<table>
<thead>
<tr>
<th>Title</th>
<th>ON F-NORMS OF QUASI-MODULAR SPACES</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author(s)</td>
<td>Koshi, Shôzô; Shimogaki, Tetsuya</td>
</tr>
<tr>
<td>Citation</td>
<td>Journal of the Faculty of Science Hokkaido University. Ser. 1 Mathematics, 15(3-4), 202-218</td>
</tr>
<tr>
<td>Issue Date</td>
<td>1961</td>
</tr>
<tr>
<td>Doc URL</td>
<td>http://hdl.handle.net/2115/56023</td>
</tr>
<tr>
<td>Type</td>
<td>bulletin (article)</td>
</tr>
<tr>
<td>File Information</td>
<td>JFSHIU_15_N3-4_202-218.pdf</td>
</tr>
</tbody>
</table>

Hokkaido University Collection of Scholarly and Academic Papers : HUSCAP
ON F-NORMS OF QUASI-MODULAR SPACES

By
Shōzō KOSHI and Tetsuya SHIMOGAKI

§1. Introduction. Let \(R \) be a universally continuous semi-ordered linear space (i.e. a conditionally complete vector lattice in Birkhoff's sense [1]) and \(\rho \) be a functional which satisfies the following four conditions:

1. \(0 \leq \rho(x) = \rho(-x) \leq +\infty \) for all \(x \in R \);
2. \(\rho(x+y) = \rho(x) + \rho(y) \) for any \(x, y \in R \) with \(x \perp y \);
3. If \(\sum_{i \in A} \rho(x_i) < +\infty \) for a mutually orthogonal system \(\{x_i\}_{i \in A} \), there exists \(x_0 \in R \) such that \(x_0 = \sum_{i \in A} x_i \) and \(\rho(x_0) = \sum_{i \in A} \rho(x_i) \);
4. \(\varlimsup_{\xi \to 0} \rho(\xi x) < +\infty \) for all \(x \in R \).

Then, \(\rho \) is called a quasi-modular and \(R \) is called a quasi-modular space.

In the previous paper [2], we have defined a quasi-modular space and proved that if \(R \) is a non-atomic quasi-modular space which is semi-regular, then we can define a modular \(m \) on \(R \) for which every universally continuous linear functional is continuous with respect to the norm defined by the modular in [2; Theorem 3.1].

Recently in [6] J. Musielak and W. Orlicz considered a modular \(\rho \) on a linear space \(L \) which satisfies the following conditions:

1. \(\rho(x) \geq 0 \) and \(\rho(x) = 0 \) if and only if \(x = 0 \);
2. \(\rho(-x) = \rho(x) \);
3. \(\rho(\alpha x + \beta y) \leq \rho(x) + \rho(y) \) for every \(\alpha, \beta \geq 0 \) with \(\alpha + \beta = 1 \);
4. \(\alpha_n \to 0 \) implies \(\rho(\alpha_n x) \to 0 \) for every \(x \in R \);
5. for any \(x \in L \) there exists \(\alpha > 0 \) such that \(\rho(\alpha x) < +\infty \).

They showed that \(L \) is a quasi-normed space with a quasi-norm \(\| \cdot \|_0 \) defined by the formula:

1) \(x \perp y \) means \(|x| \cap |y| = 0 \).
2) A system of elements \(\{x_i\}_{i \in A} \) is called mutually orthogonal, if \(x_i \perp x_j \) for \(i \neq j \).
3) For the definition of a modular, see [3].
4) A linear functional \(f \) is called universally continuous, if \(\inf_{a \in A} f(a) = 0 \) for any \(a \in A \).
5) This modular \(\rho \) is a generalization of a modular \(m \) in the sense of Nakano [3 and 4].
In the latter, there is assumed that \(m(\xi x) \) is a convex function of \(\xi \geq 0 \) for each \(x \in R \).
(1.1) \[\| x \|_0 = \inf \left\{ \tilde{\xi} ; \rho \left(\frac{1}{\tilde{\xi}} x \right) \leq \xi \right\} \]
and \(\| x_n \|_0 \rightarrow 0 \) is equivalent to \(\rho(\alpha x_n) \rightarrow 0 \) for all \(\alpha \geq 0 \).

In the present paper, we shall deal with a general quasi-modular space \(R \) (i.e. without the assumption that \(R \) is non-atomic or semi-regular). The aim of this paper is to construct a quasi-norm on \(R \) and to investigate the condition under which \(R \) is an \(F \)-space with this quasi-norm by making use of the above formula (1.1). Since a quasi-modular \(\rho \) on \(R \) does not satisfy the conditions (A.1), (A.2), (A.4) and (A.5) in general, as is seen by comparing the conditions: \((\rho.1)\sim(\rho.4)\) with those of \(\rho \) [6], we can not apply the formula (1.1) directly to \(\rho \) to obtain a quasi-norm. We shall show, however, that we can construct always a quasi-modular \(\rho^* \) which satisfies (A.2)\sim(A.5) on an arbitrary quasi-modular space \(R \) in §2 (Theorems 2.1 and 2.2). Since \(R \) may include a normal manifold \(R_0=\{x:x \in R, \rho^*(\xi x)=0 \text{ for all } \xi \geq 0\} \) and we can not define a quasi-norm on \(R_0 \) in general, we have to exclude \(R_0 \) in order to proceed with the argument further. We shall prove in §3 that a quasi-norm \(\| \cdot \|_0 \) on \(R_0^\perp \) defined by \(\rho^* \) according to the formula (1.1) is semi-continuous, and in order that \(R_0^\perp \) is an \(F \)-space with \(\| \cdot \|_0 \) (i.e. \(\| \cdot \|_0 \) is complete), it is necessary and sufficient that \(\rho \) satisfies

\[(\rho.4') \quad \sup_{x \in R} \rho(\alpha x) < +\infty \]

(Theorem 3.2).

In §4, we shall show that we can define another quasi-norm \(\| \cdot \|_1 \) on \(R_0^\perp \) which is equivalent to \(\| \cdot \|_0 \) such that \(\| x \|_0 \leq \| x \|_1 \leq 2 \| x \|_0 \) holds for every \(x \in R_0^\perp \) (Formulas (4.1) and (4.3)). \(\| \cdot \|_1 \) has a form similar to that of the first norm (due to I. Amemiya) of (convex) modular in the sense of Nakano [4; §83]. At last in §5 we shall add shortly the supplementary results concerning the relations between \(\| \cdot \|_0 \)-convergence and order-convergence. The matter does not essentially differ from the case of the (convex) modular on semi-ordered linear spaces and the results stated in §5 are already known in those cases [8].

Throughout this paper \(R \) denotes a universally continuous semi-ordered linear space and \(\rho \) a quasi-modular defined on \(R \). For any \(p \in R \),
\[[p] \text{ is a projector: } [p]x = \bigcup_{n=1}^{\infty} (n \cdot p \cap x) \text{ for all } x \geq 0 \text{ and } 1-[p] \text{ is a projection operator onto the normal manifold } N=\{p\}^\perp, \text{ that is, } x=[p]x+(1-[p])x. \]

6) This quasi-norm was first considered by S. Mazur and W. Orlicz [5] and discussed by several authors [6 or 7].
§ 2. The conversion of a quasi-modular. From the definition of a quasi-modular in §1, the following lemma is immediately deduced.

Lemma 1. For any quasi-modular \(\rho \), we have

\[
\begin{align*}
(2.1) & \quad \rho(0) = 0; \\
(2.2) & \quad \rho(\lfloor p \rfloor x) \leq \rho(x) \text{ for all } p, x \in \mathbb{R}; \\
(2.3) & \quad \rho(\lfloor p \rfloor x) = \sup_{i \in A} \rho(\lfloor p_i \rfloor x) \text{ for any } [p_i]_{i \in A}.
\end{align*}
\]

In the argument below, we have to use the additional property of \(\rho \):

\(\rho(x) \leq \rho(y) \) if \(|x| \leq |y| \), \(x, y \in \mathbb{R} \),

which is not valid for an arbitrary \(\rho \) in general.

The next theorem, however, shows that we may suppose without loss of generality that a quasi-modular \(\rho \) satisfies \((\rho.5)\).

Theorem 2.1. Let \(\mathbb{R} \) be a quasi-modular space with quasi-modular \(\rho \). Then there exists a quasi-modular \(\rho' \) for which \((\rho.5)\) is valid.

Proof. We put for every \(x \in \mathbb{R} \),

\[
(2.4) \quad \rho'(x) = \sup_{0 \leq |y| \leq |x|} \rho(y).
\]

It is clear that \(\rho' \) satisfies the conditions \((\rho.1), (\rho.2) \) and \((\rho.5)\).

Let \(\{x_i\}_{i \in A} \) be an orthogonal system such that \(\sum_{i \in A} \rho'(x_i) < +\infty \), then

\[
\sum_{i \in A} \rho(x_i) < +\infty,
\]

because

\[
\rho(x) \leq \rho'(x) \quad \text{for all } x \in \mathbb{R}.
\]

We have

\[
x_0 = \sum_{i \in A} x_i \in \mathbb{R}
\]

and

\[
\rho(x_0) = \sum_{i \in A} \rho(x_i) \quad \text{in virtue of } (\rho.3).
\]

For such \(x_0 \),

\[
\rho'(x_0) = \sup_{0 \leq |y| \leq |x_0|} \rho(y) = \sum_{i \in A} \rho(\lfloor x_i \rfloor y) = \sum_{i \in A} \rho'(x_i)
\]

holds, i.e. \(\rho' \) fulfils \((\rho.3)\).

If \(\rho' \) does not fulfil \((\rho.4)\), we have for some \(x_0 \in \mathbb{R} \),

\[
\rho' \left(\frac{1}{n} x_0 \right) = +\infty \quad \text{for all } n \geq 1.
\]

By \((\rho.2)\) and \((\rho.4)\), \(x_0 \) can not be written as \(x_0 = \sum_{\nu=1}^{\kappa} \xi_{\nu} e_{\nu} \), where \(e_{\nu} \) is an atomic element for each \(\nu \) with \(1 \leq \nu \leq \kappa \), namely, we can decompose \(x_0 \) into
an infinite number of orthogonal elements. First we decompose into

\[x_0 = x_1 + x_1', \quad x_1 \perp x_1', \]

where \(\rho'(\frac{1}{\nu} x_1) = +\infty \) (\(\nu = 1, 2, \ldots \)) and \(\rho'(x_1') > 1 \). For the definition of \(\rho' \), there exists \(0 \leq y_1 \leq |x_1'| \) such that \(\rho(y_1) \geq 1 \). Next we can also decompose \(x_1 \) into

\[x_1 = x_2 + x_2', \quad x_2 \perp x_2', \]

where

\[\rho'(\frac{1}{\nu} x_2) = +\infty \quad (\nu = 1, 2, \ldots) \]

and

\[\rho'(\frac{1}{2} x_2') > 2. \]

There exists also \(0 \leq y_2 \leq |x_2'| \) such that \(\rho'(\frac{1}{2} y_2) \geq 2 \). In the same way, we can find by induction an orthogonal sequence \(\{y_\nu\}_{\nu=1,2}, \ldots \) such that

\[\rho'(\frac{1}{\nu} y_\nu) \geq \nu \]

and

\[0 \leq |y_\nu| \leq |x| \]

for all \(\nu \geq 1 \).

Since \(\{y_\nu\}_{\nu=1,2}, \ldots \) is order-bounded, we have in virtue of (2.3)

\[y_0 = \sum_{\nu=1}^{\infty} y_\nu \in R \]

and

\[\rho'(\frac{1}{\nu} y_0) \geq \rho'(\frac{1}{\nu} y_\nu) \geq \nu, \]

which contradicts \((\rho.4) \). Therefore \(\rho' \) has to satisfy \((\rho.4) \). Q.E.D.

Hence, in the sequel, we denote by \(\rho' \) a quasi-modular defined by the formula (2.4).

If \(\rho \) satisfies \((\rho.5) \), \(\rho \) does also \((A.3) \) in §1:

\[\rho(\alpha x + \beta y) \leq \rho(x) + \rho(y) \]

for \(\alpha, \beta \geq 0 \) with \(\alpha + \beta = 1 \).

Because, putting \([p] = [(|x| - |y|)^+] \), we obtain
\[\rho(\alpha x + \beta y) \leq \rho(\alpha |x| + \beta |y|) \]
\[\leq \rho(\alpha \lceil p \rceil |x| + \alpha(1 - \lceil p \rceil) |y| + \beta \lceil p \rceil |x| + (1 - \lceil p \rceil) \beta |y|) \]
\[= \rho(\lceil p \rceil |x| + (1 - \lceil p \rceil) |y|) \]
\[= \rho(\lceil p \rceil x) + \rho((1 - \lceil p \rceil)y) \]
\[\leq \rho(x) + \rho(y). \]

Remark 1. As is shown above, the existence of \(\rho' \) as a quasi-modular depends essentially on the condition \((\rho.4)\). Thus, in the above theorems, we cannot replace \((\rho.4)\) by the weaker condition:

\[(\rho.4'') \quad \text{for any } x \in R, \text{ there exists } \alpha \geq 0 \text{ such that } \rho(\alpha x) < +\infty. \]

In fact, the next example shows that there exists a functional \(\rho_0 \) on a universally continuous semi-ordered linear space satisfying \((\rho.1), (\rho.2), (\rho.3) \) and \((\rho.4'')\), but does not \((\rho.4)\). For this \(\rho_0 \), we obtain

\[\rho_0'(x) = \sup_{|y| \leq |x|} \rho_0(y) = +\infty \]

for all \(x \neq 0 \).

Example. \(L_1[0,1] \) is the set of measurable functions \(x(t) \) which are defined in \([0,1]\) with

\[\int_0^1 |x(t)| \, dt < +\infty. \]

Putting

\[\rho_0(x) = \rho_0(x(t)) = \int_0^1 |x(t)| \, dt + \sum_{i=1}^{\infty} i \, \text{mes} \{ t : x(t) = \frac{1}{i} \}, \]

we have an example satisfying the above conditions.

In order to define the quasi-norm, we need one more additional condition: \((A.4)\), namely,

\[(\rho.6) \quad \lim_{t \to 0} \rho(\xi x) = 0 \quad \text{for all } x \in R. \]

A quasi-modular space becomes, as is shown below, always a quasi-normed space excluding the trivial part, but not an F-space in general. This fact is based upon the following Theorems 2.2 and 2.3.

Theorem 2.2. Let \(\rho \) be a quasi-modular on \(R \). We can find a functional \(\rho^* \) which satisfies \((\rho.1) \sim (\rho.6)\) except \((\rho.3)\).

Proof. In virtue of Theorem 2.1, there exists a quasi-modular \(\rho' \) which satisfies \((\rho.5)\). Now we put

\[(2.5) \quad d(x) = \lim_{t \to 0} \rho'(\xi x). \]

It is clear that \(0 \leq d(x) = d(|x|) < +\infty \) for all \(x \in R \) and
$d(x+y) = d(x)+d(y)$ if $x \perp y$.

Hence, putting

\begin{equation}
\rho^*(x) = \rho'(x) - d(x) \quad (x \in R).
\end{equation}

we can see easily that (\rho.1), (\rho.2), (\rho.4) and (\rho.6) hold true for ρ^*, since

\[d(x) \leq \rho'(x) \]

and

\[d(\alpha x) = d(x) \]

for all $x \in R$ and $\alpha > 0$.

We need to prove that (\rho.5) is true for ρ^*. First we have to note

\begin{equation}
\inf_{\lambda \in \Lambda} d([p_\lambda]x) = 0
\end{equation}

for any $[p_\lambda] \downarrow_{\lambda \in A} 0$. In fact, if we suppose the contrary, we have

\[\inf_{\lambda \in \Lambda} d([p_\lambda]x_0) \geq \alpha > 0 \]

for some $[p_\lambda] \downarrow_{\lambda \in A} 0$ and $x_0 \in R$.

Hence,

\[\rho'(\frac{1}{\nu} [p_\lambda]x_0) \geq d([p_\lambda]x_0) \geq \alpha \]

for all $\nu \geq 1$ and $\lambda \in \Lambda$. Thus we can find a subsequence $\{\lambda_n\}_{n \geq 1}$ of $\{\lambda\}_{\lambda \in \Lambda}$ such that

\[[p_{\lambda_n}] \geq [p_{\lambda_{n+1}}] \]

and

\[\rho'\left(\frac{1}{n} [p_{\lambda_n}] - [p_{\lambda_{n+1}}]x_0\right) \geq \frac{\alpha}{2} \]

for all $n \geq 1$ in virtue of (\rho.2) and (2.3). This implies

\[\rho'\left(\frac{1}{n} x_0\right) \geq \sum_{m \geq n} \rho'\left(\frac{1}{m} [p_{\lambda_m}] - [p_{\lambda_{m+1}}]x_0\right) = +\infty, \]

which is inconsistent with (\rho.4). Secondly we shall prove

\begin{equation}
(2.8) \quad d(x) = d(y), \quad \text{if } [x] = [y].
\end{equation}

We put $[p_n] = [(|x| - n|y|)^+]$ for $x, y \in R$ with $[x] = [y]$ and $n \geq 1$. Then, $[p_n] \downarrow_{n=1}^\infty 0$ and $\inf_{n=1,2,\ldots} d([p_n]x) = 0$ by (2.7). Since $(1-[p_n])n |y| \geq (1-[p_n])|x|$ and

\[d(\alpha x) = d(x) \]

for $\alpha > 0$ and $x \in R$, we obtain
\[d(x) = d([p_{n}]x) + d((1 - [p_{n}])x) \leqq d([p_{n}]x) + d(n(1 - [p_{n}])y) \leqq d([p_{n}]x) + d(y). \]

As \(n \) is arbitrary, this implies
\[d(x) \leqq \inf_{n=1,2,...} d([p_{n}]x) + d(y), \]
and also \(d(x) \leqq d(y) \). Therefore we conclude that (2.8) holds.

If \(|x| \geqq |y| \), then
\[\rho^{*}(x) = \rho^{*}([y]x) + \rho^{*}(([x] - [y])x) = \rho^{*}([y]x) - d([y]x) + \rho^{*}(([x] - [y])x) \geqq \rho^{*}(y) - d(y) + \rho^{*}(([x] - [y])x) \geqq \rho^{*}(y). \]

Thus \(\rho^{*} \) satisfies (\(\rho.5 \)).

Theorem 2.3. \(\rho^{*} \) (which is constructed from \(\rho \) according to the formulas (2.4), (2.5) and (2.6)) satisfies (\(\rho.3 \)) (that is, \(\rho^{*} \) is a quasi-modular), if and only if \(\rho \) satisfies

\[(\rho.4') \quad \sup_{x \in K} \{ \lim_{\xi \to 0} \rho(\xi x) \} = K < +\infty.\]

Proof. Let \(\rho \) satisfy (\(\rho.4 \)). We need to prove
\[(2.9) \quad \sup_{x \in K} d(x) = \sup_{x \in K} \{ \lim_{\xi \to 0} \rho^{'}(\xi x) \} = K' < +\infty,\]
where
\[\rho^{'}(x) = \sup_{0 \leqq \rho(y) \leqq |x|} \rho(y). \]

Since \(\rho^{'} \) is also a quasi-modular, Lemma 2 in [2] or [8] can be applicable, if we put \(n_{0}(x) = \rho(x) \) and \(n_{\nu}(x) = \rho^{'}(\frac{1}{\nu}x) \) for \(\nu \geqq 1 \) and \(x \in R \). Hence we can find positive numbers \(\epsilon, \gamma \), a natural number \(\nu_{0} \) and a finite dimensional normal manifold \(N_{0} \) such that \(x \in N_{0}^{\perp} \) with
\[\rho(x) \leqq \epsilon \text{ implies } \rho^{'}(\frac{1}{\nu_{0}}x) \leqq \gamma. \]

In \(N_{0} \), we have obviously
\[\sup_{x \in N_{0}} \{ \lim_{\xi \to 0} \rho^{'}(\xi x) \} = \gamma_{0} < +\infty. \]

If \(\epsilon \leqq 2K \), for any \(x_{0} \in N_{0}^{\perp} \), we can find \(\alpha_{0} > 0 \) such that \(\rho(\alpha x_{0}) \leqq 2K \) for all \(0 \leqq \alpha \leqq \alpha_{0} \) by (\(\rho.4' \)), and hence there exists always an orthogonal decomposition such that
On \(F \)-Norms of Quasi-Modular Spaces

\[\alpha_0 x_0 = x_1 + \cdots + x_n + y_1 + \cdots + y_m + z \]

where \(\frac{\varepsilon}{2} < \rho(x_i) \leq \varepsilon \) \((i=1, 2, \ldots, n)\), \(y_j \) is an atomic element with \(\rho(y_j) > \varepsilon \) for every \(j=1, 2, \ldots, m \) and \(\rho(z) \leq \frac{\varepsilon}{2} \). From above, we get \(n \leq \frac{4K}{\varepsilon} \) and \(m \leq \frac{2K}{\varepsilon} \). This yields

\[
\rho\left(\frac{1}{\nu_0} \alpha_0 x_0\right) \leq \sum_{i=1}^{n} \rho\left(\frac{1}{\nu_0} x_i\right) + \sum_{j=1}^{m} \rho'(y_j) + \rho' \frac{z}{\nu_0} \\
\leq n \gamma + \sum_{j=1}^{m} \rho'(y_j) + \rho' \frac{z}{\nu_0} \\
\leq \frac{4K}{\varepsilon} \gamma + \frac{2K}{\varepsilon} \left\{ \sup_{0 \leq a \leq a_0} \rho(\alpha x) \right\} + \gamma.
\]

Hence, we obtain

\[
\lim_{\varepsilon \to 0} \rho'(\xi x_0) \leq \rho'(\frac{\alpha_0}{\nu_0} x_0) \leq \left(\frac{4K + \varepsilon}{\varepsilon}\right) \gamma + \left(\frac{4K^2}{\varepsilon}\right)
\]

in case of \(\varepsilon \leq 2K \). If \(2K \leq \varepsilon \), we have immediately for \(x \in N_0^+ \)

\[
\lim_{\varepsilon \to 0} \rho'(\xi x) \leq \gamma.
\]

Therefore, we obtain

\[
\sup_{x \in R} \{ \lim_{\xi \to 0} \rho'(\xi x) \} \leq \gamma',
\]

where

\[
\gamma' = \frac{4K + \varepsilon}{\varepsilon} + \frac{4K^2}{\varepsilon} + \gamma_0.
\]

Let \(\{x_\lambda\}_{\lambda \in A} \) be an orthogonal system with \(\sum_{\lambda \in A} \rho^*(x_\lambda) < +\infty \). Then for arbitrary \(\lambda_1, \ldots, \lambda_k \in A \), we have

\[
\sum_{i=1}^{k} d(x_{\lambda_i}) = d(\sum_{i=1}^{k} x_{\lambda_i}) = \lim_{\xi \to 0} \rho'(\xi \sum_{i=1}^{k} x_{\lambda_i}) \leq \gamma',
\]

which implies \(\sum_{\lambda \in A} d(x_{\lambda}) \leq \gamma' \). It follows that

\[
\sum_{\lambda \in A} \rho^*(x_{\lambda}) = \sum_{\lambda \in A} \rho^*(x_{\lambda}) + \sum_{i \in A} d(x_i) < +\infty,
\]

which implies \(x_0 = \sum_{\lambda \in A} x_{\lambda} \in R \) and \(\sum_{\lambda \in A} \rho^*(x_{\lambda}) = \rho^*(x_0) \) by (\(\rho.4 \)) and (\(2.7 \)). Therefore \(\rho^* \) satisfies (\(\rho.3 \)).

On the other hand, suppose that \(\rho^* \) satisfies (\(\rho.3 \)) and \(\sup_{x \in R} d(x) = +\infty \). Then we can find an orthogonal sequence \(\{x_i\}_{i \geq 1} \) such that

\[
\sum_{i=1}^{n} d(x_i) = d(\sum_{i=1}^{n} x_i) \geq \mu
\]
for all \(\mu \geq 1 \) in virtue of (2.8) and the orthogonal additivity of \(d \). Since
\[
\lim_{t \to 0} \rho^*(\xi x) = 0,
\]
there exists \(\{\alpha_\nu\}_{\nu \geq 1} \) with \(0 < \alpha_\nu \) (\(\nu \geq 1 \)) and
\[
\sum_{\nu=1}^\infty \rho^*(\alpha_\nu x_\nu) < +\infty.
\]
It follows that \(x_0 = \sum_{\nu=1}^\infty \alpha_\nu x_\nu \in R \) and \(d(x_0) = \sum_{\nu=1}^\infty d(\alpha_\nu x_\nu) \) from (\(\rho.3 \)). For such \(x_0 \), we have for every \(\xi \geq 0 \),
\[
\rho'(\xi x_0) = \sum_{\nu=1}^\infty \rho'(\xi \alpha_\nu x_\nu) \geq \sum_{\nu=1}^\infty d(x_\nu) = +\infty,
\]
which is inconsistent with (\(\rho.4 \)). Therefore we have
\[
\sup_{x \in R} (\lim_{\xi \to 0} \rho(\xi x)) \leq \sup_{x \in R} d(x) < +\infty.
\]
Q.E.D.

\section{Quasi-norms.} We denote by \(R_0 \) the set:
\[
R_0 = \{ x : x \in R, \ \rho^*(nx) = 0 \text{ for all } n \geq 1 \},
\]
where \(\rho^* \) is defined by the formula (2.6). Evidently \(R_0 \) is a semi-normal manifold\(^7\) of \(R \). We shall prove that \(R_0 \) is a normal manifold of \(R \). In fact, let \(x = \bigcup_{\lambda \in \Lambda} x_\lambda \) with \(R_0 \ni x_\lambda \geq 0 \) for all \(\lambda \in \Lambda \).

Putting \([p_{n,\lambda}] = [(2nx_\lambda - nx)^+] \), we have \([p_{n,\lambda}] \uparrow_{\lambda \in \Lambda} [x] \) and \(2n[p_{n,\lambda}] x_\lambda \geq [p_{n,\lambda}] nx_1 \) which implies \(\rho^*(n[p_{n,\lambda}] x) = 0 \) and \(\sup_{\lambda \in \Lambda} \rho^*(n[p_{n,\lambda}] x) = \rho^*(nx) = 0 \). Hence, we obtain \(x \in R_0 \), that is, \(R_0 \) is a normal manifold of \(R \).

Therefore, \(R \) is orthogonally decomposed into
\[
R = R_0 \oplus R_0^\perp.\quad\text{(8)}
\]
In virtue of the definition of \(\rho^* \), we infer that for any \(p \in R_0, \ [p]R_0 \) is universally complete, i.e. for any orthogonal system \(\{x_\lambda\}_{\lambda \in \Lambda}(x_\lambda \in [p]R_0) \), there exists \(x_0 = \sum_{\lambda \in \Lambda} x_\lambda \in [p]R \). Hence we can also verify without difficulty that \(R_0 \) has no universally continuous linear functional except 0, if \(R_0 \) is non-atomic. When \(R_0 \) is discrete, it is isomorphic to \(S(\Lambda)^9\)-space. With respect to such a universally complete space \(R_0 \), we can not always construct a linear metric topology on \(R_0 \), even if \(R_0 \) is discrete.

In the following, therefore, we must exclude \(R_0 \) from our consideration. Now we can state the theorems which we aim at.

7) A linear manifold \(S \) is said to be semi-normal, if \(a \in S, \ |b| \leq |a|, b \in R \) implies \(b \in S \). Since \(R \) is universally continuous, a semi-normal manifold \(S \) is normal if and only if \(\bigcup_{\lambda \in \Lambda} x_\lambda \in R \) implies \(\bigcup_{\lambda \in \Lambda} x_\lambda \in S(\Lambda) \).

8) This means that \(x \in R \) is written by \(x = y + z, \ y \in R_0 \) and \(z \in R_0^\perp \).

9) \(S(\Lambda) \) is the set of all real functions defined on \(\Lambda \).
Theorem 3.1. Let R be a quasi-modular space. Then R_0^\perp becomes a quasi-normed space with a quasi-norm $||\cdot||_0$ which is semi-continuous, i.e.
$$\sup_{\lambda\in\Lambda} ||x_\lambda||_0 = ||x||_0$$
for any $0 \leq x_\lambda \uparrow_{\lambda\in\Lambda} x$.

Proof. In virtue of Theorems 2.1 and 2.2, ρ^* satisfies $(\rho.1)\sim(\rho.6)$ except $(\rho.3)$. Now we put

$$(3.1) \quad ||x||_0 = \inf\left\{ \xi ; \rho^*\left(\frac{1}{\xi}x\right) \leq \xi \right\}.$$

Then,

i) $0 \leq ||x||_0 = ||-x||_0 < \infty$ and $||x||_0 = 0$ is equivalent to $x = 0$; follows from $(\rho.1),(\rho.6), (2.1)$ and the definition of R_0^\perp.

ii) $||x+y||_0 \leq ||x||_0 + ||y||_0$ for any $x,y \in R$; follows also from (A.3) which is deduced from $(\rho.4)$.

iii) $\lim_{n\to 0} ||\alpha_n x||_0 = 0$ and $\lim_{n\to 0} ||\alpha x_n||_0 = 0$; is a direct consequence of $(\rho.5)$. At last we shall prove that $||\cdot||_0$ is semi-continuous. From ii) and iii), it follows that $\lim ||\alpha x||_0 = ||\alpha x||_0$ for all $x \in R_0^\perp$ and $\alpha_0 \geq 0$. If $x \in R_0^\perp$ and $[p_1] \uparrow_{\lambda\in\Lambda} [p]$, for any positive number ξ with $||[p]x||_0 > \xi$ we have $\rho^*\left(\frac{1}{\xi}[p]x\right) > \xi$, which implies $\sup_{\lambda\in\Lambda} \rho^*\left(\frac{1}{\xi}[p_\lambda]x\right) > \xi$ and hence $\sup_{\lambda\in\Lambda} ||p_\lambda x||_0 \geq \xi$. Thus we obtain

$$\sup_{\lambda\in\Lambda} ||p_\lambda x||_0 = ||[p]x||_0,$$

if $[p_1] \uparrow_{\lambda\in\Lambda} [p]$.

Let $0 \leq x_\lambda \uparrow_{\lambda\in\Lambda} x$. Putting

$$[p_{n,\lambda}] = \left[(x_\lambda - (1-\frac{1}{n})x)^* \right]$$

we have

$$[p_{n,\lambda}] \uparrow_{\lambda\in\Lambda} [x] \text{ and } [p_{n,\lambda}] x_\lambda \geq [p_{n,\lambda}](1-\frac{1}{n})x \quad (n \geq 1).$$

As is shown above, since

$$\sup_{\lambda\in\Lambda} ||[p_{n,\lambda}] x_\lambda||_0 \leq \sup_{\lambda\in\Lambda} ||[p_{n,\lambda}](1-\frac{1}{n})x||_0 = \left(1-\frac{1}{n}\right)x_0,$$

we have

$$\sup_{\lambda\in\Lambda} ||x_\lambda||_0 \leq \left(1-\frac{1}{n}\right)x_0$$

and also $\sup_{\lambda\in\Lambda} ||x_\lambda||_0 \geq ||x||_0$. As the converse inequality is obvious by iv), $||\cdot||_0$ is semi-continuous. Q.E.D.

Remark 2. By the definition of (3.1), we can see easily that $\lim ||x_n||_0 = 0$ if and only if $\lim \rho(\xi x_n) = 0$ for all $\xi \geq 0$.

On F-Norms of Quasi-Modular Spaces
In order to prove the completeness of quasi-norm $\| \cdot \|_0$, the next Lemma is necessary.

Lemma 2. Let $p_{n, \nu}, x_{\nu} \geq 0$ and $a \geq 0 (n, \nu = 1, 2, \cdots)$ be the elements of R_0^+ such that

(3.2) \[[p_{n, \nu}] \uparrow_{\nu=1}^{\infty} [p_n] \quad \text{with} \quad \bigcap_{n=1}^{\infty} [p_n] a = [p_0] a \neq 0; \]

(3.3) \[[p_{n, \nu}] x_{\nu} \geq n [p_{n, \nu}] a \quad \text{for all} \quad n, \nu \geq 1. \]

Then $\{x_{\nu}\}_{\nu \geq 1}$ is not a Cauchy sequence of R_0^+ with respect to $\| \cdot \|_0$.

Proof. We shall show that there exist a sequence of projectors $[q_m] \downarrow_{m=1}^{\infty} (m \geq 1)$ and sequences of natural numbers ν_m, n_m such that

(3.4) \[\| [q_m] a \|_0 > \frac{\delta}{2} \quad \text{and} \quad [q_m] x_{\nu_m} \geq n_m [q_m] a \quad (m = 1, 2, \cdots) \]

and

(3.5) \[n_m [q_m] a \geq [q_m] x_{\nu_{m-1}}, \quad n_{m+1} > n_m \quad (m = 2, 3, \cdots), \]

where $\delta = \| [p_0] a \|_0$.

In fact, we put $n_1 = 1$. Since $[p_{1, \nu}] [p_0] \uparrow_{\nu=1}^{\infty} [p_0]$ and $\| \cdot \|_0$ is semi-continuous, we can find a natural number ν_1 such that

\[\| [p_{1, \nu_1}] [p_0] a \|_0 > \frac{\| [p_0] a \|_0}{2} = \frac{\delta}{2}. \]

We put $[q_1] = [p_{1, \nu_1}] [p_0]$. Now, let us assume that $[q_m], \nu_m, n_m (m = 1, 2, \cdots, k)$ have been taken such that (3.4) and (3.5) are satisfied.

Since $[(na - x_{\nu_k})^+] \uparrow_{n=1}^{\infty} [a]$ and $\| [q_k] a \|_0 > \frac{\delta}{2}$, there exists n_{k+1} with

\[\| (n_{k+1} a - x_{\nu_k})^+ [q_k] a \|_0 > \frac{\delta}{2}. \]

For such n_{k+1}, there exists also a natural number ν_{k+1} such that

\[\| [p_{n_{k+1}, \nu_{k+1}}] (n_{k+1} a - x_{\nu_k})^+ [q_k] a \|_0 > \frac{\delta}{2}. \]

in virtue of (3.2) and semi-continuity of $\| \cdot \|_0$. Hence we can put

\[[q_{k+1}] = [p_{n_{k+1}, \nu_{k+1}}] (n_{k+1} a - x_{\nu_k})^+ [q_k], \]

because

\[[q_{k+1}] \leq [q_k], \quad \| [q_{k+1}] a \| > \frac{\delta}{2}, \quad [q_{k+1}] x_{\nu_{k+1}} \geq n_{k+1} [q_{k+1}] a \]

by (3.3) and $[q_{k+1}] n_{k+1} a \geq [q_{k+1}] x_{\nu_k}$ by (3.5).

For the sequence thus obtained, we have for every $k \geq 3$
On F-Norms of Quasi-Modular Spaces

\[\| x_{\nu_{k+1}} - x_{\nu_{k-1}} \|_0 \geq \| [q_{k+1}] (x_{\nu_{k+1}} - x_{\nu_{k-1}}) \|_0 \]
\[\geq \| n_{k+1} [q_{k+1}] a - n_k [q_{k+1}] a \|_0 \geq \| [q_{k+1}] a_0 \|_0 \geq \frac{\delta}{2}, \]

since \([q_{k+1}] \leq [q_k] \leq (n_k a - x_{\nu-1})^+\) implies \([q_{k+1}] n_k a \geq [q_{k+1}] x_{\nu_{k-1}}\) by (3.4).

It follows from the above that \(\{x_{\nu}\}_{\nu \geq 1}\) is not a Cauchy sequence.

\textbf{Theorem 3.2.} Let \(R\) be a quasi-modular space with quasi-modular \(\rho\). Then \(R^1_0\) is an F-space with \(\| \cdot \|_0\) if and only if \(\rho\) satisfies (\(\rho.4'\)).

\textbf{Proof.} If \(\rho\) satisfies (\(\rho.4'\)), \(\rho^*\) is a quasi-modular which fulfills also (\(\rho.5\)) and (\(\rho.6\)) in virtue of Theorem 2.3. Since \(\| x \|_0 = \inf \\left\{ \xi ; \rho^* \left(\frac{x}{\xi} \right) \leq \xi \right\}\)

is a quasi-norm on \(R^1_0\), we need only to verify completeness of \(\| \cdot \|_0\). At first let \(\{x_{\nu}\}_{\nu \geq 1} \subset R^1_0\) be a Cauchy sequence with \(0 \leq x_{\nu} \uparrow_{\nu=1,2,\ldots}\). Since \(\rho^*\) satisfies (\(\rho.3\)), there exists \(0 \leq x_0 \in R^1_0\) such that \(x_0 = \bigcup_{\nu=1}^{\infty} x_{\nu}\), as is shown in the proof of Theorem 2.3.

Putting \([p_n, \nu] = [(x_{\nu} - nx_0)^+\] and \(\bigcup_{\nu=1}^{\infty} [p_n, \nu] = [p_n]\), we obtain

\[(3.6) \quad [p_{n, \nu}] x_{\nu} \geq n [p_{n, \nu}] x_0 \]
\[\text{for all } n, \nu \geq 1 \]

and \([p_n]_{\nu=1}^{\infty} = 0\). Since \(\{x_{\nu}\}_{\nu \geq 1}\) is a Cauchy sequence, we have in virtue of Lemma 2, \(\bigcap_{n=1}^{\infty} \{[p_n]_{\nu=1}^{\infty} = 0\}, \) that is, \(\bigcup_{n=1}^{\infty} ([x_0] - [p_n]) = [x_0]\). And

\[(1 - [p_{n, \nu}]) \geq (1 - [p_n]) \]
\[\text{(n, } \nu \geq 1) \]

implies

\[n(1 - [p_n]) x_0 \geq (1 - [p_n]) x_0 \geq 0. \]

Hence we have

\[y_n = \bigcup_{\nu=1}^{\infty} (1 - [p_n]) x_{\nu} \in R^1_0, \]

because \(R^1_0\) is universally continuous. As \(\{x_{\nu}\}_{\nu \geq 1}\) is a Cauchy sequence, we obtain from the triangle inequality of \(\| \cdot \|_0\)

\[\gamma = \sup_{\nu \geq 1} \| x_{\nu} \|_0 < +\infty, \]

which implies

\[\| y_n \|_0 = \sup_{\nu \geq 1} \| (1 - [p_n]) x_{\nu} \|_0 \leq \gamma, \]

for every \(n \geq 1\) by semi-continuity of \(\| \cdot \|_0\). We put \(z_1 = y_1\) and \(z_n = y_n - y_{n-1}\) \((n \geq 2\)). It follows from the definition of \(y_n\) that \(\{z_{\nu}\}_{\nu \geq 1}\) is an orthogonal sequence with \(\| \sum_{\nu=1}^{n} z_{\nu} \|_0 = \| y_n \|_0 \leq \gamma\). This implies
\[\sum_{\nu=1}^{n} \rho^* \left(\frac{z_{\nu}}{1+\gamma} \right) = \rho^* \left(\frac{y_n}{1+\gamma} \right) \leqq \gamma \]

for all \(n \geqq 1 \) by the formula (3.1). Then \((\rho.3) \) assures the existence of \(z = \sum_{\nu=1}^{\infty} y_{\nu} = \bigcup_{\nu=1}^{\infty} y_{\nu} \). This yields \(z = \bigcup_{\nu=1}^{\infty} x_{\nu} \). Truly, it follows from

\[z = \bigcup_{\nu=1}^{\infty} y_{\nu} = \bigcup_{\nu=1}^{\infty} \bigcup_{\nu=1}^{\infty} (1-[p_{\nu}]) x_{\nu} = \bigcup_{\nu=1}^{\infty} \bigcup_{\nu=1}^{\infty} x_{\nu} \]

By semi-continuity of \(||\cdot||_0 \), we have

\[\lim_{\nu \to \infty} ||z-x_{\nu}||_0 = 0 \]

and furthermore \(\lim_{\nu \to \infty} ||z-x_{\nu}||_0 = 0 \).

Secondly let \(\{x_{\nu}\}_{\nu \geqq 1} \) be an arbitrary Cauchy sequence of \(R_0^\perp \). Then we can find a subsequence \(\{y_{\nu}\}_{\nu \geqq 1} \) of \(\{x_{\nu}\}_{\nu \geqq 1} \) such that

\[\forall \nu \geqq 1 \quad ||y_{\nu+1} - y_{\nu}||_0 \leqq \frac{1}{2^{\nu-1}} \]

Putting \(z_n = \sum_{\nu=1}^{n} |y_{\nu+1} - y_{\nu}| \), we have a Cauchy sequence \(\{z_n\}_{n \geqq 1} \) with \(0 \leqq z_n \leqq z_n \leqq \infty \).

Then by the fact proved just above,

\[z_0 = \bigcup_{n=1}^{\infty} z_n = \bigcup_{\nu=1}^{\infty} |y_{\nu+1} - y_{\nu}| \in R_0^\perp \]

Since \(\sum_{\nu=1}^{\infty} |y_{\nu+1} - y_{\nu}| \) is convergent, \(y_1 + \sum_{\nu=1}^{\infty} (y_{\nu+1} - y_{\nu}) \) is also convergent and

\[||y_1 + \sum_{\nu=1}^{\infty} (y_{\nu+1} - y_{\nu}) - y_n||_0 = ||\sum_{\nu=1}^{\infty} (y_{\nu+1} - y_{\nu})||_0 \leqq ||z_0 - z_n||_0 \to 0 \]

Since \(\{y_{\nu}\}_{\nu \geqq 1} \) is a subsequence of the Cauchy sequence \(\{x_{\nu}\}_{\nu \geqq 1} \), it follows that

\[\lim_{\nu \to \infty} ||y_1 + \sum_{\nu=1}^{\infty} (y_{\nu+1} - y_{\nu}) - x_{\nu}||_0 = 0 \]

Therefore \(||\cdot||_0 \) is complete in \(R_0^\perp \), that is, \(R_0^\perp \) is an F-space with \(||\cdot||_0 \).

Conversely if \(R_0^\perp \) is an F-space, then for any orthogonal sequence \(\{x_{\nu}\}_{\nu \geqq 1} \in R_0^\perp \), we have \(\sum_{\nu=1}^{\infty} \alpha_{\nu} x_{\nu} \in R_0^\perp \) for some real numbers \(\alpha_{\nu} > 0 \) (for all \(\nu \geqq 1 \)). Hence we can see that \(\sup_{x \in R_0^\perp} d(x) < +\infty \) by the same way applied in Theorem 2.1. It follows that \(\rho \) must satisfy \((\rho.4') \). Q.E.D.

Since \(R_0 \) contains a normal manifold which is universally complete, if \(R_0^\perp \neq 0 \), we can conclude directly from Theorems 3.1 and 3.2.
Corollary. Let R be a quasi-modular space which includes no universally complete normal manifold. Then R becomes a quasi-normed space with a quasi-norm $\|\cdot\|_0$ defined by (3.1) and R becomes an F-space with $\|\cdot\|_0$ if and only if ρ fulfills ($\rho.A'$).

§4. Another Quasi-norm. Let L be a modular space in the sense of Musielak and Orlicz ($\S1$). Here we put for $x \in L$

(4.1) \[\|x\|_1 = \inf_{\xi > 0} \left(\frac{1}{\xi} + \rho(\xi x) \right) \]

and show that $\|\cdot\|_1$ is also a quasi-norm on L and

(4.2) \[\|x\|_0 \leq \|x\|_1 \leq 2\|x\|_0 \]

for all $x \in L$ hold, where $\|\cdot\|_0$ is a quasi-norm defined by the formula (1.1).

From (A.1), (A.2) and (A.5), it follows that $0 \leq \|x\|_1 = \|\bar{x}\|_1 < +\infty$ ($x \in L$) and that $\|x\|_1 = 0$ is equivalent to $x = 0$. Since $\alpha_n \downarrow_{n=1}^{\infty} 0$ implies $\lim \rho(\alpha_n x) = 0$ for each $x \in L$ and $\lim \|x_n\|_1 = 0$ implies $\lim \rho(\xi x_n) = 0$ for all $\xi \geq 0$, we obtain that $\lim \|\alpha_n x\|_1 = 0$ for all $\alpha_n \downarrow_{n=1}^{\infty} 0$ and that $\lim \|x_n\|_1 = 0$ implies $\lim \|ax_n\|_1 = 0$ for all $\alpha > 0$. If $\|x\|_1 < \alpha$ and $\|y\|_1 < \beta$, there exist $\xi, \eta > 0$ such that

\[\frac{1}{\xi} + \rho(\xi x) < \alpha \quad \text{and} \quad \frac{1}{\eta} + \rho(\eta y) < \beta. \]

This yields

\[\|x+y\|_1 \leq \frac{\xi+\eta}{\xi\eta} + \rho(\frac{\xi\eta}{\xi+\eta} (x+y)) = \frac{1}{\xi} + \frac{1}{\eta} + \rho(\frac{\eta}{\xi+\eta} (\xi x) + \frac{\xi}{\xi+\eta} (\eta y)) \]

\[\leq \frac{1}{\xi} + \rho(\xi x) + \frac{1}{\eta} + \rho(\eta y) < \alpha + \beta, \]

in virtue of (A.3). Therefore $\|x+y\|_1 \leq \|x\|_1 + \|y\|_1$ holds for any $x, y \in L$ and $\|\cdot\|_1$ is a quasi-norm on L. If $\xi \rho(\xi x) \leq 1$ for some $\xi > 0$ and $x \in L$, we have $\rho(\xi x) \leq \frac{1}{\xi}$ and hence

\[\frac{1}{\xi} \leq \frac{1}{\xi} + \rho(\xi x) \leq \frac{2}{\xi}. \]

10) For the convex modular m, we can define two kinds of norms such as

\[\|x\| = \inf_{\xi > 0} \frac{1 + m(\xi x)}{\xi} \quad \text{and} \quad \|x\| = \inf_{m(\xi x) \leq 1} \frac{1}{m(\xi x) \geq 1} \]

[3 or 4]. For the general modulars considered here, the formulas (3.1) and (4.1) are nothing but ones obtained by replacing $m(\xi x)$ by $\xi \rho(\xi x)$ in $\|\cdot\|_1$ and $\|\cdot\|$ respectively.
This yields (4.2), since we have $||x||_0 \leq \frac{1}{\xi}$ and $\rho(\gamma x) > \frac{1}{\eta}$ for every γ with $||x||_0 > \frac{1}{\eta}$. Therefore we can obtain from above

Theorem 4.1. If L is a modular space with a modular satisfying (A.1)\sim(A.5) in §1, then the formula (4.1) yields a quasi-norm $||\cdot||_1$ on L which is equivalent to $||\cdot||_0$ defined by Musielak and Orlicz in [6] as is shown in (4.2).

From the above theorem and the results in §2, we obtain by the same way as in §3

Theorem 4.2. If R is a quasi-modular space with a quasi-modular ρ, then

$$||x||_1 = \inf_{\xi \rightarrow \infty} \left\{ \frac{1}{\xi} + \rho^*(\xi x) \right\}$$

is a semi-continuous quasi-norm on R^+_0 and $||\cdot||_1$ is complete if and only if ρ satisfies (\rho.4'), where ρ^* and R_0 are the same as in §2 and §3. And further we have

$$||x||_0 \leq ||x||_1 \leq 2||x||_0$$

for all $x \in R^+_0$.

§5. A quasi-norm-convergence. Here we suppose that a quasi-modular ρ^* on R satisfies (\rho.1)\sim(\rho.6) except (\rho.3) and $\rho^*(\xi x)$ is not identically zero as a function of $\xi \geq 0$ for each $0 \neq x \in R$ (i.e. $R_0 = \{0\}$). A sequence of elements $\{x_n\}_{n \geq 1}$ is called order-convergent to a and denoted by $\nu \rightarrow \infty x_n = a$, if there exists a sequence of elements $\{a_n\}_{n \geq 1}$ such that $|x_n - a_n| \leq a_n$ ($n \geq 1$) and $a_n \downarrow 0$. And a sequence of elements $\{x_n\}_{n \geq 1}$ is called star-convergent to a and denoted by $s-\lim_{n \rightarrow \infty} x_n = a$, if for any subsequence $\{y_n\}_{n \geq 1}$ of $\{x_n\}_{n \geq 1}$, there exists a subsequence $\{z_n\}_{n \geq 1}$ of $\{y_n\}_{n \geq 1}$ with $0-\lim_{n \rightarrow \infty} z_n = a$.

A quasi-norm $||\cdot||$ on R is termed to be continuous, if $\inf_{n \geq 1} ||a_n|| = 0$ for any $a_n \downarrow 0$. In the sequel, we write by $||\cdot||_0$ (or $||\cdot||_1$) the quasi-norm defined on R by ρ^* in §3 (resp. in §4).

Now we prove

Theorem 5.1. In order that $||\cdot||_0$ (or $||\cdot||_1$) is continuous, it is necessary and sufficient that the following condition is satisfied:

(5.1) for any $x \in R$ there exists an orthogonal decomposition $x = y + z$ such that $[z]_R$ is finite dimensional and $\rho(y) < + \infty$.

Proof. Necessity. If (5.1) is not true for some $x \in R$, we can find a
sequence of projector \(\{ [p_n] \}_{n \geq 1} \) such that \(\rho([p_n]x) = +\infty \) and \([p_n] \downarrow_n 0 \). Hence by (3.1) it follows that \(\| [p_n]x \|_0 > 1 \) for all \(n \geq 1 \), which contradicts the continuity of \(\| \cdot \|_0 \).

Sufficiency. Let \(a_\nu \downarrow_{\nu=1}^\infty 0 \) and put \([p_n^\epsilon] = [(a_n - \epsilon a_1)^+] \) for any \(\epsilon > 0 \) and \(n \geq 1 \). It is easily seen that \([p_n^\epsilon] \downarrow_{n=1}^\infty 0 \) for any \(\epsilon > 0 \) and \(a_n = [a_1]a_n = [p_n^\epsilon]a_n + (1 - [p_n^\epsilon])a_n \leq [p_n^\epsilon]a_1 + \epsilon a_1 \).

This implies \(\rho^*([\xi a_n]) \leq \rho^*([\xi [p_n^\epsilon]a_1]) + \rho^*([\xi (1 - [p_n^\epsilon])a_1]) \) for all \(n \geq 1 \) and \(\xi \geq 0 \). In virtue of (5.1) and \([p_n^\epsilon] \downarrow_{n=1}^\infty 0 \), we can find \(n_0 \) (depending on \(\xi \) and \(\epsilon \)) such that \(\rho^*([\xi [p_n^\epsilon]a_1]) < +\infty \), and hence \(\inf_{n \geq 1} \rho^*([\xi a_n]) \leq \rho^*([\xi \epsilon a_1]) \).

Since \(\epsilon \) is arbitrary, \(\lim_{n \to \infty} \rho^*([\xi a_n]) = 0 \) follows. Hence we infer that \(\inf_{n \geq 1} [a_n]_{0} = 0 \) and \(\| \cdot \|_0 \) is continuous in view of Remark 2 in \(\S 3 \). Q.E.D.

Corollary. \(\| \cdot \|_0 \) is continuous, if

\[
(5.2) \quad \rho^*(a_\nu) \to 0 \implies \rho^*(\alpha a_\nu) \to 0 \quad \text{for every } \alpha \geq 0.
\]

From the definition, it is clear that \(s-\lim_{\nu \to \infty} x_\nu = 0 \) implies \(\lim_{\nu \to \infty} \| x_\nu \|_0 = 0 \), if \(\| \cdot \|_0 \) is continuous. Conversely we have, by making use of the well-known method (cf. Theorem 33.4 in [3])

Theorem 5.2. \(\lim_{\nu \to \infty} \| x_\nu \|_0 = 0 \) (or \(\lim_{\nu \to \infty} \| x_\nu \| = 0 \)) implies \(s-\lim_{\nu \to \infty} x_\nu = 0 \), if \(\| \cdot \|_0 \) is complete (i.e. \(\rho^* \) satisfies (p.3)).

If we replace \(\lim_{\nu \to \infty} \| x_\nu \| = 0 \) by \(\lim_{\nu \to \infty} \rho(x_\nu) = 0 \), Theorem 5.2 may fail to be valid in general. By this, reason, we must consider the following condition:

\[
(5.3) \quad \rho^*(x) = 0 \implies x = 0.
\]

Truly we obtain

Theorem 5.3. If \(\rho^* \) satisfies (5.3) and \(\| \cdot \|_0 \) is complete, \(\rho(a_\nu) \to 0 \) implies \(s-\lim_{\nu \to \infty} a_\nu = 0 \).

Proof. We may suppose without loss of generality that \(\rho^* \) is semi-continuous, i.e. \(\rho^*(x) = \sup_{\alpha \in A} \rho^*(x_\alpha) \) for any \(0 \leq x \downarrow_{\alpha \in A} \). If

11) If \(\rho^* \) is not semi-continuous, putting \(\rho_*(x) = \inf \{ \sup_{\alpha \in A} \rho^*(y_\alpha) \} \), we obtain a quasi-modular \(\rho_* \) which is semi-continuous and \(\rho^*(x_\nu) \to 0 \) is equivalent to \(\rho_*(x_\nu) \to 0 \).
\[\rho(a_\nu) \leq \frac{1}{2^\nu} \quad (\nu \geq 1), \]

we can prove by the similar way as in the proof of Lemma 2 that there exists \(\bigcup_{\nu=1}^\infty |a_\nu| \in R \) in virtue of \((\rho.3)\).

Now, since
\[
\rho\left(\bigcup_{\nu \geq \nu}^\infty |a_\nu| \right) \leq \sum_{\nu \geq \nu}^\infty \rho(a_\nu) \leq \frac{1}{2^{\nu-1}}
\]
holds for each \(\nu \geq 1 \), \(\rho \left(\bigcap_{\nu=1}^\infty \left(\bigcup_{\nu \geq \nu}^\infty |a_\nu| \right) \right) = 0 \) and hence (5.3) implies
\[
\bigcap_{\nu=1}^\infty \left(\bigcup_{\nu \geq \nu}^\infty |a_\nu| \right) = 0.
\]
Thus we see that \(\{a_\nu\}_{\nu \geq 1} \) is order-convergent to 0.

For any \(\{b_\nu\}_{\nu \geq 1} \) with \(\rho(b_\nu) \to 0 \), we can find a subsequence \(\{b_\nu'\}_{\nu \geq 1} \) of \(\{b_\nu\}_{\nu \geq 1} \) with \(\rho(b_\nu') \leq \frac{1}{2^\nu} \quad (\nu = 1, 2, \cdots) \). Therefore we have \(s-lim b_\nu = 0 \). Q.E.D.

The latter part of the above proof is quite the same as Lemma 2.1 in [9] (due to S. Yamamuro) concerning the condition (5.2) with respect to (convex) modulars on semi-ordered linear spaces. From Theorem 5.2 and 5.3, we can obtain further the next theorem which is analogous to the above lemma of [9] and considered as the converse of Corollary of Theorem 5.1 at the same time.

Theorem 5.4. If \(\rho^* \) satisfies (5.3) and \(\|\cdot\|_0 \) is complete and continuous, then (5.2) holds.

References

(Received September 30, 1960)