\infty y_\nu \in \mathbb{R} \]
and
\[\rho(\frac{1}{\nu} y_0) \geq \rho(\frac{1}{\nu} y_\nu) \geq \nu, \]
which contradicts (\(\rho.4 \)). Therefore \(\rho' \) has to satisfy (\(\rho.4 \)). Q.E.D.

Hence, in the sequel, we denote by \(\rho' \) a quasi-modular defined by the formula (2.4).

If \(\rho \) satisfies (\(\rho.5 \)), \(\rho \) does also (A.3) in §1:
\[\rho(\alpha x + \beta y) \leq \rho(x) + \rho(y) \]
for \(\alpha, \beta \geq 0 \) with \(\alpha + \beta = 1. \)

Because, putting \(\lceil p \rceil = \lceil (|x| - |y|)^+ \rceil \), we obtain
\[\rho(\alpha x + \beta y) \leq \rho(\alpha |x| + \beta |y|) \leq \rho(\alpha [p] |x| + \alpha (1 - [p]) |y| + \beta [p] |x| + (1 - [p]) \beta |y|) \]
\[= \rho([p] |x| + (1 - [p]) |y|) = \rho([p] x) + \rho((1 - [p]) y) \leq \rho(x) + \rho(y). \]

Remark 1. As is shown above, the existence of \(\rho' \) as a quasi-modular depends essentially on the condition \((\rho.4)\). Thus, in the above theorems, we cannot replace \((\rho.4)\) by the weaker condition:

\[(\rho.4'') \text{ for any } x \in R, \text{ there exists } \alpha \geq 0 \text{ such that } \rho(\alpha x) < +\infty.\]

In fact, the next example shows that there exists a functional \(\rho_0 \) on a universally continuous semi-ordered linear space satisfying \((\rho.1)\), \((\rho.2)\), \((\rho.3)\) and \((\rho.4'')\), but does not \((\rho.4)\). For this \(\rho_0 \), we obtain
\[\rho_0(x) = \sup_{|y| \leq |x|} \rho_0(y) = +\infty \]
for all \(x \neq 0 \).

Example. \(L_1[0,1] \) is the set of measurable functions \(x(t) \) which are defined in \([0,1]\) with
\[\int_0^1 |x(t)| \, dt < +\infty. \]

Putting
\[\rho_0(x) = \rho_0(x(t)) = \int_0^1 |x(t)| \, dt + \sum_{i=1}^{\infty} i \text{ mes } \left\{ t : x(t) = \frac{1}{i} \right\}, \]
we have an example satisfying the above conditions.

In order to define the quasi-norm, we need one more additional condition: \((\text{A.4})\), namely,

\[\lim_{\xi \to 0} \rho(\xi x) = 0 \quad \text{for all } x \in R. \]

\((\rho.6)\)

A quasi-modular space becomes, as is shown below, always a quasi-normed space excluding the trivial part, but not an F-space in general. This fact is based upon the following Theorems 2.2 and 2.3.

Theorem 2.2. Let \(\rho \) be a quasi-modular on \(R \). We can find a functional \(\rho^* \) which satisfies \((\rho.1) \sim (\rho.6)\) except \((\rho.3)\).

Proof. In virtue of Theorem 2.1, there exists a quasi-modular \(\rho' \) which satisfies \((\rho.5)\). Now we put

\[d(x) = \lim_{\xi \to 0} \rho'(\xi x). \]

It is clear that \(0 \leq d(x) = d(|x|) < +\infty \) for all \(x \in R \) and
On F-Norms of Quasi-Modular Spaces

\[d(x+y) = d(x) + d(y) \quad \text{if } x \perp y. \]

Hence, putting
\[\rho^*(x) = \rho'(x) - d(x) \quad (x \in R). \]
we can see easily that $(\rho.1)$, $(\rho.2)$, $(\rho.4)$ and $(\rho.6)$ hold true for ρ^*, since
\[d(x) \leq \rho'(x) \]
and
\[d(\alpha x) = d(x) \]
for all $x \in R$ and $\alpha > 0$.

We need to prove that $(\rho.5)$ is true for ρ^*. First we have to note
\[\inf_{\lambda \in A} d([p_\lambda]x) = 0 \]
for any $[p_\lambda] \downarrow_{\lambda \in A} 0$. In fact, if we suppose the contrary, we have
\[\inf_{\lambda \in A} d([p_\lambda]x_0) \geq \alpha > 0 \]
for some $[p_\lambda] \downarrow_{\lambda \in A} 0$ and $x_0 \in R$.

Hence,
\[\rho'(\frac{1}{\nu}[p_\lambda]x_0) \geq d([p_\lambda]x_0) \geq \alpha \]
for all $\nu \geq 1$ and $\lambda \in A$. Thus we can find a subsequence $\{\lambda_n\}_{n \geq 1}$ of $\{\lambda\}_{\lambda \in A}$ such that
\[[p_{\lambda_n}] \geq [p_{\lambda_{n+1}}] \]
and
\[\rho'(\frac{1}{n}([p_{\lambda_n}] - [p_{\lambda_{n+1}}])x_0) \geq \frac{\alpha}{2} \]
for all $n \geq 1$ in virtue of $(\rho.2)$ and (2.3). This implies
\[\rho'(\frac{1}{n}x_0) \geq \sum_{m \geq n} \rho'(\frac{1}{m}([p_{\lambda_m}] - [p_{\lambda_{m+1}}])x_0) = +\infty, \]
which is inconsistent with $(\rho.4)$. Secondly we shall prove
\[(2.8) \quad d(x) = d(y), \quad \text{if } [x] = [y]. \]

We put $[p_n] = [(|x| - n|y|)^+]$ for $x, y \in R$ with $[x] = [y]$ and $n \geq 1$. Then, $[p_n] \downarrow_{n=1}^{\infty} 0$ and $\inf_{n=1,2,...} d([p_n]x) = 0$ by (2.7). Since $(1 - [p_n])n | y | \geq (1 - [p_n]) | x |$
and
\[d(\alpha x) = d(x) \]
for $\alpha > 0$ and $x \in R$, we obtain
\[d(x) = d([p_n]x) + d((1-[p_n])x) \leq d([p_n]x) + d(n(1-[p_n])y) \leq d([p_n]x) + d(y). \]

As \(n \) is arbitrary, this implies
\[d(x) \leq \inf_{n=1, 2, \ldots} d([p_n]x) + d(y), \]
and also \(d(x) \leq d(y) \). Therefore we conclude that (2.8) holds.

If \(|x| \geq |y|\), then
\[\rho^*(x) = \rho^*([y]x) + \rho^*([x] - [y]x) \]
\[= \rho'(y) - d(y) + \rho^*([x] - [y]x) \geq \rho^*(y). \]
Thus \(\rho^* \) satisfies (\(\rho.5 \)).

Theorem 2.3. \(\rho^* \) (which is constructed from \(\rho \) according to the formulas (2.4), (2.5) and (2.6)) satisfies (\(\rho.3 \)) (that is, \(\rho^* \) is a quasi-modular), if and only if \(\rho \) satisfies
\[(\rho.4') \sup_{x \in R} \{ \lim_{\xi \to 0} \rho^*(\xi x) \} = K < +\infty. \]

Proof. Let \(\rho \) satisfy (\(\rho.4 \)). We need to prove
\[(2.9) \sup_{x \in R} d(x) = \sup_{x \in R} \{ \lim_{\xi \to 0} \rho'(\xi x) \} = K' < +\infty, \]
where
\[\rho'(x) = \sup_{0 \leq |y| \leq |x|} \rho(y). \]
Since \(\rho' \) is also a quasi-modular, Lemma 2 in [2] or [8] can be applicable, if we put \(n_0(x) = \rho(x) \) and \(n_\nu(x) = \rho'\left(\frac{1}{\nu}x\right) \) for \(\nu \geq 1 \) and \(x \in R \). Hence we can find positive numbers \(\epsilon, \gamma \), a natural number \(\nu_0 \) and a finite dimensional normal manifold \(N_0 \) such that \(x \in N_0^+ \) with
\[\rho(x) \leq \epsilon \text{ implies } \rho'(\frac{1}{\nu_0}x) \leq \gamma. \]

In \(N_0 \), we have obviously
\[\sup_{x \in N_0} \{ \lim_{\xi \to 0} \rho'(\xi x) \} = \gamma_0 < +\infty. \]
If \(\epsilon \leq 2K \), for any \(x_0 \in N_0^+ \), we can find \(\alpha_0 > 0 \) such that \(\rho(\alpha x_0) \leq 2K \) for all \(0 \leq \alpha \leq \alpha_0 \) by (\(\rho.4' \)), and hence there exists always an orthogonal decomposition such that
On F-Norms of Quasi-Modular Spaces

\[\alpha_0 x_0 = x_1 + \cdots + x_n + y_1 + \cdots + y_m + z \]

where \(\frac{\epsilon}{2} < \rho(x_i) \leq \epsilon \) for every \(i = 1, 2, \cdots, n \), \(y_j \) is an atomic element with \(\rho(y_j) > \epsilon \) for every \(j = 1, 2, \cdots, m \) and \(\rho(z) \leq \frac{\epsilon}{2} \). From above, we get \(n \leq \frac{4K}{\epsilon} \) and \(m \leq \frac{2K}{\epsilon} \). This yields

\[
\rho'(\frac{1}{\nu_0} \alpha_0 x_0) \leq \sum_{i=1}^{n} \rho'(\frac{1}{\nu_0} x_i) + \sum_{j=1}^{m} \rho'(y_j) + \rho' \frac{z}{\nu_0}
\]
\[
\leq n\gamma + \sum_{j=1}^{m} \rho'(y_j) + \rho' \frac{z}{\nu_0}
\]
\[
\leq \frac{4K}{\epsilon} \gamma + \frac{2K}{\epsilon} \left\{ \sup_{0 \leq a \leq a_0} \rho(\alpha x) \right\} + \gamma
\]

Hence, we obtain

\[
\lim_{\xi \to 0} \rho'(\xi x_0) \leq \rho'(\frac{\alpha_0}{\nu_0} x_0) \leq \left(\frac{4K + \epsilon}{\epsilon} \right) \gamma + \left(\frac{4K^2}{\epsilon} \right)
\]

in case of \(\epsilon \leq 2K \). If \(2K \leq \epsilon \), we have immediately for \(x \in N_0^\perp \)

\[
\lim_{\xi \to 0} \rho'(\xi x) \leq \gamma.
\]

Therefore, we obtain

\[
\sup \{ \lim_{\xi \to 0} \rho'(\xi x) \} \leq \gamma'
\]

where

\[
\gamma' = \frac{4K + \epsilon}{\epsilon} + \frac{4K^2}{\epsilon} + \gamma_0.
\]

Let \(\{ x_i \}_{i \in A} \) be an orthogonal system with \(\sum_{i \in A} \rho^*(x_i) < +\infty \). Then for arbitrary \(\lambda_1, \cdots, \lambda_k \in A \), we have

\[
\sum_{\nu=1}^{k} d(x_{\lambda_{\nu}}) = d(\sum_{\nu=1}^{k} x_{\lambda_{\nu}}) = \lim_{\xi \to 0} \rho'(\xi \sum_{\nu=1}^{k} x_{\lambda_{\nu}}) \leq \gamma',
\]

which implies \(\sum_{i \in A} d(x_i) \leq \gamma' \). It follows that

\[
\sum_{i \in A} \rho'(x_i) = \sum_{i \in A} \rho^*(x_i) + \sum_{i \in A} d(x_i) < +\infty,
\]

which implies \(x_0 = \sum_{i \in A} x_i \in R \) and \(\sum_{i \in A} \rho^*(x_i) = \rho^*(x_0) \) by (\(\rho.4 \)) and (2.7). Therefore \(\rho^* \) satisfies (\(\rho.3 \)).

On the other hand, suppose that \(\rho^* \) satisfies (\(\rho.3 \)) and \(\sup_{x \in R} d(x) = +\infty \). Then we can find an orthogonal sequence \(\{ x_i \}_{i \geq 1} \) such that

\[
\sum_{i=1}^{n} d(x_i) = d(\sum_{i=1}^{n} x_i) \geq \mu
\]
for all $\mu \geq 1$ in virtue of (2.8) and the orthogonal additivity of d. Since
\[
\lim_{t \to 0} \rho^* (\xi x) = 0,
\]
there exists $\{\alpha_\nu\}_{\nu \geq 1}$ with $0 < \alpha_\nu (\nu \geq 1)$ and
\[
\sum_{\nu = 1}^{\infty} \rho^* (\alpha_\nu x_\nu) < +\infty.
\]
It follows that $x_0 = \sum_{\nu = 1}^{\infty} \alpha_\nu x_\nu \in R$ and $d(x_0) = \sum_{\nu = 1}^{\infty} d(\alpha_\nu x_\nu)$ from $(\rho.3)$. For such
x_0, we have for every $\xi \geq 0$,
\[
\rho^* (\xi x_0) = \sum_{\nu = 1}^{\infty} \rho^* (\xi \alpha_\nu x_\nu) \geq \sum_{\nu = 1}^{\infty} d(\alpha_\nu x_\nu) = +\infty,
\]
which is inconsistent with $(\rho.4)$. Therefore we have
\[
\sup_{x \in R} (\lim_{\epsilon \to 0} \rho(\xi x)) \leq \sup_{x \in R} d(x) < +\infty.
\]
Q.E.D.

§3. Quasi-norms. We denote by R_0 the set:
\[
R_0 = \{x : x \in R, \rho^* (nx) = 0 \text{ for all } n \geq 1\},
\]
where ρ^* is defined by the formula (2.6). Evidently R_0 is a semi-normal
manifold7 of R. We shall prove that R_0 is a normal manifold of R. In
fact, let $x = \bigcup_{\lambda \in \Lambda} x_{\lambda}$ with $R_0 \ni x_{\lambda} \geq 0$ for all $\lambda \in \Lambda$.
Putting $[p_{n,\lambda}] = [(2nx_{\lambda} - nx)^+]$, we have
\[
[p_{n,\lambda}] \uparrow_{\lambda \in \Lambda} [x]
\]
and $2n[p_{n,\lambda}]x_{\lambda} \geq [p_{n,\lambda}]nx$, which implies $\rho^* (n[p_{n,\lambda}]x) = 0$ and
\[
\sup_{\lambda \in \Lambda} \rho^* (n[p_{n,\lambda}]x) = \rho^* (nx) = 0.
\]
Therefore, $x \in R_0$, that is, R_0 is a normal manifold of R.

Hence we obtain $x \in R_0$, that is, R_0 is a normal manifold of R.

Therefore, R is orthogonally decomposed into
\[
R = R_0 \oplus R_0^\perp.
\]

In virtue of the definition of ρ^*, we infer that for any $p \in R_0$, $[p]R_0$
is universally complete, i.e. for any orthogonal system $\{x_\lambda\}_{\lambda \in \Lambda}$ with $x_\lambda \in [p]R_0$,
there exists $x_0 = \sum_{\lambda \in \Lambda} x_\lambda \in [p]R$. Hence we can also verify without difficulty
that R_0 has no universally continuous linear functional except 0, if R_0
is non-atomic. When R_0 is discrete, it is isomorphic to $S(\Lambda)^0$-space.
With respect to such a universally complete space R_0, we can not always
construct a linear metric topology on R_0, even if R_0 is discrete.

In the following, therefore, we must exclude R_0 from our consideration.
Now we can state the theorems which we aim at.

7 A linear manifold S is said to be semi-normal, if $a \in S$, $|b| \leq |a|$, $b \in R$ implies $b \in S$. Since R is universally continuous, a semi-normal manifold S is normal if and only if $\bigcup_{\lambda \in \Lambda} x_\lambda \in S(\lambda \in \Lambda)$ implies $\bigcup_{\lambda \in \Lambda} x_\lambda \in S$.

8 This means that $x \in R$ is written by $x = y + z$, $y \in R_0$ and $z \in R_0^\perp$.

9 $S(\Lambda)$ is the set of all real functions defined on Λ.

7) A linear manifold S is said to be semi-normal, if $a \in S$, $|b| \leq |a|$, $b \in R$ implies $b \in S$. Since R is universally continuous, a semi-normal manifold S is normal if and only if $\bigcup_{\lambda \in \Lambda} x_\lambda \in S(\lambda \in \Lambda)$ implies $\bigcup_{\lambda \in \Lambda} x_\lambda \in S$.

8) This means that $x \in R$ is written by $x = y + z$, $y \in R_0$ and $z \in R_0^\perp$.

9) $S(\Lambda)$ is the set of all real functions defined on Λ.

7) A linear manifold S is said to be semi-normal, if $a \in S$, $|b| \leq |a|$, $b \in R$ implies $b \in S$. Since R is universally continuous, a semi-normal manifold S is normal if and only if $\bigcup_{\lambda \in \Lambda} x_\lambda \in S(\lambda \in \Lambda)$ implies $\bigcup_{\lambda \in \Lambda} x_\lambda \in S$.

8) This means that $x \in R$ is written by $x = y + z$, $y \in R_0$ and $z \in R_0^\perp$.

9) $S(\Lambda)$ is the set of all real functions defined on Λ.

7) A linear manifold S is said to be semi-normal, if $a \in S$, $|b| \leq |a|$, $b \in R$ implies $b \in S$. Since R is universally continuous, a semi-normal manifold S is normal if and only if $\bigcup_{\lambda \in \Lambda} x_\lambda \in S(\lambda \in \Lambda)$ implies $\bigcup_{\lambda \in \Lambda} x_\lambda \in S$.

8) This means that $x \in R$ is written by $x = y + z$, $y \in R_0$ and $z \in R_0^\perp$.

9) $S(\Lambda)$ is the set of all real functions defined on Λ.

Theorem 3.1. Let \(R \) be a quasi-modular space. Then \(R_{0}^{\perp} \) becomes a quasi-normed space with a quasi-norm \(\| \cdot \|_{0} \) which is semi-continuous, i.e.
\[
\sup_{i \in \Lambda} \| x_{i} \|_{0} = \| x \|_{0} \quad \text{for any } 0 \leq x_{i} \uparrow_{i \in \Lambda} x.
\]

Proof. In virtue of Theorems 2.1 and 2.2, \(\rho^* \) satisfies \((\rho.1)\sim(\rho.6)\) except \((\rho.3)\). Now we put
\[
(3.1) \quad \| x \|_{0} = \inf \left\{ \xi ; \rho^* \left(\frac{1}{\xi} x \right) \leq \xi \right\}.
\]

Then,

i) \(0 \leq \| x \|_{0} = \| -x \|_{0} < \infty \) and \(\| x \|_{0} = 0 \) is equivalent to \(x = 0 \); follows from \((\rho.1), (\rho.6), (2.1)\) and the definition of \(R_{0}^{\perp} \).

ii) \(\| x + y \|_{0} \leq \| x \|_{0} + \| y \|_{0} \) for any \(x, y \in R \); follows also from \((A.3)\) which is deduced from \((\rho.4)\).

iii) \(\lim_{\alpha_{n} \uparrow 0} \| \alpha_{n} x \|_{0} = 0 \) and \(\lim_{\| x_{n} \|_{0} \uparrow 0} \| \alpha x_{n} \|_{0} = 0 \); is a direct consequence of \((\rho.5)\). At last we shall prove that \(\| \cdot \|_{0} \) is semi-continuous. From ii) and iii), it follows that \(\lim_{\alpha \uparrow a_{0}} \| \alpha x \|_{0} = \| \alpha_{0} x \|_{0} \) for all \(x \in R_{0}^{\perp} \) and \(\alpha_{0} \geq 0 \). If \(x \in R_{0}^{\perp} \) and \([p_{\lambda}] \uparrow_{\lambda \in \Lambda} [p]\), for any positive number \(\xi \) with \(\| [p] x \|_{0} > \xi \) we have \(\rho^* \left(\frac{1}{\xi} [p] x \right) > \xi \), which implies \(\sup_{\lambda \in \Lambda} \rho^* \left(\frac{1}{\xi} [p_{\lambda}] x \right) > \xi \) and hence \(\sup_{\lambda \in \Lambda} \| [p_{\lambda}] x \|_{0} \geq \xi \). Thus we obtain
\[
\sup_{\lambda \in \Lambda} \| [p_{\lambda}] x \|_{0} = \| [p] x \|_{0}, \quad \text{if } [p_{\lambda}] \uparrow_{\lambda \in \Lambda} [p].
\]

Let \(0 \leq x_{i} \uparrow_{i \in \Lambda} x \). Putting
\[
[p_{n,i}] = \left[(x_{i} - (1 - \frac{1}{n}) x) \right]
\]
we have
\[
[p_{n,i}] \uparrow_{i \in \Lambda} [x] \quad \text{and} \quad [p_{n,i}] x_{i} \geq [p_{n,i}] \left(1 - \frac{1}{n} \right) x \quad (n \geq 1).
\]

As is shown above, since
\[
\sup_{i \in \Lambda} \| [p_{n,i}] x_{i} \|_{0} \geq \sup_{i \in \Lambda} \| [p_{n,i}] \left(1 - \frac{1}{n} \right) x \|_{0} = \| (1 - \frac{1}{n}) x \|_{0},
\]
we have
\[
\sup_{i \in \Lambda} \| x_{i} \|_{0} \geq \| (1 - \frac{1}{n}) x \|_{0}
\]
and also \(\sup_{i \in \Lambda} \| x_{i} \|_{0} \geq \| x \|_{0} \). As the converse inequality is obvious by iv), \(\| \cdot \|_{0} \) is semi-continuous. Q.E.D.

Remark 2. By the definition of \((3.1)\), we can see easily that \(\lim_{n \to \infty} \| x_{n} \|_{0} = 0 \) if and only if \(\lim_{\xi \to \infty} \rho(\xi x_{n}) = 0 \) for all \(\xi \geq 0 \).
In order to prove the completeness of quasi-norm \(|| \cdot ||_0 \), the next Lemma is necessary.

Lemma 2. Let \(p_{n, \nu}, x_{\nu} \geq 0 \) and \(a \geq 0 \) \((n, \nu = 1, 2, \cdots)\) be the elements of \(R_0^\perp \) such that

\[
(p_{n, \nu})^{\uparrow_{\nu=1}^{\infty}} [p_n] a = [p_0] a \neq 0; \tag{3.2}
\]

\[
[p_{n, \nu}] x_{\nu} \geq n [p_{n, \nu}] a \text{ for all } n, \nu \geq 1. \tag{3.3}
\]

Then \(\{x_{\nu}\}_{\nu \geq 1} \) is not a Cauchy sequence of \(R_0^\perp \) with respect to \(|| \cdot ||_0 \).

Proof. We shall show that there exist a sequence of projectors \([q_m]^{\downarrow_{m=1}^{\infty}} (m \geq 1) \) and sequences of natural numbers \(\nu_m, n_m \) such that

\[
||[q_m] a||_0 > \frac{\delta}{2} \tag{3.4}
\]

and

\[
n_m [q_m] a \geq n_{m+1} [q_m] a \tag{3.5}
\]

where \(\delta = ||[p_0] a||_0 \).

In fact, we put \(n_1 = 1. \) Since \([p_{1, \nu_1}] [p_0]^{\uparrow_{\nu=1}^{\infty}}[p_0] \) and \(|| \cdot ||_0 \) is semi-continuous, we can find a natural number \(\nu_1 \) such that

\[
||[p_{1, \nu_1}] [p_0] a||_0 > \frac{\delta}{2}. \tag{3.4}
\]

We put \([q_1] = [p_{1, \nu_1}] [p_0]. \) Now, let us assume that \([q_m], \nu_m, n_m (m = 1, 2, \cdots, k) \) have been taken such that (3.4) and (3.5) are satisfied.

Since \(([n a - x_{\nu_k}]^+)^{\uparrow_{n=1}^{\infty}}[a] \) and \(||[q_k] a||_0 > \frac{\delta}{2} \), there exists \(n_{k+1} \) with

\[
||([n_{k+1} a - x_{\nu_k}]^+) [q_k] a ||_0 > \frac{\delta}{2}. \tag{3.6}
\]

For such \(n_{k+1} \), there exists also a natural number \(\nu_{k+1} \) such that

\[
||[p_{n_{k+1}, \nu_{k+1}}] ([n_{k+1} a - x_{\nu_k}]^+) [q_k] a ||_0 > \frac{\delta}{2}. \tag{3.7}
\]

in virtue of (3.2) and semi-continuity of \(|| \cdot ||_0 \). Hence we can put

\[
[q_{k+1}] = [p_{n_{k+1}, \nu_{k+1}}] ([n_{k+1} a - x_{\nu_k}]^+) [q_k],
\]

because

\[
[q_{k+1}] \leq [q_k], \quad ||[q_{k+1}] a || > \frac{\delta}{2}, \quad [q_{k+1}] x_{\nu_{k+1}} \geq n_{k+1} [q_{k+1}] a
\]

by (3.3) and \([q_{k+1}] n_{k+1} a \geq [q_{k+1}] x_{\nu_k} \) by (3.5).

For the sequence thus obtained, we have for every \(k \geq 3 \)
On F-Norms of Quasi-Modular Spaces

\[
\|x_{\nu_{k+1}} - x_{\nu_{k-1}}\|_0 \geq \|[q_{k+1}](x_{\nu_{k+1}} - x_{\nu_{k-1}})\|_0 \\
\geq \|n_{k+1}[q_{k+1}]a - n_{k}[q_{k+1}]a\|_0 \geq \|[q_{k+1}]a_0\|_0 \geq \frac{\delta}{2},
\]

since \([q_{k+1}] \leq [q_k] \leq [(n_k a - x_{\nu-1})^+]\) implies \([q_{k+1}]n_k a \geq [q_{k+1}]x_{\nu_{k-1}}\) by (3.4).

It follows from the above that \(\{x_{\nu}\}_{\nu \geq 1}\) is not a Cauchy sequence.

Theorem 3.2. Let \(R\) be a quasi-modular space with quasi-modular \(\rho\). Then \(R^+_0\) is an F-space with \(\|\cdot\|_0\) if and only if \(\rho\) satisfies (\(\rho.4'\)).

Proof. If \(\rho\) satisfies (\(\rho.4'\)), \(\rho^*\) is a quasi-modular which fulfills also (\(\rho.5\)) and (\(\rho.6\)) in virtue of Theorem 2.3. Since \(x\|_0 = \inf \{\xi ; \rho^*(\frac{x}{\xi}) \leq \xi\}\) is a quasi-norm on \(R^+_0\), we need only to verify completeness of \(\|\cdot\|_0\). At first let \(\{x_{\nu}\}_{\nu \geq 1} \subset R^+_0\) be a Cauchy sequence with \(0 \leq x_{\nu} \uparrow_{\nu=1,2,...}\). Since \(\rho^*\) satisfies (\(\rho.3\)), there exists \(0 \leq x_0 \in R^+_0\) such that \(x_0 = \bigcup_{\nu=1}^{\infty} x_{\nu}\), as is shown in the proof of Theorem 2.3.

Putting \([p_{n,v}] = [(x_{\nu} - nx_0)^+]\) and \(\bigcup_{\nu=1}^{\infty} [p_{n,v}] = [p_n]\), we obtain

\[
[p_{n,v}] x_{\nu} \geq n[p_{n,v}] x_0
\]

for all \(n, \nu \geq 1\) and \([p_n]\downarrow_{n=1}^{\infty} 0\). Since \(\{x_{\nu}\}_{\nu \geq 1}\) is a Cauchy sequence, we have in virtue of Lemma 2, \(\bigcap_{n=1}^{\infty} [p_n] = 0\), that is, \(\bigcup_{n=1}^{\infty} ([x_0] - [p_n]) = [x_0]\). And

\[
(1 - [p_{n,v}]) \geq (1 - [p_n])
\]

\((n, \nu \geq 1)\)

implies

\[
n(1 - [p_n]) x_0 \geq (1 - [p_n]) x_{\nu} \geq 0.
\]

Hence we have

\[
y_n = \bigcup_{\nu=1}^{\infty} (1 - [p_n]) x_{\nu} \in R^+_0,
\]

because \(R^+_0\) is universally continuous. As \(\{x_{\nu}\}_{\nu \geq 1}\) is a Cauchy sequence, we obtain from the triangle inequality of \(\|\cdot\|_0\)

\[
\gamma = \sup_{\nu \geq 1} \|x_{\nu}\|_0 < +\infty,
\]

which implies

\[
\|y_n\|_0 = \sup_{\nu \geq 1} \|(1 - [p_n]) x_{\nu}\|_0 \leq \gamma
\]

for every \(n \geq 1\) by semi-continuity of \(\|\cdot\|_0\). We put \(z_1 = y_1\) and \(z_n = y_n - y_{n-1}\) \((n \geq 2)\). It follows from the definition of \(y_n\) that \(\{z_{\nu}\}_{\nu \geq 1}\) is an orthogonal sequence with \(\|\sum_{\nu=1}^{n} z_{\nu}\|_0 = \|y_n\|_0 \leq \gamma\). This implies
\[
\sum_{\nu=1}^{n} \rho^* \left(\frac{z_{\nu}}{1+\gamma} \right) = \rho^* \left(\frac{y_n}{1+\gamma} \right) \leq \gamma
\]
for all \(n \geq 1 \) by the formula (3.1). Then (\(\rho.3 \)) assures the existence of \(z = \sum_{\nu=1}^{\infty} z_{\nu} = \bigcup_{\nu=1}^{\infty} y_{\nu} \). This yields \(z = \bigcup_{\nu=1}^{\infty} x_{\nu} \). Truly, it follows from

\[
z = \bigcup_{\nu=1}^{n} y_{\nu} = \bigcup_{\nu=1}^{n} (1 - [p_n]) x_{\nu} = \bigcup_{\nu=1}^{n} [x_0] x_{\nu} = \bigcup_{\nu=1}^{n} x_{\nu}.
\]

By semi-continuity of \(|| \cdot ||_{0} \), we have

\[
|| z - x_{\nu} ||_{0} \leq \sup_{\mu \geq \nu} || x_{\mu} - x_{\nu} ||_{0}
\]
and furthermore \(\lim_{\nu \to \infty} || z - x_{\nu} ||_{0} = 0 \).

Secondly let \(\{ x_{\nu} \}_{\nu \geq 1} \) be an arbitrary Cauchy sequence of \(R_0^\perp \). Then we can find a subsequence \(\{ y_{\nu} \}_{\nu \geq 1} \) of \(\{ x_{\nu} \}_{\nu \geq 1} \) such that

\[
|| y_{\nu+1} - y_{\nu} ||_{0} \leq \frac{1}{2^{\nu}} \quad \text{for all } \nu \geq 1.
\]

This implies

\[
|| \sum_{\nu=m}^{n} y_{\nu+1} - y_{\nu} ||_{0} \leq \sum_{\nu=m}^{n} || y_{\nu+1} - y_{\nu} ||_{0} \leq \frac{1}{2^{n-m}} \quad \text{for all } n > m \geq 1.
\]

Putting \(z_n = \sum_{\nu=1}^{n} | y_{\nu+1} - y_{\nu} | \), we have a Cauchy sequence \(\{ z_n \}_{n \geq 1} \) with \(0 \leq z_n \leq \infty \).

Then by the fact proved just above,

\[
z_0 = \lim_{n \to \infty} z_n = \sum_{\nu=1}^{\infty} | y_{\nu+1} - y_{\nu} | \in R_0^\perp \quad \text{and} \quad \lim_{n \to \infty} || z_0 - z_n ||_{0} = 0.
\]

Since \(\sum_{\nu=1}^{\infty} | y_{\nu+1} - y_{\nu} | \) is convergent, \(y_1 + \sum_{\nu=1}^{\infty} (y_{\nu+1} - y_{\nu}) \) is also convergent and

\[
|| y_1 + \sum_{\nu=1}^{\infty} (y_{\nu+1} - y_{\nu}) - y_n ||_{0} = || \sum_{\nu=1}^{\infty} (y_{\nu+1} - y_{\nu}) ||_{0} \leq || z_0 - z_n ||_{0} \to 0.
\]

Since \(\{ y_{\nu} \}_{\nu \geq 1} \) is a subsequence of the Cauchy sequence \(\{ x_{\nu} \}_{\nu \geq 1} \), it follows that

\[
\lim_{\nu \to \infty} || y_1 + \sum_{\nu=1}^{\infty} (y_{\nu+1} - y_{\nu}) - x_{\nu} ||_{0} = 0.
\]

Therefore \(|| \cdot ||_{0} \) is complete in \(R_0^\perp \), that is, \(R_0^\perp \) is an F-space with \(|| \cdot ||_{0} \).

Conversely if \(R_0^\perp \) is an F-space, then for any orthogonal sequence \(\{ x_{\nu} \}_{\nu \geq 1} \in R_0^\perp \), we have \(\sum_{\nu=1}^{\infty} \alpha_{\nu} x_{\nu} \in R_0^\perp \) for some real numbers \(\alpha_{\nu} > 0 \) (for all \(\nu \geq 1 \)).

Hence we can see that \(\sup_{x \in K} d(x) < +\infty \) by the same way applied in Theorem 2.1. It follows that \(\rho \) must satisfy (\(\rho.4^* \)).

Q.E.D.

Since \(R_0 \) contains a normal manifold which is universally complete, if \(R_0^\perp = 0 \), we can conclude directly from Theorems 3.1 and 3.2.
Corollary. Let R be a quasi-modular space which includes no universally complete normal manifold. Then R becomes a quasi-normed space with a quasi-norm $\| \cdot \|$ defined by (3.1) and R becomes an F-space with $\| \cdot \|$ if and only if ρ fulfills ($\rho.A'$).

§ 4. Another Quasi-norm. Let L be a modular space in the sense of Musielak and Orlicz (§1). Here we put for $x \in L$

\[(4.1) \quad \| x \|_1 = \inf_{\xi > 0} \left\{ \frac{1}{\xi} + \rho(\xi x) \right\} \]

and show that $\| \cdot \|_1$ is also a quasi-norm on L and

\[(4.2) \quad \| x \|_0 \leq \| x \|_1 \leq 2 \| x \|_0 \]

hold, where $\| \cdot \|_0$ is a quasi-norm defined by the formula (1.1).

From (A.1), (A.2) and (A.5), it follows that $0 \leq \| x \|_1 = \| -x \|_1 < + \infty$ ($x \in L$) and that $\| x \|_1 = 0$ is equivalent to $x = 0$. Since $\alpha_n \downarrow_{n=1}^\infty 0$ implies $\lim_{n \to \infty} \rho(\alpha_n x) = 0$ for each $x \in L$ and $\lim_{n \to \infty} \| x_n \|_1 = 0$ implies $\lim_{n \to \infty} \rho(\xi x_n) = 0$ for all $\xi \geq 0$, we obtain that $\lim_{n \to \infty} \| \alpha_n x \|_1 = 0$ for all $\alpha_n \downarrow_{n=1}^\infty 0$ and that $\lim_{n \to \infty} \| x_n \|_1 = 0$ implies $\lim_{n \to \infty} \| \alpha x_n \|_1 = 0$ for all $\alpha > 0$. If $\| x \|_1 < \alpha$ and $\| y \|_1 < \beta$, there exist $\xi, \eta > 0$ such that

\[
\frac{1}{\xi} + \rho(\xi x) < \alpha \quad \text{and} \quad \frac{1}{\eta} + \rho(\eta y) < \beta.
\]

This yields

\[
\| x + y \| \leq \frac{\xi + \eta}{\xi \eta} + \rho\left(\frac{\xi \eta}{\xi + \eta} (x+y) \right) = \frac{1}{\xi} + \frac{1}{\eta} + \rho\left(\frac{\eta}{\xi + \eta} (\xi x) + \frac{\xi}{\xi + \eta} (\eta y) \right) \leq \frac{1}{\xi} + \rho(\xi x) + \frac{1}{\eta} + \rho(\eta y) < \alpha + \beta,
\]

in virtue of (A.3). Therefore $\| x + y \|_1 \leq \| x \|_1 + \| y \|_1$ holds for any $x, y \in L$ and $\| \cdot \|_1$ is a quasi-norm on L. If $\xi \rho(\xi x) \leq 1$ for some $\xi > 0$ and $x \in L$, we have $\rho(\xi x) \leq \frac{1}{\xi}$ and hence

\[
\frac{1}{\xi} \leq \frac{1}{\xi} + \rho(\xi x) \leq \frac{2}{\xi}.
\]

10) For the convex modular m, we can define two kinds of norms such as

\[
\| x \| = \inf_{\xi > 0} \frac{1 + m(\xi x)}{\xi} \quad \text{and} \quad \| x \| = \inf_{m(\xi x) \leq 1} \frac{1}{\xi} \cdot
\]

[3 or 4]. For the general modulars considered here, the formulas (3.1) and (4.1) are nothing but ones obtained by replacing $m(\xi x)$ by $\xi \rho(\xi x)$ in $\| \cdot \|$ and $\| \cdot \|$ respectively.
This yields (4.2), since we have \(\|x\|_0 \leq \frac{1}{\xi} \) and \(\rho(\gamma x) > \frac{1}{\eta} \) for every \(\eta \) with \(\|x\|_0 > \frac{1}{\eta} \). Therefore we can obtain from above

Theorem 4.1. If \(L \) is a modular space with a modular satisfying (A.1)\(\sim \) (A.5) in §1, then the formula (4.1) yields a quasi-norm \(\|\cdot\|_1 \) on \(L \) which is equivalent to \(\|\cdot\|_0 \) defined by Musielak and Orlicz in [6] as is shown in (4.2).

From the above theorem and the results in §2, we obtain by the same way as in §3

Theorem 4.2. If \(R \) is a quasi-modular space with a quasi-modular \(\rho \), then

\[
\|x\|_1 = \operatorname{inf}_{\xi > 0} \left\{ \frac{1}{\xi} + \rho^*(\xi x) \right\}
\quad (x \in R)
\]

is a semi-continuous quasi-norm on \(R_0^\perp \) and \(\|\cdot\|_1 \) is complete if and only if \(\rho \) satisfies (\(\rho.4' \)), where \(\rho^* \) and \(R_0 \) are the same as in §2 and §3. And further we have

\[
\|x\|_0 \leq \|x\|_1 \leq 2\|x\|_0 \quad \text{for all } x \in R_0^\perp.
\]

§5. A quasi-norm-convergence. Here we suppose that a quasi-modular \(\rho^* \) on \(R \) satisfies (\(\rho.1 \)\(\sim \) (\(\rho.6 \)) except (\(\rho.3 \)) and \(\rho^*(\xi x) \) is not identically zero as a function of \(\xi \geq 0 \) for each \(0 \leq x \in R \) (i.e. \(R_0 = \{0\} \)). A sequence of elements \(\{x_\nu\}_{\nu \geq 1} \) is called order-convergent to \(a \) and denoted by \(o-\lim_{\nu \to \infty} x_\nu = a \), if there exists a sequence of elements \(\{a_\nu\}_{\nu \geq 1} \) such that \(|x_\nu - a_\nu| \leq a_\nu \quad (\nu \geq 1) \) and \(a_\nu \downarrow 0 \). And a sequence of elements \(\{x_\nu\}_{\nu \geq 1} \) is called star-convergent to \(a \) and denoted by \(s-\lim_{\nu \to \infty} x_\nu = a \), if for any subsequence \(\{y_\nu\}_{\nu \geq 1} \) of \(\{x_\nu\}_{\nu \geq 1} \), there exists a subsequence \(\{z_\nu\}_{\nu \geq 1} \) of \(\{y_\nu\}_{\nu \geq 1} \) with \(o-\lim_{\nu \rightarrow \infty} z_\nu = a \).

A quasi-norm \(\|\cdot\| \) on \(R \) is termed to be continuous, if \(\inf_{\nu \geq 1} \|a_\nu\| = 0 \) for any \(a_\nu \downarrow 0 \). In the sequel, we write by \(\|\cdot\|_0 \) (or \(\|\cdot\|_1 \)) the quasi-norm defined on \(R \) by \(\rho^* \) in §3 (resp. in §4).

Now we prove

Theorem 5.1. In order that \(\|\cdot\|_0 \) (or \(\|\cdot\|_1 \)) is continuous, it is necessary and sufficient that the following condition is satisfied:

\[
(5.1) \quad \text{for any } x \in R \text{ there exists an orthogonal decomposition } x = y + z \text{ such that } \[z\]R \text{ is finite dimensional and } \rho(y) < +\infty.
\]

Proof. Necessity. If (5.1) is not true for some \(x \in R \), we can find a
sequence of projector \(\{ [p_n] \}_{n \geq 1} \) such that \(\rho([p_n]x) = +\infty \) and \([p_n] \downarrow_{n=1}^{\infty} 0 \). Hence by (3.1) it follows that \(\| [p_n]x \|_0 > 1 \) for all \(n \geq 1 \), which contradicts the continuity of \(\| \cdot \|_0 \).

Sufficiency. Let \(a_{\nu} \downarrow_{\nu=1}^{\infty} 0 \) and put \([p^\epsilon_n] = [(a_n - \epsilon a_1)^+] \) for any \(\epsilon > 0 \) and \(n \geq 1 \). It is easily seen that \([p^\epsilon_n] \downarrow_{n=1}^{\infty} 0 \) for any \(\epsilon > 0 \) and \(a_n = [a_1] a_n = [p^\epsilon_n] a_n + (1 - [p^\epsilon_n]) a_n \leq [p^\epsilon_n] a_1 + \epsilon a_1 \).

This implies \(\rho^*(\xi a_n) \leq \rho^*(\xi [p^\epsilon_n] a_1) + \rho^*(\xi \epsilon (1 - [p^\epsilon_n]) a_1) \) for all \(n \geq 1 \) and \(\xi \geq 0 \). In virtue of (5.1) and \([p^\epsilon_n] \downarrow_{n=1}^{\infty} 0 \), we can find \(n_0 \) (depending on \(\xi \) and \(\epsilon \)) such that \(\rho^*([p^\epsilon_n] a_1) < +\infty \), and hence \(\inf_{n \geq 1} \rho^*([p^\epsilon_n] a_1) = 0 \) by (2.3) in Lemma 1 and (\(\rho.2 \)). Thus we obtain

\[
\inf_{n \geq 1} \rho^*([p^\epsilon_n] a_1) \leq \rho^*(\xi a_1).
\]

Since \(\epsilon \) is arbitrary, \(\lim_{\nu \rightarrow \infty} \rho^*([p^\epsilon_n] a_1) = 0 \) follows. Hence we infer that \(\inf_{n \geq 1} 1a_n ||_0 = 0 \) and \(|| \cdot ||_0 \) is continuous in view of Remark 2 in \(\S 3 \). Q.E.D.

Corollary. \(|| \cdot ||_0 \) is continuous, if

\[
(5.2) \quad \rho^*(a_{\nu}) \rightarrow 0 \implies \rho^*(\alpha a_{\nu}) \rightarrow 0 \quad \text{for every } \alpha \geq 0.
\]

From the definition, it is clear that \(\text{s-lim } x = 0 \) implies \(\lim_{\nu \rightarrow \infty} || x_{\nu} || = 0 \), if \(|| \cdot ||_0 \) is continuous. Conversely we have, by making use of the well-known method (cf. Theorem 33.4 in [3])

Theorem 5.2. \(\lim_{\nu \rightarrow \infty} || x_{\nu} || = 0 \) (or \(\lim_{\nu \rightarrow \infty} || x_{\nu} ||_1 = 0 \)) implies \(\text{s-lim } x = 0 \), if \(|| \cdot ||_0 \) is complete (i.e. \(\rho^* \) satisfies (\(\rho.3 \))).

If we replace \(\lim_{\nu \rightarrow \infty} || x_{\nu} || = 0 \) by \(\lim_{\nu \rightarrow \infty} \rho(x_{\nu}) = 0 \), Theorem 5.2 may fail to be valid in general. By this, reason, we must consider the following condition:

\[
(5.3) \quad \rho^*(x) = 0 \implies x = 0.
\]

Truly we obtain

Theorem 5.3. If \(\rho^* \) satisfies (5.3) and \(|| \cdot ||_0 \) is complete, \(\rho(a_{\nu}) \rightarrow 0 \) implies \(\text{s-lim } a_{\nu} = 0 \).

Proof. We may suppose without loss of generality that \(\rho^* \) is semi-continuous, i.e. \(\rho^*(x) = \sup_{y \in A} \rho^*(x_i) \) for any \(0 \leq x \uparrow_{i \in A} x \). If

11) If \(\rho^* \) is not semi-continuous, putting \(\rho_*(x) = \inf_{y \uparrow_{i \in A} x} \{ \sup_{j \in A} \rho^*(y_j) \} \), we obtain a quasi-modular \(\rho_* \) which is semi-continuous and \(\rho^*(x) \rightarrow 0 \) is equivalent to \(\rho_*(x) \rightarrow 0 \).
$\rho(a_{\nu}) \leq \frac{1}{2^\nu}$ \quad ($\nu \geq 1$),
we can prove by the similar way as in the proof of Lemma 2 that there exists $\bigcup_{\nu=1}^{\infty} |a_{\nu}| \in R$ in virtue of $(\rho.3)$.

Now, since
$$\rho\left(\bigcup_{\nu=1}^{\infty} |a_{\nu}|\right) \leq \sum_{\nu=1}^{\infty} \rho(a_{\nu}) \leq \frac{1}{2^{\nu-1}}$$
holds for each $\nu \geq 1$, $\rho\left(\bigcap_{\nu=1}^{\infty} \left(\bigcup_{\nu=1}^{\infty} |a_{\nu}|\right)\right) = 0$ and hence (5.3) implies
$$\bigcap_{\nu=1}^{\infty} \left(\bigcup_{\nu=1}^{\infty} |a_{\nu}|\right) = 0.$$
Thus we see that $\{a_{\nu}\}_{\nu \geq 1}$ is order-convergent to 0.

For any $\{b_{\nu}\}_{\nu \geq 1}$ with $\rho(b_{\nu}) \to 0$, we can find a subsequence $\{b'_{\nu}\}_{\nu \geq 1}$ of $\{b_{\nu}\}_{\nu \geq 1}$ with $\rho(b'_{\nu}) \leq \frac{1}{2^\nu}$ \quad ($\nu = 1, 2, \cdots$). Therefore we have $s\lim_{\nu \to \infty} b_{\nu} = 0$. Q.E.D.

The latter part of the above proof is quite the same as Lemma 2.1 in [9] (due to S. Yamamuro) concerning the condition (5.2) with respect to (convex) modulars on semi-ordered linear spaces. From Theorem 5.2 and 5.3, we can obtain further the next theorem which is analogous to the above lemma of [9] and considered as the converse of Corollary of Theorem 5.1 at the same time.

Theorem 5.4. If ρ^* satisfies (5.3) and $|| \cdot ||_0$ is complete and continuous, then (5.2) holds.

References

Mathematical Institute, Hokkaido University

(Received September 30, 1960)