<table>
<thead>
<tr>
<th>Title</th>
<th>ON F-NORMS OF QUASI-MODULAR SPACES</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author(s)</td>
<td>Koshi, Shôzô; Shimogaki, Tetsuya</td>
</tr>
<tr>
<td>Citation</td>
<td>Journal of the Faculty of Science Hokkaido University. Ser. 1 Mathematics = 北海道大学理学部紀要, 15(3-4): 202-218</td>
</tr>
<tr>
<td>Issue Date</td>
<td>1961</td>
</tr>
<tr>
<td>Doc URL</td>
<td>http://hdl.handle.net/2115/56023</td>
</tr>
<tr>
<td>Type</td>
<td>bulletin (article)</td>
</tr>
<tr>
<td>File Information</td>
<td>JFSHIU_15_N3-4_202-218.pdf</td>
</tr>
</tbody>
</table>

Hokkaido University Collection of Scholarly and Academic Papers: HUSCAP
ON F-NORMS OF QUASI-MODULAR SPACES

By
Shôzô KOSHI and Tetsuya SHIMOGAKI

§1. Introduction. Let R be a universally continuous semi-ordered linear space (i.e. a conditionally complete vector lattice in Birkhoff's sense [1]) and ρ be a functional which satisfies the following four conditions:

$(\rho.1)$ $0 \leq \rho(x) = \rho(-x) \leq +\infty$ for all $x \in R$;
$(\rho.2)$ $\rho(x+y) = \rho(x) + \rho(y)$ for any $x, y \in R$ with $x \perp y$;
$(\rho.3)$ If $\sum_{\lambda \in \Lambda} \rho(x_{\lambda}) < +\infty$ for a mutually orthogonal system $\{x_{\lambda}\}_{\lambda \in \Lambda}$, there exists $x_{0} \in R$ such that $x_{0} = \sum_{\lambda \in \Lambda} x_{\lambda}$ and $\rho(x_{0}) = \sum_{\lambda \in \Lambda} \rho(x_{\lambda})$;
$(\rho.4)$ $\varlimsup_{t \to 0} \rho(\xi x) < +\infty$ for all $x \in R$.

Then, ρ is called a quasi-modular and R is called a quasi-modular space.

In the previous paper [2], we have defined a quasi-modular space and proved that if R is a non-atomic quasi-modular space which is semi-regular, then we can define a modular m on R for which every universally continuous linear functional is continuous with respect to the norm defined by the modular m [2; Theorem 3.1].

Recently in [6] J. Musielak and W. Orlicz considered a modular ρ on a linear space L which satisfies the following conditions:

(A.1) $\rho(x) \geq 0$ and $\rho(x) = 0$ if and only if $x = 0$;
(A.2) $\rho(-x) = \rho(x)$;
(A.3) $\rho(\alpha x + \beta y) \leq \rho(x) + \rho(y)$ for every $\alpha, \beta \geq 0$ with $\alpha + \beta = 1$;
(A.4) $\alpha_{n} \to 0$ implies $\rho(\alpha_{n} x) \to 0$ for every $x \in R$;
(A.5) for any $x \in L$ there exists $\alpha > 0$ such that $\rho(\alpha x) < +\infty$.

They showed that L is a quasi-normed space with a quasi-norm $|| \cdot ||_{0}$ defined by the formula;

1) $x \perp y$ means $|x| \cap |y| = 0$.
2) A system of elements $\{x_{\lambda}\}_{\lambda \in \Lambda}$ is called mutually orthogonal, if $x_{\lambda} \perp x_{\gamma}$ for $\lambda \neq \gamma$.
3) For the definition of a modular, see [3].
4) A linear functional f is called universally continuous, if $\inf f(a_{\lambda}) = 0$ for any $a_{\lambda} \downarrow 0$.
5) R is called semi-regular, if for any $x \neq 0$, there exists a universally continuous linear functional f such that $f(x) = 0$.

This modular ρ is a generalization of a modular m in the sense of Nakano [3 and 4]. In the latter, there is assumed that $m(\xi x)$ is a convex function of $\xi \geq 0$ for each $x \in R$.

\[||x||_0 = \inf \left\{ \xi : \rho\left(\frac{1}{\xi} x\right) \leq \xi \right\} \]

and \(||x_n||_0 \to 0 \) is equivalent to \(\rho(ax_n) \to 0 \) for all \(a \geq 0 \).

In the present paper, we shall deal with a general quasi-modular space \(R \) (i.e. without the assumption that \(R \) is non-atomic or semi-regular). The aim of this paper is to construct a quasi-norm on \(R \) and to investigate the condition under which \(R \) is an \(F \)-space with this quasi-norm by making use of the above formula (1.1). Since a quasi-modular \(\rho \) on \(R \) does not satisfy the conditions (A.1), (A.2), (A.4) and (A.5) in general, as is seen by comparing the conditions: (\(\rho.1 \))\(\sim (\rho.4 \) with those of \(\rho [6] \), we can not apply the formula (1.1) directly to \(\rho \) to obtain a quasi-norm. We shall show, however, that we can construct always a quasi-modular \(\rho^* \) which satisfies (A.2)\(\sim (A.5 \) on an arbitrary quasi-modular space \(R \) in \(\S 2 \) (Theorems 2.1 and 2.2). Since \(R \) may include a normal manifold \(R_0 = \{x : x \in R, \rho^*(\xi x) = 0 \text{ for all } \xi \geq 0\} \) and we can not define a quasi-norm on \(R_0 \) in general, we have to exclude \(R_0 \) in order to proceed with the argument further. We shall prove in \(\S 3 \) that a quasi-norm \(|| \cdot ||_0 \) on \(R^+_0 \) defined by \(\rho^* \) according to the formula (1.1) is semi-continuous, and in order that \(R^+_0 \) is an \(F \)-space with \(|| \cdot ||_0 \) (i.e. \(|| \cdot ||_0 \) is complete), it is necessary and sufficient that \(\rho \) satisfies

\((\rho.4') \)

\[\sup_{x \in R} \{ \lim_{a \to 0} \rho(ax) \} < +\infty \]

(\(\text{Theorem 3.2} \)).

In \(\S 4 \), we shall show that we can define another quasi-norm \(|| \cdot ||_1 \) on \(R^+_0 \) which is equivalent to \(|| \cdot ||_0 \) such that \(||x||_0 \leq ||x||_1 \leq 2||x||_0 \) holds for every \(x \in R^+_0 \) (Formulas (4.1) and (4.3)). \(|| \cdot ||_1 \) has a form similar to that of the first norm (due to I. Amemiya) of (convex) modular in the sense of Nakano \([4; \S 83]\). At last in \(\S 5 \) we shall add shortly the supplementary results concerning the relations between \(|| \cdot ||_0 \)-convergence and order-convergence. The matter does not essentially differ from the case of the (convex) modular on semi-ordered linear spaces and the results stated in \(\S 5 \) are already known in those cases \([8]\).

Throughout this paper \(R \) denotes a universally continuous semi-ordered linear space and \(\rho \) a quasi-modular defined on \(R \). For any \(p \in R \), \([p]\) is a projector: \([p]x = \bigcup_{n=1}^{\infty} (n|p| \cap x) \) for all \(x \geq 0 \) and \(1 - [p] \) is a projection operator onto the normal manifold \(N = \{p\}^1 \), that is, \(x = [p]x + (1 - [p])x \).

\(6\) This quasi-norm was first considered by S. Mazur and W. Orlicz \([5]\) and discussed by several authors \([6 \text{ or } 7]\).
§2. The conversion of a quasi-modular. From the definition of a quasi-modular in §1, the following lemma is immediately deduced.

Lemma 1. For any quasi-modular \(\rho \), we have

\[
(2.1) \quad \rho(0) = 0; \\
(2.2) \quad \rho([p]x) \leq \rho(x) \quad \text{for all } p, x \in R; \\
(2.3) \quad \rho([p]x) = \sup_{i \in A} \rho([p_i]x) \quad \text{for any } \ [p_i] \uparrow_{i \in A} [p].
\]

In the argument below, we have to use the additional property of \(\rho \):

\[
(\rho.5) \quad \rho(x) \leq \rho(y) \quad \text{if } |x| \leq |y|, \ x, y \in R,
\]

which is not valid for an arbitrary \(\rho \) in general.

The next theorem, however, shows that we may suppose without loss of generality that a quasi-modular \(\rho \) satisfies \((\rho.5)\).

Theorem 2.1. Let \(R \) be a quasi-modular space with quasi-modular \(\rho \). Then there exists a quasi-modular \(\rho' \) for which \((\rho.5)\) is valid.

Proof. We put for every \(x \in R \),

\[
(2.4) \quad \rho'(x) = \sup_{0 \leq |y| \leq |x|} \rho(y).
\]

It is clear that \(\rho' \) satisfies the conditions \((\rho.1), (\rho.2) \) and \((\rho.5)\).

Let \(\{x_i\}_{i \in A} \) be an orthogonal system such that \(\sum_{i \in A} \rho'(x_i) < +\infty \), then

\[
\sum_{i \in A} \rho(x_i) < +\infty,
\]

because

\[
\rho(x) \leq \rho'(x) \quad \text{for all } x \in R.
\]

We have

\[
x_0 = \sum_{i \in A} x_i \in R
\]

and

\[
\rho(x_0) = \sum_{i \in A} \rho(x_i) \quad \text{in virtue of } (\rho.3).
\]

For such \(x_0 \),

\[
\rho'(x_0) = \sup_{0 \leq |y| \leq |x_0|} \rho(y) = \sup_{0 \leq |y| \leq |x_0|} \sum_{i \in A} \rho([x_i]y)
\]

\[
= \sum_{i \in A} \sup_{0 \leq |y| \leq |x_0|} \rho([x_i]y) = \sum_{i \in A} \rho'(x_i)
\]

holds, i.e. \(\rho' \) fulfils \((\rho.3)\).

If \(\rho' \) does not fulfil \((\rho.4)\), we have for some \(x_0 \in R \),

\[
\rho'(\frac{1}{n} x_0) = +\infty \quad \text{for all } n \geq 1.
\]

By \((\rho.2)\) and \((\rho.4)\), \(x_0 \) can not be written as \(x_0 = \sum_{\nu=1}^{\xi} \xi \nu e_{\nu} \), where \(e_{\nu} \) is an atomic element for each \(\nu \) with \(1 \leq \nu \leq \xi \), namely, we can decompose \(x_0 \) into
an infinite number of orthogonal elements. First we decompose into

\[x_0 = x_1 + x'_1, \quad x_1 \perp x'_1, \]

where \(\rho'(\frac{1}{\nu} x_1) = +\infty \) \((\nu = 1, 2, \cdots)\) and \(\rho'(x'_1) > 1 \). For the definition of \(\rho' \), there exists \(0 \leq y_1 \leq |x'_1| \) such that \(\rho(y_1) \geq 1 \). Next we can also decompose \(x_1 \) into

\[x_1 = x_2 + x'_2, \quad x_2 \perp x'_2, \]

where

\[\rho'(\frac{1}{\nu} x_2) = +\infty \] \((\nu = 1, 2, \cdots)\)

and

\[\rho'(\frac{1}{2} x'_2) > 2. \]

There exists also \(0 \leq y_2 \leq |x'_2| \) such that \(\rho\left(\frac{1}{2} y_2\right) \geq 2 \). In the same way, we can find by induction an orthogonal sequence \(\{y_{\nu}\}_{\nu=1,2}, \ldots \) such that

\[\rho\left(\frac{1}{\nu} y_{\nu}\right) \geq \nu \]

and

\[0 \leq |y_{\nu}| \leq |x| \]

for all \(\nu \geq 1 \).

Since \(\{y_{\nu}\}_{\nu=1,2}, \ldots \) is order-bounded, we have in virtue of (2.3)

\[y_0 = \sum_{\nu=1}^{\infty} y_{\nu} \in R \]

and

\[\rho\left(\frac{1}{\nu} y_0\right) \geq \rho\left(\frac{1}{\nu} y_{\nu}\right) \geq \nu, \]

which contradicts \((\rho.4)\). Therefore \(\rho' \) has to satisfy \((\rho.4)\). Q.E.D.

Hence, in the sequel, we denote by \(\rho' \) a quasi-modular defined by the formula (2.4).

If \(\rho \) satisfies \((\rho.5)\), \(\rho \) does also \((A.3)\) in §1:

\[\rho(\alpha x + \beta y) \leq \rho(x) + \rho(y) \]

for \(\alpha, \beta \geq 0 \) with \(\alpha + \beta = 1 \).

Because, putting \([p] = [(|x| - |y|)^+]\), we obtain
\[\rho(\alpha x + \beta y) \leq \rho(\alpha |x| + \beta |y|)\]
\[\leq \rho(\alpha \lfloor p \rfloor |x| + \alpha (1 - \lfloor p \rfloor) |y| + \beta \lfloor p \rfloor |x| + (1 - \lfloor p \rfloor) \beta |y|)\]
\[= \rho(\lfloor p \rfloor |x| + (1 - \lfloor p \rfloor) |y|)\]
\[= \rho(\lfloor p \rfloor x) + \rho((1 - \lfloor p \rfloor) y)\]
\[\leq \rho(x) + \rho(y).\]

Remark 1. As is shown above, the existence of \(\rho'\) as a quasi-modular depends essentially on the condition (\(\rho.4\)). Thus, in the above theorems, we cannot replace (\(\rho.4\)) by the weaker condition:

(\(\rho.4''\)) for any \(x \in \mathbb{R}\), there exists \(\alpha \geq 0\) such that \(\rho(\alpha x) < +\infty\).

In fact, the next example shows that there exists a functional \(\rho_0\) on a universally continuous semi-ordered linear space satisfying (\(\rho.1\)), (\(\rho.2\)), (\(\rho.3\)) and (\(\rho.4''\)), but does not (\(\rho.4\)). For this \(\rho_0\), we obtain

\[\rho_0(x) = \sup_{|y| \leq |x|} \rho_0(y) = +\infty\]

for all \(x \neq 0\).

Example. \(L_1[0,1]\) is the set of measurable functions \(x(t)\) which are defined in \([0,1]\) with

\[\int_{0}^{1} |x(t)| dt < +\infty.\]

Putting \(\rho_0(x) = \rho_0(x(t)) = \int_{0}^{1} |x(t)| dt + \sum_{i=1}^{\infty} i \text{mes} \left\{ t : x(t) = \frac{1}{i} \right\}\),

we have an example satisfying the above conditions.

In order to define the quasi-norm, we need one more additional condition: (A.4), namely,

(\(\rho.6\)) \[\lim_{\xi \to 0} \rho(\xi x) = 0\] for all \(x \in \mathbb{R}\).

A quasi-modular space becomes, as is shown below, always a quasi-normed space excluding the trivial part, but not an F-space in general. This fact is based upon the following Theorems 2.2 and 2.3.

Theorem 2.2. Let \(\rho\) be a quasi-modular on \(\mathbb{R}\). We can find a functional \(\rho^*\) which satisfies (\(\rho.1\))~(\(\rho.6\)) except (\(\rho.3\)).

Proof. In virtue of Theorem 2.1, there exists a quasi-modular \(\rho'\) which satisfies (\(\rho.5\)). Now we put

(2.5) \[d(x) = \lim_{\xi \to 0} \rho'(\xi x).\]

It is clear that \(0 \leq d(x) = d(|x|) < +\infty\) for all \(x \in \mathbb{R}\) and
Hence, putting
\[(2.6) \quad \rho^*(x) = \rho'(x) - d(x) \quad (x \in R),\]
we can see easily that \((\rho.1), (\rho.2), (\rho.4)\) and \((\rho.6)\) hold true for \(\rho^*\), since
\[d(x) \leq \rho'(x)\]
and
\[d(\alpha x) = d(x)\]
for all \(x \in R\) and \(\alpha > 0\).

We need to prove that \((\rho.5)\) is true for \(\rho^*\). First we have to note
\[(2.7) \quad \inf_{\lambda \in A} d([p_{\lambda}]x) = 0\]
for any \([p_{\lambda}] \downarrow_{\lambda \in A} 0\). In fact, if we suppose the contrary, we have
\[\inf_{\lambda \in A} d([p_{\lambda}]x_0) \geq \alpha > 0\]
for some \([p_{\lambda}] \downarrow_{\lambda \in A} 0\) and \(x_0 \in R\).

Hence,
\[\rho'(\frac{1}{\nu}[p_{\lambda}]x_0) \geq d([p_{\lambda}]x_0) \geq \alpha\]
for all \(\nu \geq 1\) and \(\lambda \in A\). Thus we can find a subsequence \(\{\lambda_n\}_{n \geq 1}\) of \(\{\lambda\}_{\lambda \in A}\)
such that
\[[p_{\lambda_n}] \geq [p_{\lambda_{n+1}}]\]
and
\[\rho'(\frac{1}{n}([p_{\lambda_n}] - [p_{\lambda_{n+1}}])x_0) \geq \frac{\alpha}{2}\]
for all \(n \geq 1\) in virtue of \((\rho.2)\) and \((2.3)\). This implies
\[\rho'(\frac{1}{n}x_0) \geq \sum_{m \geq n} \rho'(\frac{1}{m}([p_{\lambda_m}] - [p_{\lambda_{m+1}}])x_0) = +\infty,\]
which is inconsistent with \((\rho.4)\). Secondly we shall prove
\[(2.8) \quad d(x) = d(y), \quad \text{if } [x] = [y].\]

We put \([p_n] = [(|x| - n|y|)^+]\) for \(x, y \in R\) with \([x] = [y]\) and \(n \geq 1\). Then,
\([p_n] \downarrow_{n=1}^\infty 0\) and \(\inf_{n=1,2,...} d([p_n]x) = 0\) by \((2.7)\). Since \((1 - [p_n])n |y| \geq (1 - [p_n])|x|\)
and
\[d(\alpha x) = d(x)\]
for \(\alpha > 0\) and \(x \in R\), we obtain
\[
d(x) = d([p_n]x) + d((1-[p_n])x) \\
\leq d([p_n]x) + d(n(1-[p_n])y) \\
\leq d([p_n]x) + d(y).
\]

As \(n \) is arbitrary, this implies
\[
d(x) \leq \inf_{n=1,2,\ldots} d([p_n]x) + d(y),
\]
and also \(d(x) \leq d(y) \). Therefore we conclude that (2.8) holds.

If \(|x| \geq |y| \), then
\[
\rho^*(x) = \rho^*([y]x) + \rho^*([x] - [y]x) \\
= \rho'(y)(1) - d([y]x) + \rho^*([x] - [y]x) \\
\geq \rho'(y) - d(y) + \rho^*([x] - [y]x) \\
\geq \rho^*(y).
\]

Thus \(\rho^* \) satisfies (\(\rho.5 \)).

Theorem 2.3. \(\rho^* \) (which is constructed from \(\rho \) according to the formulas (2.4), (2.5) and (2.6)) satisfies (\(\rho.3 \)) (that is, \(\rho^* \) is a quasi-modular), if and only if \(\rho \) satisfies

(\(\rho.4' \)) \[
\sup_{x \in R} \{ \lim_{\xi \to 0} \rho'(\xi x) \} = K < +\infty.
\]

Proof. Let \(\rho \) satisfy (\(\rho.4 \)). We need to prove

(2.9) \[
\sup_{x \in R} d(x) = \sup_{x \in R} \{ \lim_{\xi \to 0} \rho'(\xi x) \} = K' < +\infty,
\]

where
\[
\rho'(x) = \sup_{0 \leq |y| \leq |x|} \rho(y).
\]

Since \(\rho' \) is also a quasi-modular, Lemma 2 in [2] or [8] can be applicable, if we put \(n_0(x) = \rho(x) \) and \(n_\nu(x) = \rho'(\frac{1}{\nu}x) \) for \(\nu \geq 1 \) and \(x \in R \). Hence we can find positive numbers \(\epsilon, x, x_{0}, \) a natural number \(\nu_0 \) and a finite dimensional normal manifold \(N_0 \) such that \(x \in N_0^\perp \) with
\[
\rho(x) \leq \epsilon \quad \text{implies} \quad \rho'(\frac{1}{\nu_0}x) \leq x.
\]

In \(N_0 \), we have obviously
\[
\sup_{x \in N_0} \{ \lim_{\xi \to 0} \rho'(\xi x) \} = \gamma_0 < +\infty.
\]

If \(\epsilon \leq 2K \), for any \(x_0 \in N_0^\perp \), we can find \(\alpha_0 > 0 \) such that \(\rho(\alpha x_0) \leq 2K \) for all \(0 \leq x \leq \alpha_0 \) by (\(\rho.4' \)), and hence there exists always an orthogonal decomposition such that
\[\alpha_0 x_0 = x_1 + \cdots + x_n + y_1 + \cdots + y_m + z \]

where \(\frac{\varepsilon}{2} < \rho(x_i) \leq \varepsilon \) for every \(i = 1, 2, \ldots, n \), \(y_j \) is an atomic element with \(\rho(y_j) > \varepsilon \) for every \(j = 1, 2, \ldots, m \) and \(\rho(z) \leq \frac{\varepsilon}{2} \). From above, we get \(n \leq \frac{4K}{\varepsilon} \) and \(m \leq \frac{2K}{\varepsilon} \). This yields

\[
\rho\left(\frac{1}{\nu_0} \alpha_0 x_0\right) \leq \sum_{i=1}^{n} \rho\left(\frac{1}{\nu_0} x_i\right) + \sum_{j=1}^{m} \rho'(y_j) + \rho' \frac{z}{\nu_0}
\]

\[
\leq n \gamma + \sum_{j=1}^{m} \rho'(y_j) + \rho' \frac{z}{\nu_0}
\]

\[
\leq \frac{4K}{\varepsilon} \gamma + \frac{2K}{\varepsilon} \left\{ \sup_{0 \leq a \leq a_0} \rho(\alpha x) \right\} + \gamma.
\]

Hence, we obtain

\[
\lim_{\xi \rightarrow 0} \rho'(\xi x_0) \leq \rho'\left(\frac{\alpha_0}{\nu_0} x_0\right) \leq \left(\frac{4K + \varepsilon}{\varepsilon}\right) \gamma + \left(\frac{4K^2}{\varepsilon}\right)
\]

in case of \(\varepsilon \leq 2K \). If \(2K \leq \varepsilon \), we have immediately for \(x \in N_0^+ \)

\[
\lim_{\xi \rightarrow 0} \rho'(\xi x) \leq \gamma.
\]

Therefore, we obtain

\[
\sup_{x \in R} \{ \lim_{\xi \rightarrow 0} \rho'(\xi x) \} \leq \gamma'
\]

where

\[
\gamma' = \frac{4K + \varepsilon}{\varepsilon} + \frac{4K^2}{\varepsilon} + \gamma_0.
\]

Let \(\{x_\lambda\}_{\lambda \in A} \) be an orthogonal system with \(\sum_{\lambda \in A} \rho^*(x_\lambda) < +\infty \). Then for arbitrary \(\lambda_1, \ldots, \lambda_k \in A \), we have

\[
\sum_{i=1}^{k} d(x_{\lambda_i}) = d(\sum_{i=1}^{k} x_{\lambda_i}) = \lim_{\xi \rightarrow 0} \rho'(\xi \sum_{i=1}^{k} x_{\lambda_i}) \leq \gamma',
\]

which implies \(\sum_{\lambda \in A} d(x_\lambda) \leq \gamma' \). It follows that

\[
\sum_{\lambda \in A} \rho'(x_\lambda) = \sum_{\lambda \in A} \rho^*(x_\lambda) + \sum_{\lambda \in A} d(x_\lambda) < +\infty,
\]

which implies \(x_0 = \sum_{\lambda \in A} x_\lambda \in R \) and \(\sum_{\lambda \in A} \rho^*(x_\lambda) = \rho^*(x_0) \) by (\(\rho.4 \)) and (2.7). Therefore \(\rho^* \) satisfies (\(\rho.3 \)).

On the other hand, suppose that \(\rho^* \) satisfies (\(\rho.3 \)) and \(\sup_{x \in R} d(x) = +\infty \). Then we can find an orthogonal sequence \(\{x_i\}_{i \geq 1} \) such that

\[
\sum_{i=1}^{n} d(x_i) = d(\sum_{i=1}^{n} x_i) \geq \mu
\]
for all $\mu \geqq 1$ in virtue of (2.8) and the orthogonal additivity of d. Since
$$\lim_{t \to 0} \rho^*(\xi x) = 0,$$
there exists $\{\alpha_{\nu}\}_{\nu \geqq 1}$ with $0 < \alpha_{\nu}$ ($\nu \geqq 1$) and
$$\sum_{\nu=1}^{\infty} \rho^*(\alpha_{\nu} x_{\nu}) < +\infty.$$
It follows that $x_0 = \sum_{\nu=1}^{\infty} \alpha_{\nu} x_{\nu} \in R$ and $d(x_0) = \sum_{\nu=1}^{\infty} d(\alpha_{\nu} x_{\nu})$ from $(\rho.3)$. For such
x_0, we have for every $\xi \geqq 0$,
$$\rho'(\xi x) \geqq \sum_{\nu=1}^{\infty} d(x_{\nu}) = +\infty,$$
which is inconsistent with $(\rho.4)$. Therefore we have
$$\sup_{x \in R} \rho'(\xi x) \leqq \sup_{x \in R} d(x) < +\infty.$$
Q.E.D.

§3. Quasi-norms. We denote by R_0 the set:
$$R_0 = \{ x : x \in R, \rho^*(nx) = 0 \text{ for all } n \geqq 1 \},$$
where ρ^* is defined by the formula (2.6). Evidently R_0 is a semi-normal manifold7) of R. We shall prove that R_0 is a normal manifold of R. In fact, let $x = \bigcup_{\lambda \in \Lambda} x_{\lambda}$ with $R_0 \ni x_{\lambda} \geqq 0$ for all $\lambda \in \Lambda$. Putting
$$[p_{n,1}] = [(2nx_{\lambda} - nx)^+]$$
we have
$$[p_{n,1}] \uparrow_{\lambda \in \Lambda} [x] \text{ and } 2n[p_{n,1}] x_{\lambda} \geqq [p_{n,1}] nx,$$
which implies $\rho^*(n[p_{n,1}] x) = 0$ and $\sup_{\lambda \in \Lambda} \rho^*(n[p_{n,1}] x) = \rho^*(nx) = 0$. Hence, we obtain
$x \in R_0$, that is, R_0 is a normal manifold of R.

Therefore, R is orthogonally decomposed into
$$R = R_0 \oplus R_0^\perp.$$
In virtue of the definition of ρ^*, we infer that for any $p \in R_0$, $[p] R_0$ is universally complete, i.e. for any orthogonal system $\{x_{\lambda}\}_{\lambda \in \Lambda}$ ($x_{\lambda} \in [p] R_0$), there exists $x_0 = \sum_{\lambda \in \Lambda} x_{\lambda} \in [p] R$. Hence we can also verify without difficulty that R_0 has no universally continuous linear functional except 0, if R_0 is non-atomic. When R_0 is discrete, it is isomorphic to $S(\Lambda)^{\prime\prime}$-space. With respect to such a universally complete space R_0, we can not always construct a linear metric topology on R_0, even if R_0 is discrete.

In the following, therefore, we must exclude R_0 from our consideration. Now we can state the theorems which we aim at.

7) A linear manifold S is said to be semi-normal, if $a \in S, |b| \leqq |a|, b \in R$ implies $b \in S$. Since R is universally continuous, a semi-normal manifold S is normal if and only if $\bigcup_{x \in R} x_{\lambda} \in S(\lambda \in A)$ implies $\bigcup_{x \in R} x_{\lambda} \in S$.

8) This means that $x \in R$ is written by $x = y + z, y \in R_0$ and $z \in R_0^\perp$.

9) $S(\Lambda)$ is the set of all real functions defined on Λ.

7) A linear manifold S is said to be semi-normal, if $a \in S, |b| \leqq |a|, b \in R$ implies $b \in S$. Since R is universally continuous, a semi-normal manifold S is normal if and only if $\bigcup_{x \in R} x_{\lambda} \in S(\lambda \in A)$ implies $\bigcup_{x \in R} x_{\lambda} \in S$.

8) This means that $x \in R$ is written by $x = y + z, y \in R_0$ and $z \in R_0^\perp$.

9) $S(\Lambda)$ is the set of all real functions defined on Λ.

S. Koshi and T. Shimogaki
Theorem 3.1. Let R be a quasi-modular space. Then R_{0}^{\perp} becomes a quasi-normed space with a quasi-norm $\|\cdot\|_{0}$ which is semi-continuous, i.e. $\sup_{i \in A} \| x_{i} \|_{0} = \| x \|_{0}$ for any $0 \leq x_{i} \uparrow_{i \in A} x$.

Proof. In virtue of Theorems 2.1 and 2.2, ρ^{*} satisfies $(\rho.1)$~$(\rho.6)$ except $(\rho.3)$. Now we put

$$(3.1) \quad \| x \|_{0} = \inf \left\{ \xi ; \rho^{*}(\frac{1}{\xi} x) \leq \xi \right\}.$$

Then,

i) $0 \leq \| x \|_{0} = \| -x \|_{0} < \infty$ and $\| x \|_{0} = 0$ is equivalent to $x = 0$; follows from $(\rho.1)$, $(\rho.6)$, (2.1) and the definition of R_{0}^{\perp}.

ii) $\| x + y \|_{0} \leq \| x \|_{0} + \| y \|_{0}$ for any $x, y \in R$; follows also from (A.3) which is deduced from $(\rho.4)$.

iii) $\lim_{\alpha_{n \uparrow} > 0} \| \alpha_{n} x \|_{0} = 0$ and $\lim_{\alpha_{n \uparrow} > 0} \| \alpha_{n} x \|_{0} = 0$; is a direct consequence of $(\rho.5)$. At last we shall prove that $\| \cdot \|_{0}$ is semi-continuous. From ii) and iii), it follows that $\lim_{\alpha_{n \uparrow} > 0} \| \alpha_{n} x \|_{0} = \| \alpha_{n} x \|_{0}$ for all $x \in R_{0}^{\perp}$ and $\alpha_{n} \geq 0$. If $x \in R_{0}^{\perp}$ and $[p_{n}] \uparrow_{n \in A} [p]$, for any positive number ξ with $\| [p] x \|_{0} > \xi$ we have $\rho^{*}(\frac{1}{\xi} [p] x) > \xi$, which implies $\sup_{\lambda \in \Lambda} \rho^{*}(\frac{1}{\xi} [p_{\lambda}] x) > \xi$ and hence $\sup_{\lambda \in \Lambda} \| [p_{\lambda}] x \|_{0} \geq \xi$. Thus we obtain

$$\sup_{\lambda \in \Lambda} \| [p_{\lambda}] x \|_{0} = \| [p] x \|_{0}, \quad \text{if} \quad [p_{n}] \uparrow_{n \in A} [p].$$

Let $0 \leq x_{1} \uparrow_{n \in A} x$. Putting

$$[p_{n,1}] = \left[(x_{1} - (1 - \frac{1}{n}) x)^{+} \right]$$

we have

$$[p_{n,1}] \uparrow_{n \in A} [x] \quad \text{and} \quad [p_{n,1}] x_{1} \geq [p_{n,1}] \left(1 - \frac{1}{n} \right) x \quad (n \geq 1).$$

As is shown above, since

$$\sup_{n \in A} \| [p_{n,1}] x_{1} \|_{0} \geq \sup_{n \in A} \| [p_{n,1}] \left(1 - \frac{1}{n} \right) x \|_{0} = \| (1 - \frac{1}{n}) x \|_{0},$$

we have

$$\sup_{n \in A} \| x_{1} \|_{0} \geq \| (1 - \frac{1}{n}) x \|_{0}$$

and also $\sup_{n \in A} \| x_{1} \|_{0} \geq \| x \|_{0}$. As the converse inequality is obvious by iv), $\| \cdot \|_{0}$ is semi-continuous. Q.E.D.

Remark 2. By the definition of (3.1), we can see easily that $\lim_{n \in \infty} \| x_{n} \|_{0} = 0$ if and only if $\lim \rho(\xi x_{n}) = 0$ for all $\xi \geq 0$.

In order to prove the completeness of quasi-norm $\|\cdot\|_0$, the next Lemma is necessary.

Lemma 2. Let $p_{n,\nu}$, $x_{\nu} \geq 0$ and $a \geq 0$ ($n, \nu = 1, 2, \cdots$) be the elements of R_0^\perp such that

(3.2) $[p_{n,\nu}] \uparrow_{\nu=1}^{\infty}[p_n]$ with $\bigcap_{n=1}^{\infty}[p_n]a = [p_0]a = 0$;

(3.3) $[p_{n,\nu}]x_{\nu} \geq n [p_{n,\nu}]a$ for all $n, \nu \geq 1$.

Then $\{x_{\nu}\}_{\nu \geq 1}$ is not a Cauchy sequence of R_0^\perp with respect to $\|\cdot\|_0$.

Proof. We shall show that there exist a sequence of projectors $[q_m] \downarrow_{m=1}^{\infty}(m \geq 1)$ and sequences of natural numbers ν_m, n_m such that

(3.4) $\| [q_m]a \|_0 > \frac{\delta}{2}$ and $[q_m]x_{\nu_m} \geq n_m [q_m]a$ ($m = 1, 2, \cdots$) and

(3.5) $n_m [q_m]a \geq [q_m]x_{\nu_{m-1}}$, $n_{m+1} > n_m$ ($m = 2, 3, \cdots$),

where $\delta = \| [p_0]a \|_0$.

In fact, we put $n_1 = 1$. Since $[p_{n,\nu}[p_0] \uparrow_{\nu=1}^{\infty}[p_0]$ and $\|\cdot\|_0$ is semi-continuous, we can find a natural number ν_1 such that

$$\| [p_{n,\nu_1}[p_0]a \|_0 > \frac{\| [p_0]a \|_0}{2} = \frac{\delta}{2}. $$

We put $[q_1] = [p_{n,\nu_1}[p_0]$. Now, let us assume that $[q_m], \nu_m, n_m (m = 1, 2, \cdots, k)$ have been taken such that (3.4) and (3.5) are satisfied.

Since $\left((na - x_{\nu_k})^+ \right) \uparrow_{n=1}^{\infty} [a]$ and $\| [q_k]a \|_0 > \frac{\delta}{2}$, there exists n_{k+1} with

$$\| (n_{k+1}a - x_{\nu_k})^+[q_k]a \|_0 > \frac{\delta}{2}. $$

For such n_{k+1}, there exists also a natural number ν_{k+1} such that

$$\| [p_{n_{k+1}, \nu_{k+1}}(n_{k+1}a - x_{\nu_k})^+[q_k]a \|_0 > \frac{\delta}{2}. $$

in virtue of (3.2) and semi-continuity of $\|\cdot\|_0$. Hence we can put

$$[q_{k+1}] = [p_{n_{k+1}, \nu_{k+1}}(n_{k+1}a - x_{\nu_k})^+[q_k],$$

because

$$[q_{k+1}] \leq [q_k], \| [q_{k+1}]a \| > \frac{\delta}{2}, \ [q_{k+1}]x_{\nu_k} \geq n_{k+1} [q_{k+1}]a$$

by (3.3) and $[q_{k+1}]n_{k+1}a \geq [q_{k+1}]x_{\nu_k}$ by (3.5).

For the sequence thus obtained, we have for every $k \geq 3$
On F-Norms of Quasi-Modular Spaces

\[\| x_{\nu_{k+1}} - x_{\nu_{k-1}} \|_0 \geq \| [q_{k+1}](x_{\nu_{k+1}} - x_{\nu_{k-1}}) \|_0 \geq \| n_{k+1}[q_{k+1}]a - n_{k}[q_{k+1}]a \|_0 \geq \| [q_{k+1}]a_0 \|_0 \geq \frac{\delta}{2}, \]

since \([q_{k+1}] \leq [q_k] \leq [(n_{k}a - x_{\nu-1})^+] \) implies \([q_{k+1}]n_{k}a \geq [q_{k+1}]x_{\nu_{k-1}} \) by (3.4). It follows from the above that \(\{ x_{\nu} \}_{\nu \geq 1} \) is not a Cauchy sequence.

Theorem 3.2. Let \(R \) be a quasi-modular space with quasi-modular \(\rho \). Then \(R^{\perp}_{0} \) is an F-space with \(\| \cdot \|_0 \) if and only if \(\rho \) satisfies \(\rho^{4}' \).

Proof. If \(\rho \) satisfies \(\rho^{4}' \), \(\rho^{\ast} \) is a quasi-modular which fulfills also \(\rho^{5} \) and \(\rho^{6} \) in virtue of Theorem 2.3. Since \(\| x \|_0 = \inf \{ \xi ; \rho^{\ast}(\frac{x}{\xi}) \leq \xi, \xi > 0 \} \) is a quasi-norm on \(R^{\perp}_{0} \), we need only to verify completeness of \(\| \cdot \|_0 \). At first let \(\{ x_{\nu} \}_{\nu \geq 1} \subset R^{\perp}_{0} \) be a Cauchy sequence with \(0 \leq x_{\nu} \uparrow_{\nu=1,2,\ldots} \). Since \(\rho^{\ast} \) satisfies \(\rho^{3} \), there exists \(0 \leq x_{0} \in R^{\perp}_{0} \) such as is shown in the proof of Theorem 2.3.

Putting \([p_{n,v}] = [(x_{\nu} - nx_{0})^+] \) and \(\bigcup_{v=1}^{\infty}[p_{n,v}] = [p_{n}] \), we obtain

\[(3.6) \quad [p_{n,v}]x_{\nu} \geq n[p_{n,v}]x_{0} \quad \text{for all } n, v \geq 1 \]

and \([p_{n}] \downarrow_{n=1}^{\infty} 0 \). Since \(\{ x_{\nu} \}_{\nu \geq 1} \) is a Cauchy sequence, we have in virtue of Lemma 2, \(\bigcap_{n=1}^{\infty}[p_{n}] = 0 \), that is, \(\bigcup_{n=1}^{\infty}([x_{0}] - [p_{n}]) = [x_{0}] \). And

\[(1 - [p_{n,v}]) \geq (1 - [p_{n}]) \quad (n, v \geq 1) \]

implies

\[n(1 - [p_{n,v}])x_{0} \geq (1 - [p_{n}])x_{v} \geq 0. \]

Hence we have

\[y_{n} = \bigcup_{v=1}^{\infty} (1 - [p_{n,v}])x_{v} \in R^{\perp}_{0}, \]

because \(R^{\perp}_{0} \) is universally continuous. As \(\{ x_{\nu} \}_{\nu \geq 1} \) is a Cauchy sequence, we obtain from the triangle inequality of \(\| \cdot \|_0 \)

\[\gamma = \sup_{\nu \geq 1} \| x_{\nu} \|_0 < +\infty, \]

which implies

\[\| y_{n} \|_0 = \sup_{\nu \geq 1} \| (1 - [p_{n,v}])x_{v} \|_0 \leq \gamma \]

for every \(n \geq 1 \) by semi-continuity of \(\| \cdot \|_0 \). We put \(z_{1} = y_{1} \) and \(z_{n} = y_{n} - y_{n-1} \) \((n \geq 2) \). It follows from the definition of \(y_{n} \) that \(\{ z_{\nu} \}_{\nu \geq 1} \) is an orthogonal sequence with \(\| \sum_{\nu=1}^{n} z_{\nu} \|_0 = \| y_{n} \|_0 \leq \gamma \). This implies
\[
\sum_{\nu=1}^{n} \rho^{*}\left(\frac{z_{\nu}}{1+\gamma}\right) = \rho^{*}\left(\frac{y_{n}}{1+\gamma}\right) \leq \gamma
\]
for all \(n \geq 1\) by the formula (3.1). Then \((\rho.3)\) assures the existence of \(z = \sum_{\nu=1}^{\infty} z_{\nu} = \bigcup_{\nu=1}^{\infty} y_{\nu}\). This yields \(z = \bigcup_{\nu=1}^{\infty} x_{\nu}\). Truly, it follows from

\[
z = \bigcup_{n=1}^{\infty} y_{n} = \bigcup_{n=1}^{\infty} \bigcup_{\nu=1}^{\infty} (1 - [p_{n}]) x_{\nu} = \bigcup_{\nu=1}^{\infty} \bigcup_{n=1}^{\infty} [x_{0}] x_{\nu} = \bigcup_{\nu=1}^{\infty} x_{\nu}.
\]

By semi-continuity of \(\|\cdot\|_{0}\), we have

\[
\|z - x_{\nu}\|_{0} \leq \sup_{\mu \geq \nu} \|x_{\mu} - x_{\nu}\|_{0}
\]
and furthermore \(\lim_{\nu \to \infty} \|z - x_{\nu}\|_{0} = 0\).

Secondly let \(\{x_{\nu}\}_{\nu \geq 1}\) be an arbitrary Cauchy sequence of \(R_{0}^{+}\). Then we can find a subsequence \(\{y_{\nu}\}_{\nu \geq 1}\) of \(\{x_{\nu}\}_{\nu \geq 1}\) such that

\[
\|y_{\nu+1} - y_{\nu}\|_{0} \leq \frac{1}{2^{\nu}}
\]
for all \(\nu \geq 1\).

This implies

\[
\|\sum_{\nu=m}^{n} y_{\nu+1} - y_{\nu}\|_{0} \leq \sum_{\nu=m}^{n} \|y_{\nu+1} - y_{\nu}\|_{0} \leq \frac{1}{2^{n-m}}
\]
for all \(n > m \geq 1\).

Putting \(z_{n} = \sum_{\nu=1}^{n} |y_{\nu+1} - y_{\nu}|\), we have a Cauchy sequence \(\{z_{n}\}_{n \geq 1}\) with \(0 \leq z_{n} \uparrow \infty\).

Then by the fact proved just above,

\[
z_{0} = \bigcup_{n=1}^{\infty} z_{n} = \sum_{\nu=1}^{\infty} |y_{\nu+1} - y_{\nu}| \in R_{0}^{+}
\]
and \(\lim_{n \to \infty} \|z_{0} - z_{n}\|_{0} = 0\).

Since \(\sum_{\nu=1}^{\infty} |y_{\nu+1} - y_{\nu}|\) is convergent, \(y_{1} + \sum_{\nu=1}^{\infty} (y_{\nu+1} - y_{\nu})\) is also convergent and

\[
\|y_{1} + \sum_{\nu=1}^{\infty} (y_{\nu+1} - y_{\nu}) - y_{n}\|_{0} = ||\sum_{\nu=1}^{\nu} (y_{\nu+1} - y_{\nu})||_{0} \leq \|z_{0} - z_{n}\|_{0} \to 0.
\]

Since \(\{y_{\nu}\}_{\nu \geq 1}\) is a subsequence of the Cauchy sequence \(\{x_{\nu}\}_{\nu \geq 1}\), it follows that

\[
\lim_{\nu \to \infty} \|y_{1} + \sum_{\nu=1}^{\infty} (y_{\nu+1} - y_{\nu}) - x_{\nu}\|_{0} = 0.
\]

Therefore \(\|\cdot\|_{0}\) is complete in \(R_{0}^{+}\), that is, \(R_{0}^{+}\) is an F-space with \(\|\cdot\|_{0}\).

Conversely if \(R_{0}^{+}\) is an F-space, then for any orthogonal sequence \(\{x_{\nu}\}_{\nu \geq 1} \in R_{0}^{+}\), we have \(\sum_{\nu=1}^{\infty} \alpha_{\nu} x_{\nu} \in R_{0}^{+}\) for some real numbers \(\alpha_{\nu} > 0\) (for all \(\nu \geq 1\)).

Hence we can see that \(\sup_{x \in \mathbb{R}} d(x) < +\infty\) by the same way applied in Theorem 2.1. It follows that \(\rho\) must satisfy \((\rho.4')\). Q.E.D.

Since \(R_{0}\) contains a normal manifold which is universally complete, if \(R_{0} \neq 0\), we can conclude directly from Theorems 3.1 and 3.2.
Corollary. Let R be a quasi-modular space which includes no universally complete normal manifold. Then R becomes a quasi-normed space with a quasi-norm $\|\cdot\|_0$ defined by (3.1) and R becomes an F-space with $\|\cdot\|_0$ if and only if ρ fulfills (\rho.4').

§4. Another Quasi-norm. Let L be a modular space in the sense of Musielak and Orlicz (§1). Here we put for $x \in L$

\[(4.1) \quad \|x\|_1 = \inf_{\xi > 0} \left\{ \frac{1}{\xi} + \rho(\xi x) \right\} \]

and show that $\|\cdot\|_1$ is also a quasi-norm on L and

\[(4.2) \quad \|x\|_0 \leq \|x\|_1 \leq 2 \|x\|_0 \quad \text{for all } x \in L \]

hold, where $\|\cdot\|_0$ is a quasi-norm defined by the formula (1.1).

From (A.1), (A.2) and (A.5), it follows that $0 \leq \|x\|_1 = \|-x\|_1 < +\infty \quad (x \in L)$ and that $\|x\|_1 = 0$ is equivalent to $x = 0$. Since $\alpha_n \downarrow_{n=1}^\infty 0$ implies $\lim n \rightarrow \infty \rho(\alpha_n x) = 0$ for each $x \in L$ and $\lim n \rightarrow \infty \|x_n\|_1 = 0$ implies $\lim n \rightarrow \infty \rho(\xi x_n) = 0$ for all $\xi \geq 0$, we obtain that $\lim n \rightarrow \infty \|\alpha x_n\|_1 = 0$ for all $\alpha \downarrow_{n=1}^\infty 0$ and that $\lim n \rightarrow \infty \|x_n\|_1 = 0$ implies $\lim n \rightarrow \infty \|\alpha x_n\|_1 = 0$ for all $\alpha > 0$. If $\|x\|_1 < \alpha$ and $\|y\|_1 < \beta$, there exist $\xi, \eta > 0$ such that

\[\frac{1}{\xi} + \rho(\xi x) < \alpha \quad \text{and} \quad \frac{1}{\eta} + \rho(\eta y) < \beta . \]

This yields

\[\|x + y\| \leq \frac{1}{\xi} + \rho(\xi x) + \frac{1}{\eta} + \rho(\eta y) < \alpha + \beta , \]

in virtue of (A.3). Therefore $\|x + y\|_1 \leq \|x\|_1 + \|y\|_1$ holds for any $x, y \in L$ and $\|\cdot\|_1$ is a quasi-norm on L. If $\xi \rho(\xi x) \leq 1$ for some $\xi > 0$ and $x \in L$, we have $\rho(\xi x) \leq \frac{1}{\xi}$ and hence

\[\frac{1}{\xi} \leq \frac{1}{\xi} + \rho(\xi x) \leq 2 \frac{1}{\xi} . \]

10) For the convex modular m, we can define two kinds of norms such as

\[\|x\| = \inf_{\xi > 0} \frac{1 + m(\xi x)}{\xi} \quad \text{and} \quad \|x\| = \inf_{m(\xi x) \leq 1} \frac{1}{\xi} \]

[3 or 4]. For the general modulars considered here, the formulas (3.1) and (4.1) are nothing but ones obtained by replacing $m(\xi x)$ by $\xi \rho(\xi x)$ in $\|\cdot\|$ and $\|\cdot\|$ respectively.
This yields (4.2), since we have \(\| x \|_0 \leq \frac{1}{\xi} \) and \(\rho(\gamma x) > \frac{1}{\eta} \) for every \(\eta \) with \(\| x \|_0 > \frac{1}{\eta} \). Therefore we can obtain from above

Theorem 4.1. If \(L \) is a modular space with a modular satisfying \((A.1)\sim(A.5)\) in \(\S 1 \), then the formula (4.1) yields a quasi-norm \(\| \cdot \|_1 \) on \(L \) which is equivalent to \(\| \cdot \|_0 \) defined by Musielak and Orlicz in [6] as is shown in (4.2).

From the above theorem and the results in \(\S 2 \), we obtain by the same way as in \(\S 3 \)

Theorem 4.2. If \(R \) is a quasi-modular space with a quasi-modular \(\rho \), then

\[
(4.3) \quad \| x \|_1 = \inf_{\xi > 0} \left\{ \frac{1}{\xi} + \rho^*(\xi x) \right\} \quad (x \in R)
\]

is a semi-continuous quasi-norm on \(R^\perp_0 \) and \(\| \cdot \|_1 \) is complete if and only if \(\rho \) satisfies \((\rho.4')\), where \(\rho^* \) and \(R_0 \) are the same as in \(\S 2 \) and \(\S 3 \). And further we have

\[
(4.4) \quad \| x \|_0 \leq \| x \|_1 \leq 2 \| x \|_0 \quad \text{for all } x \in R^\perp_0.
\]

\(\S 5 \). A quasi-norm-convergence. Here we suppose that a quasi-modular \(\rho^* \) on \(R \) satisfies \((\rho.1)\sim(\rho.6)\) except \((\rho.3)\) and \(\rho^*(\xi x) \) is not identically zero as a function of \(\xi \geq 0 \) for each \(0 \neq x \in R \) (i.e. \(R_0 = \{0\} \)). A sequence of elements \(\{ x_\nu \}_{\nu \geq 1} \) is called order-convergent to \(a \) and denoted by \(\lim_{\nu \to +\infty} x_\nu = a \), if there exists a sequence of elements \(\{ a_\nu \}_{\nu \geq 1} \) such that

\[
|x_\nu - a| \leq a_\nu \quad (\nu \geq 1)
\]

and \(a_\nu \downarrow_{\nu = 1}^{\infty} 0 \). And a sequence of elements \(\{ x_\nu \}_{\nu \geq 1} \) is called star-convergent to \(a \) and denoted by \(\lim_{\nu \to \infty} x_\nu = a \), if for any subsequence \(\{ y_\nu \}_{\nu \geq 1} \) of \(\{ x_\nu \}_{\nu \geq 1} \), there exists a subsequence \(\{ z_\nu \}_{\nu \geq 1} \) of \(\{ y_\nu \}_{\nu \geq 1} \) with \(\lim_{\nu \to \infty} z_\nu = a \).

A quasi-norm \(\| \cdot \| \) on \(R \) is termed to be continuous, if \(\inf_{\nu \geq 1} \| a_\nu \| = 0 \) for any \(a_\nu \downarrow_{\nu = 1}^{\infty} 0 \). In the sequel, we write by \(\| \cdot \|_0 \) (or \(\| \cdot \|_1 \)) the quasi-norm defined on \(R \) by \(\rho^* \) in \(\S 3 \) (resp. in \(\S 4 \)).

Now we prove

Theorem 5.1. In order that \(\| \cdot \|_0 \) (or \(\| \cdot \|_1 \)) is continuous, it is necessary and sufficient that the following condition is satisfied:

\[
(5.1) \quad \text{for any } x \in R \text{ there exists an orthogonal decomposition } x = y + z \text{ such that } [z]_0 \text{ is finite dimensional and } \rho(y) < +\infty.
\]

Proof. Necessity. If (5.1) is not true for some \(x \in R \), we can find a
sequence of projector \(\{ [p_n] \}_{n \geq 1} \) such that \(\rho([p_n]x) = +\infty \) and \([p_n] \downarrow_{n=1}^{\infty} 0 \). Hence by (3.1) it follows that \(\| [p_n]x \|_0 > 1 \) for all \(n \geq 1 \), which contradicts the continuity of \(\| \cdot \|_0 \).

Sufficiency. Let \(a_{\nu} \downarrow_{\nu=1}^{\infty} 0 \) and put \([p_n^\epsilon] = [(a_n - \epsilon a_1)^+] \) for any \(\epsilon > 0 \) and \(n \geq 1 \). It is easily seen that \([p_n^\epsilon] \downarrow_{n=1}^{\infty} 0 \) for any \(\epsilon > 0 \) and \(a_n = [a_1]a_n = [p_n^\epsilon]a_n + (1 - [p_n^\epsilon])a_n \leq [p_n^\epsilon]a_1 + \epsilon a_1 \).

This implies

\[
\rho^*([p_n^\epsilon]a_1) \leq \rho^*([p_n^\epsilon]a_1) + \rho^*(\xi(1-[p_n^\epsilon])a_1)
\]

for all \(n \geq 1 \) and \(\xi \geq 0 \). In virtue of (5.1) and \([p_n^\epsilon] \downarrow_{n=1}^{\infty} 0 \), we can find \(n_0 \) (depending on \(\xi \) and \(\epsilon \)) such that \(\rho^*([p_n^\epsilon]a_1) < +\infty \), and hence \(\inf_{n \geq 1} \rho^*([p_n^\epsilon]a_1) = 0 \) by (2.3) in Lemma 1 and (\(\rho.2 \)). Thus we obtain

\[
\inf_{n \geq 1} \rho^*([p_n^\epsilon]a_1) \leq \rho^*([p_n^\epsilon]a_1).
\]

Since \(\epsilon \) is arbitrary, \(\lim_{n \to \infty} \rho^*([a_n]) = 0 \) follows. Hence we infer that \(\inf_{n \geq 1} \| a_n \|_0 = 0 \) and \(\| \cdot \|_0 \) is continuous in view of Remark 2 in \(\S 3 \). Q.E.D.

Corollary. \(\| \cdot \|_0 \) is continuous, if

\[
(5.2) \quad \rho^*(a_\nu) \to 0 \text{ implies } \rho^*(\alpha a_\nu) \to 0 \text{ for every } \alpha \geq 0.
\]

From the definition, it is clear that \(s\lim_{\nu \to \infty} x_\nu = 0 \) implies \(\lim_{\nu \to \infty} \| x_\nu \|_0 = 0 \), if \(\| \cdot \|_0 \) is continuous. Conversely we have, by making use of the well-known method (cf. Theorem 33.4 in [3])

Theorem 5.2. \(\lim_{\nu \to \infty} \| x_\nu \|_0 = 0 \) (or \(\lim_{\nu \to \infty} \| x_\nu \| = 0 \)) implies \(s\lim_{\nu \to \infty} x_\nu = 0 \), if \(\| \cdot \|_0 \) is complete (i.e. \(\rho^* \) satisfies (\(\rho.3 \))).

If we replace \(\lim_{\nu \to \infty} \| x_\nu \|_0 = 0 \) by \(\lim_{\nu \to \infty} \rho(x_\nu) = 0 \), Theorem 5.2 may fail to be valid in general. By this reason, we must consider the following condition:

\[
(5.3) \quad \rho^*(x) = 0 \text{ implies } x = 0.
\]

Truly we obtain

Theorem 5.3. If \(\rho^* \) satisfies (5.3) and \(\| \cdot \|_0 \) is complete, \(\rho(a_\nu) \to 0 \) implies \(s\lim a_\nu = 0 \).

Proof. We may suppose without loss of generality that \(\rho^* \) is semi-continuous,\(^{11}\) i.e. \(\rho^*(x) = \sup_{i \in A} \rho^*(x_i) \) for any \(0 \leq i \leq A \). If

\[
11) \quad \text{If } \rho^* \text{ is not semi-continuous, putting } \rho_\ast(x) = \inf_{y_1 \in A} \{ \sup_{y \in A} \rho^*(y_i) \}, \text{ we obtain a quasi-modular } \rho_\ast \text{ which is semi-continuous and } \rho^*(x_\nu) \to 0 \text{ is equivalent to } \rho_\ast(x_\nu) \to 0.
\]

\[\rho(a_{\nu}) \leq \frac{1}{2^{\nu}} \quad (\nu \geq 1), \]

we can prove by the similar way as in the proof of Lemma 2 that there exists \(\bigcup_{\nu=1}^{\infty} |a_{\nu}| \in R \) in virtue of \((\rho.3)\).

Now, since
\[
\rho\left(\bigcup_{\nu \geq \nu}^{\infty} |a_{\mu}| \right) \leq \sum_{\nu \geq \nu}^{\infty} \rho(a_{\mu}) \leq \frac{1}{2^{\nu-1}}
\]
holds for each \(\nu \geq 1 \), \(\rho\left(\bigcap_{\nu=1}^{\infty} \left(\bigcup_{\nu \geq \nu}^{\infty} |a_{\mu}| \right) \right) = 0 \) and hence \((5.3)\) implies
\[
\bigcap_{\nu=1}^{\infty} \left(\bigcup_{\nu \geq \nu}^{\infty} |a_{\mu}| \right) = 0.
\]
Thus we see that \(\{a_{\nu}\}_{\nu \geq 1} \) is order-convergent to 0.

For any \(\{b_{\nu}\}_{\nu \geq 1} \) with \(\rho(b_{\nu}) \to 0 \), we can find a subsequence \(\{b_{\nu}^{'},\}_{\nu \geq 1} \) of \(\{b_{\nu}\}_{\nu \geq 1} \) with \(\rho(b_{\nu}^{'}) \leq \frac{1}{2^{\nu}} \quad (\nu = 1, 2, \cdots) \). Therefore we have \(s\lim_{\nu \to \infty} b_{\nu} = 0 \). Q.E.D.

The latter part of the above proof is quite the same as Lemma 2.1 in [9] (due to S. Yamamuro) concerning the condition \((5.2)\) with respect to (convex) modulars on semi-ordered linear spaces. From Theorem 5.2 and 5.3, we can obtain further the next theorem which is analouges to the above lemma of [9] and considered as the converse of Corollary of Theorem 5.1 at the same time.

Theorem 5.4. If \(\rho^{*} \) satisfies \((5.3)\) and \(|| \cdot ||_{0} \) is complete and continuous, then \((5.2)\) holds.

References

