<table>
<thead>
<tr>
<th>Title</th>
<th>ON F-NORMS OF QUASI-MODULAR SPACES</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author(s)</td>
<td>Koshi, Shôzô; Shimogaki, Tetsuya</td>
</tr>
<tr>
<td>Citation</td>
<td>Journal of the Faculty of Science Hokkaido University. Ser. 1 Mathematics, 15(3-4), 202-218</td>
</tr>
<tr>
<td>Issue Date</td>
<td>1961</td>
</tr>
<tr>
<td>Doc URL</td>
<td>http://hdl.handle.net/2115/56023</td>
</tr>
<tr>
<td>Type</td>
<td>bulletin (article)</td>
</tr>
<tr>
<td>File Information</td>
<td>JFSHIU_15_N3-4_202-218.pdf</td>
</tr>
</tbody>
</table>

Hokkaido University Collection of Scholarly and Academic Papers : HUSCAP
ON F-NORMS OF QUASI-MODULAR SPACES

By
Shôzô KOSHI and Tetsuya SHIMOYAKI

§1. Introduction. Let \(R \) be a universally continuous semi-ordered linear space (i.e. a conditionally complete vector lattice in Birkhoff's sense \([1]\)) and \(\rho \) be a functional which satisfies the following four conditions:

1. \(0 \leq \rho(x) = \rho(-x) \leq +\infty \) for all \(x \in R \);
2. \(\rho(x+y) = \rho(x) + \rho(y) \) for any \(x, y \in R \) with \(x \perp y \);
3. If \(\sum_{i \in \Lambda} \rho(x_i) < +\infty \) for a mutually orthogonal system \(\{x_i\}_{i \in \Lambda} \), there exists \(x_0 \in R \) such that \(x_0 = \sum_{i \in \Lambda} x_i \) and \(\rho(x_0) = \sum_{i \in \Lambda} \rho(x_i) \);
4. \(\lim_{\xi \to 0} \rho(\xi x) < +\infty \) for all \(x \in R \).

Then, \(\rho \) is called a quasi-modular and \(R \) is called a quasi-modular space.

In the previous paper \([2]\), we have defined a quasi-modular space and proved that if \(R \) is a non-atomic quasi-modular space which is semi-regular, then we can define a modular \(m \) on \(R \) for which every universally continuous linear functional is continuous with respect to the norm defined by the modular \(m \) \([2; \text{Theorem } 3.1]\).

Recently in \([6]\) J. Musielak and W. Orlicz considered a modular \(\rho \) on a linear space \(L \) which satisfies the following conditions:

1. \(\rho(x) \geq 0 \) and \(\rho(x) = 0 \) if and only if \(x = 0 \);
2. \(\rho(-x) = \rho(x) \);
3. \(\rho(\alpha x + \beta y) \leq \rho(x) + \rho(y) \) for every \(\alpha, \beta \geq 0 \) with \(\alpha + \beta = 1 \);
4. \(\alpha_n \to 0 \) implies \(\rho(\alpha_n x) \to 0 \) for every \(x \in R \);
5. for any \(x \in L \) there exists \(\alpha > 0 \) such that \(\rho(\alpha x) < +\infty \).

They showed that \(L \) is a quasi-normed space with a quasi-norm \(|| \cdot ||_0 \) defined by the formula:

\[x \perp y \text{ means } |x| \cap |y| = 0. \]

1. A system of elements \(\{x_i\}_{i \in A} \) is called mutually orthogonal, if \(x_i \perp x_j \) for \(i \neq j \).
2. For the definition of a modular, see \([3]\).
3. A linear functional \(f \) is called universally continuous, if \(\inf_{\lambda \in A} f(a_\lambda) = 0 \) for any \(a_\lambda_{i \in A} \).
4. \(R \) is called semi-regular, if for any \(x \neq 0, x \in R \), there exists a universally continuous linear functional \(f \) such that \(f(x) \neq 0 \).
5. This modular \(\rho \) is a generalization of a modular \(m \) in the sense of Nakano \([3 \text{ and } 4]\).

In the latter, there is assumed that \(m(\xi x) \) is a convex function of \(\xi \geq 0 \) for each \(x \in R \).
(1.1) \[||x||_0 = \inf \left\{ \xi ; \rho \left(\frac{1}{\xi} x \right) \leq \xi \right\} \]

and \(||x_n||_0 \to 0 \) is equivalent to \(\rho(\alpha x_n) \to 0 \) for all \(\alpha \geq 0 \).

In the present paper, we shall deal with a general quasi-modular space \(R \) (i.e. without the assumption that \(R \) is non-atomic or semi-regular). The aim of this paper is to construct a quasi-norm on \(R \) and to investigate the condition under which \(R \) is an \(F \)-space with this quasi-norm by making use of the above formula (1.1). Since a quasi-modular \(\rho \) on \(R \) does not satisfy the conditions (A.1), (A.2), (A.4) and (A.5) in general, as is seen by comparing the conditions: \((\rho.1) \sim (\rho.4)\) with those of \(\rho \) \[6\], we can not apply the formula (1.1) directly to \(\rho \) to obtain a quasi-norm. We shall show, however, that we can construct always a quasi-modular \(\rho^* \) which satisfies (A.2) \(\sim \) (A.5) on an arbitrary quasi-modular space \(R \) in §2 (Theorems 2.1 and 2.2). Since \(R \) may include a normal manifold \(R_0 = \{x : x \in R, \rho^*(\xi x) = 0 \text{ for all } \xi \geq 0\} \) and we can not define a quasi-norm on \(R_0 \) in general, we have to exclude \(R_0 \) in order to proceed with the argument further. We shall prove in §3 that a quasi-norm \(|| \cdot ||_0 \) on \(R_0 \) defined by \(\rho^* \) according to the formula (1.1) is semi-continuous, and in order that \(R_0 \) is an \(F \)-space with \(|| \cdot ||_0 \) (i.e. \(|| \cdot ||_0 \) is complete), it is necessary and sufficient that \(\rho \) satisfies

\[(\rho.4') \quad \sup_{x \in R} \left\{ \lim_{\alpha \to 0} \rho(\alpha x) \right\} < +\infty \]

(Theorem 3.2).

In §4, we shall show that we can define another quasi-norm \(|| \cdot ||_1 \) on \(R_0 \) which is equivalent to \(|| \cdot ||_0 \) such that \(||x||_0 \leq ||x||_1 \leq 2||x||_0 \) holds for every \(x \in R_0 \) (Formulas (4.1) and (4.3)). \(|| \cdot ||_1 \) has a form similar to that of the first norm (due to I. Amemiya) of (convex) modular in the sense of Nakano \[4; §83\]. At last in §5 we shall add shortly the supplementary results concerning the relations between \(|| \cdot ||_0 \)-convergence and order-convergence. The matter does not essentially differ from the case of the (convex) modular on semi-ordered linear spaces and the results stated in §5 are already known in those cases \[8\].

Throughout this paper \(R \) denotes a universally continuous semi-ordered linear space and \(\rho \) a quasi-modular defined on \(R \). For any \(p \in R \), \([p] \) is a projector: \([p]x = \bigcup_{n=1}^{\infty} (n|p| \cap x) \) for all \(x \geq 0 \) and \(1-[p] \) is a projection operator onto the normal manifold \(N=\{p\}^1 \), that is, \(x = [p]x + (1-\{p\})x \).

6) This quasi-norm was first considered by S. Mazur and W. Orlicz \[5\] and discussed by several authors \[6 \text{ or } 7\].
§2. The conversion of a quasi-modular. From the definition of a quasi-modular in §1, the following lemma is immediately deduced.

Lemma 1. For any quasi-modular \(\rho \), we have

\begin{align}
(2.1) & \quad \rho(0) = 0; \\
(2.2) & \quad \rho([p]x) \leq \rho(x) \text{ for all } p, x \in R; \\
(2.3) & \quad \rho([p]x) = \sup_{i \in I} \rho([p_i]x) \text{ for any } [p_i]_{i \in I} \uparrow [p].
\end{align}

In the argument below, we have to use the additional property of \(\rho \):

\((\rho.5) \quad \rho(x) \leq \rho(y) \text{ if } |x| \leq |y|, x, y \in R, \)

which is not valid for an arbitrary \(\rho \) in general.

The next theorem, however, shows that we may suppose without loss of generality that a quasi-modular \(\rho \) satisfies \((\rho.5) \).

Theorem 2.1. Let \(R \) be a quasi-modular space with quasi-modular \(\rho \). Then there exists a quasi-modular \(\rho' \) for which \((\rho.5) \) is valid.

Proof. We put for every \(x \in R \),

\[\rho'(x) = \sup_{0 \leq |y| \leq |x|} \rho(y). \]

It is clear that \(\rho' \) satisfies the conditions \((\rho.1), (\rho.2) \) and \((\rho.5) \).

Let \(\{x_i\}_{i \in I} \) be an orthogonal system such that \(\sum_{i \in I} \rho'(x_i) < +\infty \), then

\[\sum_{i \in I} \rho(x_i) < +\infty, \]

because

\[\rho(x) \leq \rho'(x) \text{ for all } x \in R. \]

We have

\[x_0 = \sum_{i \in I} x_i \in R \]

and

\[\rho(x_0) = \sum_{i \in I} \rho(x_i) \text{ in virtue of } (\rho.3). \]

For such \(x_0 \),

\[\rho'(x_0) = \sup_{0 \leq |y| \leq |x_0|} \rho(y) = \sup_{0 \leq |y| \leq |x_0|} \sum_{i \in I} \rho([x_i]y) \]

\[= \sum_{i \in I} \sup_{0 \leq |y| \leq |x_0|} \rho([x_i]y) = \sum_{i \in I} \rho'(x_i) \]

holds, i.e. \(\rho' \) fulfils \((\rho.3) \).

If \(\rho' \) does not fulfil \((\rho.4) \), we have for some \(x_0 \in R \),

\[\rho'(\frac{1}{n}x_0) = +\infty \text{ for all } n \geq 1. \]

By \((\rho.2) \) and \((\rho.4) \), \(x_0 \) cannot be written as \(x_0 = \sum_{\nu=1}^{\kappa} \xi_{\nu} e_{\nu} \), where \(e_{\nu} \) is an atomic element for each \(\nu \) with \(1 \leq \nu \leq \kappa \), namely, we can decompose \(x_0 \) into
an infinite number of orthogonal elements. First we decompose into
\[x_0 = x_1 + x'_1, \quad x_1 \perp x'_1, \]
where \(\rho'\left(\frac{1}{\nu}x_1\right) = +\infty \) (\(\nu = 1, 2, \ldots \)) and \(\rho'(x'_1) > 1 \). For the definition of \(\rho' \), there exists \(0 \leq y_1 \leq |x'_1| \) such that \(\rho(y_1) \geq 1 \). Next we can also decompose \(x_1 \) into
\[x_1 = x_2 + x'_2, \quad x_2 \perp x'_2, \]
where
\[\rho'\left(\frac{1}{\nu}x_2\right) = +\infty \] (\(\nu = 1, 2, \ldots \))
and
\[\rho'\left(\frac{1}{2}x'_2\right) > 2. \]

There exists also \(0 \leq y_2 \leq |x'_2| \) such that \(\rho\left(\frac{1}{2}y_2\right) \geq 2 \). In the same way, we can find by induction an orthogonal sequence \(\{y_\nu\}_{\nu=1,2}, \ldots \) such that
\[\rho'\left(\frac{1}{\nu}y_\nu\right) \geq \nu \]
and
\[0 \leq |y_\nu| \leq |x| \]
for all \(\nu \geq 1 \).

Since \(\{y_\nu\}_{\nu=1,2}, \ldots \) is order-bounded, we have in virtue of (2.3)
\[y_0 = \sum_{\nu=1}^{\infty} y_\nu \in \mathbb{R} \]
and
\[\rho'\left(\frac{1}{\nu}y_0\right) \geq \rho'\left(\frac{1}{\nu}y_\nu\right) \geq \nu, \]
which contradicts (\(\rho.4 \)). Therefore \(\rho' \) has to satisfy (\(\rho.4 \)). Q.E.D.

Hence, in the sequel, we denote by \(\rho' \) a quasi-modular defined by the formula (2.4).

If \(\rho \) satisfies (\(\rho.5 \)), \(\rho \) does also (A.3) in §1:
\[\rho(\alpha x + \beta y) \leq \rho(x) + \rho(y) \]
for \(\alpha, \beta \geq 0 \) with \(\alpha + \beta = 1 \).

Because, putting \([p] = [(|x| - |y|)^+]\), we obtain
\[\rho(\alpha x + \beta y) \leq \rho(\alpha |x| + \beta |y|)\]
\[\leq \rho(\alpha [p]|x| + \alpha(1-[p])|y| + \beta [p]|x| + (1-[p])\beta |y|)\]
\[= \rho([p]|x| + (1-[p])|y|)\]
\[= \rho([p]x) + \rho((1-[p])y)\]
\[\leq \rho(x) + \rho(y).\]

Remark 1. As is shown above, the existence of \(\rho'\) as a quasi-modular depends essentially on the condition \((\rho.4)\). Thus, in the above theorems, we cannot replace \((\rho.4)\) by the weaker condition:

\((\rho.4'')\) for any \(x \in R\), there exists \(\alpha \geq 0\) such that \(\rho(\alpha x) < +\infty\).

In fact, the next example shows that there exists a functional \(\rho_0\) on a universally continuous semi-ordered linear space satisfying \((\rho.1), (\rho.2), (\rho.3)\) and \((\rho.4'')\), but does not \((\rho.4)\). For this \(\rho_0\), we obtain

\[\rho_0'(x) = \sup_{|y| \leq |x|} \rho_0(y) = +\infty\]

for all \(x \neq 0\).

Example. \(L_1[0,1]\) is the set of measurable functions \(x(t)\) which are defined in \([0,1]\) with

\[\int_0^1 |x(t)| \, dt < +\infty.\]

Putting

\[\rho_0(x) = \rho_0(x(t)) = \int_0^1 |x(t)| \, dt + \sum_{i=1}^\infty \mes \left\{ t : x(t) = \frac{1}{i} \right\},\]

we have an example satisfying the above conditions.

In order to define the quasi-norm, we need one more additional condition: \((A.4)\), namely,

\[(\rho.6)\quad \lim_{\xi \to 0} \rho(\xi x) = 0 \quad \text{for all } x \in R.\]

A quasi-modular space becomes, as is shown below, always a quasi-normed space excluding the trivial part, but not an F-space in general. This fact is based upon the following Theorems 2.2 and 2.3.

Theorem 2.2. Let \(\rho\) be a quasi-modular on \(R\). We can find a functional \(\rho^*\) which satisfies \((\rho.1)\sim(\rho.6)\) except \((\rho.3)\).

Proof. In virtue of Theorem 2.1, there exists a quasi-modular \(\rho'\) which satisfies \((\rho.5)\). Now we put

\[d(x) = \lim_{\xi \to 0} \rho'(\xi x).\]

It is clear that \(0 \leq d(x) = d(|x|) < +\infty\) for all \(x \in R\) and
On F-Norms of Quasi-Modular Spaces

\[d(x+y) = d(x) + d(y) \quad \text{if } x \perp y. \]

Hence, putting
\[(2.6) \quad \rho^*(x) = \rho'(x) - d(x) \quad (x \in R). \]
we can see easily that \((\rho.1), (\rho.2), (\rho.4)\) and \((\rho.6)\) hold true for \(\rho^*\), since
\[d(x) \leq \rho'(x) \]
and
\[d(\alpha x) = d(x) \]
for all \(x \in R\) and \(\alpha > 0\).

We need to prove that \((\rho.5)\) is true for \(\rho^*\). First we have to note
\[(2.7) \quad \inf_{\lambda \in A} d([p_{\lambda}]x) = 0 \]
for any \([p_{\lambda}] \downarrow_{\lambda \in A} 0\). In fact, if we suppose the contrary, we have
\[\inf_{\lambda \in A} d([p_{\lambda}]x_0) \geq \alpha > 0 \]
for some \([p_{\lambda}] \downarrow_{\lambda \in A} 0\) and \(x_0 \in R\).

Hence,
\[\rho'\left(\frac{1}{\nu}[p_{\lambda}]x_0\right) \geq d([p_{\lambda}]x_0) \geq \alpha \]
for all \(\nu \geq 1\) and \(\lambda \in A\). Thus we can find a subsequence \{\lambda_n\}_{n \geq 1} of \{\lambda\}_{\lambda \in A}
such that
\[[p_{\lambda_n}] \geq [p_{\lambda_{n+1}}] \]
and
\[\rho'\left(\frac{1}{n}[p_{\lambda_n}]x_0\right) - \rho'\left(\frac{1}{n}[p_{\lambda_{n+1}}]x_0\right) \geq \frac{\alpha}{2} \]
for all \(n \geq 1\) in virtue of \((\rho.2)\) and \((2.3)\). This implies
\[\rho'\left(\frac{1}{n}x_0\right) \geq \sum_{m \geq n} \rho'\left(\frac{1}{m}[p_{\lambda_m}] - [p_{\lambda_{m+1}}]x_0\right) = +\infty, \]
which is inconsistent with \((\rho.4)\). Secondly we shall prove
\[(2.8) \quad d(x) = d(y), \quad \text{if } [x] = [y]. \]

We put \([p_n] = [(|x| - n|y|)^+]\) for \(x, y \in R\) with \([x] = [y]\) and \(n \geq 1\). Then,
\[[p_n] \downarrow_{n \geq 1} 0 \quad \text{and} \quad \inf_{n \geq 1} d([p_n]x) = 0 \text{ by } (2.7). \]
Since \((1-[p_n])n \mid y \mid \geq (1-[p_n])|x| \]
and
\[d(\alpha x) = d(x) \]
for \(\alpha > 0\) and \(x \in R\), we obtain
$d(x) = d([p_n]x) + d(1-[p_n])x)$
$\leq d([p_n]x) + d(n(1-[p_n])y)$
$\leq d([p_n]x) + d(y)$.

As n is arbitrary, this implies
$d(x) \leq \inf_{n=1,2,\ldots} d([p_n]x) + d(y)$,
and also $d(x) \leq d(y)$. Therefore we conclude that (2.8) holds.

If $|x| \geq |y|$, then
$\rho^*(x) = \rho^*([y]x) + \rho^*([x]-[y])x)$
$= \rho^*([y]x) - d([y]x) + \rho^*([x]-[y])x)$
$\geq \rho^*(y) - d(y) + \rho^*([x]-[y])x)$
$\geq \rho^*(y)$.

Thus ρ^* satisfies (\rho.5).

Theorem 2.3. ρ^* (which is constructed from ρ according to the formulas (2.4), (2.5) and (2.6)) satisfies (\rho.3) (that is, ρ^* is a quasi-modular), if and only if ρ satisfies

$(\rho.4')$

\[\sup_{x \in R} \{|\lim_{\xi \to 0} \rho^*(\xi x)| = K < +\infty. \]

Proof. Let ρ satisfy (\rho.4). We need to prove

(2.9) \[\sup_{x \in R} d(x) = \sup_{x \in R} \{|\lim_{\xi \to 0} \rho^*(\xi x)| = K' < +\infty, \]

where

$\rho'(x) = \sup_{0 \leq |y| \leq |x|} \rho(y)$.

Since ρ' is also a quasi-modular, Lemma 2 in [2] or [8] can be applicable, if we put $\eta_0(x) = \rho(x)$ and $\eta_\nu(x) = \rho'(\frac{1}{\nu} x)$ for $\nu \geq 1$ and $x \in R$. Hence we can find positive numbers $\gamma, \gamma_0, \gamma_1$ a natural number ν_0 and a finite dimensional normal manifold N_0 such that $x \in N^p$ with

$\rho(x) \leq \epsilon$ implies $\rho'(\frac{1}{\nu_0} x) \leq \gamma$.

In N_0, we have obviously

$\sup_{x \in N_0} \{|\lim_{\xi \to 0} \rho'(\xi x)| = \gamma_0 < +\infty. \]

If $\epsilon \leq 2K$, for any $x_0 \in N^+$, we can find $\alpha_0 > 0$ such that $\rho(\alpha x_0) \leq 2K$ for all $0 \leq \alpha \leq \alpha_0$ by (\rho.4'), and hence there exists always an orthogonal decomposition such that

\[\sup_{x \in N_0} \{|\lim_{\xi \to 0} \rho'(\xi x)| = \gamma_0 < +\infty. \]
On F-Norms of Quasi-Modular Spaces

$$\alpha_{0}x_{0}=x_{1}+\cdots+x_{n}+y_{1}+\cdots+y_{m}+z$$

where $\frac{\varepsilon}{2}<\rho(x_{i})\leq \varepsilon$ $(i=1, 2, \cdots, n)$, y_{j} is an atomic element with $\rho(y_{j})>\varepsilon$ for every $j=1, 2, \cdots, m$ and $\rho(z)\leq \frac{\varepsilon}{2}$. From above, we get $n\leq \frac{4K}{\varepsilon}$ and $m\leq \frac{2K}{\varepsilon}$. This yields

$$\rho\left(\frac{1}{\nu_{0}}\alpha_{0}x_{0}\right)\leq \sum_{i=1}^{n}\rho\left(\frac{1}{\nu_{0}}x_{i}\right)\leq \sum_{j=1}^{m}\rho'(y_{j})+\rho'\left(\frac{z}{\nu_{0}}\right)\leq n\gamma+\sum_{j=1}^{m}\rho'(y_{j})+\rho'\left(\frac{z}{\nu_{0}}\right)\leq \frac{4K}{\varepsilon}\gamma+\frac{2K}{\varepsilon}\left\{\sup_{0\leq a\leq a_{0}}\rho(\alpha x)\right\}+\gamma.$$

Hence, we obtain

$$\lim_{\xi\to 0}\rho'(\xi x_{0})\leq \rho'\left(\frac{\alpha_{0}}{\nu_{0}}x_{0}\right)\leq \frac{4K+\varepsilon}{\varepsilon}\gamma+\frac{4K^{2}}{\varepsilon}\gamma_{0}.$$

in case of $\varepsilon\leq 2K$. If $2K\leq \varepsilon$, we have immediately for $x\in N_{0}^{+}$

$$\lim_{\xi\to 0}\rho'(\xi x)\leq \gamma.$$

Therefore, we obtain

$$\sup_{x\in R}\left\{\lim_{\xi\to 0}\rho'(\xi x)\right\}\leq \gamma'$$

where

$$\gamma'=\frac{4K+\varepsilon}{\varepsilon}+\frac{4K^{2}}{\varepsilon}+\gamma_{0}.$$

Let $\{x_{\lambda}\}_{\lambda\in A}$ be an orthogonal system with $\sum_{\lambda\in A}\rho^{*}(x_{\lambda})<+\infty$. Then for arbitrary $\lambda_{1}, \cdots, \lambda_{k}\in A$, we have

$$\sum_{\nu=1}^{k}d(x_{\lambda_{\nu}})=d(\sum_{\nu=1}^{k}x_{\lambda_{\nu}})=\lim_{\xi\to 0}\rho'(\xi \sum_{\nu=1}^{k}x_{\lambda_{\nu}})\leq \gamma'',$$

which implies $\sum_{\lambda\in A}d(x_{\lambda})=\gamma'$. It follows that

$$\sum_{\lambda\in A}\rho^{*}(x_{\lambda})=\sum_{\lambda\in A}\rho^{*}(x_{\lambda})+\sum_{\lambda\in A}d(x_{\lambda})<+\infty,$$

which implies $x_{0}=\sum_{\lambda\in A}x_{\lambda}\in R$ and $\sum_{\lambda\in A}\rho^{*}(x_{\lambda})=\rho^{*}(x_{0})$ by (\rho.4) and (2.7). Therefore ρ^{*} satisfies (\rho.3).

On the other hand, suppose that ρ^{*} satisfies (\rho.3) and $\sup_{x\in R}d(x)=+\infty$. Then we can find an orthogonal sequence $\{x_{\nu}\}_{\nu=1}^{n}$ such that

$$\sum_{\nu=1}^{n}d(x_{\nu})=d(\sum_{\nu=1}^{n}x_{\nu})\geq \mu$$
for all $\mu \geq 1$ in virtue of (2.8) and the orthogonal additivity of d. Since
$$\lim_{t \to 0} \rho^*(\xi x) = 0,$$
there exists $\{\alpha_\nu\}_{\nu \geq 1}$ with $0 < \alpha_\nu$ ($\nu \geq 1$) and
$$\sum_{\nu=1}^{\infty} \rho^*(\alpha_\nu x_\nu) < + \infty.$$
It follows that $x_0 = \sum_{\nu=1}^{\infty} \alpha_\nu x_\nu \in R$ and $d(x_0) = \sum_{\nu=1}^{\infty} d(\alpha_\nu x_\nu)$ from ($\rho.3$). For such x_0, we have for every $\xi \geq 0$,
$$\rho'((\xi x, y) = \sum_{\nu=1}^{\infty} \rho'((\xi \alpha_\nu x_\nu, y) \geq \sum_{\nu=1}^{\infty} d(x_\nu) = + \infty,$$
which is inconsistent with ($\rho.4$). Therefore we have
$$\sup_{x \in R} (\lim_{t \to 0} \rho(\xi x)) \leq \sup_{x \in R} d(x) < + \infty.$$
Q.E.D.

§3. Quasi-norms. We denote by R_0 the set:
$$R_0 = \{x: x \in R, \rho^*(nx) = 0 \text{ for all } n \geq 1\},$$
where ρ^* is defined by the formula (2.6). Evidently R_0 is a semi-normal manifold\footnote{7) A linear manifold S is said to be semi-normal, if $a \in S, |b| \leq |a|, b \in R$ implies $b \in S$. Since R is univerfally continuous, a semi-normal manifold S is normal if and only if $\bigcup_{x \in \Lambda} x \in R$.} of R. We shall prove that R_0 is a normal manifold of R. In fact, let $x = \bigcup_{\lambda \in \Lambda} x_\lambda$ with $R_0 \ni x_\lambda \geq 0$ for all $\lambda \in \Lambda$.
Putting
$$[p_{n,\lambda}] = [(2nx_\lambda - nx)^+]$$
we have
$$[p_{n,\lambda}] \uparrow_{\lambda \in \Lambda} [x] \text{ and } 2n[p_{n,\lambda}]x_\lambda \geq [p_{n,\lambda}]nx,$$
which implies $\rho^*(nx) = 0$. Hence, we obtain $x \in R_0$, that is, R_0 is a normal manifold of R.

Therefore, R is orthogonally decomposed into
$$R = R_0 \oplus R_0^\perp.$$
In virtue of the definition of ρ^*, we infer that for any $p \in R_0$, $[p]R_0$ is universally complete, i.e. for any orthogonal system $\{x_\nu\}_{\nu \in \Lambda}(x_\nu \in [p]R_0)$, there exists $x_0 = \sum_{\nu \in \Lambda} x_\nu \in [p]R$. Hence we can also verify without difficulty that R_0 has no universally continuous linear functional except 0, if R_0 is non-atomic. When R_0 is discrete, it is isomorphic to $S(\Lambda)^9$-space. With respect to such a universally complete space R_0, we can not always construct a linear metric topology on R_0, even if R_0 is discrete.

In the following, therefore, we must exclude R_0 from our consideration.

Now we can state the theorems which we aim at.

\footnote{8) This means that $x \in R$ is written by $x = y + z, y \in R_0$ and $z \in R_0^\perp$.}
\footnote{9) $S(\Lambda)$ is the set of all real functions defined on Λ.}
Theorem 3.1. Let R be a quasi-modular space. Then R^\perp_0 becomes a quasi-normed space with a quasi-norm $\| \cdot \|_0$ which is semi-continuous, i.e.

$$\sup_{x \in A} \| x \|_0 = \| x \|_0$$

for any $0 \leqq x, y \in A.$

Proof. In virtue of Theorems 2.1 and 2.2, ρ^* satisfies $(\rho.1) \sim (\rho.6)$ except $(\rho.3)$. Now we put

$$(3.1) \quad \| x \|_0 = \inf \left\{ \xi; \rho^*(\frac{1}{\xi} x) \leqq \xi \right\}.$$

Then,

i) $0 \leqq \| x \|_0 = \| -x \|_0 < \infty$ and $\| x \|_0 = 0$ is equivalent to $x = 0$; follows from $(\rho.1)$, $(\rho.6)$, (2.1) and the definition of R^\perp_0.

ii) $\| x + y \|_0 \leqq \| x \|_0 + \| y \|_0$ for any $x, y \in R$; follows also from (A.3) which is deduced from $(\rho.4)$.

iii) $\lim_{\alpha_n \to 0} \| \alpha_n x \|_0 = 0$ and $\lim_{\| x \|_0 \to 0} \| \alpha x \|_0 = 0$; is a direct consequence of $(\rho.5)$. At last we shall prove that $\| \cdot \|_0$ is semi-continuous. From ii) and iii), it follows that $\lim_{\alpha_0 \to 0} \| \alpha x \|_0 = \| \alpha_0 x \|_0$ for all $x \in R^\perp_0$ and $\alpha_0 \geqq 0$. If $x \in R^\perp_0$ and $[p_n] \uparrow_{n \to \infty} [p]$, for any positive number ξ with $\| [p] x \|_0 > \xi$ we have $\rho^*(\frac{1}{\xi} [p] x) > \xi$, which implies $\sup_{n \to \infty} \rho^*(\frac{1}{\xi} [p_n] x) > \xi$ and hence $\sup_{n \to \infty} \| [p_n] x \|_0 \geqq \xi$. Thus we obtain

$$\sup_{n \to \infty} \| [p_n] x \|_0 = \| [p] x \|_0,$$

if $[p_n] \uparrow_{n \to \infty} [p]$.

Let $0 \leqq x_n \uparrow_{n \to \infty} x$. Putting

$$[p_{n,1}] = \left[(x_n - (1 - \frac{1}{n}) x) \right],$$

we have

$$[p_{n,1}] \uparrow_{n \to \infty} [x] \quad \text{and} \quad [p_{n,1}] x_n = [p_{n,1}] \left(1 - \frac{1}{n} \right) x$$

$(n \geqq 1)$. As is shown above, since

$$\sup_{n \to \infty} \| [p_{n,1}] x_n \|_0 \geqq \sup_{n \to \infty} \| [p_{n,1}] \left(1 - \frac{1}{n} \right) x \|_0 = \left(1 - \frac{1}{n} \right) x \|_0,$$

we have

$$\sup_{n \to \infty} \| x_n \|_0 \geqq \left(1 - \frac{1}{n} \right) x \|_0,$$

and also $\sup_{n \to \infty} \| x_n \|_0 \geqq \| x \|_0$. As the converse inequality is obvious by iv), $\| \cdot \|_0$ is semi-continuous.

Q.E.D.

Remark 2. By the definition of (3.1), we can see easily that $\lim_{n \to \infty} \| x_n \|_0 = 0$ if and only if $\lim_{n \to \infty} \rho(\xi x_n) = 0$ for all $\xi \geqq 0.$
In order to prove the completeness of quasi-norm $\| \cdot \|_0$, the next Lemma is necessary.

Lemma 2. Let $p_{n, \nu}, x_{\nu} \geq 0$ and $a \geq 0 (n, \nu = 1, 2, \ldots)$ be the elements of R_0^\perp such that

(3.2) \[[p_{n, \nu}] \uparrow_{\nu = 1}^{\infty} [p_n] \text{ with } \bigcap_{n=1}^{\infty} [p_n]a = [p_0]a \neq 0; \]

(3.3) \[[p_{n, \nu}]x_{\nu} \geq n[p_{n, \nu}]a \text{ for all } n, \nu \geq 1. \]

Then $\{x_{\nu}\}_{\nu \geq 1}$ is not a Cauchy sequence of R_0^\perp with respect to $\| \cdot \|_0$.

Proof. We shall show that there exist a sequence of projectors $[q_m] \downarrow_{m=1}^{\infty} (m \geq 1)$ and sequences of natural numbers ν_m, n_m such that

(3.4) \[\| [q_m]a \|_0 > \frac{\delta}{2} \text{ and } [q_m]x_{\nu_m} \geq n_m[q_m]a \quad (m = 1, 2, \ldots) \]

and

(3.5) \[n_m[q_m]a \geq [q_m]x_{\nu_{m-1}}, \quad n_{m+1} > n_m \quad (m = 2, 3, \ldots), \]

where $\delta = \| [p_0]a \|_0$.

In fact, we put $n_1 = 1$. Since $[p_{1, \nu}][p_0] \uparrow_{\nu = 1}^{\infty} [p_0]$ and $\| \cdot \|_0$ is semi-continuous, we can find a natural number ν_1 such that

\[\| [p_{1, \nu}] [p_0]a \|_0 > \frac{\| [p_0]a \|_0}{2} = \frac{\delta}{2}. \]

We put $[q_1] = [p_{1, \nu_1}][p_0]$. Now, let us assume that $[q_m], \nu_m, n_m (m = 1, 2, \ldots, k)$ have been taken such that (3.4) and (3.5) are satisfied.

Since $[(n\alpha - x_{\nu})^+] \uparrow_{n=1}^{\infty} [\alpha]$ and $\| [q_k]a \|_0 > \frac{\delta}{2}$, there exists n_{k+1} with

\[\| (n_{k+1}\alpha - x_{\nu_k})^+[q_k]a \|_0 > \frac{\delta}{2}. \]

For such n_{k+1}, there exists also a natural number ν_{k+1} such that

\[\| [p_{n_{k+1}, \nu_{k+1}}] (n_{k+1}\alpha - x_{\nu_k})^+[q_k]a \|_0 > \frac{\delta}{2}. \]

in virtue of (3.2) and semi-continuity of $\| \cdot \|_0$. Hence we can put

\[[q_{k+1}] = [p_{n_{k+1}, \nu_{k+1}}] (n_{k+1}\alpha - x_{\nu_k})^+[q_k], \]

because

\[[q_{k+1}] \leq [q_k], \quad \| [q_{k+1}]a \| > \frac{\delta}{2}, \quad [q_{k+1}]x_{\nu_{k+1}} \geq n_{k+1}[q_{k+1}]a \]

by (3.3) and $[q_{k+1}]n_{k+1}a \geq [q_{k+1}]x_{\nu_k}$ by (3.5).

For the sequence thus obtained, we have for every $k \geq 3$
$||x_{\nu_{k+1}}-x_{\nu_{k-1}}||_{0}\geqq||[q_{k+1}](x_{\nu_{k+1}}-x_{\nu_{k-1}})||_{0}\geqq||n_{k+1}[q_{k+1}]a-n_{k}[q_{k+1}]a)||_{0}\geqq||[q_{k+1}]a_{0}||_{0}\geqq\frac{\delta}{2}$,

since $[q_{k+1}]\leqq[q_{k}]\leqq[(n_{k}a-x_{\nu_{k-1}})^{+}]$ implies $[q_{k+1}]n_{k}a\geqq[q_{k+1}]x_{\nu_{k-1}}$ by (3.4).

It follows from the above that $\{x_{\nu}\}_{\nu\geqq 1}$ is not a Cauchy sequence.

Theorem 3.2. Let R be a quasi-modular space with quasi-modular ρ. Then R_{0}^{\downarrow} is an F-space with $||\cdot||_{0}$ if and only if ρ satisfies $(\rho.4')$.

Proof. If ρ satisfies $(\rho.4')$, ρ^{*} is a quasi-modular which fulfills also $(\rho.5)$ and $(\rho.6)$ in virtue of Theorem 2.3. Since $||x||_{0} (=\inf \{\xi; \rho^{*}(x/\xi)\leqq \xi\})$ is a quasi-norm on R_{0}^{\downarrow}, we need only to verify completeness of $||\cdot||_{0}$. At first let $\{x_{\nu}\}_{\nu\geqq 1} \subset R_{0}^{\downarrow}$ be a Cauchy sequence with $0\leqq x_{\nu}\uparrow_{\nu=1,2,\ldots}$. Since ρ^{*} satisfies $(\rho.3)$, there exists $0\leqq x_{0}\in R_{0}^{\downarrow}$ such that $x_{0}=\bigcup_{\nu=1}^{\infty}x_{\nu}$, as is shown in the proof of Theorem 2.3.

Putting $[p_{n,v}]=[(x_{\nu}-nx_{0})^{+}]$ and $\bigcup_{\nu=1}^{\infty}[p_{n,v}]=[p_{n}]$, we obtain

$\bigcup_{\nu=1}^{\infty}[p_{n,v}]=x_{\nu}\geqq n[p_{n,v}]x_{0}$ for all $n, \nu\geqq 1$ and $[p_{n}]\downarrow_{n=1}^{\infty}0$. Since $\{x_{\nu}\}_{\nu\geqq 1}$ is a Cauchy sequence, we have in virtue of Lemma 2, $\bigcap_{n=1}^{\infty}[p_{n}]=0$, that is, $\bigcup_{n=1}^{\infty}([x_{\nu}]-[p_{n}])=[x_{0}]$. And

$(1-[p_{n,v}])\geqq(1-[p_{n}]) \quad (n, \nu\geqq 1)$

implies

$n(1-[p_{n,v}])x_{0}\geqq(1-[p_{n}])x_{\nu}\geqq 0$.

Hence we have

$y_{n}=\bigcup_{\nu=1}^{\infty}(1-[p_{n,v}])x_{\nu}\in R_{0}^{\downarrow}$,

because R_{0}^{\downarrow} is universally continuous. As $\{x_{\nu}\}_{\nu\geqq 1}$ is a Cauchy sequence, we obtain from the triangle inequality of $||\cdot||_{0}$

$\gamma=\sup_{\nu\geqq 1}||x_{\nu}||_{0}<-\infty$,

which implies

$||y_{n}||_{0}=\sup_{\nu\geqq 1}||(1-[p_{n,v}])x_{\nu}||_{0}\leqq\gamma$

for every $n\geqq 1$ by semi-continuity of $||\cdot||_{0}$. We put $z_{1}=y_{1}$ and $z_{n}=y_{n}-y_{n-1}$ ($n\geqq 2$). It follows from the definition of y_{n} that $\{z_{\nu}\}_{\nu\geqq 1}$ is an orthogonal sequence with $||\sum_{\nu=1}^{n}z_{\nu}||_{0}=||y_{n}||_{0}\leqq\gamma$. This implies
for all \(n \geq 1 \) by the formula (3.1). Then (\(\rho.3 \)) assures the existence of
\[
z = \sum_{\nu=1}^{\infty} z_{\nu} = \bigcup_{\nu=1}^{\infty} y_{\nu}.
\]
This yields \(z = \bigcup_{\nu=1}^{\infty} x_{\nu} \). Truly, it follows from
\[
z = \bigcup_{\nu=1}^{\infty} y_{\nu} = \bigcup_{\nu=1}^{\infty} \bigcup_{\nu=1}^{\infty} (1 - \lfloor p_{\nu} \rfloor) x_{\nu} = \bigcup_{\nu=1}^{\infty} \lfloor x_{\nu} \rfloor x_{\nu} = \bigcup_{\nu=1}^{\infty} x_{\nu}.
\]
By semi-continuity of \(\| \cdot \|_{0} \), we have
\[
\| z - x_{\nu} \|_{0} \leq \sup_{\mu \geq \nu} \| x_{\mu} - x_{\nu} \|_{0}
\]
and furthermore \(\lim_{\nu \to \infty} \| z - x_{\nu} \|_{0} = 0 \).

Secondly let \(\{ x_{\nu} \}_{\nu \geq 1} \) be an arbitrary Cauchy sequence of \(R_{0}^{\perp} \). Then we can find a subsequence \(\{ y_{\nu} \}_{\nu \geq 1} \) of \(\{ x_{\nu} \}_{\nu \geq 1} \) such that
\[
\| y_{\nu+1} - y_{\nu} \|_{0} \leq \frac{1}{2^{\nu}}
\]
for all \(\nu \geq 1 \).

This implies
\[
\| y_{\nu+1} - y_{\nu} \|_{0} \leq \frac{1}{2^{\nu}}
\]
for all \(n > m \geq 1 \).

Putting \(z_{\nu} = \sum_{\nu=1}^{\infty} | y_{\nu+1} - y_{\nu} | \), we have a Cauchy sequence \(\{ z_{\nu} \}_{\nu \geq 1} \) with \(0 \leq z_{\nu} \uparrow_{\nu \to \infty} \infty \).

Then by the fact proved just above,
\[
z_{0} = \bigcup_{\nu=1}^{\infty} z_{\nu} = \sum_{\nu=1}^{\infty} | y_{\nu+1} - y_{\nu} | \in R_{0}^{\perp}
\]
and \(\lim_{\nu \to \infty} \| z_{0} - z_{\nu} \|_{0} = 0 \).

Since \(\sum_{\nu=1}^{\infty} | y_{\nu+1} - y_{\nu} | \) is convergent, \(y_{1} + \sum_{\nu=1}^{\infty} (y_{\nu+1} - y_{\nu}) \) is also convergent and
\[
\| y_{1} + \sum_{\nu=1}^{\infty} (y_{\nu+1} - y_{\nu}) - y_{\infty} \|_{0} = \| \sum_{\nu=1}^{\infty} (y_{\nu+1} - y_{\nu}) \|_{0} \leq \| z_{0} - z_{\infty} \|_{0} \rightarrow 0.
\]

Since \(\{ y_{\nu} \}_{\nu \geq 1} \) is a subsequence of the Cauchy sequence \(\{ x_{\nu} \}_{\nu \geq 1} \), it follows that
\[
\lim_{\nu \to \infty} \| y_{1} + \sum_{\nu=1}^{\infty} (y_{\nu+1} - y_{\nu}) - x_{\nu} \|_{0} = 0.
\]
Therefore \(\| \cdot \|_{0} \) is complete in \(R_{0}^{\perp} \), that is, \(R_{0}^{\perp} \) is an F-space with \(\| \cdot \|_{0} \).

Conversely if \(R_{0}^{\perp} \) is an F-space, then for any orthogonal sequence \(\{ x_{\nu} \}_{\nu \geq 1} \in R_{0}^{\perp} \), we have \(\sum_{\nu=1}^{\infty} \alpha_{\nu} x_{\nu} \in R_{0}^{\perp} \) for some real numbers \(\alpha_{\nu} > 0 \) (for all \(\nu \geq 1 \)).

Hence we can see that \(\sup_{x \in R} d(x) < +\infty \) by the same way applied in Theorem 2.1. It follows that \(\rho \) must satisfy (\(\rho.4' \)).

Q.E.D.

Since \(R_{0} \) contains a normal manifold which is universally complete, if \(R_{0}^{\perp} \), we can conclude directly from Theorems 3.1 and 3.2.
Corollary. Let R be a quasi-modular space which includes no universally complete normal manifold. Then R becomes a quasi-normed space with a quasi-norm $\| \cdot \|_0$ defined by (3.1) and R becomes an F-space with $\| \cdot \|_0$ if and only if ρ fulfills \(\rho(A') \).

§4. Another Quasi-norm. Let L be a modular space in the sense of Musielak and Orlicz (§1). Here we put for $x \in L$

\begin{equation}
||x||_1 = \inf_{\xi>0} \left\{ \frac{1}{\xi} + \rho(\xi x) \right\}^{10)}
\end{equation}

and show that $|| \cdot ||_1$ is also a quasi-norm on L and

\begin{equation}
||x||_0 \leq ||x||_1 \leq 2||x||_0
\end{equation}

for all $x \in L$ hold, where $|| \cdot ||_0$ is a quasi-norm defined by the formula (1.1).

From (A.1), (A.2) and (A.5), it follows that $0 \leq ||x||_1 = ||-x||_1 < +\infty (x \in L)$ and that $||x||_1 = 0$ is equivalent to $x = 0$. Since $\alpha_n \downarrow_0 0$ implies $\lim_{n \to \infty} \rho(\alpha_n x) = 0$ for each $x \in L$ and $\lim_{n \to \infty} ||x_n||_1 = 0$ implies $\lim_{n \to \infty} \rho(\xi x_n) = 0$ for all $\xi \geq 0$, we obtain that $\lim_{n \to \infty} ||\alpha_n x||_1 = 0$ for all $\alpha_n \downarrow_0 0$ and that $\lim_{n \to \infty} ||x_n||_1 = 0$ implies $\lim_{n \to \infty} ||\alpha x_n||_1 = 0$ for all $\alpha > 0$. If $||x||_1 < \alpha$ and $||y||_1 < \beta$, there exist $\xi, \eta > 0$ such that

\[\frac{1}{\xi} + \rho(\xi x) < \alpha \quad \text{and} \quad \frac{1}{\eta} + \rho(\eta y) < \beta. \]

This yields

\[||x + y|| \leq \frac{\xi + \eta}{\xi \eta} + \rho\left(\frac{\xi \eta}{\xi + \eta} (x + y) \right) = \frac{1}{\xi} + \frac{1}{\eta} + \rho\left(\frac{\eta}{\xi + \eta} (\xi x) + \frac{\xi}{\xi + \eta} (\eta y) \right) \]

\[\leq \frac{1}{\xi} + \rho(\xi x) + \frac{1}{\eta} + \rho(\eta y) < \alpha + \beta, \]

in virtue of (A.3). Therefore $||x + y||_1 \leq ||x||_1 + ||y||_1$ holds for any $x, y \in L$ and $|| \cdot ||_1$ is a quasi-norm on L. If $\xi \rho(\xi x) \leq 1$ for some $\xi > 0$ and $x \in L$, we have $\rho(\xi x) \leq \frac{1}{\xi}$ and hence

\[\frac{1}{\xi} \leq \frac{1}{\Xi} + \rho(\xi x) \leq \frac{2}{\xi}. \]

10) For the convex modular m, we can define two kinds of norms such as

\[||x|| = \inf_{\xi > 0} \frac{1 + m(\xi x)}{\xi} \quad \text{and} \quad ||x|| = \inf_{m(\xi x) \leq 1} \frac{1}{\xi} \]

[3 or 4]. For the general modulars considered here, the formulas (3.1) and (4.1) are nothing but ones obtained by replacing $m(\xi x)$ by $\xi \rho(\xi x)$ in $|| \cdot ||$ and $|| \cdot ||$ respectively.
This yields (4.2), since we have \[||x||_0 \leq \frac{1}{\xi} \] and \[\rho(\gamma x) > \frac{1}{\eta} \] for every \(\eta \) with ||x||_0 > \frac{1}{\eta}. Therefore we can obtain from above

Theorem 4.1. If \(L \) is a modular space with a modular satisfying (A.1)~(A.5) in \(\S 1 \), then the formula (4.1) yields a quasi-norm \(||\cdot||_1 \) on \(L \) which is equivalent to \(||\cdot||_0 \) defined by Musielak and Orlicz in [6] as is shown in (4.2).

From the above theorem and the results in \(\S 2 \), we obtain by the same way as in \(\S 3 \)

Theorem 4.2. If \(R \) is a quasi-modular space with a quasi-modular \(\rho \), then

(4.3) \[||x||_1 = \inf_{t>0} \left\{ \frac{1}{t} + \rho^*(\xi x) \right\} \quad (x \in R) \]

is a semi-continuous quasi-norm on \(R_0^\perp \) and \(||\cdot||_1 \) is complete if and only if \(\rho \) satisfies (\(\rho.A' \)), where \(\rho^* \) and \(R_0 \) are the same as in \(\S 2 \) and \(\S 3 \). And further we have

(4.4) \[||x||_0 \leq ||x||_1 \leq 2 ||x||_0 \quad \text{for all } x \in R_0^\perp. \]

\(\S 5. \) A quasi-norm-convergence. Here we suppose that a quasi-modular \(\rho^* \) on \(R \) satisfies \((\rho.1) \sim (\rho.6) \) except \((\rho.3) \) and \(\rho^*(\xi x) \) is not identically zero as a function of \(\xi \geq 0 \) for each \(0 \neq x \in R \) (i.e. \(R_0 = \{0\} \)). A sequence of elements \(\{x_\nu\}_{\nu \geq 1} \) is called order-convergent to \(a \) and denoted by \(o\text{-lim}_{\nu \to \infty} x_\nu = a \), if there exists a sequence of elements \(\{a_\nu\}_{\nu \geq 1} \) such that

\[|x_\nu - a_\nu| \leq a_\nu \quad (\nu \geq 1) \]

and \(a_\nu \downarrow_{\nu=1}^\infty 0 \). And a sequence of elements \(\{x_\nu\}_{\nu \geq 1} \) is called star-convergent to \(a \) and denoted by \(s\text{-lim}_{\nu \to \infty} x_\nu = a \), if for any subsequence \(\{y_\nu\}_{\nu \geq 1} \) of \(\{x_\nu\}_{\nu \geq 1} \), there exists a subsequence \(\{z_\nu\}_{\nu \geq 1} \) of \(\{y_\nu\}_{\nu \geq 1} \) with \(o\text{-lim}_{\nu \to \infty} z_\nu = a \).

A quasi-norm \(||\cdot|| \) on \(R \) is termed to be continuous, if \(\inf_{\nu \geq 1} ||a_\nu|| = 0 \) for any \(a_\nu \downarrow_{\nu \to 0}^\infty 0 \). In the sequel, we write by \(||\cdot||_0 \) (or \(||\cdot||_1 \)) the quasi-norm defined on \(R \) by \(\rho^* \) in \(\S 3 \) (resp. in \(\S 4 \)).

Now we prove

Theorem 5.1. In order that \(||\cdot||_0 \) (or \(||\cdot||_1 \)) is continuous, it is necessary and sufficient that the following condition is satisfied:

(5.1) for any \(x \in R \) there exists an orthogonal decomposition \(x = y + z \) such that \([z]R \) is finite dimensional and \(\rho(y) < +\infty \).

Proof. Necessity. If (5.1) is not true for some \(x \in R \), we can find a
sequence of projector \(\{[p_n]\}_{n\geq 1} \) such that \(\rho([p_n]x)=+\infty \) and \([p_n] \downarrow_{n=1}^{\infty} 0 \). Hence by (3.1) it follows that \(||[p_n]x||_0>1 \) for all \(n\geq 1 \), which contradicts the continuity of \(||\cdot||_0 \).

Sufficiency. Let \(a_\nu\downarrow_{\nu=1}^{\infty} 0 \) and put \([p_\nu^\epsilon]=[a_n-\epsilon a_1]^+ \) for any \(\epsilon>0 \) and \(n\geq 1 \).

This implies
\[
\rho^*(\xi a_n)\leq \rho^*(\xi [p_\nu^\epsilon]a_1)+\rho^*(\xi\epsilon(1-[p_\nu^\epsilon])a_1)
\]
for all \(n\geq 1 \) and \(\xi\geq 0 \). In virtue of (5.1) and \([p_\nu^\epsilon] \downarrow_{n=1}^{\infty} 0 \), we can find \(n_0 \) (depending on \(\xi \) and \(\delta \)) such that \(\rho^*([p_\nu^\epsilon]a_1)<+\infty \), and hence \(\inf_{n\geq 1} \rho^*([p_\nu^\epsilon]a_1) =0 \) by (2.3) in Lemma 1 and (\(\rho.2 \)). Thus we obtain
\[
\inf_{n\geq 1} \rho^*([p_\nu^\epsilon]a_1)\leq \rho^*(\xi a_1).
\]

Since \(\xi \) is arbitrary, \(\lim_{n\rightarrow\infty} \rho^*([p_\nu^\epsilon]a_1)=0 \) follows. Hence we infer that \(\inf_{n\geq 1} ||a_n||_0=0 \) and \(||\cdot||_0 \) is continuous in view of Remark 2 in \(\S 3 \). Q.E.D.

Corollary. \(||\cdot||_0 \) is continuous, if
\[
(5.2) \quad \rho^*(a_\nu)\rightarrow 0 \text{ implies } \rho^*(\alpha a_\nu)\rightarrow 0 \text{ for every } \alpha\geq 0.
\]

From the definition, it is clear that \(s-\lim_{\nu\rightarrow\infty} x_\nu=0 \) implies \(\lim_{\nu\rightarrow\infty} ||x_\nu||_0=0 \), if \(||\cdot||_0 \) is continuous. Conversely we have, by making use of the well-known method (cf. Theorem 33.4 in [3])

Theorem 5.2. \(\lim_{\nu\rightarrow\infty} ||x_\nu||_0=0 \) (or \(\lim_{\nu\rightarrow\infty} ||x_\nu||=0 \)) implies \(s-\lim_{\nu\rightarrow\infty} x_\nu=0 \), if \(||\cdot||_0 \) is complete (i.e. \(\rho^* \) satisfies (\(\rho.3 \)).

If we replace \(\lim_{\nu\rightarrow\infty} ||x_\nu||=0 \) by \(\lim_{\nu\rightarrow\infty} \rho(x_\nu)=0 \), Theorem 5.2 may fail to be valid in general. By this, reason, we must consider the following condition:
\[
(5.3) \quad \rho^*(x)=0 \text{ implies } x=0.
\]

Truly we obtain

Theorem 5.3. If \(\rho^* \) satisfies (5.3) and \(||\cdot||_0 \) is complete, \(\rho(a_\nu)\rightarrow 0 \) implies \(s-\lim a_\nu=0 \).

Proof. We may suppose without loss of generality that \(\rho^* \) is semi-continuous,\(^{11} \) i.e. \(\rho^*(x)=\sup_{y_1\in A} \rho^*(y_1) \) for any \(0\leq x_1\in A \). If \(\rho^* \) is not semi-continuous, putting \(\rho_*(x)=\inf_{y_1\in A} \{\sup_{y_j\in A} \rho^*(y_1)\} \), we obtain a quasi-modular \(\rho_* \) which is semi-continuous and \(\rho^*(x_\nu)\rightarrow 0 \) is equivalent to \(\rho_*(x_\nu)\rightarrow 0 \).

\(^{11} \)
\[
\rho(a_\nu) \leq \frac{1}{2^\nu} \quad (\nu \geq 1),
\]
we can prove by the similar way as in the proof of Lemma 2 that there exists \(\bigcup_{\nu=1}^\infty |a_\nu| \in \mathcal{R} \) in virtue of \((\rho.3)\).

Now, since
\[
\rho\left(\bigcup_{\nu \geq \nu_v}^\infty |a_\nu| \right) \leq \sum_{\nu \geq \nu_v}^\infty \rho(a_\nu) \leq \frac{1}{2^{\nu-1}}
\]
holds for each \(\nu \geq 1 \), \(\rho\left(\bigcap_{\nu=1}^\infty \left(\bigcup_{\nu \geq \nu_v}^\infty |a_\nu| \right) \right) = 0 \) and hence \((5.3)\) implies
\[
\bigcap_{\nu=1}^\infty \left(\bigcup_{\nu \geq \nu_v}^\infty |a_\nu| \right) = 0.
\]
Thus we see that \(\{a_\nu\}_{\nu \geq 1} \) is order-convergent to 0.

For any \(\{b_\nu\}_{\nu \geq 1} \) with \(\rho(b_\nu) \to 0 \), we can find a subsequence \(\{b'_\nu\}_{\nu \geq 1} \) of \(\{b_\nu\}_{\nu \geq 1} \) with \(\rho(b'_\nu) \leq \frac{1}{2^\nu} \) \((\nu = 1, 2, \cdots)\). Therefore we have \(s\text{-}\lim b_\nu = 0 \). \(\text{Q.E.D.} \)

The latter part of the above proof is quite the same as Lemma 2.1 in \([9]\) (due to S. Yamamuro) concerning the condition \((5.2)\) with respect to (convex) modulars on semi-ordered linear spaces. From Theorem 5.2 and 5.3, we can obtain further the next theorem which is analogous to the above lemma of \([9]\) and considered as the converse of Corollary of Theorem 5.1 at the same time.

Theorem 5.4. If \(\rho^* \) satisfies \((5.3)\) and \(\|\cdot\|_0 \) is complete and continuous, then \((5.2)\) holds.

References

Mathematical Institute, Hokkaido University

(Received September 30, 1960)