ON F-NORMS OF QUASI-MODULAR SPACES

By

Shôzô KOSHI and Tetsuya SHIMOGAKI

§1. Introduction. Let \(R \) be a universally continuous semi-ordered linear space (i.e. a conditionally complete vector lattice in Birkhoff's sense [1]) and \(\rho \) be a functional which satisfies the following four conditions:

(\(\rho.1 \)) \(0 \leq \rho(x) = \rho(-x) \leq +\infty \) for all \(x \in R \);

(\(\rho.2 \)) \(\rho(x+y) = \rho(x) + \rho(y) \) for any \(x, y \in R \) with \(x \perp y^{1}) \);

(\(\rho.3 \)) If \(\sum_{\lambda \in \Lambda} \rho(x_{\lambda}) < +\infty \) for a mutually orthogonal system \(\{x_{\lambda}\}_{\lambda \in \Lambda}^{2)} \), there exists \(x_{0} \in R \) such that \(x_{0} = \sum_{\lambda \in \Lambda} x \) and \(\rho(x_{0}) = \sum_{\lambda \in \Lambda} \rho(x_{\lambda}) \);

(\(\rho.4 \)) \(\varlimsup_{\xi \to 0} \rho(\xi x) < +\infty \) for all \(x \in R \).

Then, \(\rho \) is called a quasi-modular and \(R \) is called a quasi-modular space.

In the previous paper [2], we have defined a quasi-modular space and proved that if \(R \) is a non-atomic quasi-modular space which is semi-regular, then we can define a modular\(^{3} \) \(m \) on \(R \) for which every universally continuous linear functional\(^{4} \) is continuous with respect to the norm defined by the modular\(^{5} \) \(m \) [2; Theorem 3.1].

Recently in [6] J. Musielak and W. Orlicz considered a modular \(\rho \) on a linear space \(L \) which satisfies the following conditions:

(A.1) \(\rho(x) \geq 0 \) and \(\rho(x) = 0 \) if and only if \(x = 0 \);

(A.2) \(\rho(-x) = \rho(x) \);

(A.3) \(\rho(\alpha x + \beta y) \leq \rho(x) + \rho(y) \) for every \(\alpha, \beta \geq 0 \) with \(\alpha + \beta = 1 \);

(A.4) \(\alpha_{n} \to 0 \) implies \(\rho(\alpha_{n} x) \to 0 \) for every \(x \in R \);

(A.5) for any \(x \in L \) there exists \(\alpha > 0 \) such that \(\rho(\alpha x) < +\infty \).

They showed that \(L \) is a quasi-normed space with a quasi-norm \(\| \cdot \|_{0} \) defined by the formula;

1) \(x \perp y \) means \(|x| \cap |y| = 0 \).
2) A system of elements \(\{x_{\lambda}\}_{\lambda \in \Lambda} \) is called mutually orthogonal, if \(x_{\lambda} \perp x_{\gamma} \) for \(\lambda \neq \gamma \).
3) For the definition of a modular, see [3].
4) A linear functional \(f \) is called universally continuous, if \(\inf_{\lambda \in \Lambda} f(a_{\lambda}) = 0 \) for any \(\alpha_{\lambda} \downarrow 0_{\lambda \in \Lambda} \).
5) This modular \(\rho \) is a generalization of a modular \(m \) in the sense of Nakano [3 and 4]. In the latter, there is assumed that \(m(\xi x) \) is a convex function of \(\xi \geq 0 \) for each \(x \in R \).
\begin{equation}
\|x\|_0 = \inf \left\{ \xi ; \rho \left(\frac{1}{\xi} x \right) \leq \xi \right\} \tag{6)}
\end{equation}
and \(\|x_n\|_0 \rightarrow 0\) is equivalent to \(\rho(\alpha x_n) \rightarrow 0\) for all \(\alpha \geq 0\).

In the present paper, we shall deal with a general quasi-modular space \(R\) (i.e., without the assumption that \(R\) is non-atomic or semi-regular). The aim of this paper is to construct a quasi-norm on \(R\) and to investigate the condition under which \(R\) is an \(F\)-space with this quasi-norm by making use of the above formula (1.1). Since a quasi-modular \(\rho\) on \(R\) does not satisfy the conditions (A.1), (A.2), (A.4) and (A.5) in general, as is seen by comparing the conditions: (\(\rho.1\)) \sim (\(\rho.4\)) with those of \(\rho\) \([6]\), we can not apply the formula (1.1) directly to \(\rho\) to obtain a quasi-norm. We shall show, however, that we can construct always a quasi-modular \(\rho^*\) which satisfies (A.2) \sim (A.5) on an arbitrary quasi-modular space \(R\) in §2 (Theorems 2.1 and 2.2). Since \(R\) may include a normal manifold \(R_0 = \{x : x \in R, \rho^*(\xi x) = 0\ \text{for all } \xi \geq 0\}\) and we can not define a quasi-norm on \(R_0\) in general, we have to exclude \(R_0\) in order to proceed with the argument further. We shall prove in §3 that a quasi-norm \(\|\cdot\|_0\) on \(R_0^+\) defined by \(\rho^*\) according to the formula (1.1) is semi-continuous, and in order that \(R_0^+\) is an \(F\)-space with \(\|\cdot\|_0\) (i.e., \(\|\cdot\|_0\) is complete), it is necessary and sufficient that \(\rho\) satisfies
\begin{equation}
\sup_{x \in R} \rho(\alpha x) < +\infty
\end{equation}
(Theorem 3.2).

In §4, we shall show that we can define another quasi-norm \(\|\cdot\|_1\) on \(R_0^+\) which is equivalent to \(\|\cdot\|_0\) such that \(\|x\|_0 \leq \|x\|_1 \leq 2\|x\|_0\) holds for every \(x \in R_0^+\) (Formulas (4.1) and (4.3)). \(\|\cdot\|_1\) has a form similar to that of the first norm (due to I. Amemiya) of (convex) modular in the sense of Nakano \([4; \S 83]\). At last in §5 we shall add shortly the supplementary results concerning the relations between \(\|\cdot\|_0\)-convergence and order-convergence. The matter does not essentially differ from the case of the (convex) modular on semi-ordered linear spaces and the results stated in §5 are already known in those cases \([8]\).

Throughout this paper \(R\) denotes a universally continuous semi-ordered linear space and \(\rho\) a quasi-modular defined on \(R\). For any \(p \in R\), \([p]\) is a projector: \([p]x = \bigcup_{n=1}^{\infty} (n|p| \cap x)\) for all \(x \geq 0\) and \(1 - [p]\) is a projection operator onto the normal manifold \(N = \{p\}^1\), that is, \(x = [p]x + (1 - [p])x\).

6) This quasi-norm was first considered by S. Mazur and W. Orlicz \([5]\) and discussed by several authors \([6\ or \ 7]\).
§2. The conversion of a quasi-modular. From the definition of a quasi-modular in §1, the following lemma is immediately deduced.

Lemma 1. For any quasi-modular ρ, we have

\begin{align}
(2.1) \quad & \rho(0)=0; \\
(2.2) \quad & \rho([p]x) \leq \rho(x) \quad \text{for all } p, x \in R; \\
(2.3) \quad & \rho([p]x) = \sup_{\lambda \in \Lambda} \rho([p_{\lambda}]x) \quad \text{for any } [p_{\lambda}] \uparrow_{\lambda \in \Lambda} [p].
\end{align}

In the argument below, we have to use the additional property of ρ:

\begin{equation}
(\rho.5) \quad \rho(x) \leq \rho(y) \quad \text{if } |x| \leq |y|, \ x, y \in R,
\end{equation}

which is not valid for an arbitrary ρ in general.

The next theorem, however, shows that we may suppose without loss of generality that a quasi-modular ρ satisfies $(\rho.5)$.

Theorem 2.1. Let R be a quasi-modular space with quasi-modular ρ. Then there exists a quasi-modular ρ' for which $(\rho.5)$ is valid.

Proof. We put for every $x \in R$,

\begin{equation}
(2.4) \quad \rho'(x) = \sup_{0 \leq |y| \leq |x|} \rho(y).
\end{equation}

It is clear that ρ' satisfies the conditions $(\rho.1)$, $(\rho.2)$ and $(\rho.5)$.

Let $\{x_{i}\}_{i \in \Lambda}$ be an orthogonal system such that $\sum_{i \in \Lambda} \rho'(x_{i}) < +\infty$, then

\[\sum_{i \in \Lambda} \rho(x_{i}) < +\infty, \]

because

\[\rho(x) \leq \rho'(x) \quad \text{for all } x \in R. \]

We have

\[x_{0} = \sum_{i \in \Lambda} x_{i} \in R \]

and

\[\rho(x_{0}) = \sum_{i \in \Lambda} \rho(x_{i}) \quad \text{in virtue of } (\rho.3). \]

For such x_{0},

\[\rho'(x_{0}) = \sup_{0 \leq |y| \leq |x_{0}|} \rho(y) = \sup_{0 \leq |y| \leq |x_{0}|} \sum_{i \in \Lambda} \rho([x_{i}]y) \]

\[= \sum_{i \in \Lambda} \sup_{0 \leq |y| \leq |x_{0}|} \rho([x_{i}]y) = \sum_{i \in \Lambda} \rho'(x_{i}) \]

holds, i.e. ρ' fulfils $(\rho.3)$.

If ρ' does not fulfil $(\rho.4)$, we have for some $x_{0} \in R$,

\[\rho'(1/n x_{0}) = +\infty \quad \text{for all } n \geq 1. \]

By $(\rho.2)$ and $(\rho.4)$, x_{0} can not be written as $x_{0} = \sum_{\nu=1}^{\kappa} \xi_{\nu} e_{\nu}$, where e_{ν} is an atomic element for each ν with $1 \leq \nu \leq \kappa$, namely, we can decompose x_{0} into
an infinite number of orthogonal elements. First we decompose into

\[x_0 = x_1 + x_1', \quad x_1 \perp x_1', \]

where \(\rho'(\frac{1}{\nu}x_1) = +\infty \) (\(\nu = 1, 2, \ldots \)) and \(\rho'(x_1') > 1 \). For the definition of \(\rho' \), there exists \(0 \leq y_1 \leq |x_1'| \) such that \(\rho(y_1) \geq 1 \). Next we can also decompose \(x_1 \) into

\[x_1 = x_2 + x_2', \quad x_2 \perp x_2', \]

where

\[\rho'(\frac{1}{\nu}x_2) = +\infty \quad (\nu = 1, 2, \ldots) \]

and

\[\rho'(\frac{1}{2}x_2') > 2. \]

There exists also \(0 \leq y_2 \leq |x_2'| \) such that \(\rho(\frac{1}{2}y_2) \geq 2 \). In the same way, we can find by induction an orthogonal sequence \(\{y_\nu\}_{\nu=1,2,\ldots} \) such that

\[\rho\left(\frac{1}{\nu}y_\nu\right) \geq \nu \]

and

\[0 \leq |y_\nu| \leq |x| \]

for all \(\nu \geq 1 \).

Since \(\{y_\nu\}_{\nu=1,2,\ldots} \) is order-bounded, we have in virtue of (2.3)

\[y_0 = \sum_{\nu=1}^{\infty} y_\nu \in \mathbb{R} \]

and

\[\rho(\frac{1}{\nu}y_0) \geq \rho(\frac{1}{\nu}y_\nu) \geq \nu, \]

which contradicts (\(\rho.4 \)). Therefore \(\rho' \) has to satisfy (\(\rho.4 \)). Q.E.D.

Hence, in the sequel, we denote by \(\rho' \) a quasi-modular defined by the formula (2.4).

If \(\rho \) satisfies (\(\rho.5 \)), \(\rho \) does also (A.3) in §1:

\[\rho(\alpha x + \beta y) \leq \rho(x) + \rho(y) \]

for \(\alpha, \beta \geq 0 \) with \(\alpha + \beta = 1 \).

Because, putting \([p] = [(|x| - |y|)^+]\), we obtain
\[\rho(\alpha x + \beta y) \leq \rho(\alpha |x| + \beta |y|)\]
\[\leq \rho(\alpha \lfloor p \rfloor |x| + \alpha (1 - \lfloor p \rfloor) |y| + \beta \lfloor p \rfloor |x| + (1 - \lfloor p \rfloor) \beta |y|)\]
\[= \rho(\lfloor p \rfloor |x| + (1 - \lfloor p \rfloor) |y|)\]
\[= \rho(\lfloor p \rfloor x) + \rho((1 - \lfloor p \rfloor) y)\]
\[\leq \rho(x) + \rho(y)\].

Remark 1. As is shown above, the existence of \(\rho^*\) as a quasi-modular depends essentially on the condition \((\rho.4)\). Thus, in the above theorems, we cannot replace \((\rho.4)\) by the weaker condition:

\[(\rho.4')\quad \text{for any } x \in R, \text{ there exists } \alpha \geq 0 \text{ such that } \rho(\alpha x) < +\infty.\]

In fact, the next example shows that there exists a functional \(\rho_0\) on a universally continuous semi-ordered linear space satisfying \((\rho.1)\), \((\rho.2)\), \((\rho.3)\) and \((\rho.4')\), but does not \((\rho.4)\). For this \(\rho_0\), we obtain

\[\rho_0(x) = \sup_{|y| \leq |x|} \rho_0(y) = +\infty\]

for all \(x \neq 0\).

Example. \(L_1[0,1]\) is the set of measurable functions \(x(t)\) which are defined in \([0,1]\) with

\[\int_0^1 |x(t)| \, dt < +\infty.\]

Putting

\[\rho_0(x) = \rho_0(x(t)) = \int_0^1 |x(t)| \, dt + \sum_{i=1}^\infty i \, \text{mes} \left\{ t : x(t) = \frac{1}{i} \right\},\]

we have an example satisfying the above conditions.

In order to define the quasi-norm, we need one more additional condition: \((A.4)\), namely,

\[(\rho.6) \quad \lim_{\xi \to 0} \rho(\xi x) = 0 \quad \text{for all } x \in R.\]

A quasi-modular space becomes, as is shown below, always a quasi-normed space excluding the trivial part, but not an F-space in general. This fact is based upon the following Theorems 2.2 and 2.3.

Theorem 2.2. Let \(\rho\) be a quasi-modular on \(R\). We can find a functional \(\rho^*\) which satisfies \((\rho.1)\)~\((\rho.6)\) except \((\rho.3)\).

Proof. In virtue of Theorem 2.1, there exists a quasi-modular \(\rho'\) which satisfies \((\rho.5)\). Now we put

\[(\rho.6) \quad \lim_{\xi \to 0} \rho(\xi x) = 0 \quad \text{for all } x \in R.\]

It is clear that \(0 \leq d(x) = d(|x|) < +\infty\) for all \(x \in R\) and
On F-Norms of Quasi-Modular Spaces

Hence, putting

\[(2.6) \quad \rho^*(x) = \rho'(x) - d(x) \quad (x \in R). \]

we can see easily that \((\rho.1), (\rho.2), (\rho.4)\) and \((\rho.6)\) hold true for \(\rho^*\), since

\[d(x) \leq \rho'(x) \]

and

\[d(\alpha x) = d(x) \]

for all \(x \in R\) and \(\alpha > 0\).

We need to prove that \((\rho.5)\) is true for \(\rho^*\). First we have to note

\[(2.7) \quad \inf_{\lambda \in A} d([p_\lambda]x) = 0 \]

for any \([p_\lambda] \downarrow_{\lambda \in A} 0\). In fact, if we suppose the contrary, we have

\[\inf_{\lambda \in A} d([p_\lambda]x_0) \geq \alpha > 0 \]

for some \([p_\lambda] \downarrow_{\lambda \in A} 0\) and \(x_0 \in R\).

Hence,

\[\rho'(\frac{1}{n}[p_\lambda]x_0) \geq d([p_\lambda]x_0) \geq \alpha \]

for all \(n \geq 1\) and \(\lambda \in A\). Thus we can find a subsequence \(\{\lambda_n\}_{n=1}^{\infty}\) of \(\{\lambda\}_{\lambda \in A}\) such that

\[[p_{\lambda_n}] \geq [p_{\lambda_{n+1}}] \]

and

\[\rho'(\frac{1}{n}[p_{\lambda_n}]x_0) \geq \sum_{m \geq n} \rho'(\frac{1}{m}[p_{\lambda_m}]x_0) \geq \frac{\alpha}{2} \]

for all \(n \geq 1\) in virtue of \((\rho.2)\) and \((2.3)\). This implies

\[\rho'(\frac{1}{n}x_0) \geq \sum_{m \geq n} \rho'(\frac{1}{m}([p_{\lambda_m}] - [p_{\lambda_{m+1}}]x_0) = +\infty \]

which is inconsistent with \((\rho.4)\). Secondly we shall prove

\[(2.8) \quad d(x) = d(y), \quad \text{if } [x] = [y]. \]

We put \([p_n] = [(|x| - n|y|]^+)\) for \(x, y \in R\) with \([x] = [y]\) and \(n \geq 1\). Then, \([p_n] \downarrow_{n=1}^{\infty} 0\) and \(\inf_{\text{any } n_1, 2, ...} d([p_n]x) = 0\) by \((2.7)\). Since \((1 - [p_n])n \geq (1 - [p_n])|x|\) and

\[d(\alpha x) = d(x) \]

for \(\alpha > 0\) and \(x \in R\), we obtain
\[d(x) = d([p_n]x) + d((1 - [p_n])x) \leqq d([p_n]x) + d(n(1 - [p_n])y) \leqq d([p_n]x) + d(y). \]

As \(n \) is arbitrary, this implies
\[d(x) \leqq \inf_{n=1, 2, \ldots} d([p_n]x) + d(y), \]
and also \(d(x) \leqq d(y) \). Therefore we conclude that (2.8) holds.

If \(|x| \geqq |y| \), then
\[\rho^*(x) = \rho^*([y]x) + \rho^*([x] - [y])x \]
\[= \rho'(y) - d(y) + \rho^*([x] - [y])x \]
\[\geqq \rho^*(y). \]

Thus \(\rho^* \) satisfies (\(\rho.5 \)).

Theorem 2.3. \(\rho^* \) (which is constructed from \(\rho \) according to the formulas (2.4), (2.5) and (2.6)) satisfies (\(\rho.3 \)) (that is, \(\rho^* \) is a quasi-modular), if and only if \(\rho \) satisfies (\(\rho.4' \))
\[
\sup_{x \in R} \left\{ \lim_{\xi \rightarrow 0} \rho(x) \right\} = K < +\infty.
\]

Proof. Let \(\rho \) satisfy (\(\rho.4 \)). We need to prove
\[
\sup_{x \in R} d(x) = \sup_{x \in R} \left\{ \lim_{\xi \rightarrow 0} \rho'(\xi x) \right\} = K' < +\infty,
\]
where
\[
\rho'(x) = \sup_{0 \leqq |y| \leqq |x|} \rho(y).
\]

Since \(\rho' \) is also a quasi-modular, Lemma 2 in [2] or [8] can be applicable, if we put \(n_0(x) = \rho(x) \) and \(n_\nu(x) = \rho'(1/\nu x) \) for \(\nu \geqq 1 \) and \(x \in R \). Hence we can find positive numbers \(\epsilon, \gamma \), a natural number \(\nu_0 \) and a finite dimensional normal manifold \(N_0 \) such that \(x \in N_0^\perp \) with
\[
\rho(x) \leqq \epsilon \text{ implies } \rho'(1/\nu_0 x) \leqq \gamma.
\]

In \(N_0 \), we have obviously
\[
\sup_{x \in N_0} \left\{ \lim_{\xi \rightarrow 0} \rho'(\xi x) \right\} = \gamma_0 < +\infty.
\]

If \(\epsilon \leqq 2K \), for any \(x_0 \in N_0^\perp \), we can find \(\alpha_0 > 0 \) such that \(\rho(\alpha x_0) \leqq 2K \) for all \(0 \leqq \alpha \leqq \alpha_0 \) by (\(\rho.4' \)), and hence there exists always an orthogonal decomposition such that
\[\alpha_0 x_0 = x_1 + \cdots + x_n + y_1 + \cdots + y_m + z \]

where \(\frac{\epsilon}{2} < \rho(x_i) \leq \varepsilon (i = 1, 2, \cdots, n) \), \(y_j \) is an atomic element with \(\rho(y_j) > \varepsilon \) for every \(j = 1, 2, \cdots, m \) and \(\rho(z) \leq \frac{\varepsilon}{2} \). From above, we get \(n \leq \frac{4K}{\varepsilon} \) and \(m \leq \frac{2K}{\varepsilon} \). This yields

\[
\rho'(\frac{1}{\nu_0} \alpha_0 x_0) \leq \sum_{i=1}^{n} \rho'(\frac{1}{\nu_0} x_i) + \sum_{j=1}^{m} \rho'(y_j) + \rho'(\frac{z}{\nu_0}) \\
\leq n\gamma + \sum_{j=1}^{m} \rho'(y_j) + \rho'(\frac{z}{\nu_0}) \\
\leq \frac{4K}{\varepsilon} \gamma + \frac{2K}{\varepsilon} \left\{ \sup_{0 \leq a \leq a_0} \rho(\alpha x) \right\} + \gamma.
\]

Hence, we obtain

\[
\lim_{\xi \to 0} \rho'(\xi x_0) \leq \rho'(\frac{\alpha_0}{\nu_0} x_0) \leq (\frac{4K+\varepsilon}{\varepsilon}) \gamma + (\frac{4K^2}{\varepsilon})
\]

in case of \(\varepsilon \leq 2K \). If \(2K \leq \varepsilon \), we have immediately for \(x \in N^0_0 \)

\[
\lim_{\xi \to 0} \rho'(\xi x) \leq \gamma.
\]

Therefore, we obtain

\[
\sup_{x \in R} \{ \lim_{\xi \to 0} \rho'(\xi x) \} \leq \gamma'
\]

where

\[
\gamma' = \frac{4K+\varepsilon}{\varepsilon} + \frac{4K^2}{\varepsilon} + \gamma_0.
\]

Let \(\{x_i\}_{i \in A} \) be an orthogonal system with \(\sum_{i \in A} \rho^*(x_i) < +\infty \). Then for arbitrary \(\lambda_1, \cdots, \lambda_k \in A \), we have

\[
\sum_{i=1}^{k} d(x_i) = d(\sum_{i=1}^{k} x_i) = \lim_{\xi \to 0} \rho'(\xi \sum_{i=1}^{k} x_i) \leq \gamma',
\]

which implies \(\sum_{i \in A} d(x_i) \leq \gamma' \). It follows that

\[
\sum_{i \in A} \rho^*(x_i) = \sum_{i \in A} \rho^*(x_i) + \sum_{i \in A} d(x_i) < +\infty,
\]

which implies \(x_0 = \sum_{i \in A} x_i \in R \) and \(\sum_{i \in A} \rho^*(x_i) = \rho^*(x_0) \) by (\(\rho.4 \)) and (2.7). Therefore, \(\rho^* \) satisfies (\(\rho.3 \)).

On the other hand, suppose that \(\rho^* \) satisfies (\(\rho.3 \)) and \(\sup_{x \in R} d(x) = +\infty \). Then we can find an orthogonal sequence \(\{x_i\}_{i \geq 1} \) such that

\[
\sum_{i=1}^{n} d(x_i) = d(\sum_{i=1}^{n} x_i) \geq \mu
\]
for all $\mu \geq 1$ in virtue of (2.8) and the orthogonal additivity of d. Since
\[\lim_{t \to 0} \rho^*(\xi x) = 0 , \]
there exists $\{ \alpha_\nu \}_{\nu \geq 1}$ with $0 < \alpha_\nu \ (\nu \geq 1)$ and $\sum_{\nu=1}^{\infty} \rho^*(\alpha_\nu x_\nu) < +\infty$. It follows that
\[x_0 = \sum_{\nu=1}^{\infty} \alpha_\nu x_\nu \in R \]
and $d(x_0) = \sum_{\nu=1}^{\infty} d(\alpha_\nu x_\nu)$ from (2.3). For such x_0, we have for every $\xi \geq 0$,
\[\rho'(\xi x_0) = \sum_{\nu=1}^{\infty} \rho'(\xi \alpha_\nu x_\nu) \geq \sum_{\nu=1}^{\infty} d(x_\nu) = +\infty , \]
which is inconsistent with ($\rho.4$). Therefore we have
\[\sup_{x \in R} (\lim_{t \to 0} \rho(\xi x)) \leq \sup_{x \in R} d(x) < +\infty . \]
Q.E.D.

§3. Quasi-norms. We denote by R_0 the set:
\[R_0 = \{ x : x \in R , \ \rho^*(nx) = 0 \text{ for all } n \geq 1 \} , \]
where ρ^* is defined by the formula (2.6). Evidently R_0 is a semi-normal manifold\(^7\) of R. We shall prove that R_0 is a normal manifold of R. In fact, let $x = \bigcup_{\lambda \in \Lambda} x_\lambda$ with $R_0 \ni x_\lambda \geq 0$ for all $\lambda \in \Lambda$. Putting
\[\lbrack p_{n,\lambda} \rbrack = \lbrack (2nx_\lambda - nx)^+ \rbrack , \]
we have
\[\lbrack p_{n,\lambda} \rbrack \uparrow_{\lambda \in \Lambda} \lbrack x \rbrack \text{ and } 2n \lbrack p_{n,\lambda} \rbrack x_\lambda \geq \lbrack p_{n,\lambda} \rbrack nx , \]
which implies $\rho^*(n \lbrack p_{n,\lambda} \rbrack x) = 0$ and $\sup_{x \in R} \rho^*(n \lbrack p_{n,\lambda} \rbrack x) = \rho^*(nx) = 0$. Hence, we obtain $x \in R_0$, that is, R_0 is a normal manifold of R.

Therefore, R is orthogonally decomposed into
\[R = R_0 \oplus R_0^\perp . \]

In virtue of the definition of ρ^*, we infer that for any $p \in R_0$, $\lbrack p \rbrack R_0$ is universally complete, i.e. for any orthogonal system $\{ x_\lambda \}_{\lambda \in \Lambda} \subseteq \lbrack p \rbrack R_0$, there exists $x_0 = \sum_{\lambda \in \Lambda} x_\lambda \in \lbrack p \rbrack R$. Hence we can also verify without difficulty that R_0 has no universally continuous linear functional except 0, if R_0 is non-atomic. When R_0 is discrete, it is isomorphic to $S(\Lambda)^{\text{pt}}$-space. With respect to such a universally complete space R_0, we can not always construct a linear metric topology on R_0, even if R_0 is discrete.

In the following, therefore, we must exclude R_0 from our consideration. Now we can state the theorems which we aim at.

\(^7\) A linear manifold S is said to be semi-normal, if $a \in S$, $|b| \leq \alpha$, $b \in R$ implies $b \in S$. Since R is universally continuous, a semi-normal manifold S is normal if and only if $\bigcup_{\lambda \in \Lambda} x_\lambda \in S$.

\(^8\) This means that $x \in R$ is written by $x = y + z$, $y \in R_0$ and $z \in R_0^\perp$.

\(^9\) $S(\Lambda)$ is the set of all real functions defined on Λ.

Theorem 3.1. Let R be a quasi-modular space. Then R_0^\perp becomes a quasi-normed space with a quasi-norm $|| \cdot ||_0$ which is semi-continuous, i.e.

$$\sup_{\lambda \in \Lambda} \| x_{\lambda} \|_0 = \| x \|_0$$

for any $0 \leq x_{\lambda} \uparrow_{\lambda \in \Lambda} x$.

Proof. In virtue of Theorems 2.1 and 2.2, ρ^* satisfies $\rho(1) \sim (\rho.6)$ except (\rho.3). Now we put

$$(3.1) \quad \| x \|_0 = \inf \{ \xi ; \rho^* \left(\frac{1}{\xi} x \right) \leq \xi \} .$$

Then,

i) $0 \leq \| x \|_0 = - \| x \|_0 < \infty$ and $\| x \|_0 = 0$ is equivalent to $x = 0$; follows from (\rho.1), (\rho.6), (2.1) and the definition of R_0^\perp.

ii) $\| x + y \|_0 \leq \| x \|_0 + \| y \|_0$ for any $x, y \in R$; follows also from (A.3) which is deduced from (\rho.4).

iii) $\lim_{\alpha_n \to 0^+} \| \alpha x \|_0 = 0$ and $\lim_{\| x \|_0 \to 0} \| \alpha x \|_0 = 0$; is a direct consequence of (\rho.5). At last we shall prove that $|| \cdot ||_0$ is semi-continuous. From ii) and iii), it follows that $\lim_{\alpha \to 0^+} \| \alpha x \|_0 = \| \alpha_0 x \|_0$ for all $x \in R_0^\perp$ and $\alpha_0 \geq 0$. If $x \in R_0^\perp$ and $[p, \lambda] \uparrow_{\lambda \in \Lambda} [p]$, for any positive number ξ with $\| [p] x \|_0 > \xi$ we have $\rho^* \left(\frac{1}{\xi} [p] x \right) > \xi$, which implies $\sup_{\lambda \in \Lambda} \rho^* \left(\frac{1}{\xi} [p, \lambda] x \right) > \xi$ and hence $\sup_{\lambda \in \Lambda} \| [p, \lambda] x \|_0 \geq \xi$. Thus we obtain

$$\sup_{\lambda \in \Lambda} \| [p, \lambda] x \|_0 = \| [p] x \|_0 , \quad \text{if} \quad [p, \lambda] \uparrow_{\lambda \in \Lambda} [p] .$$

Let $0 \leq x_{\lambda} \uparrow_{\lambda \in \Lambda} x$. Putting

$$[p_{n, \lambda}] = \left[(x_{\lambda} - (1 - \frac{1}{n}) x)^+ \right]$$

we have

$$[p_{n, \lambda}] \uparrow_{\lambda \in \Lambda} [x] \quad \text{and} \quad [p_{n, \lambda}] x_{\lambda} \geq [p_{n, \lambda}] \left(1 - \frac{1}{n} \right) x \quad (n \geq 1).$$

As is shown above, since

$$\sup_{\lambda \in \Lambda} \| [p_{n, \lambda}] x_{\lambda} \|_0 \geq \sup_{\lambda \in \Lambda} \left\| [p_{n, \lambda}] \left(1 - \frac{1}{n} \right) x \right\|_0 = \left\| \left(1 - \frac{1}{n} \right) x \right\|_0 ,$$

we have

$$\sup_{\lambda \in \Lambda} \| x_{\lambda} \|_0 \geq \left\| \left(1 - \frac{1}{n} \right) x \right\|_0$$

and also $\sup_{\lambda \in \Lambda} \| x_{\lambda} \|_0 \geq \| x \|_0$. As the converse inequality is obvious by iv), $|| \cdot ||_0$ is semi-continuous.

Q.E.D.

Remark 2. By the definition of (3.1), we can see easily that $\lim \| x_n \|_0 = 0$ if and only if $\lim \rho(\xi x_n) = 0$ for all $\xi \geq 0$.

201
In order to prove the completeness of quasi-norm $||\cdot||_0$, the next Lemma is necessary.

Lemma 2. Let $p_{n,\nu}$, $x_{\nu} \geq 0$ and $a \geq 0$ ($n, \nu = 1, 2, \cdots$) be the elements of R_0^- such that

\begin{equation}
(p_{n,\nu}) \uparrow_{\nu=1}^{\infty} [p_n] \text{ with } \bigcap_{n=1}^{\infty} [p_n] a = [p_0] a \neq 0;
\end{equation}

\begin{equation}
[p_n] a \geq n [p_{n,\nu}] a \text{ for all } n, \nu \geq 1.
\end{equation}

Then $\{x_{\nu}\}_{\nu \geq 1}$ is not a Cauchy sequence of R_0^- with respect to $||\cdot||_0$.

Proof. We shall show that there exist a sequence of projectors $[q_m] \downarrow_{m=1}^{\infty}$ ($m \geq 1$) and sequences of natural numbers ν_m, n_m such that

\begin{equation}
||[q_m]a||_0 > \frac{\delta}{2} \text{ and } [q_m] a \geq n_m [q_m] a \quad (m = 1, 2, \cdots)
\end{equation}

and

\begin{equation}
n_m [q_m] a \geq [q_m] x_{\nu_{m-1}} , \quad n_{m+1} > n_m \quad (m = 2, 3, \cdots),
\end{equation}

where $\delta = ||[p_0]a||_0$.

In fact, we put $n_1 = 1$. Since $[p_{1,\nu}][p_0] \uparrow_{\nu=1}^{\infty} [p_0]$ and $||\cdot||_0$ is semi-continuous, we can find a natural number ν_1 such that

\[
||[p_{1,\nu_1}][p_0] a||_0 > \frac{||p_0||_0}{2} = \frac{\delta}{2}.
\]

We put $[q_1] = [p_{1,\nu_1}][p_0]$. Now, let us assume that $[q_m], \nu_m, n_m$ ($m = 1, 2, \cdots, k$) have been taken such that (3.4) and (3.5) are satisfied.

Since $[(na-x_{\nu_k})^+] \uparrow_{n=1}^{\infty} [a] \text{ and } ||[q_k]a||_0 > \frac{\delta}{2}$, there exists n_{k+1} with

\[
||(n_{k+1}a-x_{\nu_k})^+ [q_k] a||_0 > \frac{\delta}{2}.
\]

For such n_{k+1}, there exists also a natural number ν_{k+1} such that

\[
||[p_{n_{k+1}, \nu_{k+1}}][(n_{k+1}a-x_{\nu_k})^+][q_k] a||_0 > \frac{\delta}{2}.
\]

in virtue of (3.2) and semi-continuity of $||\cdot||_0$. Hence we can put

\[
[q_{k+1}] = [p_{n_{k+1}, \nu_{k+1}}][(n_{k+1}a-x_{\nu_k})^+][q_k],
\]

because

\[
[q_{k+1}] \geq [q_k], \quad ||[q_{k+1}] a|| > \frac{\delta}{2}, \quad [q_{k+1}] x_{\nu_{k+1}} \geq n_{k+1}[q_{k+1}] a
\]

by (3.3) and $[q_{k+1}] n_{k+1} a \geq [q_{k+1}] x_{\nu_k}$ by (3.5).

For the sequence thus obtained, we have for every $k \geq 3$
On F-Norms of Quasi-Modular Spaces

\[\| x_{\nu_{k+1}} - x_{\nu_{k-1}} \|_0 \geq \| [q_{k+1}] (x_{\nu_{k+1}} - x_{\nu_{k-1}}) \|_0 \geq \| n_{k+1} [q_{k+1}] a - n_k [q_{k+1}] a \|_0 \geq \| [q_{k+1}] a_0 \|_0 \geq \frac{\delta}{2}, \]

since \[[q_{k+1}] \leq [q_k] \leq [(n_k a - x_{\nu_{k-1}})^+] \] implies \[[q_{k+1}] n_k a \geq [q_{k+1}] x_{\nu_{k-1}} \] by (3.4). It follows from the above that \(\{x_{\nu}\}_{\nu \geq 1} \) is not a Cauchy sequence.

Theorem 3.2. Let \(R \) be a quasi-modular space with quasi-modular \(\rho \). Then \(R_0^\perp \) is an F-space with \(\| \cdot \|_0 \) if and only if \(\rho \) satisfies (\(\rho.4' \)).

Proof. If \(\rho \) satisfies (\(\rho.4' \)), \(\rho^* \) is a quasi-modular which fulfills also (\(\rho.5 \)) and (\(\rho.6 \)) in virtue of Theorem 2.3. Since \(\rho^* \) satisfies (\(\rho.3 \)), there exists \(0 \leq x_0 \in R_0^\perp \) such that \(x_{0} = \bigcup_{\nu=1}^\infty x_{\nu} \), as is shown in the proof of Theorem 2.3.

Putting \([p_{n,\nu}] = [(x_{\nu} - nx_0)^+] \) and \(\bigcup_{\nu=1}^\infty [p_{n,\nu}] = [p_n] \), we obtain

\[[p_{n,\nu}] \geq n [p_{n,\nu}] x_0 \quad \text{for all } n, \nu \geq 1 \]

and \(\bigcup_{\nu=1}^\infty [p_{n}] = 0 \). Since \(\{x_{\nu}\}_{\nu \geq 1} \) is a Cauchy sequence, we have in virtue of Lemma 2, \(\bigcap_{n=1}^\infty [p_{n}] = 0 \), that is, \(\bigcup_{n=1}^\infty ([x_{\nu}] - [p_{n}]) = [x_{0}] \). And

\[(1 - [p_{n,\nu}]) \geq (1 - [p_{n}]) \quad (n, \nu \geq 1) \]

implies

\[n(1 - [p_{n}]) x_0 \geq (1 - [p_{n}]) x_{\nu} \geq 0. \]

Hence we have

\[y_n = \bigcup_{\nu=1}^\infty (1 - [p_{n}]) x_\nu \in R_0^\perp, \]

because \(R_0^\perp \) is universally continuous. As \(\{x_{\nu}\}_{\nu \geq 1} \) is a Cauchy sequence, we obtain from the triangle inequality of \(\| \cdot \|_0 \)

\[\gamma = \sup_{\nu \geq 1} \| x_{\nu} \|_0 < +\infty, \]

which implies

\[\| y_n \|_0 = \sup_{\nu \geq 1} \| (1 - [p_{n}]) x_\nu \|_0 \leq \gamma \]

for every \(n \geq 1 \) by semi-continuity of \(\| \cdot \|_0 \). We put \(z_1 = y_1 \) and \(z_n = y_n - y_{n-1} \) \((n \geq 2) \). It follows from the definition of \(y_n \) that \(\{z_{\nu}\}_{\nu \geq 1} \) is an orthogonal sequence with \(\| \sum_{\nu=1}^n z_{\nu} \|_0 = \| y_n \|_0 \leq \gamma \). This implies
S. Koshi and T. Shimogaki

\[\sum_{\nu=1}^{n} \rho^{*} \left(\frac{z_{\nu}}{1+\gamma} \right) = \rho^{*} \left(\frac{y_{n}}{1+\gamma} \right) \leq \gamma \]

for all \(n \geq 1 \) by the formula (3.1). Then \((\rho.3)\) assures the existence of \(z = \sum_{\nu=1}^{\infty} z_{\nu} = \bigcup_{\nu=1}^{\infty} y_{\nu} \). This yields \(z = \bigcup_{\nu=1}^{\infty} x_{\nu} \). Truly, it follows from

\[z = \bigcup_{n=1}^{\infty} y_{n} = \bigcup_{n=1}^{\infty} \left(1 - \left[p_{n} \right] \right) x_{n} = \bigcup_{n=1}^{\infty} \left(1 - \left[p_{n} \right] \right) x_{n} = \bigcup_{\nu=1}^{\infty} x_{\nu} \]

By semi-continuity of \(|| \cdot ||_{0} \), we have

\[|| z - x_{\nu} ||_{0} \leq \sup_{\nu \geq \nu} || x_{\nu} - x_{\nu} ||_{0} \]

and furthermore \(\lim_{\nu \to \infty} || z - x_{\nu} ||_{0} = 0 \).

Secondly let \{\(x_{\nu}\)\}_{\nu=1}^{\infty} be an arbitrary Cauchy sequence of \(R_{0}^{\perp} \). Then we can find a subsequence \{\(y_{\nu}\)\}_{\nu=1}^{\infty} of \{\(x_{\nu}\)\}_{\nu=1}^{\infty} such that

\[|| y_{\nu+1} - y_{\nu} ||_{0} \leq 2^{-\nu} \]

for all \(\nu \geq 1 \).

This implies

\[|| \sum_{\nu=m}^{n} y_{\nu+1} - y_{\nu} ||_{0} \leq \sum_{\nu=m}^{n} || y_{\nu+1} - y_{\nu} ||_{0} \leq \frac{1}{2^{m-1}} \]

for all \(n \geq m \geq 1 \).

Putting \(z_{n} = \sum_{\nu=1}^{n} |y_{\nu+1} - y_{\nu}| \), we have a Cauchy sequence \{\(z_{n}\)\}_{n=1}^{\infty} with \(0 \leq z_{n}^{\uparrow} \).

Then by the fact proved just above,

\[z_{0} = \bigcup_{n=1}^{\infty} z_{n} = \sum_{\nu=1}^{\infty} |y_{\nu+1} - y_{\nu}| \in R_{0}^{\perp} \] and \(\lim_{n \to \infty} || z_{0} - z_{n} ||_{0} = 0 \).

Since \(\sum_{\nu=1}^{\infty} |y_{\nu+1} - y_{\nu}| \) is convergent, \(y_{1} + \sum_{\nu=1}^{\infty} (y_{\nu+1} - y_{\nu}) \) is also convergent and

\[|| y_{1} + \sum_{\nu=1}^{\infty} (y_{\nu+1} - y_{\nu}) - y_{n} ||_{0} = || \sum_{\nu=n+1}^{\infty} (y_{\nu+1} - y_{\nu}) ||_{0} \leq || z_{0} - z_{n} ||_{0} \to 0 \]

Since \{\(y_{\nu}\)\}_{\nu=1}^{\infty} is a subsequence of the Cauchy sequence \{\(x_{\nu}\)\}_{\nu=1}^{\infty}, it follows that

\[\lim_{\nu \to \infty} || y_{1} + \sum_{\nu=1}^{\infty} (y_{\nu+1} - y_{\nu}) - x_{\nu} ||_{0} = 0 \]

Therefore \(|| \cdot ||_{0} \) is complete in \(R_{0}^{\perp} \), that is, \(R_{0}^{\perp} \) is an F-space with \(|| \cdot ||_{0} \).

Conversely if \(R_{0}^{\perp} \) is an F-space, then for any orthogonal sequence \{\(x_{\nu}\)\}_{\nu=1}^{\infty} \in R_{0}^{\perp}, we have \(\sum_{\nu=1}^{\infty} \alpha_{\nu} x_{\nu} \in R_{0}^{\perp} \) for some real numbers \(\alpha_{\nu} > 0 \) (for all \(\nu \geq 1 \)). Hence we can see that \(\sup_{x \in R} d(x) < +\infty \) by the same way applied in Theorem 2.1. It follows that \(\rho \) must satisfy \((\rho.4').\) Q.E.D.

Since \(R_{0} \) contains a normal manifold which is universally complete, if \(R_{0}^{\perp} \neq 0 \), we can conclude directly from Theorems 3.1 and 3.2.
Corollary. Let R be a quasi-modular space which includes no universally complete normal manifold. Then R becomes a quasi-normed space with a quasi-norm $\|\cdot\|_0$ defined by (3.1) and R becomes an F-space with $\|\cdot\|_0$ if and only if ρ fulfils ($\rho.A'$).

§4. Another Quasi-norm. Let L be a modular space in the sense of Musielak and Orlicz (\S1). Here we put for $x \in L$

$$||x||_1 = \inf_{\xi > 0} \left\{ \frac{1}{\xi} + \rho(\xi x) \right\}^{10}$$

and show that $||\cdot||_1$ is also a quasi-norm on L and

$$||x||_0 \le ||x||_1 \le 2||x||_0$$

hold, where $||\cdot||_0$ is a quasi-norm defined by the formula (1.1).

From (A.1), (A.2) and (A.5), it follows that $0 \le ||x||_1 = ||-x||_1 < +\infty$ ($x \in L$) and that $||x||_1 = 0$ is equivalent to $x = 0$. Since $\alpha_n \downarrow_{n=1}^{\infty} 0$ implies $\lim \rho(\alpha_n x) = 0$ for each $x \in L$ and $\lim ||x_n||_1 = 0$ implies $\lim \rho(\xi x_n) = 0$ for all $\xi \ge 0$, we obtain that $\lim ||\alpha_n x||_1 = 0$ for all $\alpha_n \downarrow_{n=1}^{\infty} 0$ and that $\lim ||x_n||_1 = 0$ implies $\lim ||\alpha x_n||_1 = 0$ for all $\alpha > 0$. If $||x||_1 < \alpha$ and $||y||_1 < \beta$, there exist $\xi, \eta > 0$ such that

$$\frac{1}{\xi} + \rho(\xi x) < \alpha \quad \text{and} \quad \frac{1}{\eta} + \rho(\eta y) < \beta.$$

This yields

$$||x+y|| \le \frac{\xi + \eta}{\xi \eta} + \rho\left(\frac{\xi \eta}{\xi + \eta} (x+y)\right) = \frac{1}{\xi} + \frac{1}{\eta} + \rho\left(\frac{\eta}{\xi + \eta} (\xi x) + \frac{\xi}{\xi + \eta} (\eta y)\right)$$

$$\le \frac{1}{\xi} + \rho(\xi x) + \frac{1}{\eta} + \rho(\eta y) < \alpha + \beta,$$

in virtue of (A.3). Therefore $||x+y|| \le ||x|| + ||y||$ holds for any $x, y \in L$ and $||\cdot||_1$ is a quasi-norm on L. If $\xi \rho(\xi x) \le 1$ for some $\xi > 0$ and $x \in L$, we have $\rho(\xi x) \le \frac{1}{\xi}$ and hence

$$\frac{1}{\xi} \le \frac{1}{\xi} + \rho(\xi x) \le \frac{2}{\xi}.$$

10) For the convex modular m, we can define two kinds of norms such as

$$||x|| = \inf_{\xi > 0} \frac{1+m(\xi x)}{\xi} \quad \text{and} \quad ||x|| = \inf_{m(\xi x) \le 1} \frac{1}{\xi}$$

[3 or 4]. For the general modulars considered here, the formulas (3.1) and (4.1) are nothing but ones obtained by replacing $m(\xi x)$ by $\xi \rho(\xi x)$ in $\|\cdot\|$ and $\|\cdot\|$ respectively.
This yields (4.2), since we have \(\|x\|_0 \leq \frac{1}{\xi} \) and \(\rho(\gamma x) > \frac{1}{\eta} \) for every \(\eta \) with \(\|x\|_0 > \frac{1}{\eta} \). Therefore we can obtain from above

Theorem 4.1. If \(L \) is a modular space with a modular satisfying (A.1)~(A.5) in §1, then the formula (4.1) yields a quasi-norm \(\|\cdot\|_1 \) on \(L \) which is equivalent to \(\|\cdot\|_0 \) defined by Musielak and Orlicz in [6] as is shown in (4.2).

From the above theorem and the results in §2, we obtain by the same way as in §3

Theorem 4.2. If \(R \) is a quasi-modular space with a quasi-modular \(\rho \), then

\[
\|x\|_1 = \inf_{\xi > 0} \left\{ \frac{1}{\xi} + \rho^*(\xi x) \right\}, \quad (x \in R)
\]

is a semi-continuous quasi-norm on \(R^+_\rho \) and \(\|\cdot\|_1 \) is complete if and only if \(\rho \) satisfies \((\rho.4') \), where \(\rho^* \) and \(R_0 \) are the same as in §2 and §3. And further we have

\[
\|x\|_0 \leq \|x\|_1 \leq 2\|x\|_0 \quad \text{for all } x \in R^+_\rho.
\]

§5. A quasi-norm-convergence. Here we suppose that a quasi-modular \(\rho^* \) on \(R \) satisfies \((\rho.1) \sim (\rho.6) \) except \((\rho.3) \) and \(\rho^*(\xi x) \) is not identically zero as a function of \(\xi \geq 0 \) for each \(0 \neq x \in R \) (i.e. \(R_0 = \{0\} \)). A sequence of elements \(\{x_\nu\}_{\nu \geq 1} \) is called order-convergent to \(a \) and denoted by \(\lim_{\nu \to \infty} x_\nu = a \), if there exists a sequence of elements \(\{a_\nu\}_{\nu \geq 1} \) such that \(|x_\nu - a_\nu| \leq a_\nu (\nu \geq 1) \) and \(a_\nu \downarrow_\nu 0 \). And a sequence of elements \(\{x_\nu\}_{\nu \geq 1} \) is called star-convergent to \(a \) and denoted by \(\lim_{\nu \to \infty} x_\nu = a \), if for any subsequence \(\{y_\nu\}_{\nu \geq 1} \) of \(\{x_\nu\}_{\nu \geq 1} \), there exists a subsequence \(\{z_\nu\}_{\nu \geq 1} \) of \(\{y_\nu\}_{\nu \geq 1} \) with \(\lim_{\nu \to \infty} z_\nu = a \).

A quasi-norm \(\|\cdot\| \) on \(R \) is termed to be continuous, if \(\inf_{\nu \geq 1} \|a_\nu\| = 0 \) for any \(a_\nu \downarrow_\nu 0 \). In the sequel, we write by \(\|\cdot\|_0 \) (or \(\|\cdot\|_1 \)) the quasi-norm defined on \(R \) by \(\rho^* \) in §3 (resp. in §4).

Now we prove

Theorem 5.1. In order that \(\|\cdot\|_0 \) (or \(\|\cdot\|_1 \)) is continuous, it is necessary and sufficient that the following condition is satisfied:

\[
(5.1) \quad \text{for any } x \in R \text{ there exists an orthogonal decomposition } x = y + z \text{ such that } [z]R \text{ is finite dimensional and } \rho(y) < +\infty.
\]

Proof. Necessity. If (5.1) is not true for some \(x \in R \), we can find a
On F-Norms of Quasi-Modular Spaces

217

sequence of projector \(\{ [p_n] \}_{n \geq 1} \) such that \(\rho([p_n]x) = +\infty \) and \([p_n] \downarrow_{n=1}^{\infty} 0 \). Hence by (3.1) it follows that \(||[p_n]x||_0 > 1 \) for all \(n \geq 1 \), which contradicts the continuity of \(||\cdot||_0 \).

Sufficiency. Let \(a_{\nu} \downarrow_{\nu=1}^{\infty} 0 \) and put \([p_n^*] = [(a_n - \epsilon a_1)^+] \) for any \(\epsilon > 0 \) and \(n \geq 1 \). It is easily seen that \([p_n^*] \downarrow_{n=1}^{\infty} 0 \) for any \(\epsilon > 0 \) and \(a_n = [a_1]a_n = [p_n^*]a_n + (1 - [p_n^*])a_n \leq [p_n^e]a_1 + \epsilon a_1 \).

This implies
\[
\rho^*(\xi a_n) \leq \rho^*(\xi [p_n^*]a_1) + \rho^*(\xi \epsilon (1 - [p_n^*])a_1)
\]
for all \(n \geq 1 \) and \(\xi \geq 0 \). In virtue of (5.1) and \([p_n^*] \downarrow_{n=1}^{\infty} 0 \), we can find \(n_0 \) (depending on \(\xi \) and \(\epsilon \)) such that \(\rho^*(\xi [p_n^*]a_1) < +\infty \), and hence \(\inf_{n \geq 1} \rho^*(\xi a_n) \leq \rho^*(\xi \epsilon a_1) \).

Since \(\epsilon \) is arbitrary, \(\lim_{n \rightarrow \infty} \rho^*(\xi a_n) = 0 \) follows. Hence we infer that \(\inf_{n \geq 1} 1_{a_n} ||_0 = 0 \) and \(||\cdot||_0 \) is continuous in view of Remark 2 in §3. Q.E.D.

Corollary. \(||\cdot||_0 \) is continuous, if
\[
(5.2) \quad \rho^*(a_\nu) \rightarrow 0 \implies \rho^*(\alpha a_\nu) \rightarrow 0 \quad \text{for every } \alpha \geq 0.
\]

From the definition, it is clear that \(\text{s-lim} x_\nu = 0 \) implies \(\lim_{v \rightarrow \infty} ||x_\nu||_0 = 0 \), if \(||\cdot||_0 \) is continuous. Conversely we have, by making use of the well-known method (cf. Theorem 33.4 in [3])

\[\text{Theorem 5.2.} \quad \lim_{v \rightarrow \infty} ||x_\nu||_0 = 0 \quad (\text{or } \lim_{v \rightarrow \infty} ||x_\nu|| = 0) \quad \text{implies } \text{s-lim} x_\nu = 0, \text{ if } ||\cdot||_0 \text{ is complete (i.e. } \rho^* \text{ satisfies (5.3)).}
\]

If we replace \(\lim_{v \rightarrow \infty} ||x_\nu|| = 0 \) by \(\lim_{v \rightarrow \infty} \rho(x_\nu) = 0 \), Theorem 5.2 may fail to be valid in general. By this, reason, we must consider the following condition:
\[\rho^*(x) = 0 \quad \text{implies } x = 0. \]

Truly we obtain

\[\text{Theorem 5.3.} \quad \text{If } \rho^* \text{ satisfies (5.3) and } ||\cdot||_0 \text{ is complete, } \rho(a_\nu) \rightarrow 0 \text{ implies } \text{s-lim} a_\nu = 0.
\]

Proof. We may suppose without loss of generality that \(\rho^* \) is semi-continuous,\(^{11}\) i.e. \(\rho^*(x) = \sup_{y \in A} \rho^*(y) \) for any \(0 \leq x \uparrow_{j \in A} x \). If
\[\text{11) If } \rho^* \text{ is not semi-continuous, putting } \rho_*(x) = \inf_{y \uparrow_{j \in A} x} \{ \sup_{j \in A} \rho^*(y_j) \}, \text{ we obtain a quasi-modular } \rho_* \text{ which is semi-continuous and } \rho^*(x_\nu) \rightarrow 0 \text{ is equivalent to } \rho_*(x_\nu) \rightarrow 0.
\]
\[\rho(a_{\nu}) \leq \frac{1}{2^\nu} \quad (\nu \geq 1) , \]

we can prove by the similar way as in the proof of Lemma 2 that there exists \(\bigcup_{\nu=1}^{\infty} |a_{\nu}| \in R \) in virtue of (\(\rho.3 \)).

Now, since
\[\rho\left(\bigcup_{\nu \geq \nu}^{\infty} |a_{\nu}| \right) \leq \sum_{\nu \geq \nu}^{\infty} \rho(a_{\nu}) \leq \frac{1}{2^{\nu-1}} \]
holds for each \(\nu \geq 1 \), \(\rho\left(\bigcap_{\nu=1}^{\infty} \left(\bigcup_{\nu \geq \nu}^{\infty} |a_{\nu}| \right) \right) = 0 \) and hence (5.3) implies
\[\bigcap_{\nu=1}^{\infty} \left(\bigcup_{\nu \geq \nu}^{\infty} |a_{\nu}| \right) = 0 . \]
Thus we see that \(\{a_{\nu}\}_{\nu \geq 1} \) is order-convergent to 0.

For any \(\{b_{\nu}\}_{\nu \geq 1} \) with \(\rho(b_{\nu}) \to 0 \), we can find a subsequence \(\{b'_{\nu}\}_{\nu \geq 1} \) of \(\{b_{\nu}\}_{\nu \geq 1} \) with \(\rho(b'_{\nu}) \leq \frac{1}{2^{\nu}} \quad (\nu = 1, 2, \ldots) \). Therefore we have \(s\text{-lim}_{\nu \to \infty} b_{\nu} = 0 \). Q.E.D.

The latter part of the above proof is quite the same as Lemma 2.1 in [9] (due to S. Yamamuro) concerning the condition (5.2) with respect to (convex) modulars on semi-ordered linear spaces. From Theorem 5.2 and 5.3, we can obtain further the next theorem which is analogous to the above lemma of [9] and considered as the converse of Corollary of Theorem 5.1 at the same time.

Theorem 5.4. If \(\rho^* \) satisfies (5.3) and \(\|\cdot\|_0 \) is complete and continuous, then (5.2) holds.

References

Mathematical Institute, Hokkaido University

(Received September 30, 1960)