<table>
<thead>
<tr>
<th>Title</th>
<th>SINGULAR POINTS OF RIEMANN SURFACES</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author(s)</td>
<td>Kuramochi, Zenjiro</td>
</tr>
<tr>
<td>Citation</td>
<td>Journal of the Faculty of Science Hokkaido University. Ser. 1 Mathematics, 16(1-2), 080-148</td>
</tr>
<tr>
<td>Issue Date</td>
<td>1962</td>
</tr>
<tr>
<td>Doc URL</td>
<td>http://hdl.handle.net/2115/56025</td>
</tr>
<tr>
<td>Type</td>
<td>bulletin (article)</td>
</tr>
<tr>
<td>File Information</td>
<td>JFSHIU_16_N1-2_080-148.pdf</td>
</tr>
</tbody>
</table>
SINGULAR POINTS OF RIEMANN SURFACES

By
Zenjiro KURAMOCHI

Let D_r be a ring domain such that $r < |z| < 1$. Let $U_r(z)$ be a harmonic function in D_r such that $U_r(z)=0$ on $|z|=1$ and $U_r(z)=1$ on $|z|=r$. Put $M_r = \max(\left|\frac{\partial U_r(z)}{\partial x}\right|, \left|\frac{\partial U_r(z)}{\partial y}\right|): z=x+iy$. I wrote that $M_r \rightarrow 0$ as $r \rightarrow 0$. This is false. Hence our proof of Theorem 8 in the previous paper depending on the above fact is incomplete. The purpose of the present paper is to correct the above theorem, to simplify the other theorems and further to discuss new results. For the sake of convenience, I shall begin from the first.

Let R be a Riemann surface with positive boundary. Let $\{R_n\}$ be its exhaustion with compact relative boundaries $\partial R_n(n=0,1,2,\cdots)$. We proved the following.

Theorem.2) Let $R \in O_{HB}(O_{HD})-O_G$. Then $R-R_0 \in O_{AB}(O_{AD})$.

Above theorem means that the boundary of a Riemann surface R which is so complicated as $R \in O_{HB}-O_G(O_{HD}-O_G)$ cannot be represented in any way as a covering surface over a bounded domain (a covering surface with finite area). Hence we propose the following questions:

1) What part of the boundary does generate the above singular fact?
2) What is the method to characterize the singularity of the boundary?

To solve the questions, we must define the boundary of R. There are various methods to define the ideal boundary of R. But we understand that the following Martin's topologies are most available.

PART I

K-Martin's topology.3) Let $G(z, p_i)$ be the Green's function of with pole at p_i. Put $K(z, p_i) = \frac{G(z, p_i)}{G(p_0, p_i)}$, where p_0 is a fixed point. Suppose

\{p_i\} is a divergent sequence of points. We call \{p_i\} a fundamental sequence determining an ideal boundary point, if \{K(z, p_i)\} converges uniformly in every compact domain of \(R \). If \{K(z, p_i)\} and \{K(z, p'_i)\} determine the same limit function, we say that \{p_i\} and \{p'_i\} define the same ideal boundary point. We denote by \(B \) the set of all the ideal boundary points. We define the distance between two points \(p \) and \(q \) of \(R + B \) (denoted by \(\overline{R} \)) by

\[
\delta(p, q) = \sup_{z \in R} \left| \frac{K(z, p)}{1 + K(z, p)} - \frac{K(z, q)}{1 + K(z, q)} \right|
\]

Let \(U(z) \) be a positive superharmonic function in \(R \). If \(V(z) = aU(z) \), \(0 \leq a \leq 1 \) for every positive superharmonic function \(V(z) \) such that \(0 \leq V(z) \leq U(z) \), \(U(z) \) is called a K-minimal function. Let \(K(z, p) \) be the above function. \(p \) is called a K-minimal point or K-non minimal point according as \(K(z, p) \) is K-minimal or not. R.S. Martin proved the following:

1) Let \(K_{vn(p)}(z, p) \) be the lower envelope of positive superharmonic functions in \(R \) larger than \(K(z, p) \) in \(\nu_n(p) = E[z \in \overline{R} : \delta(z, p) < \frac{1}{n}] \). Then \(\lim_{n \to \infty} K_{vn(p)}(z, p) = K(z, p) \) or 0 according as \(K(z, p) \) is K-minimal or not.

2) Every point of \(R \) is K-minimal. Let \(B_1 \) and \(B_0 \) the sets of K-minimal boundary points and non K-minimal points respectively. Then \(B = B_1 + B_0 \) and \(B_0 \) is an \(F_\sigma \) set of harmonic measure zero.

3) Let \(F \) be a closed set in \(\overline{R} \) and let \(U(z) \) be a positive superharmonic function and let \(U_{Fn}(z) \) be the lower envelope of superharmonic functions larger than \(U(z) \) in \(F_n = E[z \in \overline{R} : \delta(z, F) \leq \frac{1}{n}] \). Then \(U_F(z) = \lim_{n \to \infty} U_{Fn}(z) \) is represented by a positive mass on \(F \).

4) Every positive superharmonic function is represented by a positive mass distribution on \(R + B_1 \) which is uniquely determined and called a canonical mass distribution.

5) If \(U(z) = \int_A K(z, p) d\mu(p) \) is K-minimal, \(U(z) \) is a multiple of \(K(z, p) : p \in A \).

1. Harmonic measure of sets in \(\overline{R} \). Let \(F \) be a closed set in \(\overline{R} \) and put \(F_n = E[z \in R : \delta(z, F) \leq \frac{1}{n}] \). Let \(w(F_n, z, R_m) \) be a harmonic function in \(R_m - F_n \) such that \(w(F_n, z, R_m) = 0 \) on \(\partial R_m - F_n \) and \(w(F_n, z, R_m) = 1 \) on \((R_m \cap F_n) \). Put \(w(F, z, R) = \lim_{n \to \infty} \lim_{m \to \infty} w(F_n, z, R_m) \) and call it H.M. (harmonic measure) of \(F \). Let \(G \) be an open set in \(B \). We define \(w(G, z, R) \) as
lim $\lim_{n}w_{m,n}(z)$, where $w_{m,n}(z)$ is a harmonic function in $R_{m}-(CG)_{n}$ such that $w_{m,n}(z)=1$ on $\partial R_{m}-(CG)_{n}$ and $w_{m,n}(z)=0$ on $\partial((CG)_{n})$, where $CG=B-G$ and $(CG)_{n}=E[z \in \overline{R} : \delta(z, CG) \leq \frac{1}{n}]$. Clearly we have $w(G, z, R)=1-w(CG, z, R)$. For an F_{\ast} set: $F_{\ast}=\bigcup F_{i}$ we define $w(F_{\ast}, z, R)$ by $\lim_{n=\infty}w(\sum F_{i}, z, R)$, and for G_{δ} in B, $i \leq j$, $e \in G_{\delta}=\bigcap G_{i}$ we define $w(G_{\delta}, z, R)$ by $\lim_{n=\infty}w(\bigcap_{i}^{n}G_{i}, z, R)$. Let R^{∞} be the universal covering surface of R and map R^{∞} conformally onto $|\xi|<1$. If $supK(z, p)<\infty$: $p \in R+B_{1}$, we call p a singular point. Clearly $K(z, p)=aG(z, p):a>0$ for $p \in R$, where $G(z, p)$ is the Green's function of R. Hence every point of R is not singular. We denote by B_{s} the set of singular points. Then $B_{s} \subset B_{1}$.

Put $F=p$ and let $w(p, z, R)$ be the H.M. of p, i.e. $w(p, z, R)=\lim_{n}w_{m,n}(p, z, R)$. Then

Theorem 1. a) $w(p, z, R)>0$ if and only if $p \in B_{s}$, and in this case $\sum w(p_{i}, z, R)=w(\sum_{i}p_{i}, z, R)$. Then

b) Consider $K(z, p): p \in B_{s}$ in $|\xi|<1$. Then there exists a set E of positive measure such that $K(z, p)$ has angular limits $=M=sup K(z, p)$ on E and $=0$ on CE almost everywhere. Hence $w(p, z, R)=w(E, \xi)$, where $w(E, \xi)$ is H.M. of E with respect to $|\xi|<1$. We call E the image of $p \in B_{s}$.

c) Let $K(z, p_{i}): p_{i} \in B_{s}$ and let E_{i} be the image of p_{i}. Then $w(p_{i}, z, R)>0$, $mes(E_{i} \cap E_{j})=0$ for $i \neq j$ and $\sum mes E_{i} \leq 2\pi$, whence B_{s} is at most enumerable. Let $w(\sum p_{i}, z, R)=\lim_{n}w(\sum_{i}^{k}p_{i}, z, R)$. Then

\[\sum_{i}^{k}w(p_{i}, z, R)=w(\sum_{i}^{k}p_{i}, z, R) \text{ for } p_{i} \in B_{s}. \]

d) Let E_{i} be the image of $p_{i} \in B_{s}$. Then $\sum mes E_{i}=2\pi$ if and only if H.M. of $B-\sum p_{i}=0$.

e) Let E be the image of a point p of B_{s}. Then every bounded harmonic (Poisson's integrable) function $U(z)$ has angular limits $=consta.e.$ (almost everywhere) on E.

Proof of a). Assume $w(p, z, R)>0$. Then by 2) $p \not\in B_{0}$. Hence $p \in B_{1}+R$ and $K(z, p)$ is K-minimal. Suppose $sup K(z, p)=\infty$. Then $w(p, z, R)=\lim_{n}w(\sum_{i}^{k}p_{i}, z, R)$, where $w_{n}(p)=E[z \in \overline{R} : \delta(z, p) \leq \frac{1}{n}]$. Then by 3) $w(p, z, R)$ is represented by a mass on $\overline{\sum_{i}^{k}p_{i}}=p$, i.e. $w(p, z, R)=aK(z, p)$. Now

4) See 3), where $\overline{\sum_{i}^{k}p_{i}}$ means the closure of $\sum_{i}^{k}p_{i}$.
$w(p, z, R) \leq 1$ and $\sup_{z \in R} K(z, p) = \infty$, whence $a = 0$ and $w(p, z, R) = 0$. Next suppose $\sup_{z \in R} K(z, p) \leq M < \infty$. Then $w(\nu_{a}(p), z, R) \geq w_{\nu_{a}(p)}(z, p) / M$ by $p \in (R + B_{1})$ and $w(p, z, R) \geq w(p, z, R)$. Hence $w(p, z, R) = 0$ if and only if $p \in B_{s}$.

Proof of b). Suppose $\sup_{z \in R} K(z, p) = M$. Let E and E' be sets on $|\xi| = 1$ such that $K(z, p)$ has angular limits $\geq M - \varepsilon$ on E and $K(z, p)$ has angular limits between $M - 2\varepsilon$ and ε on E' for a positive number ε: $0 < \varepsilon < \frac{M}{3}$. Since $K(z, p)$ is representable by Poisson's integral, E is of positive measure. Now E' is a set of measure zero, because, if it were not so, we construct a harmonic function $U(\xi)$ such that $U(\xi)$ has the same angular limits as $K(z, p)$ on E and $K(z, p) > U(\xi) > 0$, which implies that $K(z, p)$ is not K-minimal. This is a contradiction. Hence by letting $\varepsilon \rightarrow 0$, $K(z, p)$ has angular limits $= M = \sup_{z \in R} K(z, p)$ on E and 0 on CE almost everywhere. Hence $w(E, \xi) = \frac{K(z, p)}{M} = w(p, z, R)$.

Proof of c). Suppose $\mes(E_{i} \cap E_{j}) > 0$. Let $U(\xi)$ be a harmonic function in $|\xi| < 1$ such that $U(\xi)$ has angular limits $= \min(M_{i}, M_{j})$ on $E_{i} \cap \acute{E}_{j}$ and $= 0$ on $C(E_{i} \cap E_{j})$. Then for at least one of $K(z, p_{i})$ and $K(z, p_{j})$, $0 < U(\xi) < K(z, p_{k})$: $k = i$ or j and $U(\xi)$ is not a multiple of $K(z, p_{k})$. Hence $K(z, p_{k})$ is not K-minimal. This is a contradiction. Hence $\mes(E_{i} \cap E_{j}) = 0$. On the other hand, by a) $\mes E_{i} > 0$ by $w(p_{i}, z, R) > 0$ and $\sum_{i} \mes E_{i} \leq 2\pi$. Hence B_{s} is at most enumerable.

Clearly $\sum_{i} w(p_{i}, z, R) \geq w(\sum_{i} p_{i}, z, R) \geq w(p_{i}, z, R)$ $i = 1, 2, \cdots k$.

By $\sum_{i} w(p_{i}, z, R) \geq w(\sum_{i} p_{i}, z, R)$ we see $w(\sum_{i} p_{i}, z, R) = 0$ a.e. on $C(\sum_{i} E_{i})$ and by $w(\sum_{i} p_{i}, z, R) \geq w(p_{i}, z, R)$ we have $w(\sum_{i} p_{i}, z, R) = 1$ a.e. on $\sum_{i} E_{i}$. Hence $w(\sum_{i} p_{i}, z, R) = \sum_{i} w(E_{i}, z) = \sum_{i} w(p_{i}, z, R)$.

Proof of d). Let $p_{i} \in B_{s}$ and let E_{i} be the image of p_{i}. Then $B - \sum_{i} p_{i}$ is a G_{s} set in B. Hence by definition $w(B - \sum_{i} p_{i}, z, R) = 0$ is equivalent to $w(\sum_{i} p_{i}, z, R) = 1$. Suppose $\sum_{i} \mes E_{i} < 2\pi$. By $w(\sum_{i} p_{i}, z, R) = \lim_{n \rightarrow \infty} w(\sum^{n}_{i} p_{i}, z, R)$, for any given positive number $\varepsilon < \frac{\delta}{2}$ ($\delta = 2\pi - \sum_{i} \mes E_{i}$), there exists a number n_{0} such that

$w(\sum p_{i}, z, R) \leq w(\sum^{n}_{i} p_{i}, z, R) + \varepsilon$, for $n \geq n_{0}$,
where \(\xi=0 \) is an image of \(z_0 \).

Now \(w(\sum p_i, z, R) = \sum w(E_i, \xi) \) implies \(w(\sum p_i, z_0, R) - \delta \leq w(\sum p_i, z_0, R) - \frac{\delta}{2\pi} \), whence \(w(\sum p_i, z, R) < 1 \). Conversely suppose \(\sum \text{mes } E_i = 2\pi \).

Then \(w(\sum p_i, z, R) \geq w(\sum p_i, z, R) = w(\sum E_i, z) \) for every \(n \). Hence \(w(\sum p_i, z, R) = 1 \). Thus we have \(d \).

Proof of e). Assume that \(U(z) \) has angular limits being not a constant a.e. on \(E \). Then we can find two sets \(E_1 \) and \(E_2 \) of positive measure in \(E \) such that \(U(z) \geq L \) on \(E_1 \) and \(< L - \delta \) on \(E_2 \) for constants \(L \) and \(\delta : \delta > 0 \). Let \(W(\xi) (= W(z)) \) be a harmonic function in \(|\xi| < 1 \) such that \(W(\xi) = 1 \) a.e. on \(E_1 \subset E \) and \(= 0 \) a.e. on \(CE_i \). Then since \(U(z) \) is a function in \(R \), \(W(\xi) \) is a function in \(R \). Clearly \(0 < W(z) < \frac{K(z, p)}{M} \) and \(W(z) \) is not a multiple of \(K(z, p) \). This implies that \(K(z, p) \) is not \(K \)-minimal. Hence every Poisson's integrable function has angular limits = const a.e. on \(E \).

2. Class H. N. B. We denote by H. N. B. the class of Riemann surfaces on which \(N \) number of linearly independent bounded harmonic function exist, where \(N \leq \infty \) and the cardinal number of \(N \) is \(\mathcal{X} \).

Theorem 2. A Riemann surface \(R \in \text{H. N. B.} \) if and only if \(R \) has \(N \) number of singular points and a set of boundary points of harmonic measure zero.

Proof. Suppose that \(R \) has \(N \) number of points \(p_1, p_2, \ldots, p_N \) and a set of boundary points of harmonic measure zero. Let \(U(z) \) be a bounded harmonic function (Poisson's integrable) in \(R \). Then \(U(z) \) has angular limits = const a.e. on \(E_i \) of the image of \(p_i \) by e) of Theorem 1 and by d) of Theorem 1. Whence \(U(z) \) is a linear form of \(\{K(z, p_i)\} \) and \(\{K(z, p_i)\} \) is linearly independent. Hence \(R \in \text{H. N. B.} \). Conversely suppose \(R \in \text{H. N. B.} \). Then the harmonic measure of \(B - \sum p_i \) is zero, because if \(\sum \text{mes } E_i < 2\pi \), we can construct infinitely (cardinal number = \(\mathcal{X} \)) many linearly independent harmonic functions. Let \(N' : N \neq N' \) be the number of singular points, then by e) \(R \in \text{H. N. B.} \). Hence \(N' = N \). Hence we have Theorem 2.

3. Harmonic functions and analytic functions in a neighbourhood of a singular point.

Let \(G \) be a non compact domain\(^5\) in \(R \) and let \(U(z) \) be a positive

\(^5\) In the present paper we suppose that \(\partial G \) of a domain \(G \) consists of an enumerably infinite number of analytic curves clustering nowhere in \(R \).
harmonic function in G with $U(z)=0$ on ∂G. Let $U_{n,n+i}(z)$ be a harmonic function in $R_{n+i}-(R-R_{n})$ such that $U_{n,n+i}(z)=0$ on $\partial R_{n+i}-G$ and $U_{n,n+i}(z)=U(z)$ in $G-(R_{n+i}-R_{n})$. Then $U_{n,n+i}(z)\uparrow U(z)$ as $i \to \infty$ and $U_{n}(z)\uparrow$ as $n \to \infty$. Put $w_{n}(z)=\lim_{i}U_{n,n+i}(z)$.

Let $V(z)$ be a continuous superharmonic function in R. Let $w_{B\cap CV_{m}(p)}(p, z, R)$ be a harmonic function in $R_{n}+(u_{m}(p)\cap R_{n+i})$ such that $w_{n}(z)$ is harmonic in $R_{n}+(u_{m}(p)\cap R_{n+i})$, $w_{n}(z)=w_{B\cap CV_{m}(p)}(p, z, R)$ on $(R-R_{n})\cap \overline{C_{U_{m}}(p)}$ and $w_{n}(z)=0$ on $\partial R_{n+i}\cap u_{m}(p)$, where $w_{n}(z)=\lim_{i}U_{n,n+i}(z)$ as $i \to \infty$. Now $V(z)$ is the lower envelope of superharmonic functions in R larger than $w(p, z, R)$ on $(R-R_{n})\cap \overline{C_{U_{m}}(p)}$.

Theorem 3. a) Let $p \in B_{s}$, i.e. $w(p, z, R)$ is K-minimal and >0. Then $w_{B\cap CV_{m}(p)}(p, z, R)=0$.

b) Let $w_{CG}(p, z, R)$ be the lower envelope of positive superharmonic functions in R larger than $w_{n}(z)$ on $(R-R_{n})\cap \overline{C_{U_{m}}(p)}$. We denote it by $w_{CG}(p, z, R)$.

Let G be a non compact domain and let $p \in B_{s}$. If $w(p, z, R)-w_{CG}(p, z, R)>0$, we say that G contains p K-approximately.

Proof of a). By 3)* $w_{n}(z)$ is represented by a positive mass distribution μ_{n} on $C_{U_{m}}(p)-(R-R_{n})$, whence $w_{B\cap CG}(p, z, R)$ is represented by an weak limit μ of $\{\mu_{n}\}$ on $B\cap C_{U_{m}}(p)$ such that $w_{B\cap CG}(p, z, R)=\int K(z, p)d\mu(p)$.

7) $C_{U_{m}(p)}$ means the complementary set of $u_{m}(p)$.
Now $p \in B$, and by the K-minimality of $w(p, z, R)$, $w_{B \cap C_{m}(p)}(p, z, R) = a \cdot w(p, z, R) = a' \cdot K(z, p)$: a and $a' \geq 0$. Assume $a' > 0$. Then we can find a point $q \in C_{m}(p)$ such that the restriction μ_{l} of μ on $U_{m}(q) = (E_{z \in \overline{R}}: \delta(z, q) \leq \frac{1}{l}) > 0$ for every l. Also by the minimality of $w(p, z, R)$ $\int K(z, p) d\mu_{l}(p)$ is also minimal, whence $\frac{\int K(z, p) d\mu_{l}(p)}{\int d\mu_{l}} = K(z, p)$.

Now $(\frac{\mu_{l}}{\int d\mu_{l}} \int C_{m}(p), z, R) \leq w(u_{m}(p), z, R_{n}) = 1$ on $u_{m}(p)$ and $w(u_{m}(p), z, R_{n}) = 0$ on $\partial R_{n} - U_{m}(p)$.

Let $n \to \infty$. Then $\inex_{m+i,n}w(p, z, R) \leq w(u_{m}(p), z, G_{m+i,n})$ on $\partial G \cap R_{n}$ and $w(u_{m}(p), z, R_{n}) = \frac{1}{2\pi} \int_{m+i} U_{m}(\partial G) - v(p)$ where $G_{m+i,n}(\xi, z)$ is the Green's function of $(R_{n} - u_{m+i}(p))$.

Hence $w(u_{m}(p), z, R_{n}) = w_{B \cap C_{m}(p)}(p, z, R) = 0$. Hence $a' = 0$ and $w_{B \cap C_{m}(p)}(p, z, R) = 0$.

Proof of $b)$. Compare $\inex_{m+i,n}w(p, z, R)$ and $w(p, z, R) + w_{B \cap C_{m}(p)}(p, z, R)$ in $(R_{n} \cap G) - u_{m}(p)$.

Then $\inex \cap R_{n}w(p, z, R) = w(p, z, G \cap R_{n})$ on ∂G, $\inex \cap R_{n}w(p, z, R) = w(p, z, R) = w_{C_{m}(p)}(p, z, R)$ on $\partial R_{n} - U_{m}(p)$ and $\inex \cap R_{n}w(p, z, R) \leq 1 = w(u_{m}(p), z, G \cap R_{n})$ on $\partial u_{m}(p) \cap G$. Hence by the maximum principle

$\inex \cap R_{n}w(p, z, R) \leq w(u_{m}(p), z, G \cap R_{n}) + w_{C_{m}(p)}(p, z, R)$.

Let $n \to \infty$. Then

$\inex_{m+i,n}w(p, z, R) \leq w(p, z, G)$.

Conversely, clearly $w(p, z, R) \geq w(p, z, G)$. Hence by $w(p, z, G) = 0$ on ∂G

$\inex_{m+i,n}w(p, z, R) \leq \inex_{m+i,n}w(p, z, G) = w(p, z, G)$.

Thus $w(p, z, G) = \inex_{m+i,n}w(p, z, R)$.

Let $w(u_{m}(p), z, R) = 1$ on $u_{m}(p)$ and $w(u_{m}(p), z, R) = 0$ on $\partial R_{n} - u_{m}(p)$.

Let $w(u_{m}(p), z, R)$ be a harmonic function in $(R_{n} \cap G) - u_{m+i}(p)$ such that $w(u_{m}(p), z, R) = 1$ on $u_{m}(p)$ and $w(u_{m}(p), z, R) = 0$ on $\partial R_{n} - u_{m+i}(p)$. Then

$V_{m+i,n}(u_{m}(p), z) = \frac{1}{2\pi} \int_{m+i} U_{m}(\partial G) - v_{m+i}(p)$.

wher $G_{m+i,n}(\xi, z)$ is the Green's function of $(R_{n} \cap G) - u_{m+i}(p)$.
Now $V_{m+i,n}(v_{m}(p), z) \uparrow V_{m+i}(v_{m}(p), z)$ as $n \to \infty$ by $w(v_{m}(p), z, R) \uparrow w(v_{m}(p), z, R)$ and $\frac{\partial}{\partial n} G_{m+i,n}(\xi, z) \uparrow \frac{\partial}{\partial n} G_{m+i}(\xi, z)$ on ∂G as $n \to \infty$.

Hence by Lebesgue's theorem

$$V_{m+i}(v_{m}(p), z) = \frac{1}{2\pi} \int_{\partial G} w(v_{m}(p), \xi, R) \frac{\partial}{\partial n} G_{m+i}(\xi, z) ds,$$

where $G_{m+i}(\xi, z)$ is the Green's function of $G - v_{m+i}(p)$.

Similarly by $V_{m+i}(v_{m}(p), z) \uparrow V(v_{m}(p), z)$ as $i \to \infty$,

$$V(v_{m}(p), z) = \frac{1}{2\pi} \int_{\partial G} w(v_{m}(p), \xi, R) \frac{\partial}{\partial n} G_{m+i}(\xi, z) ds,$$ \hspace{1cm} (1)

where $G(\xi, z)$ is the Green's function of G.

Hence by (1) $V(v_{m}(p), z)$ is the least positive harmonic function in G with value $w(v_{m}(p), R)$ on ∂G i.e. $V(v_{m}(p), z) = w_{CG}(v_{m}(p), z, R)$ in G.

Let $m \to \infty$. Then as above

$$\lim_{m} V(v_{m}(p), z) = \frac{1}{2\pi} \int_{\partial G} \lim_{m=\infty} w(v_{m}(p), z, R) \frac{\partial}{\partial n} G(\xi, z) ds = w_{CG}(p, z, R).$$

Let $V_{m,n}(p, z)$ be a harmonic function in $(G \cap R_{n}) - v_{m}(p)$ such that $V_{m,n}(p, z) = w(p, z, R)$ on $(\partial G \cap R_{n}) - v_{m}(p)$ and $= 0$ on $\partial v_{m}(p) + \partial R_{n} - v_{m}(p)$. Then

$$V_{m,n}(p, z) = \frac{1}{2\pi} \int_{(\partial G \cap R_{n}) - v_{m}(p)} w(p, \xi, R) \frac{\partial}{\partial n} G_{m,n}(\xi, z) ds,$$

$$\lim_{m} V_{m,n}(p, z) = V_{m}(p, z) = \frac{1}{2\pi} \int_{(\partial G \cap R_{n}) - v_{m}(p)} w(p, \xi, R) \frac{\partial}{\partial n} G_{m}(\xi, z) ds$$ \hspace{1cm} (2)

Clearly $V_{m,n}(p, z) \leq V_{m,n}(v_{m}(p), z) \leq V_{m+i,n}(v_{m}(p), z)$.

Let $n \to \infty$. Then by $V_{m+i}(v_{m}(p), z) \uparrow V(v_{m}(p), z) = w_{CG}(v_{m}(p), z, R)$

$$V_{m}(p, z) \leq V_{m}(v_{m}(p), z) \leq V_{m+i}(v_{m}(p), z) \leq w_{CG}(v_{m}(p), z, R).$$ \hspace{1cm} (3)

Let $m \to \infty$. Then by (2)

$$w_{CG}(p, z, R) \leq \lim_{m} V_{m}(v_{m}(p), z) \leq w_{CG}(p, z, R).$$ \hspace{1cm} (4)

Hence $\lim_{m} V_{m}(v_{m}(p), z) = w_{CG}(p, z, R)$.

Now $V_{m,n}(v_{m}(p), z) = 0$ on $(G \cap R_{n}) - v_{m}(p) + \partial v_{m}(p)$ and $= w(v_{m}(p), z, R)$ on $(\partial G \cap R_{n}) - v_{m}(p)$. Hence $w(v_{m}(p), z, R_{n}) - V_{m,n}(v_{m}(p), z) = 0 = w(v_{m}(p), z, R_{n})$ on $(\partial G \cap R_{n}) - (\partial R_{n} \cap G) - v_{m}(p)$ and $w(v_{m}(p), z, R_{n}) - V_{m,n}(v_{m}(p), z) = 1 = w(v_{m}$
on \(\partial v_m(p) \cap G \cap R_n\).

Hence by the maximum principle

\[w(v_m(p), z, R_n) - V_{m,n}(U_m(p), z) = w(v_m(p), z, G \cap R_n).\]

Let \(n \to \infty\) and then \(m \to \infty\).

Then by (3) and (4)

\[w(p, z, R) - w_{CG}(p, z, R) = w(p, z, G)\]

Proof of c. Assume \(\text{inex,}G w(p, z, R) > 0\). Then \(\text{ex,}G w(p, z, R) = w(p, z, R)\). Let \(\hat{U}_n(z)\) and \(\check{U}_n(z)\) be harmonic functions in \(R_n\) such that \(\hat{U}_n(z) = w(p, z, R)\), \(\check{U}_n(z) = 0\) on \(\partial R_n \cap G\) and \(\hat{U}_n(z) = 0\), \(\check{U}_n(z) = w(p, z, R)\) on \(\partial R_n - G\). Then \(\hat{U}_n(z) + \check{U}_n(z) = w(p, z, R)\).

Clearly \(\hat{U}_n(z) \leq w(p, z, R)\) and \(\hat{U}_n(z) \geq \text{inex,}G w(p, z, R)\). Hence \(w(p, z, R) \geq \limsup_{n} \hat{U}_n(z) \geq \liminf_{n} \hat{U}_n(z) = w(p, z, R)\) and \(\lim_{n} \hat{U}_n(z) = w(p, z, R)\) and \(\lim \check{U}_n(z) = 0\).

Similarly as above \(\lim_{n} \hat{U}_n(z) = \text{inex,}G w(p, z, R)\). Hence \(\text{inex,}G w(p, z, R) = 0\).

Proof of d. Assume \(w_{CG}(p, z, R) = w(p, z, R)\). Then by (3) \(w(p, z, R)\) is represented by a mass distribution \(\mu\) on \(C_{v_n}(p)\) and by (4) \(w(p, z, R) = a K(z, q) : q \in C_{v_n}(p)\) and \(a > 0\). Now \(w(p, z, R) = a' K(z, p)\) and by \(K(p_0, p) = K(p, q) = K(z, q)\). Hence \(w(p, z, R) - w_{CG}(p, z, R) > 0\) i.e. \(v_n(p)\) contains \(p\) \(K\)-approximately.

Theorem 4. a) Let \(G\) be a domain containing a point \(p \in B_s\) \(K\)-approximately. Then \(w(p, z, G) > 0\). Map the universal covering surface \(G^\infty\) onto \(|\xi| < 1\). Then \(w(p, z, G)\) has angular limits \(1\) on a set \(E\) of positive measure and has angular limits \(0\) on \(CE\) almost everywhere. Let \(U(z)\) be a Poisson's integrable harmonic function in \(G\). Then \(U(z)\) has angular limits \(\text{const a.e. on } E\).

b) Let \(G\) be a domain in a). Then there exists no non constant analytic function of bounded type in \(G\).

c) Let \(v_n(p)\) be a neighbourhood of \(p \in B_s\): \(v_n(p) = E[z \in \overline{R} : \delta(z, p) < \frac{1}{n}]\).

Then \(v_n(p)\) contains \(p\) \(K\)-approximately and b) there exists no non constant analytic function of bounded type.

Proof of a. By \(\text{ex,}G w(p, z, G) \leq w(p, z, R), \text{ex,}G w(p, z, G) = a w(p, z, R)\):
\(a > 0 \) by the \(K \)-minimality of \(w(p, z, R) \). We show that \(w(p, z, G) (> 0 \) by the assumption and by Theorem 3. \(b) \) is \(K \)-minimal in \(G \). Suppose there exists a positive harmonic function \(U(z) \) such that \(U(z) \leq w(p, z, G) \). Then \(\epsilon_{x, 0} U(z) \leq \epsilon_{x, 0} w(p, z, G) = a \ w(p, z, R) \), whence by the minimality of \(w(p, z, R) \), \(\epsilon_{x, 0} U(z) = b \ w(p, z, R) : b > 0 \). Hence

\[
U(z) = \epsilon_{x, 0} U(z) = \epsilon_{x, 0} w(p, z, R) = \frac{b}{a} w(p, z, G).
\]

Hence \(w(p, z, G) \) is \(K \)-minimal in \(G \). Similarly as \(b) \) of Theorem 3, \(w(p, z, G) \) has angular limits = 1 on a set \(E \) of positive measure on \(|z| = 1 \) and has angular limits = 0 a.e. on \(CE \). Next as \(e) \) of Theorem 1, it is proved that every Poisson's integrable harmonic function \(U(z) \) has angular limits = const a.e. on \(E \).

Proof of \(b) \). Let \(A(z) \) be an analytic function of bounded type. Then \(Re A(z) \) and \(Im A(z) \) have angular limits = const a.e. on \(E \). By mes \(E > 0 \) and by Riesz's theorem \(A(z) \) must be a constant. Hence we have \(b) \).

Proof of \(c) \). By Theorem 3. \(d) \) \(\nu_n(p) \) contains \(p \) \(K \)-approximately. Hence we have \(c) \) by \(b) \).

PART II

The present part is an application of the previous paper “Potentials on Riemann surfaces”.

N-Martin topology. Let \(N(z, p) \) be a harmonic function in \(R - R_0 \) with one logarithmic singularity at \(p \in R - R_0 \) such that \(N(z, p) = 0 \) on \(\partial R_0 \) and \(N(z, p) \) has the minimal Dirichlet integral over \(R - R_0 \). We use \(N(z, p) \) instead of \(K(z, p) \) of \(K \)-Martin's topology. Then we have \(N \)-Martin's topology. The distance between two points \(p \) and \(q \) of \(\overline{R} - R_0 \) is given by

\[
\delta(p, q) = \sup_{z \in R_1 - R_0} \left| \frac{N(z, p)}{1 + N(z, p)} - \frac{N(z, q)}{1 + N(z, q)} \right|.
\]

We suppose that \(N \)-Martin's topology is defined on \(R - R_0 \). We use the same notation as in the previous paper and refer the theorem in “Potentials on Riemann surfaces” with \(P \).

4. Theorem 5. (Separation theorem S. 1). Let \(G, G_1 \) and \(G_2 \) be non compact domains such that \(G \supset G_1, G \supset G_2, G_1 \cap G_2 = 0 \) and let \(B' \) be a closed subset of \(B \). If \(C.P. \ \omega(G_1 \cap B', z, G) > 0 \) and \(\omega(G_2 \cap B', z, G - G_1) > 0 \), then \(\omega(G_1 \cap B', z, \tilde{G}) = \omega(G_2 \cap B, z, \tilde{G}) \) for any domain \(\tilde{G} \supset G \),

9) See the definition of \(\omega(G - B^1, z, G) \) of “Potentials”.
where \(\omega(B' \cap G_1, z, G) = \lim_{n} \omega(B_n' \cap G_1, z, G) \) and \(B_n' = E \{ z \in \overline{R} : \delta(z, B') \leq \frac{1}{n} \} \).

Proof. For simplicity put \(\omega^1(z) = \omega(G_1 \cap B', z, G) \) and \(\omega^2(z) = \omega(G_2 \cap B', z, G-G_1) \). Then \(\omega^i(z) \) (\(i = 1, 2 \)) has properties from P.C. 1 to P.C. 7.\(^{10}\)

Put \(\Omega = E \{ z \in G : \delta < \omega^2(z) < 1 - \varepsilon \} \), and let \(C_\delta \) and \(C_{1-\epsilon} \) be regular niveau curves of \(\omega^2(z) \). Since \(\Omega' \cap G_1 = 0 \), \(\Omega' = E \{ z \in G : \omega^2(z) > \delta \} \), \(\omega^1(z) \) has M.D.I. over \(\Omega' \supset \Omega \) by P.C. 1. Then by Lemma 1. b) of P (we abbreviate Potentials on Riemann surface by \(P \)) \(\omega_n^1(z) \Rightarrow \omega^1(z) \) (\(\Rightarrow \) means convergence in mean and convergence), where \(\omega_n^1(z) \) is a harmonic function in \(\Omega' \cap R_n \) such that \(\omega_n^1(z) = \omega^1(z) \) on \(\partial \Omega' \cap R_n \) and \(\frac{\partial}{\partial n} \omega_n^1(z) = 0 \) on \(\partial R_n \cap \Omega' \).

Let \(\omega_n^2(z) \) be a harmonic function in \(R_n \cap \Omega \) such that \(\omega_n^2(z) = \omega^2(z) \) on \(\partial \Omega \cap R_n \) and \(\underline{\partial} \omega_n^2(z) = 0 \) on \(\partial R_n \cap \Omega \). Now \(\omega^2(z) = \omega(\Omega_{1-\epsilon}^\prime, z, G-G_1) \) (1-\(\varepsilon \)) in \(\Omega_{1-\epsilon}^\prime : \Omega_{1-\epsilon}^\prime = E \{ z \in G : \omega^2(z) > 1 - \varepsilon \} \) by P.C. 4., whence by \(\Omega \cap \Omega_{1-\epsilon}^\prime = 0 \) \(\omega^2(z) \) has M.D.I. over \(\Omega \). Hence by Lemma 1. b) of \(P \) \(\omega_n^2(z) \Rightarrow \omega^2(z) \) as \(n \rightarrow \infty \).

Now \(\int_{C_{\delta} \cap R_n} \frac{\partial}{\partial n} \omega_n^1(z)ds = \int_{(\Omega' \cup R_n)} \frac{\partial}{\partial n} \omega_n^1(z)ds = 0 = \int_{(\Omega' \cup R_n)} \omega_n^2(z) \frac{\partial}{\partial n} \omega_n^1(z)ds = \int_{C_{1-\epsilon} \cap R_n} \omega_n^2(z) \frac{\partial}{\partial n} \omega_n^1(z)ds \).

Hence by the Green's formula

\[
\int_{C_{\delta} \cap R_n} \omega_n^1(z) \frac{\partial}{\partial n} \omega_n^2(z)ds = \int_{C_{1-\epsilon} \cap R_n} \omega_n^1(z) \frac{\partial}{\partial n} \omega_n^2(z)ds.
\]

(5)

Since \(C_{1-\epsilon} \) and \(C_\delta \) are regular, \(0 < \omega_n^1(z) (\langle 1 \rangle \rightarrow \omega^1(z) \) and \(\frac{\partial}{\partial n} \omega_n^2(z) \rightarrow \frac{\partial}{\partial n} \omega^2(z) \) on \(C_\delta + C_{1-\epsilon} \) imply by Theorem 3. a) of \(P \)

\[
\int_{C_{1-\epsilon}} \omega^1(z) \frac{\partial}{\partial n} \omega^2(z)ds = \int_{C_\delta} \omega^1(z) \frac{\partial}{\partial n} \omega^2(z)ds.
\]

(6)

Since \(C_\delta \subset R \) and \(\omega^1(z) < 1 \) in \(R, \int_{C_{1-\epsilon}} \frac{\partial}{\partial n} \omega^2(z)ds < \int_{C_\delta} \frac{\partial}{\partial n} \omega^2(z)ds = D(\omega^2(z)) \).

Hence there exists a constant \(\varepsilon_0 > 0 \) depending only on \(\omega^1(z) \) and \(C_\delta \) such that

\(^{10}\) See 9).
\[\int_{C_{1-\epsilon}} \omega^{1}(z) \frac{\partial}{\partial n} \omega^{2}(z) ds < (1-\epsilon) D(\omega^{2}(z)). \]\\
(7)

Now \(\epsilon \) is arbitrary so long as \(C_{1-\epsilon} \) is regular. We choose \(\epsilon \) so that
\(0 < \epsilon < \frac{\epsilon_{0}}{2} \).

Let \(\tilde{\omega}^{1}(z) = \omega(G_{1} \cap B', z, \tilde{G}) \) and \(\tilde{\omega}^{2}(z) = \omega(G_{2} \cap B', z, \tilde{G}) \). Then by \(\tilde{G} \supseteq G \) and \(\tilde{G} \supseteq (G - G_{1}) \tilde{\omega}^{i}(z) \geq \omega^{i}(z) \) and \(D(\tilde{\omega}^{i}(z)) \leq D(\omega^{i}(z)) (i = 1, 2) \). Consider the same regular niveau curve of \(\omega^{i}(z) \). Then by \(\tilde{\omega}^{i}(z) < 1 \) in \(R \), there exists a constant \(\epsilon_{0} \) such that
\[\int_{C_{1-\epsilon}} \tilde{\omega}^{1}(z) \frac{\partial}{\partial n} \omega^{3}(z) ds < (1-\epsilon_{0}) D(\omega^{2}(z)). \]

Similarly as above
\[\int_{C_{1-\epsilon}} \tilde{\omega}^{1}(z) \frac{\partial}{\partial n} \omega^{2}(z) ds = \int_{C_{1-\epsilon}} \omega^{1}(z) \frac{\partial}{\partial n} \omega^{2}(z) ds < (1-\epsilon_{0}) D(\omega^{2}(z)) < (1-\epsilon) D(\omega^{2}(z)) = \int_{C_{1-\epsilon}} \omega^{2}(z) \frac{\partial}{\partial n} \omega^{2}(z) ds \leq \int_{C_{1-\epsilon}} \tilde{\omega}^{2}(z) \frac{\partial}{\partial n} \omega^{2}(z) ds. \]

Thus \(\tilde{\omega}^{1}(z) \neq \tilde{\omega}^{2}(z) \).

Theorem 6. (Separation theorem. S. 2). Let \(G, G_{1} \) and \(G_{2} \) be non compact domains such that \(G \supseteq G_{1} \supseteq G_{2} \) and let \(B' \) be a closed subset of \(B \). If \(\omega(G_{1} \cap B', z, G) > \omega(G_{2} \cap B', z, G) > 0 \), we can find domains \(D_{1} \) and \(D_{2} \) in \(G \).

11) Put \(B'_{n} = E\left[z \in R: \delta(z, B') \leq \frac{1}{n}\right] \). Let \(\omega_{n,n+i}(z) \) be a harmonic function in \((G_{1} \cap R_{n+i}) - B'_{n}\) such that \(\omega_{n,n+i}(z) = 0 \) on \(\partial G_{1} \cap R_{n+i} \), \(\frac{\partial}{\partial n} \omega_{n,n+i}(z) = 0 \) on \(\partial R_{n+i} \cap (G - B'_{n}) \) and \(\omega_{n,n+i}(z) = 1 \) on \(B'_{n} \). Let \(\overline{\omega}_{n,n+i}(z) \) be a harmonic function in \((G_{1} \cap R_{n+i}) - B'_{n}\) such that \(\overline{\omega}_{n,n+i}(z) = 0 \) on \(\partial G_{1} \cap R_{n+i} \), \(\frac{\partial}{\partial n} \omega_{n,n+i}(z) = 0 \) on \(\partial R_{n+i} \cap (G - B'_{n}) \) and \(\omega_{n,n+i}(z) = 1 \) on \(B'_{n} \). Then \(D(\overline{\omega}_{n,n+i}(z)) \leq D(\omega_{n,n+i}(z)) \). Let \(i \rightarrow \infty \) and then \(n \rightarrow \infty \). Then \(\overline{\omega}_{n,n+i}(z) \Rightarrow \omega^{i}(z) \) and \(\omega_{n,n+i}(z) \Rightarrow \omega^{i}(z) \). Hence
\(D(\overline{\omega}(z)) \leq D(\omega(z)) \) and
\(D(\overline{\omega}(z)) \leq D(\omega(z)). \)
such that $D_1 \supset D_2$ and that $0 < \omega(D_2 \cap G_{1} \cap B', z, G) = \omega(D_2 \cap C \bar{D}_1 \cap B', z, G) > 0$ for any domain $\bar{G} \supset G$.

Proof. For simplicity put $\omega'(z) = \omega(G_1 \cap B', z, G)$ and $\omega^\circ(z) = \omega(G_2 \cap B', z, G)$. Let $D_1 = E[z \in G : V(z) > \frac{M}{3}]$ and $D_2 = E[z \in G : V(z) > \frac{2M}{8}]$, where $V(z) = \omega'(z) - \omega^\circ(z)$ and $M = \sup_{z \in G} V(z)$.

At first we remark

$$D_1 \subset D_{\frac{2M}{3}} = E[z \in G : \omega^\circ(z) < 1 - \frac{M}{3}],$$

because if $\omega^\circ(z) \geq 1 - \frac{M}{3}$, $V(z) \leq \frac{M}{3}$ by $\omega'(z) < 1$.

Hence by P.C.2.

$$\omega(G_2 \cap B' \cap \bar{D}_3, z, G) = 0$$

and by $D_1 \subset D_{\frac{2M}{3}}$ we have $\omega(B' \cap D_1 \cap G_2, z, G) = 0$.

Whence by $\omega(D_1 \cap G_2 \cap B', z, G) + \omega(C \bar{D}_1 \cap G_2 \cap B', z, G) \geq \omega(G_2 \cap B', z, G) \geq \omega(G_2 \cap CD_1 \cap B', z, G)$, we have

$$\omega^\circ(z) = \omega(G_2 \cap B', z, G) = \omega(G_2 \cap CD_1 \cap B', z, G).$$

Put $\Omega_{n, n+1, n+i+j} = (D_1 \cap R_{n+i+j}) - (G_1 \cap (D_1 - D_2) \cap B'_{n+i}) - (B'_{n+i} \cap D_{2})$, where $B'_{n+i} = E[z \in \overline{R} : \delta(z, B') \leq \frac{1}{n}]$.

Then by $G_2 \cap CD_1 \cap D_1 = 0$ and by $\Omega_{n, n+i} \cap (CD_1 \cap G_2) = 0$ $\omega^\circ(z) = \omega(G_2 \cap CD_1 \cap B', z, G)$ has M. D. I. over $\Omega_{n, n+i} = \lim_{j \to \infty} \Omega_{n, n+j, n+i+j}$ with value $\omega^\circ(z)$ on $\alpha_{n, n+i} = (\partial D_1 + \partial (B'_{n+i} \cap (D_1 - D_2) \cap G_1) + \partial (B'_{n+i} \cap D_{2} \cap G_1))$ by P.C.2. Hence

![Fig. 3.](image-url)
$\omega_{n,n+i,n+i+j}(z) \Rightarrow \omega(z)$ as $j \to \infty$,

where $\omega_{n,n+i,n+i+j}(z)$ is a harmonic function in $Q_{n,n+i,n+i+j}$, such that

$\omega_{n,n+i,n+i+j}(z) = \omega(z)$ on $\alpha_{n+i} \cap R_{n+i+j}$ and $\frac{\partial}{\partial n} \omega_{n,n+i,n+i+j}(z) = 0$ on ∂R_{n+i+j}.

Similarly $Q_{n,n+i} \cap [G_{1 \cap} \{B_{n+i}' \cap D_{1} - D_{2} \} + (B_{n} \cap D_{2}) \cap G_{1}] = 0$ implies that $\omega'(z)$ has M.D.I. over $Q_{n,n+i}$ with value $\omega'(z)$ on $\alpha_{n,n+i}$.

Hence $\omega_{n,n+i,n+i+j}(z) \Rightarrow \omega(z)$ as $j \to \infty$.

Let $\tilde{\omega}_{n,n+i,n+i+j}(z)$ be a harmonic function in $Q_{n,n+i,n+i+j}$ such that $\tilde{\omega}_{n,n+i,n+i+j}(z) = \omega_{n,n+i,n+i+j}(z)$ on $\alpha_{n,n+i} \cap R_{n+i+j}$ and $\tilde{\omega}_{n,n+i,n+i+j}(z) = \omega(z)$ on ∂R_{n+i+j}. Then $D(\tilde{\omega}_{n,n+i,n+i+j}(z)) \leq \frac{9}{M^{2}} D(V(z)) < \infty$.

Hence it can be proved by Lemma 1, b) of P that $\tilde{\omega}_{n,n+i,n+i+j}(z) \Rightarrow \omega_{n,n+i}(z)$ as $j \to \infty$.

Put $T(z) = V(z)$ in $D_{1} - D_{2}$ and $V(z)$ in $\Omega_{n,n+i,n+i+j}$. Then by the Dirichlet principle

$D(\tilde{\omega}_{n,n+i,n+i+j}(z)) \leq D(T(z)) \leq D(V(z))$.

Hence it can be proved by Lemma 1, b) of P that $\tilde{\omega}_{n,n+i,n+i+j}(z) \Rightarrow \omega_{n,n+i}(z)$ as $j \to \infty$.

Compare $\tilde{\omega}_{n,n+i,n+i+j}(z) + \omega_{n,n+i,n+i+j}(z)$ and $V_{n,n+i,n+i+j}(z)$ in $\Omega_{n,n+i,n+i+j}$.

Then $\tilde{\omega}_{n,n+i,n+i+j}(z) + \omega_{n,n+i,n+i+j}(z) \geq V_{n,n+i,n+i+j}(z)$ on ∂D_{1}.
by \(\tilde{\omega}_{n,n+i,n+i+j}(z) = 0 \) and \(\tilde{\omega}_{n,n+i,n+i+j}(z) = V_{n,n+i,n+i+j}(z) = \frac{M}{3} \) on \(\partial D_1 \).

\[
\tilde{\omega}_{n,n+i,n+i+j}(z) + \tilde{\omega}_{n,n+i,n+i+j}(z) \geq V_{n,n+i,n+i+j}(z) \text{ on } \partial (B_n' \cap (D_1 - D_2) \cap G_1),
\]
by \(\tilde{\omega}_{n,n+i,n+i+j}(z) = V(z) = V_{n,n+i,n+i+j}(z) \), because \(V(z) \leq \frac{2M}{3} \) on \(\partial (B_n' \cap (D_1 - D_2) \cap G_1) \).

Next, \(\tilde{\omega}_{n,n+i,n+i+j}(z) + \tilde{\omega}_{n,n+i,n+i+j}(z) \geq V(z) \) on \(\partial (B_n' \cap (D_1 - D_2)) \cap G_1 \).

Hence

\[
\frac{\partial}{\partial n} \tilde{\omega}_{n,n+i,n+i+j}(z) = \frac{\partial}{\partial n} \omega_{n,n+i,n+i+j}(z) = \frac{\partial}{\partial n} V_{n,n+i,n+i+j}(z) = 0 \text{ on } \partial R_{n+i+j} \Omega_{n,n+i}.
\]

Hence by the maximum principle

\[
\tilde{\omega}_{n,n+i,n+i+j}(z) + \tilde{\omega}_{n,n+i,n+i+j}(z) \geq V(z).
\]

Choose a subsequence \(\{i'\} \) such that \(\tilde{\omega}_{n,n+i}(z) \rightarrow \omega_{n}(z) \). Further choose a subsequence \(\{n'\} \) such that \(\omega_{n}(z) \rightarrow \omega(z) \).

Assume \(\omega(D_2 \cap G_1 \cap B', z, D) = 0 \). Then by (9) \(\tilde{\omega}(z) + \omega(D_2 \cap G_1 \cap B', z, D_1) \geq V(z) \) and

\[
\frac{2M}{3} \geq \tilde{\omega}(z) \geq V(z) : \sup_{z \in \tilde{G}} V(z) = M.
\]

This is a contradiction.

Hence

\[
\omega(D_2 \cap G_1 \cap B', z, D_1) > 0. \tag{10}
\]

Now by (8)

\[
\omega^2(z) = \omega(G_2 \cap CD_1 \cap B', z, G) > 0. \tag{11}
\]

Since \((G_2 \cap CD_1) \cap D_1 = 0 \), S. 1. is applicable to (10) and (11) and we have

\[
\omega(D_2 \cap G_1 \cap B', z, \tilde{G}) = \omega(G_2 \cap CD_1 \cap B', z, \tilde{G}).
\]

Thus \(D_1 \) and \(D_2 \) are required domains.

5. Singular points. Let \(p \in R - R_0 \). Then \(N(z, p) \) is \(N \)-minimal and its C.P. \(\omega(p, z) = 0 \) and \(N(z, p) \) likes \(-\log |z - p| \) in a neighbourhood of \(p \). Hence if \(\omega(p, z) > 0 \) for a point \(p \in B \), it is imagined that \(N(z, p) \) and other function take queer behaviour in a neighbourhood of \(p \). If \(\omega(p, z) > 0 \), we call \(p \) a singular point and denote the set of singular points by \(B_8 \) (see Theorem 7). We call a singular point \(p \) a singular point of first or second kind according as H.M. (harmonic measure) of \(p : w(p, z) = 0 \) or \(> 0 \). It is clear \(\omega(p, z) \geq w(p, z) \). It can be thought that such a large set \(\Delta \) as C.P. \(\omega(p, z) \) of \(p > 0 \) is condensed so intensely by genus in a neighbourhood of \(p \) that \(\Delta \) may become one point \(p \) in \(N \)-Martin's
Singular points of Riemann Surfaces

95

In other words, \(p \) is larger, the more complicated the structure of \(p \) is, and the more queer the behaviors of functions are in a neighbourhood of \(p \). As an answer of problem 2, we use the notion singular point. In the present paper the discussions of singular points play the central part.

Let \(G \) be a domain\(^{12}\) in \(R-R_{0} \) and let \(\omega(p, z) \) be C.P. of a singular point. Let \(c_{G}\omega(p, z) \) be a superharmonic function in \(R-R_{0} \) such that \(c_{G}\omega(p, z)=\omega(p, z) \) in \(G \) and \(c_{G}\omega(p, z)=0 \) on \(\partial R_{0} \) and harmonic in \(G \) with M.D.I. over \(G \). If \(c_{G}\omega(p, z)<\omega(p, z) \), we say that \(G \) contains \(p \) \(N \)-approximately.

Theorem 7. a) Suppose that a domain \(G \) contains a singular point \(p \) \(N \)-approximately. Put \(V_{M}^{c}=E[z\in R: c_{G}\omega(p, z)>M] \) \((V_{M}^{c} \) may be empty). Then there exists a constant \(M_{0}<1 \) such that

\[
\omega(p\cap V_{M}^{c}, z)=0 \text{ for } M\geqq M_{0},
\]

where \(\omega(p\cap V_{M}^{c}, z) \) is C.P. of \(p\cap V_{M}^{c} \): \(\omega(p\cap V_{M}^{c}, z)=\lim_{M\rightarrow\infty} \omega(\nu_{n}(p)\cap V_{M}^{c}, z) \).

b) Let \(\nu_{n}(p) \) be a neighbourhood of \(p: p\in B_{s} \) such that \(\nu_{n}(p)=E[z\in \overline{R} : \delta(z, p)\leqq \frac{1}{n}] \). Then \(\nu_{n}(p) \) contains \(p \) \(N \)-approximately.

By d) of Theorem 9 of P, there exists a number \(n \) such that \((\nu_{n}(p)\cap R) \subset V_{M}(p) \) for any given \(M<1 \), where \(V_{M}(p)=E[z\in \overline{R} : \omega(p, z)>M] \). But the inverse is not always true. Now as an almost inverted theorem, we shall prove the following:

c) For any given \(\nu_{n}(p): p\in B_{s} \)

\[
\omega(C\nu_{n}(p)\cap V_{M}(p), z) \downarrow 0 \text{ as } M\rightarrow 1.
\]

This means that \(\{\nu_{n}(p)\}: n=1, 2, \cdots \) is almost equivalent to \(\{V_{M}(p)\}: M_{1}<M_{2}<\cdots \) \(\lim M_{i}=1. \)

Proof of a). If \(c_{G}\omega(p, z)=0 \), our assertion is clear. Suppose \(c_{G}\omega(p, z)>0 \). Then \(c_{G}\omega(p, z)>M \) on \(V_{M}^{c}\) and \(\nu_{M}^{c}\omega(p, z) \) \(^{18} \) and \(\omega(\nu_{n}(p)\cap V_{M}^{c}, z) \) have M.D.I. over \(R-R_{0}-(p\cap V_{M}^{c}) \). Hence by the maximum principle

\[
c_{G}\omega(p, z)>\nu_{M}^{c}\omega(p, z) \geqq M\omega(\nu_{n}(p)\cap V_{M}^{c}, z).
\]

Let \(n\rightarrow\infty. \) Then \(c_{G}\omega(p, z)\geqq M\omega(p\cap V_{M}^{c}, z). \)

Now \(\omega(p\cap V_{M}^{c}, z) \) has mass at only \(p \) by \((p\cap V_{M}^{c})\subset p \) by Theorem 5. b) of \(P \). i.e.

12) See 5).
13) See “Potentials on Riemann surfaces” for the definition of \(\nu_{M}^{c}\omega(p, z) \).
\[\omega(p \cap V_M^e, z) = K \omega(p, z) : K > 0. \]

But by P.C. 2. \[\sup_{z \in R} \omega(p \cap V_M^e, z) = 1 = \sup_{z \in R} \omega(p, z). \] Whence \[K = 1 \]

and \[\omega(p \cap V_M^e, z) = \omega(p, z). \]

Assume \[\omega(p \cap V_M^e, z) > 0 \]

for every \(M \) such that \(M < 1 \). Then by letting \(M \to 1 \)

\[CG\omega(p, z) \geq \lim_{M \to 1} M \omega(p \cap V_M^e, z) = \omega(p, z) \]

This contradicts the assumption. Hence we have \(a \).

Proof of \(b \). Assume \(c \omega(p, z) = \omega(p, z) \). Then \(c \omega(p, z) \) is \(N \)-minimal and by Theorem 5. \(b \) of \(P \) \(c \omega(p, z) \) is represented by a mass distribution \(\mu \) over \(R - R_0 - \nu_m(p) \) and by Theorem 9. \(a \) of \(P \) \(\omega(p, z) = a' N(z, p) : a' > 0 \) and \(q \notin \nu_m(p) \).

On the other hand, by \(\omega(p, z) = a N(z, p) \):

\[a > 0 \]

and by

\[\int_{R_0} \frac{\partial}{\partial n} N(z, p) ds = \int_{R_0} \frac{\partial}{\partial n} N(z, p) ds \]

by \(\sup_{z \in R} \omega(p, z) = 1 = \sup_{z \in R} \omega(p, z) \), we have \(N(z, p) = N(z, q) \). This is a contradiction. Thus \[\omega(p, z) > c \omega(p, z). \]

Next, we remark \(\omega(p \cap CG) = 0 \), if \(G \) contains \(p \) \(N \)-approximately. In fact, assume \(\omega(p \cap CG, z) > 0 \), then by \(p \supset (p \cap CG) \)

\[\omega(p \cap CG, z) \]

has mass only at \(p \), i.e. \(\omega(p \cap CG, z) = K \omega(p, z) \). But by P.C. 2.

\[\sup_{z \in R} \omega(p \cap CG, z) = 1 = \sup_{z \in R} \omega(p, z) \]

hence

\[\omega(p \cap CG, z) = \omega(p, z). \] (a)

By \(d \) of Theorem 9 of \(P \), there exists a neighbourhood \(\nu_m(p) \) such that \(\omega(p, z) > 1 - \varepsilon \) in \(\nu_m(p) \) for any given positive number \(\varepsilon \). Hence by the maximum principle

\[(1 - \varepsilon) \omega(\nu_m(p) \cap CG, z) \leq \omega(\nu_m(p) \cap CG, z) \leq \omega(p, z) \]

because \(\omega(p, z) \geq 1 - \varepsilon \) on \(\nu_m(p) \supset (\nu_m(p) \cap CG) \) implies \(\omega(\nu_m(p) \cap CG, z) = \omega(p, z) \)

\[\geq 1 - \varepsilon \] on \(\nu_m(p) \cap CG \).

Let \(\nu_m(p) \to p \) and then \(\varepsilon \to 0 \). Then \(\omega(p \cap CG, z) \leq \omega(p, z) \). Now by

(a) \[c \omega(p, z) = \omega(p, z). \] This contradicts \(\omega(p, z) > c \omega(p, z) \).

Hence

\[\omega(p \cap CG, z) = 0. \] (12)

By (12) and by \(\omega(p \cap CG, z) + \omega(p \cap G, z) \geq \omega(p, z) \) we have \(\omega(p \cap G, z) = \omega(p, z) \) and by \(p \in V_{1-\varepsilon}(p) = E[z \in R : \omega(p, z) > 1-\varepsilon] \), we have

\[\omega(p, z) = \omega (p \cap V_{1-\varepsilon}(p) \cap G, z) > 0, \]

whence \(V_{1-\varepsilon}(p) \cap G \) is non void. (13)

By Theorem 7. \(a \), there exists \(V_M^e \) such that \(\omega(V_M^e \cap p, z) = 0 \), where

\[V_M^e = E[z \in R : c \omega(p, z) > M, \text{ and } M < 1]. \] (14)

At present fix \(M_0 \). Then by (13) and by (14) and by
\[\omega(p \cap V_{1-\epsilon}(p) \cap CV_{M_0}^C, z) + \omega(p \cap V_{1-\epsilon}(p) \cap V_{M_0}^C, z) \geq \omega(p \cap V_{1-\epsilon}(p) \cap G, z) = \omega(p, z) \]

we have
\[\omega(p, z) = \omega(p \cap V_{1-\epsilon}(p) \cap CV_{M_0}^C \cap G, z) \]

and \(CV_{M_0}^C \cap V_{1-\epsilon}(p) \cap G \cup_n(p) \) is non void for every \(V_{1-\epsilon}(p) \).

(15)

Put \(\tilde{\omega}(z) = \omega(V_{1-\epsilon}(p) \cap CV_{M_0}^C, z, G) \) and \(\partial G : u_n(p) = G \).

Since \(u_n(p) \) contains \(p \) \(N \)-approximately, (12), (13), (14) and (15) are valid.

Let \(\tilde{\omega}(z) = \omega(V_{1-\epsilon}(p) \cap CV_{M_0}^C, z) \) and \(\partial G : u_n(p) = G \).

(12), (13), (14) and (15) are valid.

\[D(\tilde{\omega}(z)) \leq D(\omega^{*}(z)) < \infty. \]

Consider \(\omega^{*}(z) = \min(\omega(V_{1-\epsilon}(p),z), \tilde{\omega}(z)) \). Then \(\omega^{*}(z) = 0 \) on \(\partial R_0 + \tilde{\omega}(z) \) and \(\omega^{*}(z) = 1 \) on \(CG \cap V_{1-\epsilon}(p) \) and
\[D(\omega^{*}(z)) \leq D(\omega(V_{1-\epsilon}(p),z)) + D(\tilde{\omega}(z)), \]

because
\[\left| \frac{\partial \omega^{*}(z)}{\partial x} \right| \leq \max \left(\left| \frac{\partial \omega(V_{1-\epsilon}(p),z)}{\partial x} \right|, \left| \frac{\partial \tilde{\omega}(z)}{\partial x} \right| \right). \]

and
\[\left| \frac{\partial \omega^{*}(z)}{\partial y} \right| \leq \max \left(\left| \frac{\partial \omega(V_{1-\epsilon}(p),z)}{\partial y} \right|, \left| \frac{\partial \tilde{\omega}(z)}{\partial y} \right| \right). \]

Assume \(\lim_{z \to 0} \omega(V_{1-\epsilon}(p) \cap CG, z) > 0 \), where \(D(\omega(V_{1-\epsilon}(p) \cap CG, z)) \leq D(\omega(V_{1-\epsilon}(p), z)) \)
\[= \frac{D(\omega(p, z))}{(1-\epsilon)^2}. \]

Then by the Dirichlet principle
\[0 < D(\omega(V_{1-\epsilon}(p) \cap CG, z)) \leq D(\omega(V_{1-\epsilon}(p) \cap CG, z, R-R_0-\tilde{\omega})) \leq D(\omega^{*}(z)). \]
Hence
\[\omega(V_{1-}(p) \cap CG, z, R-R_{0}-\tilde{V}) \Rightarrow \omega(z) > 0 \text{ as } \varepsilon \to 0, \tag{16} \]
where \(\tilde{\omega}(z) \) is C.P. defined by sequence \(\{V_{1-x}(p) \cap CG\} \): \(i=1, 2, \ldots \) and \(\lim_{x=\infty} \varepsilon_{i} = 0 \) (see 4 of \(P \)).

Let \(C_{\delta} \) and \(C_{1-} \) be regular niveau curves of \(\tilde{\omega}(z) \) and put \(\Omega_{\delta}^{1-x} = E[z \in R-R_{0}-\tilde{V}: \delta < \tilde{\omega}(z) < 1-\varepsilon] \) and \(\Omega_{\delta} = E[z \in R-R_{0}-\tilde{V}: \tilde{\omega}(z) > \delta] \). Then \(\omega(p, z) = \omega(\tilde{V} \cap p, z) \) by (15)) has M.D.I. over \(R-R_{0}-\tilde{V} \) by \((\tilde{V} \cap p) \cap (R-R_{0}-\tilde{V}) = 0 \) by P.C.1.

Hence \(\omega_{n}^{1}(z) \Rightarrow \omega(p, z) \) as \(n \to \infty \),
where \(\omega_{n}^{1}(z) \) is a harmonic function in \(\Omega_{\delta} \cap (R_{n}-R_{0}) \) such that \(\omega_{n}^{1}(z) = \omega(p, z) \)
on \(\partial \Omega_{\delta} \cap R_{n} \) and \(\frac{\partial}{\partial n} \omega_{n}^{1}(z) = 0 \) on \(\partial R_{n} \cap \Omega_{\delta} \).

Since by (16) \(\tilde{\omega}(z) \) is C.P., \(\omega_{n}^{1}(z) \Rightarrow \tilde{\omega}(z) \) as \(n \to \infty \),
where \(\omega_{n}^{1}(z) \) is a harmonic function in \(\Omega_{\delta}^{1-x} \cap (R_{n}-R_{0}) \) such that \(\omega_{n}^{1}(z) = \tilde{\omega}(z) \)
on \(\partial \Omega_{\delta}^{1-x} \cap R_{n} \) and \(\frac{\partial}{\partial n} \omega_{n}^{1}(z) = 0 \) on \(\partial R_{n} \cap \Omega_{\delta}^{1-x} \).

Hence by the Green's formula and by letting \(n \to \infty \), we have by the regularity of \(C_{\delta} \) and \(C_{1-} \),
\[\int_{c_{\delta}} \omega(p, z) \frac{\partial}{\partial n} \tilde{\omega}(z) = \int_{c_{1-x}} \omega(p, z) \frac{\partial}{\partial n} \tilde{\omega}(z) ds. \tag{17} \]
\(\omega(p, z) < 1 \) on \(C_{\delta} \), whence there exists a constant \(\varepsilon_{0} \) such that \(\int_{c_{\delta}} \omega(p, z) \frac{\partial}{\partial n} \tilde{\omega}(z) ds < (1-\varepsilon_{0})D(\tilde{\omega}(z)) \). Above (17) holds so long as \(C_{1-} \) is regular.

Choose \(\varepsilon < \frac{\varepsilon_{0}}{2} \): Then
\[\int_{c_{\delta}} \omega(p, z) \frac{\partial}{\partial n} \tilde{\omega}(z) ds = \int_{c_{1-x}} \omega(p, z) \frac{\partial}{\partial n} \tilde{\omega}(z) ds \leq (1-\varepsilon_{0})D(\tilde{\omega}(z)) < (1-\varepsilon)D(\tilde{\omega}(z)) \]
\[= \int_{c_{1-x}} \omega(z) \frac{\partial}{\partial n} \tilde{\omega}(z) ds. \tag{18} \]

On the other hand, \(\omega(p, z) > 1-\varepsilon' \) on \(V_{1-\varepsilon}(p) \). Hence by the maximum principle
\[\omega(p, z) > (1-\varepsilon') \omega(V_{1-\varepsilon}(p), z) \geq (1-\varepsilon') \omega(V_{1-\varepsilon}(p) \cap CG, z) \]
\[\geq (1-\varepsilon') \omega(V_{1-\varepsilon}(p) \cap CG, z, R-R_{0}-\tilde{V}). \]
Let \(\varepsilon' \to 0 \). Then \(\omega(p, z) \geq \tilde{\omega}(z) \). This contradicts (18).
Hence \[\lim_{\epsilon \to 0} \omega(V_{1-\epsilon}(p) \cap C_{\nu}(p), z) = 0. \]

Let \(F \) be a closed set of positive capacity in the \(z \)-plane and let \(\nu(F) \) be a neighbourhood of \(F \). Then \(\omega(F, z) > 0 \) implies \(\omega(F, z, \nu(F)) > 0 \) by \(\sup_{z \in \delta \nu(F)} \omega(F, z) < 1 \). We show that \(G \) has the same property, if \(G \) contains \(p \in B_{s} \) \(N \)-approximately.

Theorem 8. a) Suppose that \(G \) contains \(p \in B_{s} \) \(N \)-approximately. Then there exists a domain \(\tilde{V} \) in \(G \) such that \(\omega(\tilde{V} \cap p, z, G) > 0 \) and \(D(\omega(\tilde{V}, z, G)) < \frac{D(\omega'(p, z))}{(1 - M_{0} - \varepsilon)^{2}} < \infty \), where \(M_{0} \) and \(\varepsilon \) are constants such that \(1 - \varepsilon > M_{0} > 0 \) and \(\omega'(p, z) = \omega(p, z) - CG \omega(p, z) > 1 - M_{0} - \varepsilon > 0 \) in \(\tilde{V} \).

a') Conversely if there exists a domain \(\tilde{V} \) in \(G \) such that \(0 < D(\omega(p \cap \tilde{V}, z, G)) < \infty \), then \(G \) contains \(p \) \(N \)-approximately.

b) Let \(\tilde{V} \) be the domain a). Put \(G_{Z} = E[z : \omega(\tilde{V} \cap p, z, G) < \delta : 0 < \delta < 1] \).

Then
\[\omega(\tilde{V} \cap p, z, G) = \omega(p \cap CG_{Z}, z, G) = \delta \omega(CG_{Z}, z, G) \text{ in } G_{Z}. \]

c) If \(G \) contains a singular point of second kind, there exists a domain \(\tilde{V} \) in \(G \) such that
\[\omega(\tilde{V} \cap p, z, G) \geq \omega(p \cap \tilde{V}, z, G) > 0 \text{ and } D(\omega(\tilde{V}, z, G)) \leq \frac{D(\omega'(p, z))}{(1 - M_{0} - \varepsilon)^{2}} < \infty. \]

d) Let \(\nu(p) \) be a neighbourhood of a point \(p \in B_{s} \). Then \(\nu(p) \) contains \(p \) \(N \)-approximately by Theorem 7, b). Hence a) and c) are valid for \(\nu(p) \).

e) If \(G \) contains \(p \in B_{s} \) \(N \)-approximately, \(CG \) does not contain \(p \) \(N \)-approximately.

f) If \((i = 1, 2, \cdots i_{0}) \) contains \(p \in B_{s} \) \(N \)-approximately, then \(\bigcap_{i} G_{i} \) contains \(p \) \(N \)-approximately.

Proof of a). By a) of Theorem 7, there exists a domain \(\tilde{V} = CV_{s}, \cap V_{1-\epsilon}(p) \) such that \(V_{s_{0}} = E[z \in R : CG \omega(p, z) > M_{0}] : 1 > M_{0} > 0 \) and \(\omega(p \cap V_{s_{0}}) = 0 \). Then
\[\omega'(p, z) = \omega(p, z) - CG \omega(p, z) > 1 - M_{0} - \varepsilon > 0 \text{ in } \tilde{V} \cap G \cap \nu(p) \text{ and } = 0 \text{ on } \partial G \text{ for every } n \text{ by } (15). \]

Since \(\omega(\tilde{V}, z, G) \) has M.D.I. over \(G - \tilde{V} \) among all functions with value 0 on \(\partial G \) and 1 on \(\partial \tilde{V} \),
\[\frac{D(\omega'(p, z))}{(1 - M_{0} - \varepsilon)^{2}} \geq D(\omega(\tilde{V}, z, G)) \geq D(\omega(\tilde{V} \cap \nu_{n}(p), z, G)) > 0, \]
because \(\omega'(p, z) > 1 - M_{0} - \varepsilon \) on \(\tilde{V} \) and \(= 0 \) on \(\partial G \).
On the other hand, by the Dirichlet principle and by (15)
\[D(\omega(\tilde{V}, z, G)) \geq D(\omega(\tilde{V} \cap o_{n}(p), z, G)) \geq D(\omega(\tilde{V} \cap p, z)) \]
\[= D(\omega(p, z)) > 0. \]
Let \(n \rightarrow \infty \). Then \(\omega(\tilde{V} \cap p, z, G) > 0 \). Thus \(\tilde{V} \) is the required domain.

Proof of a') Let \(C_{M_{1}}: M_{1} < M_{2} < 1 \) be a regular niveau curves of \(\omega(p \cap \tilde{V}, z, G) \) such that
\[\int_{C_{M_{1}}} \frac{\partial}{\partial n} \omega(p \cap \tilde{V}, z, G) ds = D(\omega(p \cap \tilde{V}, z, G)). \]
Now \(c_{G} \omega(p, z) \) is harmonic in \(G \) (\(c_{G} \omega(p, z) \) is harmonic in \(G \) and has M.D.I. over \(G \)). Hence
\[c_{G} \omega_{n}(p, z) \Rightarrow c_{G} \omega(p, z) \] as \(n \rightarrow \infty \), where \(c_{G} \omega_{n}(p, z) \) is a harmonic function in \(\Omega_{M_{1}}^{M_{2}} \cap R_{n} \) such that \(c_{G} \omega_{n}(p, z) = c_{G} \omega(p, z) \) on \(\partial \Omega_{M_{1}}^{M_{2}} \cap R_{n} \) and \(\frac{\partial}{\partial n} c_{G} \omega_{n}(p, z) = 0 \) on \(\partial R_{n} \cap \Omega_{M_{1}}^{M_{2}} \): \(\Omega_{M_{1}}^{M_{2}} = E[z \in G : M_{1} < \omega(p \cap \tilde{V}, z, G) < M_{2}] \). Also \(\omega(p \cap \tilde{V}, z, G) \) has M.D.I. over \(\Omega_{M_{1}}^{M_{2}} \), whence \(\omega_{n}(p \cap \tilde{V}, z, G) \Rightarrow \omega(p \cap \tilde{V}, z, G) \) as \(n \rightarrow \infty \), where \(\omega_{n}(p \cap \tilde{V}, z, G) \) is a harmonic function in \(\Omega_{M_{1}}^{M_{2}} \cap R_{n} \) such that \(\omega_{n}(p \cap \tilde{V}, z, G) = \omega(p \cap \tilde{V}, z, G) \) on \(\partial \Omega_{M_{1}}^{M_{2}} \cap R_{n} \) and \(\frac{\partial}{\partial n} \omega_{n}(p \cap \tilde{V}, z, G) = 0 \) on \(\Omega_{M_{1}}^{M_{2}} \cap \partial R_{n} \). Then
\[\int_{c_{M_{1}} \cap R_{n}} c_{G} \omega_{n}(p, z) \frac{\partial}{\partial n} \omega_{n}(p \cap \tilde{V}, z, G) ds = \int_{c_{M_{2}} \cap R_{n}} c_{G} \omega_{n}(p, z) \frac{\partial}{\partial n} \omega_{n}(p \cap \tilde{V}, z, G) ds. \]
By letting \(n \rightarrow \infty \) and by Theorem 6 of \(P \) and since \(c_{G} \omega(p, z) < 1 \) on \(C_{M_{1}} \cap R \), there exists a constant \(\delta_{0} \) such that
\[D(\omega(p \cap \tilde{V}, z, G)) - \delta_{0} \geq \int_{c_{M_{1}}} c_{G} \omega(p, z) \frac{\partial}{\partial n} \omega(p \cap \tilde{V}, z, G) ds \]
\[= \int_{c_{M_{2}}} c_{G} \omega(p, z) \frac{\partial}{\partial n} \omega(p \cap \tilde{V}, z, G) ds. \]
Hence
\[\lim_{M_{2} \rightarrow 1} \int_{c_{M_{2}}} c_{G} \omega(p, z) \frac{\partial}{\partial n} \omega(p \cap \tilde{V}, z, G) ds \leq D(\omega(p \cap \tilde{V}, z, G)) - \delta_{0}. \] (18)
On the other hand, \(\omega(p \cap \tilde{V}, z, G) \rightarrow 1 \) on \(C_{M_{1}} \) as \(M \uparrow 1 \) and by \(\omega(p, z) \geq \omega(p \cap \tilde{V}, z, G) \) we have
\[
\lim_{M_{2} \to 1} \int_{\sigma_{M_{2}}} \omega(p, z) \frac{\partial}{\partial n} \omega(p \cap \tilde{V}, z, G) ds \geq 0
\]
\[
= D(\omega(p \cap \tilde{V}, z, G)).
\]
(19)

(18) means by (19) that \(c_{0} \omega(p, z) \leq \omega(p, z) \). Thus \(G \) contains \(p \) \(N \)-approximately.

Proof of b. \(D(\omega(\tilde{V} \cap p \cap G_{3}, z, G)) \leq D(\omega(\tilde{V}, z, G)) < \infty \) and by P.C.3.

\(\omega(\tilde{V} \cap p \cap G_{3}, z, G) = 0 \). Now

\(\omega(p \cap \tilde{V} \cap G_{3}, z, G) + \omega(p \cap \tilde{V} \cap CG_{3}, z, G) \geq \omega(p \cap \tilde{V}, z, G) \geq \omega(p \cap \tilde{V} \cap CG_{3}, z, G) \).

Hence

\(\omega(p \cap \tilde{V}, z, G) = \omega(p \cap \tilde{V} \cap CG_{3}, z, G) \).

\(\omega(p \cap \tilde{V}, z, G) = \delta \) on \(\partial G_{3} \) and has M.D.I. over \(G - (u_{n}(p) \cap \tilde{V} \cap CG_{3}) \) for every \(n \).

Hence

\(\omega(p \cap \tilde{V}, z, G) = \omega(CG_{3}, z, G) \).

Proof of c. We use the same notation in as c) of Theorem 7. Put

\(V_{M_{0}}^{c} = E[z \in R : c_{0} \omega(p, z) \geq M_{0}] \) and suppose that \(\omega(p \cap V_{M_{0}}^{c}, z) = 0 \). Let

\(w_{c_{0}}(p, z) \) be a function such that \(w_{c_{0}}(p, z) = \omega(p, z) \) in \(CG \) and \(w_{c_{0}}(p, z) \) is the positively least harmonic function in \(G \). Then \(w_{c_{0}}(p, z) \leq c_{0} \omega(p, z) \) by \(w(p, z) \leq \omega(p, z) \). Put \(V_{1-\varepsilon}^{w}(p) = E[z \in R : w(p, z) > 1 - \varepsilon] \) and \(V_{1-}(p) = E[z \in R : \omega(p, z) > 1 - \varepsilon] \). Then

\(V_{1-\varepsilon}^{w}(p) \subset V_{1-}(p) \).

By P.H.5,

\[
w(p \cap p \cap CG, z) \leq \omega(p \cap CG, z) \leq w(p \cap p \cap V_{1-\varepsilon}^{w}(p), z)
\]
\[
+ w(p \cap CG, z) \geq w(p, z) \geq w(p \cap p \cap V_{1-\varepsilon}^{w}(p), z).
\]

Now \(w(p \cap CG, z) \leq \omega(p \cap CG, z) = 0 \) by (12) and \(w(p \cap p \cap CV_{1-\varepsilon}^{w}(p), z) = 0 \) by P.H.3.

Hence

\(w(p, z) = w(p \cap p \cap V_{1-\varepsilon}^{w}(p), z) \).

(20)

Next \(w(p \cap V_{M_{0}}^{c}, z) \leq w(p \cap V_{M_{0}}^{c}, z) \leq \omega(p \cap V_{M_{0}}^{c}, z) = 0 \), whence

\(0 < w(p, z) = w(p \cap p \cap (V_{1-\varepsilon}^{w}(p) - V_{M_{0}}^{c}), z) \).

(20')

Thus

\(u_{n}(p) \cap p \cap (V_{1-\varepsilon}^{w}(p) - V_{M_{0}}^{c}) \) is non void for every \(u_{n}(p) \).

(21)

\(w(p, z) - w_{c_{0}}(p, z) > 1 - M_{0} - \varepsilon > 0 \) in \(G \cap (V_{1-\varepsilon}^{w}(p) - V_{M_{0}}^{c}) \) (non void) by \(w_{c_{0}}(p, z) \leq c_{0} \omega(p, z) < M_{0} \) in \(V_{M_{0}}^{c} \). Hence

\(w(p, z) - w_{c_{0}}(p, z) > 0 \).

(22)

Put \(s_{n}(p) = u_{n}(p) \cap p \cap (V_{1-\varepsilon}^{w}(p) - V_{M_{0}}^{c}) \). Then \(s_{n}(p) \cap p \cap (V_{1-\varepsilon}^{w}(p) - V_{M_{0}}^{c}) \)
\(\cap (G - s_{n}(p)) = 0 \). Hence by P.H.1. and by (20')

\(w(p, z) = w(p \cap p \cap (V_{1-\varepsilon}^{w}(p) - V_{M_{0}}^{c}), z) = \lim_{n} w_{n}^{1}(z) \),
where $w_n^1(z)$ is a harmonic function in $(G-s_m(p)) \cap (R_n-R_0)$ such that $w_n^1(z) = w(p, z)$ on $\partial G + \partial s_m(p) \cap R_n$ and $w_n^1(z) = 0$ on $\partial R_n \cap (G-s_m(p))$.

Since $w_{CG}(p, z)$ is the positively least harmonic function in G with $w_{CG}(p, z) = w(p, z)$ on ∂G, by P.H.1. $w_{CG}(p, z) = \lim_{n} w_n^2(z)$, where $w_n^2(z)$ is a harmonic function in $(G-s_m(p)) \cap R_n$ such that $w_n^2(z) = w_{CG}(p, z)$ on $(\partial G + \partial s_m(p)) \cap R_n$ and $w_n^2(z) = 0$ on $(G-s_m(p)) \cap \partial R_n$.

Hence $1 > w_n^1(z) - w_n^2(z) = w(p, z) - w_{CG}(p, z) > 1 - M_0 - \epsilon$ on $s_m(p)$ and $w_n^1(z) - w_n^2(z) = 0$ on $(G-s_m(p)) \cap \partial R_n$.

Let $w_n^*(z)$ be a harmonic function in $(G-s_m(p)) \cap R_n$ such that $|w_n^*(z)| = 0$ on $\partial G + \partial R_n - s_m(p)$ and $w_n^*(z) = 1$ on $\partial s_m(p) \cap R_n$.

Then by the maximum principle $w_n^*(z) \geq w_n^1(z) - w_n^2(z)$.

Let $n \rightarrow \infty$. Then $w(s_m(p), z, G) \geq w(p, z) - w_{CG}(p, z)$. Let $m \rightarrow \infty$. Then by (22)$w(p \cap G \cap (V_{1-M_0-\epsilon}^{w}(p)-V_{M_0}^{c}), z, G) \leq w(p \cap V_{1-M_0-\epsilon}^{w}(p), z) = 0$...

Proof of d). $u_m(p)$ contains p approximately by b) of Theorem 7, hence we have d).

Proof of e). Suppose G and CG contain p approximately. Then there exist V and V' in G and CG respectively such that $\omega(p \cap V, z, G) > 0$ and $0 < \omega(p \cap V', z, CG) \leq \omega(p \cap CG, z)$. On the other hand, by (12) $\omega(p \cap CG, z) = 0$. This is a contradiction. Hence we have e).

Proof of f). Since G_i contains p approximately, by a) there exists a domain \tilde{V}_i in G_i such that $\tilde{V}_i = CV_{M_0,i}^{c} \cap V_{1-M_0,i-\epsilon_i}(p)$ and $1 - M_0,i - \epsilon_i > 0$ and $\infty > D(\omega(\tilde{V}_i, z, G_i)) \geq D(\omega(p \cap \tilde{V}_i, z, G_i)) > 0$: $i = 1, 2, \cdots, i_0$.

By the Dirichlet principle

$D(\omega(\tilde{V}_1 \cap V_{M_0,i}^{c}, z, \sum G_i) \leq D(\omega(\tilde{V}_1, z, G_1)) < \infty$, $i = 2, \cdots, i_0$,

because $(\tilde{V}_1 \cap V_{M_0,i}^{c}) \subset \tilde{V}_1$ and $\sum G_i \supset G_1$. Similarly

$D(\omega(\tilde{V}_1 \cap CV_{1-M_0,i}(p), z, \sum G_i) \leq D(\omega(V_1, z, G_i)) < \infty$, $i = 2, \cdots, i_0$.

Hence by the maximum principle

$\omega(p \cap \tilde{V}_1 \cap V_{M_0,i}^{c}, z, \sum G_i) \leq \omega(p \cap V_{M_0,i}^{c}, z) = 0$ by Theorem 7, a) and
Hence by \(C\tilde{V}_{i} \subset (V_{M_{0}i}^{c} + CV_{1-\epsilon} (p)) \) and by the Dirichlet principle
\[
D(\omega(\tilde{V}_{1} \cap (\sum_{2}^{i_{0}} C\tilde{V}_{i}), z, \sum_{1}^{i_{0}} G_{i})) \leq D(\omega(\tilde{V}_{1}, z, G_{1})) < \infty
\]
and
\[
\omega(p \cap \tilde{V}_{1} \cap (\sum_{2}^{i_{0}} C\tilde{V}_{i}), z, \sum_{1}^{i_{0}} G_{i}) \leq \omega(p \cap V_{M_{0}i}^{c}, z) + \omega(p \cap CV_{1-\epsilon_{i}}(p), z) = 0.
\]
Hence by P.C.5.
\[
\omega(p \cap \tilde{V}_{1} \cap (\sum_{2}^{i_{0}} C\tilde{V}_{i}), z, \sum_{1}^{i_{0}} G_{i}) = 0.
\]
On the other hand, by
\[
\tilde{V}_{1} \cap \{ (\bigcap_{2}^{i_{0}} \tilde{V}_{i}) + \tilde{V}_{1} \cap (\sum_{2}^{i_{0}} C\tilde{V}_{i}) \} = \tilde{V}_{1}
\]
\[
\omega(p \cap \tilde{V}_{1} \cap (\bigcap_{1}^{i_{0}} \tilde{V}_{i}), z, \sum_{1}^{i_{0}} G_{i}) + \omega(p \cap \tilde{V}_{1} \cap (\sum_{2}^{i_{0}} C\tilde{V}_{i}), z, \sum_{1}^{i_{0}} G_{i}) \geq \omega(p \cap \tilde{V}_{1}, z, \sum_{1}^{i_{0}} G_{i}) \geq \omega(p \cap \tilde{V}_{1}, z, G_{1}) > 0.
\]
Hence by (25)
\[
\omega(z) = \min_{i} (\omega(\tilde{V}_{i}, z, G_{i})).
\]
Then
\[
D(\omega(z)) \leq \sum_{1}^{i_{0}} D(\omega(\tilde{V}_{i}, z, G_{i})) < \infty,
\]
because
\[
|\frac{\partial \omega(z)}{\partial x}| \leq \max_{i} \left(|\frac{\partial \omega(\tilde{V}_{i}, z, G_{i})}{\partial x}| \right)
\]
and
\[
|\frac{\partial \omega(z)}{\partial y}| \leq \max_{i} \left(|\frac{\partial \omega(\tilde{V}_{i}, z, G_{i})}{\partial y}| \right).
\]
Now \(\omega(z) \) is a continuous function in \((\bigcap_{1}^{i_{0}} G_{i}) - (\bigcap_{1}^{i_{0}} \tilde{V}_{i})\) such that \(\omega(z) = 0 \) on \(\partial(\bigcap_{1}^{i_{0}} G_{i}) \) and \(\omega(z) = 1 \) on \((\bigcap_{1}^{i_{0}} \tilde{V}_{i})\). Hence
\[
0 < D(\omega(\bigcap_{1}^{i_{0}} \tilde{V}_{i}, z, \bigcap_{1}^{i_{0}} G_{i})) \leq D(\omega(z)) < \infty.
\]
Whence by the Dirichlet principle and by \((\bigcap_{1}^{i_{0}} G_{i}) \subset (\sum_{1}^{i_{0}} G_{i})\) and by (25)
\[
\infty > D(\omega(\bigcap_{1}^{i_{0}} \tilde{V}_{i}, z, \bigcap_{1}^{i_{0}} G_{i})) \geq D(\omega(\nu_{n}(p) \cap (\bigcap_{1}^{i_{0}} \tilde{V}_{i}), z, \bigcap_{1}^{i_{0}} G_{i})
\geq D(\omega(\nu_{n}(p) \cap (\bigcap_{1}^{i_{0}} \tilde{V}_{i}), z, \sum_{1}^{i_{0}} G_{i}) > 0.
\]
Let \(n \to \infty \). Then
\[
\infty > D(\omega(\bigcap_{1}^{i_{0}} \tilde{V}_{i}, z, \bigcap_{1}^{i_{0}} G_{i})) \geq D(\omega(p \cap (\bigcap_{1}^{i_{0}} \tilde{V}_{i}), z, \bigcap_{1}^{i_{0}} G_{i})) \geq D(\omega(p \cap (\bigcap_{1}^{i_{0}} \tilde{V}_{i}), z, \sum_{1}^{i_{0}} G_{i}) > 0
\]
and
\[
\infty > D(\omega(p \cap (\bigcap_{1}^{i_{0}} \tilde{V}_{i}), z, \bigcap_{1}^{i_{0}} G_{i}) > 0.
\]
Hence by \(a' \) \(\bigcap_{1}^{i_{0}} G_{i} \) contains \(p \) \(N \)-approximately.

A sufficient condition for a point \(B \in p_{s} \) to be a point of second kind.

Theorem 9. Suppose that a domain \(G \) contains \(p \in B_{s} \) \(N \)-approximately and let \(\overline{G} \) be the closure of \(G \). If \(\overline{G} \cap (B-p) \) is an \(F_{\alpha} \) set of harmonic
measure zero, \(p \) is a singular point of second kind.

Proof. By (16) we can find a domain \(\tilde{V} \) in \(G \) such that
\[
\infty > D(\omega(\tilde{V} \cap G, z, G)) \geqq D(\omega(p \cap \tilde{V}, z, G)) > 0.
\]
Now \((\bar{G} - p) \cap B\) is an \(F \) set of harmonic measure zero, i.e. \(F = \sum_i F^i \) where \(w(F^i, z) = 0 \). Let \(w(F^i_m, z) \) be H.M. of \(F^i_m = E[z \in \overline{R} : \delta(z, F^i) \leqq \frac{1}{m}] \). Then for a given point \(z_0 \) in \(G - (V \cap \nu_n(p)) \), there exists a number \(m(n) \) such that
\[
0 < w(F^i_{m(n)}(z_0), z_0) \leqq \frac{1}{2^n}.
\]
Put \(w^*(F^i, z) = \sum_{n=0}^{\infty} w(F^i_{m(n)}, z) \) and \(w^*(F_{\sigma}, z) = \sum_{i=1}^{\infty} \frac{1}{2^i} w^*(F^i, z) \). Then
\[
w^*(F_{\sigma}, z) \rightarrow \infty \text{ as } z \rightarrow F_{\sigma}.
\]
Put \(\Omega = E[z \in \overline{R} : \gamma w^*(F_{\sigma}, z) \leqq 2] : \gamma > 0 \). Then \(\Omega \) does not tend to \((B - p) \cap G\). Hence for any given positive number \(\gamma \) there exists a number \(l_{\gamma} \) such that \(\Omega \cap (R - R_{l_{\gamma}} - \nu_n(p)) = 0 \) for \(l > l_{\gamma} \). Let \(w_{l_{\gamma}, n}(z) \) be a harmonic function in \(G \cap (R_{l_{\gamma}} - \nu_n(p)) \) such that \(w_{l_{\gamma}, n}(z) = 0 \) on \((\bar{G} \cap R_{l_{\gamma}}) + (\partial R_{l_{\gamma}} \cap G) - \nu_n(p) \) and \(w_{l_{\gamma}, n}(z) = 1 \) on \(G \cap \partial \nu_n(p) \). Then by the maximum principle
\[
\omega(\tilde{V} \cap \nu_n(p), z, G) - \gamma w^*(F_{\sigma}, z) \leqq w_{l_{\gamma}, n}(z) \leqq w(\nu_n(p), z, G),
\]
where \(w(\nu_n(p), z, G) \) is H.M. of \(\nu_n(p) \) relative \(G \).
Let \(n \rightarrow \infty \) and then \(\gamma \rightarrow 0 \). Then
\[
0 < w(p \cap \tilde{V}, z, G) \leqq w(p, z, G) \leqq w(p, z).
\]
Thus \(p \) is a singular point of second kind.

6. Image of a singular point of second kind on the unit circle.

Theorem 10. a) Let \(V_{M}(p) = E[z \in R : \omega(p, z) > M] \). Then
\[
V_{M}(p) \downarrow \text{ as } M \uparrow 1 \text{ and }
\]
\[
\lim_n w(\nu_n(p), z) = w(p, z) = \lim_M w(V_{M}(p), z).
\]
b) Map the universal covering surface \((R - R_0)^{\infty}\) of \((R - R_0)\) onto \(|\xi| < 1 \) by \(\xi = f(z) \). Let \(\omega(p, z) \) be C.P. of a singular point \(p \) of second kind and let \(E \) be the set where \(\omega(p, z) \) has angular limits=1 almost everywhere. We call \(E \) the image of \(p \). Then \(\text{mes } E > 0 \) and \(w(p, z) = w(E, \xi) \), where \(w(E, \xi) \) is the harmonic measure of \(E \) in \(|\xi| < 1 \). Let \(p_1 \) and \(p_2 \) be singular points of second kind: \(p_1 \neq p_2 \) and let \(E_i \) be its image. Then \(\text{mes } (E_1 \cap E_2) = 0 \). Hence the set of singular points of second kind is at most enumerable.

Proof of a). By Theorem 9. d) of \(P \), for any given \(V_{M}(p)(M < 1) \), there exists a number \(n_0 \) such that \(V_{M}(p) \uparrow (\nu_n(p) - R) \) for \(n > n_0 \), whence
Singular points of Riemann Surfaces

\[\lim_{M \to 1} w(V_M(p), z) \geq \lim_{M \to 1} w(u_n(p), z) = w(p, z). \]

On the other hand, by Theorem 7. c) \(\omega(C_U(p) \cap V_M(p), z) \downarrow 0 \) as \(M \uparrow 1 \).

This implies \(w(C_U(p) \cap V_M(p), z) \downarrow 0 \) as \(M \uparrow 1 \). Hence by

\[w(V_M(p), z) \leq w(V_M(p) \cap C_U(p), z) + w(V_M(p) \cap V_M(p), z) \]

we have \(\lim_{M \to 1} w(V_M(p), z) \leq \lim_{M \to 1} w(u_n(p), z) \) for every \(n \).

Thus we have \(a \).

Proof of b. \(f(\partial R_0) \) consists of an enumerably infinite number of arcs on \(|\xi| = 1 \). Let \(G(z, p) \) be the Green's function of \((R-R_0)\) and let \(E_\xi \) be the set on \(|\xi| = 1 \) where \(G(z, p) \) has angular limits\(=0 \) on \(|\xi| = 1 \). Then \(\mes E_\xi = 2\pi \). Put \(\inf_{\xi \in \partial R_n} G(z, p) = \delta_n \).

Then \(\mes \left(E_\xi \cap f(\partial R_0) \right) = 0 \) and \(\omega(p, z) \) has angular limits\(<1 \).

Assume \(\mes E_0 > 0 \). In this case, by Egoroff's theorem, for any given positive number \(\varepsilon \) we can find a closed set \(E' \subset (E_0 \setminus E_\xi) \) (by \(\mes E_\xi = 2\pi \)) such that \(\mes (E' \setminus E_0) < \frac{\varepsilon}{2} \) and \(\omega(p, z) \) converges uniformly in an angular domain \(A(\theta) = E \left[\xi : \arg\left(\frac{\xi - e^{i\theta}}{e^{i\theta}} \right) \right] < \frac{2\pi}{3} \] for every point \(e^{i\theta} \) in \(E' \) as \(\xi = f(z) \) tends to \(E' \) in \(A(\theta) \). And further we can find a closed set \(E'' \subset E' \) and a constant \(M' < 1 \) and a number \(m \) such that

\[\mes (E_0 - E'') < \varepsilon : \omega(p, z) < M' \] in \(A(\theta) \cap \Re_m \) for \(e^{i\theta} \in E'' \). \hspace{1cm} (26)

where \(\Re_m \) is a ring domain: \(1 - \frac{1}{m} < |\xi| < 1 \).

Let \(D \) be a domain containing an end part of \(A(\theta) : e^{i\theta} \in E'' \) and bounded by \(\sum_{\theta \in E''} dA(\theta) + E'' \) and a circle \(\xi = 1 \). Then \(D \) may consist of at most three components. Hence there exists at least one component \(D' \) such that \(\mes (\partial D' \cap E'') > 0 \). Let \(D^* \) be one of them. For simplicity denote it by \(D \) newly. Let \(w^D(\xi) \) be a harmonic function in \(D \) such that \(w^D(\xi) = 1 \) on \(\partial D - E'' \) and \(w^D(\xi) = 0 \) on \(E'' \). Then by the rectifiableness of \(\partial D \) \(w^D(\xi) < 1 \) and \(w^D(\xi) \) has angular limits\(=0 \) a.e. on \(E'' \).

Put \(V_M(p) = E \left[z \in R : \omega(p, z) > M \right] \). Then by a) \(\omega(p, z) = \lim_{M \to 1} w(V_M(p), z) \).

Let \(w_{M,n}(z) \) be a harmonic function in \((R_n - R_0 - V_M(p))\) such that \(w_{M,n}(z) = 0 \) on \(\partial R_n - V_M(p) + \partial R_0 \) and \(w_{M,n}(p) = 1 \) on \(\partial V_M(p) \).

Then

\[\lim_{M \to 1} \lim_{n \to \infty} w_{M,n}(z) = w(p, z) \]
Consider the image of \((R_n - R_0 - V_M(p))\) in \(D\).

Since \(\omega(p, z) < 1\) in \(R - R_0\), \(f(\partial V_M(p)) \rightarrow \Gamma_1 : |\xi| = 1\) as \(M \rightarrow 1\). Hence there exists a number \(M_2\) such that \(f(V_M(p)) \subset \Re_m\) for \(M > M_2\). Hence by (26)

\[f(V_M(p)) \cap D = 0 \text{ for } M > M_3 = \max(M_1, M_2). \tag{27} \]

Since \(\inf_{z \in \partial R_n} G(z, p) = \delta_n > 0\), \(f(\partial R_n)\) does not tend to \(E''\) in \(D\), because, if it were so, there existed a sequence \(\xi_k \in f(\partial R_n)\) such that \(\xi_k \rightarrow E''\) as \(k \rightarrow \infty\) inside of \(D\). But by \(E'' \subset E'\) \(G(\xi_k, p) \rightarrow 0\). This is a contradiction. Hence \(f(\partial R_n)\) separates \(E''\) from \(\Gamma_m : |\xi| = 1 - \frac{1}{m}\) in \(D\) and \(f(R_n - R_0) \cap E'' = 0\).

Compare \(w_{M,n}(z)\) and \(w^D(\xi)\) in \(D \cap f(R_n - R_0 - V_M(p)) : M > M_3\).

Then \(w^D(\xi) = 1\) and \(w_{M,n}(z) < 1\) on \(\partial D \cap f(R_n - R_0 - V_M(p))\),

\[w^D(\xi) > 0 \text{ and } w_{M,n}(z) = 0 \text{ on } D \cap \partial(f(R_n - R_0 - V_M(p))(\subset f(\partial R_n)). \]

Hence by the maximum principle

\[w^D(\xi) \geq w_{M,n}(z) \text{ in } D \cap f(R_n - R_0 - V_M(p)). \]

Let \(n \rightarrow \infty\) and then \(M \uparrow 1\). Then \(w^D(\xi) \geq w(p, z)\).

Now \(D\) is an arbitrary component and let \(\varepsilon \rightarrow 0\). Then \(w(p, z)\) has angular limits = 0 a.e. on \(E_0\) \((w(p, z) = 0\) on \(\partial f(\partial R_0))\).

Let \(E_1\) be the set of \(|\xi| = 1\) where \(\omega(p, z)\) has angular limits = 1. Similarly as above, we can find a closed set \(E' \subset E_1\) and a domain \(D\) containing an endpart of \(A(\theta) = E\left[\xi : \left| \frac{\xi - e^{i\theta}}{e^{i\theta}} \right| < \frac{2\pi}{3}\right]\) for \(e^{i\theta} \in E'\) and bounded by \(\sum_{e^{i\theta} \in E'} \partial A(\theta) + E'\) such that

\[\text{mes}(E_1 - E') < \varepsilon \text{ and } \omega(p, z) \rightarrow 1 \text{ as } \xi = f(z) \rightarrow E' \text{ in } D. \tag{29} \]
Let D (newly denoted) be one of the components of D such that mes $(D ∩ E') > 0$. Let $w^p(ζ)$ be a harmonic function in D such that $w^p(ζ) = 0$ on $∂D − E'$ and $w^p(ζ) = 1$ on E'. Then $w^p(ζ) > 0$ and $w^p(ζ)$ has angular limits $= 1$ a.e. on E'. By (29) $f(∂V_M(p)) : M < 1$ does not tend to E' in D. Hence

$$\text{dist } (f(∂V_M(p)) ∩ D), E' = δ_M > 0$$

and by (29)

$$D − f(V_M(p)) ⊆ E'.$$ (30)

Since $f(∂R_n) → I'_1 : |ζ| = 1$ as $n → ∞$, there exists a number $δ_M$ such that

$$\text{dist } (f(∂R_n), ζ = 0) > 1 − δ_M.$$ Then by (30) $f(R_n − R_0V_M(p)) ⊆ (D − f(V_M(p))$ for $n > n_M$. Hence as above we have $w^p(ζ) ≤ w_{M,n}(ζ)$.

Let $n → ∞$ and then $M → 1$, $w^p(ζ) ≤ w(p, z)$ and by letting $ε → 0$, we see that $w(p, z)$ has angular limits $= 1$ a.e. on E. Thus

$$w(p, z) = w(E, ζ)$$

and mes $E > 0$ by $w(p, z) > 0$.

Assume mes $(E_1 ∩ E_2) > 0$. Then as above it is proved that

$$w(E_1 ∩ E_2, ζ) = w(p_1 ∩ p_2, z) (≤ w(p_1 ∩ p_2, z)).$$

Now $ω(p_1 ∩ p_2, z)$ has mass only at p_1 (i.e. $ω(p_1 ∩ p_2, z) = K ω(p, z)$) by

$$(p_1 ∩ p_2) ⊂ p_1.$$ By P.C.2. $\sup_{z ∈ K} ω(p_1 ∩ p_2, z) = 1 = \sup_{z ∈ K} ω(p_1, z).$ Hence $ω(p_1 ∩ p_2, z) = ω(p_1, z).$ Similarly $ω(p_1 ∩ p_2, z) = ω(p_2, z).$ This implies $N(z, p_1) = N(z, p_2).$

This contradicts $p_1 ≠ p_2$. Hence mes $(E_1 ∩ E_2) = 0$. Let p_i be a singular point of second kind and let E_i be its image. Then mes $(E_i ∩ E_j) = 0$ for $i ≠ j$. Hence by $\sum \text{mes } E_i < 2\pi$ the set of singular points of second kind is at most enumerable.

Remark. Toplogical structure of B_s. Let B_n, the set of singular points p_i such that $\text{Cap}(p_i) ≥ 1/n$ and p be a limit point of a sequence $\{p_i\} ⊂ B_n$. Then by $\nu_m(p) ≥ p_i \text{ Cap}(p_i) ≤ \text{Cap}(\nu_m(p))$ for every m. Hence $\text{Cap}(p) = \lim_{m → ∞} \text{Cap}(\nu_m(p)) ≥ 1/n$ and B_n is closed. Whence by $B_S = \bigcup B_n$, B_S is an $F_σ$ set.

By Theorem 10 the set of singular points of second kind is enumerable, but the set of singular points of first kind is not necessarily enumerable. In reality there exists a Riemann surface which has the set of singular points of first kind of the power of continuum (see the following paper "Examples of singular points").

7. Harmonic functions in a neighbourhood of a singular point of second kind. Harmonic domain and their harmonic measures. Map the universal converging surface $G^∞$ of a domain G in $R − R_0$ onto $|ζ| < 1$.

\(\text{Singular points of Riemann Surfaces}\)
by $\xi=f(z)$ conformally. If a harmonic function $H(z)$ in G has angular limits a.e. on $|\xi|=1$, we say that $H(z)$ is of F-type. Clearly if $H(z)\in HB$ or $e \in HD$, $H(z)$ is of F-type.

Consider a system of harmonic functions $H_i(z)$ of F-type $(i=1,2,\cdots l)$. If a domain D^H is defined as $D^H=\bigcap_{i=1}^{l}E[z\in G: H_i(z)\geqq a_i]$, we call D^H a harmonic domain in G. Let B_i be the set on $|\xi|=1$ where $H_i(z)$ has angular limits $\geqq a_i$. Put $B(D^H)=\bigcap_{i=}^{l}B_i$. We call $B(D^H)$ the image of the ideal boundary of D^H.

In the following we distinguish it from $w(p\cap[D^H], z, G)=\lim_{n}\lim_{k}w(u_{n}(p)\cap D_{k}^{H}, z, G)$, where $w(u_{n}(p)\cap D_{k}^{H}, z, G)$ is the least positive superharmonic function in G larger than 1 on $v_{n}(p)\cap D_{k}^{H}$. Then

$$w(p\cap[D^H], z, G)\geqq w(p\cap[D^H], z, G)\geqq w(p\cap[D^H], z, G)\geqq w(p\cap[D^H], z, G)\geqq w(p\cap[D^H], z, G).$$

Theorem 11. a) Let D^H_k be a harmonic domain in $G\subset(R-R_0)$. Put $\tilde{V}_M^W=E[z\in G: w(p\cap[D^H], z, G)>M]$. Then $\tilde{V}_M^W\subset V_M^W(p)=E[z\in R: w(p, z)>M]\subset V_M(p)=E[z\in R: \omega(p, z)>M]$ by $w(p\cap[D^H], z, G)\leqq w(p, z)\leqq \omega(p, z)$.

Then for any domain G' and G'' such that $G'\subset G$ and $G''\subset G$.

$$\lim_{M=1}\lim_{k=1}w(\tilde{V}_M^{W^\cap D^H_k}, z, G')=\lim_{M=1}\lim_{k=1}w(\tilde{V}_M^{W\cap D^H_k}, z, G').$$

b) Let G be a domain in $R-R_0$ and D^H be a harmonic domain in G. Let E be the set of positive measure where $w(p\cap[D^H], z, G)$ has angular limits $=1$ on $|\xi|=1$ and let $B(D^H)$ be the image of the ideal boundary of D^H. Then

$$\text{mes}(E-B(D))=0,$$

and

$$w(p\cap[D^H], z, G)=\lim_{M=1}\lim_{k=1}w(\tilde{V}_M^{W^\cap D^H_k}, z, G')=\lim_{M=1}\lim_{k=1}w(\tilde{V}_M^{W\cap D^H_k}, z, G')=w(E, \xi),$$

where $w(E, \xi)$ is the harmonic measure of E with respect to $|\xi|<1$.

c) Let D^H be a harmonic domain in $G\subset R-R_0$. Let $U(z)$ be a harmonic function of F-type in G such that $U(z)$ has angular limit $U(e^{i\theta}$ at $e^{i\theta}$ which is not a constant a.e. on E, where $\text{mes}(E)>0$ and $w[p\cap[D^H], z, G)$ has angular limits $=1$ a.e. on E. Then we can find two constants.
L and δ such that
\[w[p \cap [D^u] \cap G_L^u, z, G_L^u \cap G > 0 \quad \text{and} \quad w(p \cap [D^u] \cap G_L^u, z, G_L^u \cap G) > 0, \]
where $G^u_a = E[z \in G : U(z) > a]$ and $G^u_\alpha = E[z \in G : U(z) < \alpha]$.
Whence $w(p \cap [D^u] \cap G_L^u, z, G_L^u \cap G) > 0$ for $k < \infty$.

Proof of a). \[w(\tilde{V}_M^W \cap C_{U_n}(p) \cap [D^u] \cap G', z, G') \leq w(V_M^W \cap C_{U_n}(p), z) \leq w(V_M^W, z, G') \rightarrow 0 \]
for $M \rightarrow 1$ by c) of Theorem 5.

By $w(\tilde{V}_M^W \cap C_{U_n}(p) \cap [D^u] \cap G', z, G') = w(\tilde{V}_M^W \cap C_{U_n}(p) \cap [D^u] \cap G', z, G')$, we have by letting $M \rightarrow 1$
\[\lim_{M \rightarrow 1} w(\tilde{V}_M^W \cap [D^u] \cap G', z, G') = \lim_{M \rightarrow 1} w(\tilde{V}_M^W \cap [D^u] \cap G', z, G'). \]

Proof of b). Let $G(z, p)$ be the Green's function of G and let E_g be the
set where $G(z, p)$ has angular limits $= 0$. Then $E_g = 2\pi$.

Put $\Gamma_1 : |\xi| = 1$. If $\meas(E_c) > 0 : E_c = \Gamma_1 - (E \cap E_g \cap B(D^u))$, for any given positive number ϵ, we can find a closed set E' of positive measurability in $(E_c - E_g)$ and a constant $\delta > 0$ such that $\meas(E_c - E') < \frac{\epsilon}{2}$ and at least one of $w(p \cap [D^u], z, G) \quad \text{and} \quad H_i(z) (i = 1, 2, \ldots, l)$ has angular limits $< 1 - \delta$ or $< a_i - \delta$ as $f(z) = \xi \rightarrow E'$ along Stolz's path. Further we can find two closed sets $E^{(1)}$ and $E^{(2)}$ in E' such that $E^{(1)} \cap E^{(2)} = 0$, $\meas(E' - (E^{(1)} + E^{(2)})) < \epsilon$ and domains $D^{(1)}$ and $D^{(2)}$ such that $D^{(i)}(i = 1, 2)$ containing an endpart of
\[A(\theta) = E[\xi : \arg \frac{\xi - e^{i\theta}}{e^{i\theta}} |< \frac{\chi_{\pi}}{3}] \]
for $e^{i\theta} \in E(i)$ and bounded by $\sum_{e^{i\theta} \in E(i)} \partial A(\theta) + E^{(i)}$ and a ring $\Re_m : 1 - \frac{1}{m} < |\xi| < 1$ such that $w(p \cap [D^u], G) < 1 - \frac{\delta}{2}$ in $D^{(1)}$
$\cap \Re_m$ and $H_i(z) < a_i - \frac{\delta}{2}$ in $D^{(2)} \cap \Re_m$ for a number i_0, respectively. Hence
\[f(\tilde{V}_M^W) \cap D^{(1)} \cap \Re_m = 0 \quad \text{and} \quad f(D^H_k) \cap D^{(2)} \cap \Re_m = 0 \]
for $M > 1 - \frac{\delta}{2}$ and $1 - \frac{1}{k} < \frac{\delta}{2}$,

where $D^H_k = \bigcap_{i=1}^l E[z \in G : H_i(z) \geq a_i - \frac{1}{k}]$. (a)

Now $D^{(1)}$ is composed of a finite number of components. Let D' be one of them such that $\meas(\overline{D'} \cap E^{(1)}) > 0$. Now $w(p \cap [D^u], z, G) = \lim M w(\tilde{V}_M^W, z, G) = \lim_{n \rightarrow \infty} \lim_{k \rightarrow \infty} (\nu_n(p) \cap D^u_k, z, G)$. Put G_f,

$\text{Singular points of Riemann Surfaces}$
\[E \left[z \in G : \delta(\partial G_j, z) > \frac{1}{j} \right]. \] Let \(w_{m,j,n}(z) \) be a harmonic function in \((R_n \cap G_j) - \tilde{V}_M^w\) such that \(w_{m,j,n}(z) = 0 \) on \(\partial G_j + \partial R_n - \tilde{V}_M^w \) and \(w_{m,j,n}(z) = 1 \) on \(\partial \tilde{V}_M^w \). Consider the image of \((G_i \cap R_n) - \tilde{V}_M^W\) such that \(\partial \tilde{V}_M^W \) separates \(\Gamma_{1-\frac{1}{m}} : |\xi| = 1 - \frac{1}{m} \) from \(E^{(2)} \).

Hence as usual (see the proof of Theorem 8) by (a) and (b) and by the maximum principle

\[w_{m,j,n}(z) \leq w^D(\xi), \]

where \(w^D(\xi) \) is a harmonic function in \(D' \) such that \(w^D(\xi) = 1 \) on \(\partial D' - E^{(1)} \) and \(w^D(\xi) = 0 \) on \(\partial D' \). Let \(i \to \infty \) and then \(n \to \infty \) and then \(M \to 1 \). Then

\[w(p \cap [D^H], z, G) = \lim_{M,1} w(\tilde{V}_M^W, z, G) \leq w^D(\xi). \]

(c) Since \(w^D(\xi) \) has angular limits = 0 a.e. on \(E^{(1)} \) and \(D' \) is arbitrary, \(w(p \cap [D^H], z, G) \) has angular limits = 0 a.e. on \(E^{(1)} \) by letting \(\epsilon \to 0 \).

Let \(w_{k,j,n}(z) \) be a harmonic function in \((R_n \cap G_j) - D_k^H\) such that \(w_{k,j,n}(z) = 0 \) on \(\partial R_n + \partial G_j - D_k^H \) and \(w_{k,j,n}(z) = 1 \) on \(\partial D_k^H \). Then the image of \((G_j \cap R_n) - D_k^H\) separates \(|\xi| = 1 - \frac{1}{m} \) from \(E^{(2)} \) and as above

\[w_{k,j,n}(z) \leq w^D(\xi) \]

and \(w(p \cap [D^H], z, G) \leq w^D(\xi) \).

(d) Where \(w^D(\xi) \) is a harmonic function in \(D^{(2)} \) such that \(w^D(\xi) = 1 \) on \(\partial D^{(2)} - E^{(2)} \) and \(w^D(\xi) = 0 \) on \(\partial D^{(2)} \). Then \(\epsilon \to 0 \). By (c) and (d) \(w(p \cap [D^H], z, G) \) has angular limits = 0 a.e. on \(E_0 \). Hence \(\operatorname{mes} (E - B(D^H)) = 0 \), because if \(\operatorname{mes} (E - B(D^H)) > 0 \), we can find a subset of \(E - B(D^H) \) of positive measure on which \(w(p \cap [D^H], z, G) \) has angular limits = 0. This contradicts the definition of \(E \) on which \(w(p \cap [D^H], z, G) \) has angular limits = 1 almost everywhere.

Now by \(\operatorname{mes} E_0 + \operatorname{mes} E = 2\pi \) \(w(p \cap [D^H], z, G) \) has angular limits = 1 on \(E \). Hence

\[w(p \cap [D^H], z, G) = w(E, \xi) = \lim_{M \to 1} w(\tilde{V}_M^W, z, G). \]

lim \(M \to 1 \) \(w(\tilde{V}_M^W, z, G) \) is clear. We show \(\lim_{M \to 1} w(\tilde{V}_M^W, z, G) = \lim_{M \to 1} w(\tilde{V}_M^W \cap [D^H], z, G) = \lim_{M \to 1} w(\tilde{V}_M^W \cap [D_k^H], z, G). \) By \(\operatorname{mes} (E - B(D^H)) = 0 \), \(\operatorname{mes} E = \operatorname{mes} (E \cap B(D^H)) \). If \(w(E, \xi) = 0 \), \(\operatorname{mes} (E \cap B(D^H)) = 0 \).

We have \(0 = \lim_{M \to 1} w(\tilde{V}_M^W, z, G) \) and we have our
assertion. Hence we assume $\text{mes}(E \cap B(D^H)) > 0$. In this case, for any given positive number ε, we can find a closed set $F' \subset (E \cap B(D^H))$ such that $\text{mes}((E \cap B(D^H) - F') < \varepsilon$ and a domain D (D is containing and endpart of $A(\theta): e^{i\theta} \in F'$ and bounded by $\sum_{e^{i\theta} \in F'} \partial A(\theta) + E'$ and a circle: $|\xi| = \frac{1}{2}$) and bounded a number m_0 such that

$$w(p \cap [D^H], z, G) \geq 1 - \frac{1}{2k}, \quad H_i(z) \geq a_i - \frac{1}{2k} (i = 1, 2, \ldots, b) \quad \text{in} \quad D \setminus R_m.$$

Hence

$$\text{dist} (f(\tilde{V}_{1-\frac{1}{k}} \cap \partial G_j), z, G) = \delta,$$

and $f(\tilde{V}_{1-\frac{1}{k}} \cap \partial G_j) \subset (E \cap B(D^H))$.

Proof of $c)$. Since $U(e^{i\theta}) \neq \text{const}$ a.e. on E, we can find two constants L and $\delta > 0$ and two sets E_1 and E_2 of positive measure in E such that the angular limits $U(e^{i\theta}) \geq L + 2\delta$ on E_1 and $U(e^{i\theta}) < L - 2\delta$ on E_2 respectively. For any given positive number ε we can find a closed subset E'.

of \(E_1 \) and a domain \(D \) such that \(\text{mes}(E_1 - E') < \varepsilon \) and \(D \) is containing an endpart of \(A(\theta) : e^{i\theta} \in E' \) and bounded by \(E' + \sum_{e^{i\theta} \in E'} \partial A(\theta) \) with the property as follows:

\[
U(\xi) \rightarrow \geq L + 2\delta \quad \text{as} \quad \xi \rightarrow E' \quad \text{in} \quad D. \tag{a}
\]

\[
w(p \cap [D''], z, G) \rightarrow 1 \quad \text{and} \quad H_i(z) \rightarrow \geq a_i (i=1,2,\ldots,l) \quad \text{as} \quad \xi \rightarrow E' \quad \text{in} \quad D. \tag{b}
\]

Put \(G_L^U = E[z \in G : U(z) > L] \). Since \(U(z) \rightarrow \geq L + 2\delta \) as \(\xi \rightarrow E' \) in \(D \), whence \(\text{dist}(f(\partial G_L^U) \cap D, E') > \delta_U > 0 \). Let \(\Re_m \) be a ring domain:\[1 > |\xi| > 1 - \frac{1}{m}\]. Then

\[
U(z) \geq L \quad \text{in} \quad D \cap \Re_m \quad \text{for} \quad \frac{1}{m} < \delta_U. \tag{c}
\]

\(D \cap \Re_m \) is composed of at most \(n(m) \) number of components. Let \(D' \) be a component such that \(\text{mes}(E' \cap \overline{D'}) > 0 \) and let \(G_L^U \) be the component of \(G_L^U \) such that there exists a point \(\xi \) in \(D' \) with \(f(z) = \xi \). We denote it also by \(G_L \).

By \(\text{mes}(E \cap B(D'')) = 0 \), \(w(p \cap [D''], z, G) \rightarrow 1 \) and \(H_i(z) \rightarrow a_i \) as \(\xi \rightarrow E' \) in \(D' \), dist \((\text{f}(\partial \tilde{V}_{1-\frac{1}{k}}^{W} \cap \partial D'') \cap D', E') = \delta_k > 0 \) for \(k > 0 \) and since \(U(z) \rightarrow \geq L + 2\delta \) as \(\xi \rightarrow E' \),

\[
\text{dist}(f(\partial G_L^U+D', E') = \delta_L > 0. \tag{d}
\]

Let \(G_j = E[z \in G : \delta(z, \partial G) > \frac{1}{j}] \). Then since \(f(\partial R_n + \partial G_j) \rightarrow |\xi| = 1 \) as \(n \rightarrow \infty \) and \(j \rightarrow \infty \), there exist numbers \(n_0 \) and \(j_0 \) such that

\[
\text{dist}(f(\partial R_n + \partial G_j) \cap D', \xi = 0) > 1 - \delta: \delta = \min(\delta_U, \delta_L', \delta_k) \quad \text{for} \quad n \geq n_0 \quad \text{and} \quad j \geq j_0. \tag{e}
\]

Let \(w_{j,n,k}(z) \) be a harmonic function in \((R_n \cap G_j \cap G_L^U -(\tilde{V}_{1-\frac{1}{k}}^{W} \cap G_L^U \cap \partial D'')) \) such that \(w_{j,n,k}(z) = 0 \) on \(\partial(G_L \cap R_n \cap G_L^U -(\tilde{V}_{1-\frac{1}{k}}^{W} \cap G_L^U \cap \partial D'')) \) and \(w_{j,n,k}(z) = 1 \) on \(\partial(\tilde{V}_{1-\frac{1}{k}}^{W} \cap G_L^U \cap \partial D'') \). Then by \((e) \) for \(n \geq n_0 \) and \(j \geq j_0 \) the image of \((\partial R_n + \partial G_j) \) does not fall in \(D' \) and by \((c) \) \(\partial G_L^U \) does not fall in \(D' \) and also by \((d) \) \(\partial(\tilde{V}_{1-\frac{1}{k}}^{W} \cap G_L^U \cap \partial D'') \) separates \(E' \) from \(|\xi| = 1 - \frac{1}{m} \).

Let \(w^o(\xi) \) be a harmonic function in \(D' \) such that \(w^o(\xi) = 0 \) on \(\partial D' \cap E' \) and \(w^o(\xi) = 1 \) on \(E' \cap \partial D' \). Consider \(w^o(\xi) \) and \(w_{j,n,k}(z) \) in \(D' \cap f(R_n \cap G_j \cap G_L^U -(\tilde{V}_{1-\frac{1}{k}}^{W} \cap G_L^U \cap \partial D'')) \). Then \(0 = w^o(\xi) \leq w_{j,n,k}(z) \) on \(\partial D' \cap E' \) and \(w^o(\xi) < 1 \)

\[
= w_{j,n,k}(z) \quad \text{on} \quad D \cap f(\tilde{V}_{1-\frac{1}{k}}^{W} \cap G_L^U \cap \partial D''). \quad \text{Hence by the maximum principle}
\]

\[
w^o(\xi) \leq w_{j,n,k}(z).
\]
Let $j \to \infty$ and $n \to \infty$ then
\[w^D(\xi) \leq w(\tilde{V}^W_{-\frac{1}{k}} \cap G^U_{L+\delta} \cap D^H_k, z, G^U_L \cap \Gamma G) = \lim_{n, k} w_{j.n.k}(z). \]

Hence by letting $k \to \infty$ and letting $\varepsilon \to 0$, $\lim_{n, k} w(\tilde{V}^W_{-\frac{1}{k}} \cap D^H_k \cap G^U_{L+\delta} \cap G^U_L \cap \Gamma G) = \lim_{n, k} w_{j.n.k}(z)$.

Similarly $w(p \cap [D^H], G) > 0$, whence $D(\omega(p, z) - CG \omega(p, z)) \leq \frac{1}{1 - M_0 - \frac{2}{k}} < \infty$ for $1 - M_0 - \frac{2}{k} > 0$.

Then there exists no function $U(z) \in HD$ (HD means the class of harmonic function with bounded Dirichlet integral) with constants L and δ such that $w(p \cap [D^H], z, G) \leq \omega(p \cap D^H, z, G)$ and $D(\omega(p, z) - CG \omega(p, z)) \leq \frac{1}{1 - M_0 - \frac{2}{k}} < \infty$ for $1 - M_0 - \frac{2}{k} > 0$.

Theorem 12. a) Let p be a singular point of second kind and suppose a domain G contains p N-approximately. Then there exists a harmonic domain $D^H_k = E[z \in G: \omega(p, z) > 1 - \varepsilon - \frac{1}{k}]$ such that $0 < w(p \cap [D^H], z, G) \leq \omega(p \cap D^H, z, G)$ and $D(\omega(p, z) - CG \omega(p, z)) \leq \frac{1}{1 - M_0 - \frac{2}{k}} < \infty$ for $1 - M_0 - \frac{2}{k} > 0$.

b) Let G be the domain in a) and let D^H_k be also the harmonic domain in a). Map the universal covering surface G^∞ of G onto $|\xi| < 1$. Let E be the set where $w(p \cap [D^H], z, G)$ has angular limits $= 1$ almost everywhere. Then mes $E > 0$ by $0 < w(p \cap [D^H], z, G) = w(E, \xi)$ by Theorem 11. b). Let $U(z) \in HD$. Then $U(z)$ has angular limits $= \text{const a.e. on } E$.

c) As a special case of b), map the universal covering surface $(R - R_0)^\infty$ of $(R - R_0)$ onto $|\xi| < 1$. Let E be the image of a singular point of second kind. Then $U(z) \in HD$ has angular limits $= \text{const a.e. on } E$.

Proof of a). Let $\omega_{m, n, n+i}(z)$ be a harmonic function in $(G \cap G^U_L \cap R_{n+i} - (R_{n+i} - R_n) \cap G^U_{L+\delta} \cap D^H_k \cap \nu_m(p))$ such that $\omega_{m, n, n+i}(z) = 0$ on $\partial G^U_L \cap \Gamma R_{n+i}$, $\omega_{m, n, n+i}(z) = 1$ on $\partial((R_{n+i} - R_n) \cap G^U_{L+\delta} \cap D^H_k \cap \nu_m(p)) = \alpha$ and $\frac{\partial}{\partial n} \omega_{m, n, n+i}(z) = 0$ on $\partial(G \cap R_{n+i} + (\partial R_{n+i} - G^U_{L+\delta} \cap D^H_k \cap \nu_m(p))$. Then
\[
\frac{U(z) - L}{\delta} \leq \omega_{m, n, n+i}(z) \quad \text{and} \quad \frac{\partial}{\partial n} \omega_{m, n, n+i}(z) = 0 \quad \text{by} \quad \omega_{m, n, n+i}(z) = 1 \quad \text{on} \quad \partial \omega_{m, n, n+i}(z) = \max_{z \in G} \omega_{m, n, n+i}(z) \quad \text{on} \quad \alpha.
\]
\[\frac{U(z) - L}{\delta} \leq 0 = \omega_{m, n, n+i}(z) \text{ and } \frac{\partial}{\partial n} \omega_{m, n, n+i}(z) \leq 0 \text{ by } \omega_{m, n, n+i}(z) \]

Hence \(D\left(\frac{U(z) - L}{\delta} - \omega_{m, n, n+i}(z) \right) \geq 0 \), whence \(D\left(\omega_{m, n, n+i}(z) \right) \leq \frac{1}{\delta^2} D(U(z)) < \infty \).

(31)

Let \(\omega_{m, n, n+i}''(z) \) be a harmonic function in \((R_{n+i} \cap G_{L}^{U}) -(D_{k^\cap}^{H} \cap G_{L}^{L}) \) such that \(\omega_{m, n, n+i}''(z) = 0 \) on \(\partial G + (\partial G_{L}^{U} \cap G) \) and \(\omega_{m, n, n+i}''(z) = 1 \) on \((G_{L}^{U} \cap D_{K}^{H} \cap G_{L}^{L}) \). Since \(\omega_{m, n, n+i}''(z) \) has M.D.I. among all functions with value 1 on \(G_{L}^{U} \cap D_{K}^{H} \cap G_{L}^{L} \) and \(\omega_{m, n, n+i}(z) = 0 \) on \(\partial G + (\partial G_{L}^{U} \cap G) \),

\(D(\omega_{m, n, n+i}''(z)) \leq D(\omega_{m, n, n+i}(z)) \leq M + \frac{1}{\delta^2} D(U(z)) < \infty \).

(32)

As above we have also the existence of \(\omega(p \cap D_{k^\cap}^{H} \cap G_{L}^{U}, z) \). Suppose \(w(p \cap D_{k^\cap}^{H} \cap G_{L}^{U}, z, G_{L}^{G}) > 0 \) and \(w(p \cap D_{k^\cap}^{H} \cap G_{L}^{L}, z, G_{L}^{G}) > 0 \). Clearly

\(\omega(p \cap D_{k^\cap}^{H} \cap G_{L}^{U}, z, G_{L}^{G}) \geq w(p \cap D_{k^\cap}^{H} \cap G_{L}^{U}, z, G_{L}^{G}) \geq 0 \)

\(\omega(p \cap D_{k^\cap}^{H} \cap G_{L}^{L}, z, G_{L}^{G}) \geq w(p \cap D_{k^\cap}^{H} \cap G_{L}^{L}, z, G_{L}^{G}) \geq 0 \).

(33)

Now \(G_{L}^{U} \cap G_{L}^{G} = 0 \) and \(\omega(p \cap D_{k^\cap}^{H} \cap G_{L}^{U}, z, G_{L}^{G}) \) and \(\omega(p \cap D_{k^\cap}^{H} \cap G_{L}^{L}, z, G_{L}^{G}) \) can be consiered as C.P.s defined by sequences \(\{\omega_{n}(p \cap D_{k^\cap}^{H} \cap G_{L}^{U}, z)\} \) and \(\{\omega_{n}(p \cap D_{k^\cap}^{H} \cap G_{L}^{L}, z)\} \) respectively. Hence these have properties from C.P.1 to C.P.6. Hence the Separation Theorem S. 1 is applicable by putting \(\tilde{G} = R - R_{0} \) and \(B' = p \), whence

\(\omega(p \cap D_{k^\cap}^{H} \cap G_{L}^{L}, z) = \omega(p \cap D_{k^\cap}^{H} \cap G_{L}^{L}, z) \).

(34)

On the other hand, \(\omega(p \cap D_{k^\cap}^{H} \cap G_{L}^{U}, z) \) and \(\omega(p \cap D_{k^\cap}^{H} \cap G_{L}^{L}, z) \) have their masses only on \(\cap_{n=1}^{\infty} D_{n} = p \) by \(\omega_{n}(p \cap D_{k^\cap}^{H} \cap G_{L}^{U}, z) \). But by
Singular points of Riemann Surfaces

\[\sup \omega(p \cap D_{k}^{H} \sim G_{L+3}^{L}, z) = 1 = \sup \omega(p \cap D_{k}^{H} \sim G_{L-3}^{L}, z) \], these are equal to \(\omega(p, z) \). This contradicts \((34) \). Hence we have the theorem.

Proof of b). Assume angular limits \(U(e^{i\theta}) = \text{const} \) a.e. on \(E \), by Theorem 11. c) we can find constants \(L \) and \(\delta \) and domains \(G_{L+3}^{H}, G_{L}, G_{L-3}^{L} \) and \(G_{L}^{L} \) such that

\[w(p \cap D_{k}^{H} \sim G_{L+3}^{L}, z, G \sim G_{L}^{L}) > w(p \cap [D^{H}] \sim G_{L+3}^{L}, z, G \sim G_{L}^{L}) > 0 \] and \(w(p \cap D_{k}^{H} \sim G_{L-3}^{L}, z, G \sim G_{L}^{L}) > w(p \cap [D^{H}] \sim G_{L-3}^{L}, z, G \sim G_{L}^{L}) > 0 \). By \(D(\omega(D_{k}^{H}, z, G)) < \infty \) by a) and by \((32') \) and \((33) \), \(0 < D(\omega(p \cap D_{k}^{H} \sim G_{L+3}^{L}, z, G \sim G_{L}^{L})) < \infty \) and \(0 < D(\omega(p \cap D_{k}^{H} \sim G_{L-3}^{L}, z, G \sim G_{L}^{L})) < \infty \). Hence we have the theorem, because such consts \(L \) and \(\delta \) do not exist by Theorem 12. b).

Proof of c). Put \(G = D_{k} = R - R_{0} \). Then by b) we have at once c).

8. Analytic functions in a neighbourhood of a singular point.

Theorem 12. a) Let \(p \) be a singular point of second kind and suppose that a domain \(G \) contains \(p \) \(N \)-approximately. Then there exists no non constant analytic function \(T(z) \) in \(G \) with \(D(T(z)) < \infty \).

b) Let \(p \) be a singular point of second kind and let \(G \) be a domain containing \(p \) \(N \)-approximately. Then there exists no non constant analytic function \(T(z) \) in \(G \) such that the spherical area \(A(T(z)) \) of \(T(z) \) is finite.

c) Suppose a domain \(G \) contains a singular point \(p \) (of first or second kind) \(N \)-approximately. Then there exists no non constant analytic function \(T(z) \) in \(G \) such that \(n(w) < M < \infty \), where \(n(w) \) is the number of zero points of \(T(z) - w \) in \(G \).

Remark. Theorem 12. c) is Theorem 8 of the previous paper mentioned at the top of the present paper. Since I thought that \(M_{r} \to 0 \) as \(r \to 0 \), the condition \(n(w) < M < \infty \) was left unnoticed, where \(M_{r} = \max \left(\left| \frac{\partial U}{\partial u} \right|, \left| \frac{\partial U}{\partial v} \right| \right) : w = v + iv \) and \(U_{r}(w) \) is a harmonic function in \(r < |w| < 1 \) such that \(U_{r}(w) = 1 \) on \(|w| = r \) and \(U_{r}(w) = 0 \) on \(|w| = 1 \). But the condition that \(n(w) < M < \infty \) is necessary. In reality, there exists a Riemann surface \(R \) such that the area of \(R \) is finite and \(R \) has a singular point of first kind. (See the example 4 of the following paper "Examples of singular points").

Proof of a). Map the universal covering surface \(G^{\infty} \) of \(G \) onto \(|\xi| < 1 \). Then by Theorem 12. b) there exists a set \(E \) of positive measure on \(|\xi| = 1 \) such that \(ReT(z) \) and \(ImT(z) \) have angular limits = \(a \) and \(b \) respectively a.e. on \(E \) by \(D(T(z)) < \infty \). Hence by Riesz's theorem \(T(z) \equiv a + ib \). This is a contradiction. Hence we have a).
Proof of b). Put $D^h_k = V_1^{W, 1-1/k} \cap C V_{M-1/k}^c$, where $V_1^{W, 1-1/k} = E \left[z \in R : w(p, z) > 1 - \epsilon - \frac{1}{k} \right]$ and $V_{M-1/k}^c = E \left[z \in R : -cG \omega(p, z) \leqq -M + \frac{1}{k} \right]$. Then $D^h_k = (V_1^{W, 1-1/k} \cap CV_{M-1/k}^c)$ and D^h_k and D^h_l are harmonic domains. Then by Theorem 8. (c)

\begin{equation}
D^h = (V_1^{W, 1-1/k} \cap CV_{M-1/k}^c) \subset D^h_k
\end{equation}

and D^h_k and D^h_l are harmonic domains. Then by Theorem 8. (c)

\begin{equation}
D^h = (V_1^{W, 1-1/k} \cap CV_{M-1/k}^c) \subset D^h_k
\end{equation}

and $w(p \cap D^h, z, G) \geqq \lim_{m=\infty} \lim_{k=\infty} w(v_m(p) \cap D^h_k, z, G) = w(p \cap [D^h], z, G) \geqq w(p \cap D^h, z, G) > 0$.

Map the universal covering surface G^∞ of G onto $|\xi| < 1$ by $\xi = f(z)$. Then $A(T(z)) < \infty$ implies that $T(z)$ has angular limits a.e. on $|\xi| = 1$. Whence $ReT(z)$ and $I_m T(z)$ are of F-type.

Let Δ_{ij} be a rectangle: $E \left[w : i \leqq Re w \leqq i+1, j \leqq Im w \leqq j+1 \right]$. Then $\Delta_{ij} = E \left[z \in G : T(z) \in \Delta_{ij}^\infty \right] = E \left[z \in G : Re(-T(z)) \geqq -i-1 \right] \cap E \left[z \in G : ReT(z) \geqq i \right] \cap E \left[z \in G : Im(-T(z)) \geqq -j-1 \right] \cap E \left[z \in G : ImT(z) \geqq j \right]$ is also a harmonic domain in G.

By $w(p \cap D^h, z, G) = \sum_{ij} w(p \cap D^h_k, z, G) = w(p \cap D^h, z, G)$, there exist numbers i_0 and j_0, and at least one component Δ of $\Delta_{i_0 j_0}$ (may consist of an enumerably infinite number of components) such that $w(p \cap \Delta \cap D^h, z, G) > 0$.

Without loss of generality, we can suppose that Δ is a component of $E \left[z \in G : |Re w| \leqq 1 \text{ and } |Im w| \leqq 1 \right]$. Let Δ_k be a component of $E \left[z \in G : |Re w| \leqq 1 + \frac{1}{k} \text{ and } |Im w| \leqq 1 + \frac{1}{k} \right]$ containing Δ. Then $\Delta = \cap_{k=1}^\infty \Delta_k$ and $\Delta_k \cap D^h_k$ and $\Delta \cap D^h$ are harmonic domains. Hence $\lim_{k=\infty} \lim_{m=\infty} w(v_m(p) \cap (\Delta_k \cap D^h_k), z, G) = w(p \cap [\Delta \cap D^h], z, G) \geqq w(p \cap \Delta \cap D^h, z, G) > 0$ and by Theorem 11. b)

$0 < w(p \cap [\Delta \cap D^h], z, G) = w(E, \xi)$, whence $\operatorname{mes} E > 0$,

where E is the set on which $w(p \cap [\Delta \cap D^h], z, G) = 1$ almost everywhere.

Also by $\operatorname{mes}(E - B(D^h \cup \Delta)) = 0$ by Theorem 11. b). Hence

\begin{equation}
w(p \cap [\Delta \cap D^h], z, G) \rightarrow 1 \text{ as } \xi \rightarrow E \text{ along Stolz's path and } T(z)(\xi = f(z)) \rightarrow \Delta_k \text{ as } \xi \rightarrow E \text{ along Stolz's path.}
\end{equation}

Hence for any given positive number ε, we can find a closed set E' in E such that $\operatorname{mes}(E - E') < \frac{\varepsilon}{2}$ and the above functions converge uniformly.
in angular domains $A(\theta) : e^{i\theta} \in E'$. Then we can find a closed set $E'' \subset E'$ such that $\text{mes}(E' - E'') < \frac{\varepsilon}{2}$ and a domain D (containing an endpart of $A(\theta) : e^{i\theta} \in E''$ and bounded by $\sum \partial A(\theta) + E''$ and $|\xi| = 1 - \frac{1}{m}$) and a number k_0 such that

$$w(p \cap [A \cap D''], z, G) > 1 - \frac{1}{k_0} \quad \text{and}$$

$$T(z) \in \mathcal{D}_{k_0} = E\left[w : |\text{Re } w| < 1 + \frac{1}{k_0}, |\text{Im } w| < 1 + \frac{1}{k_0} \right] \text{ in } D \cap R_m$$

for $f(z) \in D \cap \mathcal{M}_m : \mathcal{M}_m = E\left[\xi : 1 > |\xi| > 1 - \frac{1}{m} \right]$.

Let $\mathcal{D}_{k} = E[|\text{Re } w| \leq 3, |\text{Im } w| \leq 3]$ and A_0 be the component of $T^{-1}(\mathcal{D}_{k})$ containing $A_k(\supset \mathcal{A})$. Put $G_j = E[z \in G : \delta(z, \partial G) > \frac{1}{j}]$. Then $f(\partial G_j + (\partial R_n \cap G))$ tends to $|\xi| = 1$ as $n \to \infty$ and $j \to \infty$, i.e.

$$\text{dist}(\partial f(\partial G_j + \partial R_n), \xi = 0) > 1 - \frac{1}{m} \text{ for } n \geq n_0 \text{ and } j \geq j_0$$

Now by (b') $f(\partial A_0 \cap G)$ does not fall in D.

By (a') $f(\tilde{V}_{1-rac{1}{k}}^{W} \cap \Delta_k \cap D_k)$ covers $D \cap \mathcal{M}_m$ and $f(\partial (\tilde{V}_{1-rac{1}{k}}^{W} \cap \Delta_k \cap D_k))$ separates E'' in $D \cap \mathcal{M}_m$.

Let $\tilde{V}_{1-rac{1}{k}}^{W} = E[z \in G : w(p \cap [A \cap D''], z, G) > 1 - \frac{1}{k_0}]$. (e)

Let $w_{j,n,k}(z)$ be a harmonic function in $(A_0 \cap R_n \cap G_j) - (\tilde{V}_{1-rac{1}{k}}^{W} \cap \Delta_k \cap D_k)$ such that $w_{j,n,k}(z) = 0$ on $\partial (A_0 \cap R_n \cap G_j)$ and $w_{j,n,k}(z) = 1$ on $\partial (\tilde{V}_{1-rac{1}{k}}^{W} \cap \Delta_k \cap D_k)$. Let $w^{D}(\xi)$ be a harmonic function in $D \cap \mathcal{M}_m$ such that $w^{D}(\xi) = 0$ on $\partial (D \cap \mathcal{M}_m) - E''$ and $w^{D}(\xi) = 1$ on E''. Then by the rectifiability of ∂D and by mes $E'' > 0$, $w^{D}(\xi) > 0$.

Then by (c) and (d) $\partial (A_0 \cap R_n \cap G_j) - (\tilde{V}_{1-rac{1}{k}}^{W} \cap \Delta_k \cap D_k)$ does not fall in $D \cap \mathcal{M}_m$ for $n \geq n_0$, $k \geq k_0$ and $j \geq j_0$ and by (e) $f(\tilde{V}_{1-rac{1}{k}}^{W} \cap \Delta_k \cap D_k)$ covers $E'' \cap \partial D$. Hence by the maximum principle

$$w_{j,n,k}(z) \geq w^{D}(\xi) \text{ for } n \geq n_0, k \geq k_0 \text{ and } j \geq j_0.$$

Let $j \to \infty$ and $n \to \infty$ and then $k \to \infty$. Then by Theorem 12. a)

$$w(p \cap A_0 \cap \Delta_k \cap D_k^H, z, A_0 \cap G) \geq \lim_{k=\infty} w(p \cap A_0 \cap \Delta_k \cap D_k^H, z, A_0 \cap G)$$

$$\geq \lim_{k=\infty} w(\tilde{V}_{1-rac{1}{k}}^{W} \cap \Delta_k \cap D_k^H, z, A_0 \cap G) \geq w^{D}(\xi).$$

Hence

$$w(p \cap \Delta_k \cap D_k^H, z, A_0 \cap G) > 0 \text{ for } k_0 < \infty.$$ (37)
Let $\alpha(w)$ be a continuous function in the w-plane such that $\alpha(w)=1$ in $|w|\leq 2+\frac{1}{k_0}$, harmonic in $2+\frac{1}{k_0} < |w| < 3$ and $\alpha(w)=0$ in $|w| \geq 3$.

Put $\alpha(z) = \alpha(T(z))$. Then $\alpha(z)$ is a continuous function in G and $\alpha(z)=1$ in A_{k_0} and $\alpha(z)=0$ on $\partial A_0 \cap G$, because $|T(z)| < \sqrt{2} + \frac{1}{k_0}$ for $z \in A_{k_0}$ and $|T(z)| \geq 3$ for $z \in \partial A_0 \cap G$. Clearly

$$D(\alpha(z)) < M^2 KA(T(z)) < M^{**} < \infty,$$

where $M = \max \left(\left| \frac{\partial \alpha(w)}{\partial u} \right|, \left| \frac{\partial \alpha(w)}{\partial v} \right| \right)$ and $K = \max \left(\frac{\text{area element}}{\text{spherical area element}} \right)$ in A_0 and $w = u + iv$.

Put $\omega'(z) = \min(\omega(\nu_n(p) \cap D_{k_0}^H, z, G), \alpha(z))$. Then $\omega'(z) = 0$ on $\partial A_0 + \partial G$ and $\omega'(z) = 1$ on $A_{k_0} - D_{k_0}^H \cup \nu_n(p)$, where $\omega(\nu_n(p) \cap D_{k_0}^H, z, G)$ is C.P. of $\nu_n(p) \cap D_{k_0}^H$ relative G.

By (35) and (38) and as in case of the proof of Theorem 7, c)

$$D(\omega'(z)) \leq D(\omega(\nu_n(p) \cap D_{k_0}^H, z, G)) + D(\omega'(z)) \leq M^* + M^{**}$$

Let $\omega(\nu_n(p) \cap D_{k_0}^H, G \cap \partial A_0)$ be C.P. of $(\nu_n(p) \cap D_{k_0}^H \cup A_{k_0})$ relative $A_0 \cup G$.

Then it has M.D.I. among all functions having value 1 on $\nu_n(p) \cap D_{k_0}^H \cup A_{k_0}$ and 0 on $\partial (G \cap A_0)$. Hence by (39)

$$D(\omega(\nu_n(p) \cap D_{k_0}^H \cup A_{k_0}, z, G \cap A_0)) \leq D(\omega'(z)) < \infty.$$

Now by (37) $D(\omega(\nu_n(p) \cap D_{k_0}^H \cup A_{k_0}, z, G \cap A_0)) < \infty$.

Hence by Theorem 8, a) $G \cap A_0$ contains p N-approximately. On the other hand, clearly $D_{A_0}(T(z)) < KA(T(z)) < \infty$. Hence by Theorem 12, a) $T(z)$ must reduce to a constant. This is a contradiction. Hence we have b).

Proof of c). By Theorem 8, a) there exists a harmonic domain $D^H = E[z \in R : \omega(p, z) > 1 - \varepsilon] \cap \overline{E[z \in R : c_{31} \omega(p, z) < M]}$ such that $\omega(D^H \cap p, z, G) > 0$ and $D(\omega(D^H, z, G)) < \frac{D(\omega(p, z))}{(1-M-\varepsilon)^2} < \infty$.

Let $\mathfrak{S}_n(A_{n+1})$ be a triangulation of the w-plane and $\mathfrak{S}_{n+1}(A_{n+1})$ be a subdivision of \mathfrak{S}_n and becomes as fine as we please as $n \rightarrow \infty$. Put $\Delta^\ast_n = E[z \in G : T(z) \in A_{n+1}]$. Then $\Delta^\ast_{n,j}$ may consist of at most enumerably infinite number of components $\Delta^\ast_{n,j}$. By $\omega(D^H \cap p, z, G) \leq \sum \omega(\Delta^H \cap \partial A_{n,j} \cap p, z, G)$ (38) there exists at least one $\Delta^\ast_{n,j}$ such that $\omega(D^H \cap \Delta^\ast_{n,j}, p, z, G) > 0$. Similarly there exists at least one $\Delta^\ast_{n,j} \subset \Delta^\ast_{n+1,j} \subset \cdots$ such that $\omega(\partial A_{n+1,j} \cap \Delta^\ast_{n+1,j}, p, D^H, z, G) > 0$. In this fashion we can construct a sequence $\Delta^\ast_{n,j} \subset \Delta^\ast_{n+1,j} \subset \cdots$ such that $\omega(p \cap D^H \cap \Delta^\ast_{n,j}, z, G) > 0$ for every n and $i(n)$ and $j(n)$. We denote them by $\Delta_1 \supset \Delta_2 \supset \cdots$ and suppose diameter of $T(D^\ast) < \frac{1}{n}$ and put $q = \lim_{n \rightarrow \infty} T(D^\ast)$.

Z. Kuramochi
Let L be a compact curve on ∂G such that $\text{dist}(T(L), T(L_n)) > \delta > 0$ for $n \geq n_0$. Such a curve L can be chosen by the fact that $T(\partial G)$ is not a point.

Let C_t and C_n be circles with radii δ and $\frac{2}{n_0}$ such that C_n encloses $T(L_n)$ for $n > n_0$ and $T(L)$ lies outside of C_t.

Let $\alpha_n(w)$ be a continuous function in the w-plane such that $\alpha_n(w) = 0$ outside of C_t, $\alpha_n(w)$ is harmonic in $C_t - C_n$ and $\alpha_n(w) = 1$ in C_n. Then $D(\alpha_n(w)) \downarrow 0$ as $n \rightarrow \infty$.

Put $\alpha_n(z) = \alpha_n(T(z))$. Then $\alpha_n(z)$ is a function in G such that $\alpha_n(z) = 1$ in Δ_n and $= 0$ on L. And by $n(w) \leq M$, $D(\alpha_n(z)) \leq MD(\alpha_n(w)) < \infty$.

Let $U_{n,m}(z)$ be a harmonic function in $(R_m \cap G) - (D^H \cup \Delta(p) \cap \Delta_n)$ such that $U_{n,m}(z) = 0$ on $\partial G \cap R^n$, $\frac{\partial}{\partial n} U_{n,m}(z) = 0$ on $\partial R_m - (D^H \cup \Delta(p))$ and $U_{n,m}(z) = 1$ on $(\Delta_n - D^H \cup \Delta(p))$. Then by the maximum principle

$$U_{n,m}(z) \leq U_{n,m}(z).$$

Clearly $D(U_{n,m}(z)) = \int U_{n,m}(z) \frac{\partial}{\partial n} U_{n,m}(z) ds = \int \frac{\partial}{\partial n} U_{n,m}(z) ds$.

On the other hand, $\alpha_n(z) = 0$ on L and $\alpha_n(z) = 1$ on $\Delta_n(\Delta_n \supset (D^H \cap \Delta_{n_0}))$. Since $U_{n,m}(z)$ has M.D.I. among all functions with value $= 0$ on L and $= 1$ on $(D^H \cup \Delta(p) \cap \Delta_n)$,

$$D(U_{n,m}(z)) \leq D(\alpha_n(z)) \leq MD(\alpha_n(w)).$$

$U_{n,m}(z) \Rightarrow U_n(z) = \omega(\Delta_n \cap D^H, z, G)$ as $m \rightarrow \infty$ and $U_{n,m}(z) \Rightarrow U_n(z)$ as $m \rightarrow \infty$ by $D(U_{n,m}(z)) \leq D(\omega(D^H, z, G)) < \infty$ and $D(U_{n,m}(z)) \leq D(\alpha_n(z))$ respectively for every m.

Now $U_n(z) \supseteq \omega(\Delta_n \cap D^H, z, G) \supseteq \omega(p \cap D^H \cap \Delta_{n_0}, z, G) > 0$ and

$$\int \frac{\partial}{\partial n} U_n(z) ds = D(U_n(z)) \leq MD(\alpha_n(w)),$$

because $\omega(p \cap D^H \cap \Delta_{n_0}, z, G) > 0$ by the assumption.

Since $MD(\alpha_n(w)) \downarrow 0$ as $n \rightarrow \infty$, $\frac{\partial}{\partial n} U_n(z) \downarrow 0$ on L uniformly by the compactness of L as $n \rightarrow \infty$. Hence there exists a number n_0 and a point z_0 in a neighbourhood of L such that

$$0 < \omega(p \cap D^H \cap \Delta_{n_0}, z_0, G) < U_n(z_0) < \omega(p \cap D^H, z_0, G).$$

In Separation Theorem S. 2 put $B' = p$, $G_1 = D^H$, $G_2 = D^H \cap \Delta_{n_0}$ and $\tilde{G} = R$.

Singular points of Riemann Surfaces 119
Then there exist domains D_1 and D_2 such that
\[0 \leq \omega(p \cap D^u \setminus D_2, z) = \omega(p \cap CD_1 \cap D^u \setminus D_{\alpha}, z) = 0\] (40)
But these have their masses only at p, whence as usual they are equal to $\omega(p, z)$.
This contradicts (40). Hence we have c).

Corollary 1. Let $v_n(p)$ be a neighbourhood of a singular point of p, then there exists no analytic function in $v_n(p)$ such that $n(w) \leq M$.

Corollary 2. Let R be a Riemann surface of finite genus. Then there exists no singular point.

Corollary 1) is evident, since $v_n(p)$ contains p N-approximately. And the Riemann surface of finite genus g can be represented as a covering surface of at most $2g$ number of sheets over the w-plane. Hence by Theorem 12 c) we have Corollary 2.

9. **Relation between HD unteilbare Menge and N-minimal points.**

Let R be a Riemann surface with positive boundary. Map the universal covering surface $(R-R_0)^\infty$ onto $|\xi|<1$, where R_0 is a compact set of R. Constantinescu and Cornea\(^{14}\) introduced the HD class and the maximal HD indivisible sets to extend Theorem 1 in some way. We shall consider the relations between theirs and ours.

Let $U(z)$ be a positive harmonic function. If $U(z) \geq V(z) > 0$ implies $V(z) = KU(z)$, $U(z)$ is called a minimal function.

If there exist decreasing positive harmonic functions $U_n(z)$: $U_n(z) \in \text{HD}^{15}$ such that $U(z) = \lim U_n(z)$, $U(z)$ is called a function in HD class.

Let E be a set on $|\xi|=1$ such that every $U(z) \in \text{HD}$ has angular limits $\equiv \text{const}$ a.e. on E. Then E is called a HD indivisible set. If there exists no set E^* such that $E^* \supseteq E$ and $\text{mes}(E^* - E) > 0$ and E^* is HD indivisible, E is called a maximal indivisible set. They proved the following

Theorem 13. If E is a maximal indivisible set, then $H.M.$ (harmonic measure of E) $\omega(E, \xi)$ is minimal in the class HD. If $U(z)$ is minimal in HD class, $U(z) = K \omega(E, \xi)$, where E is a maximal indivisible set.

We show that a maximal indivisible set is the image of a singular point of second kind.

Theorem 14. a) Let $\omega(p, z)$ be C.P. of a singular point p of second kind and let E be the image of p, i.e. the set on which $\omega(p, z)$ has angular limits $=1$ almost everywhere. Then E is maximal indivisible and

15) HD means the class of Dirichlet bounded harmonic functions.
Singualr points of Riemann Surfaces

$w(p, z)$ (H.M. of p) is minimal in HD class.

b) If E is maximal indivisible, there exists a singular point p of second kind such that $w(p, z) = w(E, \xi)$ and E is the set where $\omega(p, z)$ has angular limits $= 1$ almost everywhere.

Proof of a). At first we show that $w(p, z)$ is in HD class. Let p be a singular point of second kind. Let $V_{1-\frac{1}{m}} = \{ z \in R : \omega(p, z) > 1 - \frac{1}{m} \}$.

Let $T_{m, n+i+j}(z)$ be a harmonic function in $R_{n+i+j} - ((R_{n+i+j} - R_{n+i}) \cap (V_{1-\frac{2}{m}} - V_{1-\frac{1}{m}})) - (R_{n+i} \cap V_{1-\frac{1}{m}})$ such that

$T_{m, n+i+j}(z) = 1$ on $(R_{n+i} - R_{n+i+j}) \cap V_{1-\frac{1}{m}}$, and $\frac{\partial}{\partial n} T_{m, n+i+j}(z) = 0$ on $\partial V_{1-\frac{1}{m}}$.

Put $S(z) = \omega(p, z) - (1 - \frac{2}{m})$. Then $S(z) = 0$ on $\partial V_{1-\frac{2}{m}}$ and $= 1$ on $\partial V_{1-\frac{1}{m}}$.

Let $S'(z)$ be a function in $\Omega_{m, n+i+j}$ such that $S'(z) = \min(1, S(z))$ in $V_{1-\frac{2}{m}}$ and $S'(z) = 0$ in $R - R_0 - V_{1-\frac{1}{m}}$. Then by the Dirichlet principle

$$D(S'(z)) < D(S(z)) \leq \frac{1}{(\frac{1}{m})^2} D(\omega(p, z)) = M_m < \infty.$$ (41)

Let $S^2(z)$ be a harmonic function in $\Omega_{m, n+i+j}$ such that $S^2(z) = S'(z)$ on $\partial R_0 + (\partial R_{n+i+j} - V_{1-\frac{2}{m}}) + (\partial V_{1-\frac{2}{m}} \cap (R_{n+i+j} - R_{n+i}))$.

Then by the Dirichlet principle $D(S^2(z)) \leq D(S(z))$.

Then $D(S^2(z)) = T_{m, n+i+j}(z)$, $T_{m, n+i+j}(z) = 0$, whence

$$D(S^2(z)) - D(T_{m, n+i+j}(z)) = D(S^2(z)) - D(T_{m, n+i+j}(z)),$$

$$D(T_{m, n+i+j}(z)) \leq M_m < \infty.$$ (42)

Clearly $T_{m, n+i+j}(z) \uparrow T_{m, n+i+j}(z)$ as $j \to \infty$ and by (41) and by Lemma 1. b) of $P T_{m, n+i+j}(z) \Rightarrow T_{m, n+i+j}(z)$ as $i \to \infty$ and $T_{m, n+i+j}(z) \downarrow T_{m, n+i+j}(z)$ as $n \to \infty$.

Let E' be the set on which $\omega(p, z)$ has angular limits $< 1 - \frac{2}{m}$ almost everywhere and let E_0 be the set where the Green's function $G(z, p)$ has angular limits $= 0$. Then we can find for any given positive number ε a closed set $E' \subset (E' \cap E_0)$ such that $\text{mes} (E' \cap E_0') < \varepsilon$ and a domain D containing an endpart $A(\theta) : e^{i\theta} \in E'$ and bounded by $\sum \partial A(\theta) + E''$ and a ring $\Re_\xi : 1 > |\xi| > 1 - \frac{1}{l}$ with the following property
\(\omega(p, z) < 1 - \frac{2}{m} - \delta \) in \(D \cap \Re_i \) for a positive constant \(\delta \).

Hence the image of \(\partial V_{\frac{2}{m}} \) does not fall in \(D \cap \Re_i \).

Since \(E'' \subset E \) and \(G(z, p) > \delta_{n+i+j} > 0 \) on \(\partial R_{n+i+j} \), \(\partial R_{n+i+j} \) does not tend to \(|\xi| = 1 \) and by

\[\partial R_{n+i+j} \to |\xi| = 1 \text{ as } j \to \infty, \partial R_{n+i+j} \text{ separates } E'' \text{ from } |\xi| = 1 - \frac{1}{l}. \]

Hence by the maximum principle

\[T_{m, n+i, n+i+j}(z) \leq w^D(\xi) \]

where \(w^D(\xi) \) is a harmonic function in \(D \cap \Re_i \) such that \(w^D(\xi) = 0 \) on \(E'' \) and \(= 1 \) on \(\partial(D \cap \Re_i) - E'' \). Now \(w^D(\xi) \equiv 0 \) a.e. on \(E' \). Hence by letting \(\varepsilon \to 0 \) \(T_m(z) \) has angular limits \(= 0 \) a.e. on \(E' \) and by letting \(\omega(V_{M_i}, z) \) be C.P. of \(V_{M_i} \). Then \(\omega(V_{M_i}, z) \) and \(\lim \omega(V_{M_i}, z) \) (\(= \omega(V), z) \) is C.P. defined by a sequence of decreasing domains.) are \(\overline{\sup} \)erharmonic in \(\overline{R} - R_0 \) by Theorem 5. a) of P.

Let \(w(V_{M_i}, z) \) be H.M. of \(V_{M_i} \). Then \(w(V_{M_i}, z) \) and \(\lim w(V_{M_i}, z) \) \((= \omega(V), z) \) is C.P. defined by a sequence of decreasing domains) are \(\overline{\sup} \)erharmonic in \(\overline{R} - R_0 \) by Theorem 5. a) of P.

On the other hand, \(\omega(V), z = \omega(V), z \) for every \(M_i \) by P.C.4.

Let \(U(z) \) be a positive \(\overline{\sup} \)erharmonic function in \(\overline{R} - R_0 \) such that \(\omega(V), z - U(z) = T(z) \) is also \(\overline{\sup} \)erharmonic in \(\overline{R} - R_0 \). Then

\[v_{M_i} U(z) \leq U(z) \quad \text{and} \quad v_{M_i} T(z) \leq T(z). \]

Now, \(\omega(V), z = U(z) + T(z) \geq v_{M_i} U(z) + v_{M_i} T(z) = v_{M_i} \omega(V), z = \omega(V), z \),
whence $v_m U(z) = U(z)$ and $v_m T(z) = T(z)$. Let $U(z)(T(z))$ be positive superhearmonic in $\overline{R} - R_0$ and harmonic in $R - R_0$. Then by Theorem 5. a) and b) of P $U(z) = \int N(z, p)d\mu(p)$ and $D(\min (M, U(z)) \leq MK < \infty$. But sup $U(z) \leq 1$ and sup $T(z) \leq 1$, whence $U(z)$ and $T(z)$ are contained in HD.

Since E is indivisible, $U(z)$ and $T(z)$ have angular limits $= c_1$ and c_2 a.e. on E. By (43) and $c_1 + c_2 = 1$ a.e. on E we have $c_1 + c_2 = 1$. $U(z)$ has angular limits ≥ 0 on CE and c_1 on E almost everywhere. Hence $U(z) \geq c_1 w(E, z)$. This implies $U(z) \geq c_1 M_i$ on V_{M_i}. Hence

$$U(z) = v_{M_i} U(z) \geq c_1 \omega(V_{M_i}, z) \quad \text{and} \quad U(z) \geq c_1 \omega([V], z).$$

Similarly $T(z) \geq c_2 \omega([V], z)$. Hence

$$\omega([V], z) = U(z) + T(z) \geq c_1 \omega([V], z) + c_2 \omega([V], z) = \omega([V], z).$$

Thus $U(z) = c_1 \omega([V], z)$ and $\omega([V], z)$ is N-minimal, hence $\omega([V], z) = K N(z, p)$.

Let $\omega(p, z)$ be C.P. of p. Then $\omega(p, z) = K' N(z, p)$. By sup $\omega(p, z) = 1 = \sup \omega([V], z)$, we have $K = K'$ and $\omega(p, z) = \omega([V], z)$. By sup $N(z, p) < \infty$, $p \in B_s$. Let $V_{M_i}(p) = E[z \in R: \omega(p, z) > M_i]$. Then by $\omega([V], z) \geq w([V], z) = w(E, \xi)$, $\omega([V], z) > M_i$ on V_{M_i}. Hence $w(V_{M_i}, [z \in R: w(E, \xi) > M_i]) = \omega([V], z)$ (H.M. determined by a decreasing sequence $V_{M_i}(p)$: $\lim_{i=1}^{\infty} = 1$) is larger than $w([V], z) = w(E, \xi) > 0$. Now by Theorem 10, a) $w(p, z) = \lim_{i=1}^{\infty} w(V_{M_i}(p), z) = w([V], z) = w(E, \xi) > 0$. Whence p is a singular point of second kind. Hence a singular point of second kind corresponds to a maximal indivisible set.

Let \tilde{E} be the image of p (\tilde{E} is the set on which $\omega(p, z) = 1$ almost everywhere). Then by $\omega(p, z) \geq w(p, z) \geq w(E, \xi)$ $\tilde{E} \supset E$. Now \tilde{E} is maximal by a). By the assumption E is maximal and we have $\tilde{E} = E$. Next by Theorem 10. b) $\mes (E \setminus E) = 0$, where E_ϵ is the image of a singular point p_ϵ of second kind such that $p \not= p_\epsilon$. Hence a uniquely determined singular point of second kind corresponds to a maximal indivisible set. Thus we have b).

10. **Class H.N.D.** Let H.N.D. be the class of Riemann surfaces on which N number of linearly independent harmonic functions $\in HD$ exist, where $N \leq \infty$ and the cardinal number of N is \aleph_0.

Theorem 14. The set of HD functions in R is isomorphic to the set of HD functions in $R - R_0$ vanishing on ∂R_0. Hence without loss of generality, we can consider the set of HD functions vanishing on ∂R_0.

instead of HD function in R.

Proof. Let $U(z)$ be a Dirichlet bounded harmonic function in R with positive boundary. Let $U_n(z)$ be a harmonic function in $R_n - R_0$ such that $U_n(z) = U(z)$ on ∂R_0 and $U_n(z) = 0$ on ∂R_n. Then $U_n(z) = \frac{1}{2\pi} \int_{\partial R_0} U(\xi) \frac{\partial}{\partial n} G_n(\xi, z) ds$, where $G_n(\xi, z)$ is the Green's function of $(R_n - R_0)$. Now $G_n(\xi, z) \to G(\xi, z)$ as $n \to \infty$ and $\frac{\partial}{\partial n} G(\xi, z)$ is continuous on ∂R_0 by the compactness of ∂R_0. Hence $\lim_{n} U_n(z)$ exists and $\lim_{n} U_n(z) = \frac{1}{2\pi} \int_{\partial R_0} U(\xi) \frac{\partial}{\partial n} G(\xi, z) ds$, where $G(\xi, z)$ is the Green's function of $R - R_0$.

Put $\lim U_n(z) = U'(z)$. Since $U_n(z) - U'(z) = 0$ on ∂R_0, $U_n(z) - U'(z)$ is harmonic in a neighbourhood of ∂R_0. Now $U_n(z) \to U'(z)$ implies $\frac{\partial}{\partial n} U_n(z) \to \frac{\partial}{\partial n} U'(z)$ uniformly on ∂R_0 and $\frac{\partial}{\partial n} U'(z)$ is continuous on ∂R_0. Hence $D(U_n(z)) = \int_{\partial R_0} U_n(z) \frac{\partial}{\partial n} U_n(z) ds \to \int_{\partial R_0} U'(z) \frac{\partial}{\partial n} U'(z) ds = D(U'(z)) < \infty$, whence $U_n(z) \Rightarrow U'(z)$. Put $U^*(z) = U(z) - U'(z)$. Then $U^*(z)$ is uniquely determined by $U(z)$ and $D(U^*(z)) = D(U(z) + D(U'(z)) - 2D(U(z), U'(z)) < \infty$.

Put $B_n = R - R_n$ and let $w(B_n, z, R_n - R_0)$ be a harmonic function in $R_n - R_0$ such that $w(B_n, z, R_n - R_0) = 1$ on ∂R_n and $w(B_n, z, R_n - R) = 0$ on ∂R_0. Then by the maximum principle $|U_n(z)| \leq M(1 - w(B_n, z, R_n - R_0))$, where $M = \max |U(z)|$ on ∂R_0. Let $n \to \infty$.

Then $w(B_n, z, R_n - R_0) \to w(B, z, R - R_0)$ (H.M. of B relative $R - R_0$). (44)

Put $G_z = E[z \in R : w(B, z, R - R_0) < \delta]$. Then by P.H.2. $w(G_z \sim B_n, z, R - R_0) = \lim_{n} w(G_z \sim B_n, z, R - R_0) = 0$ for $\delta < 1$, where $w(G_z \sim B_n, z, R - R_0)$ is H.M. of $G_z \sim B_n$ relative $(R - R_0)$. By (44) we have $|U'(z)| < M(1 - w(B, z, R - R_0))$. (45)

Let $w(G_z \sim B_n, z, R)$ be H.M. of $G_z \sim B_n$ relative R, i.e. $w(G_z \sim B_n, z, R)$ is the least positive superharmonic function in R larger than 1 in $G_z \sim B_n$. We show $w(G_z \sim B, z, R) = \lim_{n} w(G_z \sim B_n, z, R) = 0$.

In fact, $\frac{1 - w(B, z, R - R_0)}{1 - \delta} \geq 1$ in G_z and ≥ 1 on ∂R_0. Hence by the maximum principle $\frac{1 - w(B, z, R - R_0)}{1 - \delta} \geq w(G_z \sim B, z, R)$.

By P.H.2. $\sup w(B, z, R - R_0) = 1$, whence $\inf w(G_z \sim B, z, R) < 1$ and
$w(G_s \cap B, z, R) \equiv 1$. Assume $w(B \cap G_s, z, R) > 0$. Then by $w(B \cap G_s, z, R) \equiv 1$
max $w(B \cap G_s, z, R) = M_s < 1$ on ∂R_0. But by P.H.2. $\sup w(B \cap G_s, z, R) = 1$.
On the other hand, by the maximum principle

$$w(B \cap G_s, z, R - R_0) = \lim_{n} w(G_s \cap B_n, z, R - R_0) \geq \lim_{n=\infty} w(G_s \cap B_n, z, R) - M_s > 0.$$

Hence we have $w(B \cap G_s, z, R - R_0) > 0$. This is a contradiction. Thus

$$w(B \cap G_s, z, R) = 0.$$

Let $U_n''(z)$ be a harmonic function in R_n such that $U_n''(z) = U'(z)$ on ∂R_n. Then by (45)

$$U_n''(z) \leq M(1 - \delta) + Mw(B \cap G_s, z, R),$$

because $|U'(z)| < 1 - \delta$ in G_s and $|U'(z)| \leq M$ in $R \cap G_s$.

Let $n \to \infty$ and then $\delta \to 1$. Then $\lim U_n''(z) = 0$, by $w(B \cap G_s, z, R) = 0$.

Let $U_n'''(z)$ be a harmonic function in R_n such that $U_n'''(z) = U^*(z) = U(z) - U''(z)$ on ∂R_n. Then $U_n'''(z) = U(z) - U_n''(z)$. Hence by letting $n \to \infty$

$$U_n'''(z) \to U(z).$$

Thus $U(z)$ is uniquely determined by $U^*(z)$ and the sets $\{U(z)\}$ and $\{U^*(z)\}$ are isomorphic hence we have the theorem.

Green’s function and generalized Green’s function.

Let q be a point of B and let $G(z, p)$ be the Green’s function. We call q a regular or irregular point for the Green’s function according as $\lim_{z \to q} G(z, p) = 0$ or $\lim_{z \to q} G(z, p) > 0$, where $z \to q$ means that z converges with respect to the δ-metric. Let $B_{\delta, i}$ be the set of irregular points for the Green’s function. Then by Theorem 11. b) of P $B_{\delta, i}$ is an F_{σ} set of capacity zero. Map the universal covering surface $(R - R_0)^{\infty}$ conformally onto $|\xi| < 1$. If a harmonic function $G(z)$ which is positive and $D(\min(M, G(z))) \leq MK: K < \infty$ and $G(z)$ has angular limits $= 0$ a.e. on $|\xi| = 1$, we call $G(z)$ a generalized Green’s function.

We proved in the previous paper the following

Theorem.

Let $W(z)$ be positive superharmonic in $R - R_0$ and harmonic in $R - R_0$. Then $W(z) = P(z) + G(z)$, where $G(z)$ is a generalized Green’s function and $P(z)(\leq W(z))$ is a harmonic function representable by Poisson’s integral.

Now we shall prove

Theorem 15. Let $p \in B_{\delta, i} \cap (B_1 - B_0)$ and let $G(z)$ be a generalized
Green’s function such that \(G(z) \leqq N(z, p) \). Then \(N(z, p) = P(z) \), i.e. \(G(z) = 0 \) and \(N(z, p) \) is representable by Poisson’s integral, where \(B_{q,r} \) is the set of regular points for the Green’s function.

Proof. Assume \(G(z) > 0 \). Put \(R_{0} = E \left[\{ z \in R - R_{0} : G(z) > \delta \} \right] \) and \(R_{\delta} = E \left[\{ z \in R - R_{0} : G(z) > \frac{\delta}{2} \} \right] \). Map the universal covering surface \((R - R_{0})^{\infty}\) of \((R - R_{0})\) onto \(|\xi| < 1\). Let \(w(B \cap R_{\frac{\delta}{2}}, z) \) be H.M. of \((B \cap R_{\frac{\delta}{2}})\) (H.M. of the boundary determined by \(R_{\frac{\delta}{2}} \)). Then \(w(B \cap R_{\frac{\delta}{2}}, z) \) has angular limits \(= 0 \) a.e. on the set \(E \) where \(G(z) \) has angular limits \(< \frac{\delta}{2} \).

In fact for any given positive number \(\varepsilon \) we can find a closed set \(E' \subseteq E \) such that \(\text{mes} (E - E') < \varepsilon \) and a domain \(D \) containing an endpart of \(A(\theta) : e^{i\theta} \in E' \) and bounded by \(\sum_{e^{i\theta} \in E'} \partial A(\theta) + E' \) and a ring \(R_{m} : 1 - \frac{1}{m} < |\xi| < 1 \) and a number \(k \) such that

\[G(z) > \frac{\delta}{2} - \frac{1}{k} \text{ in } D - R_{m}. \]

Hence usually it can be proved that \(w(B \cap R_{\frac{\delta}{2}}, z) = 0 \) on \(E' \). But \(G(z) \) has angular limits \(= 0 \) a.e. on \(|\xi| = 1\), whence \(\text{mes} E = 2\pi \). Hence \(w(B \cap R_{\frac{\delta}{2}}, z) = 0 \) and

\[0 = w(B \cap R_{\frac{\delta}{2}}, z) \geqq w(B \cap R_{\frac{\delta}{2}}, z, R_{\frac{\delta}{2}}) = 0. \quad (46) \]

Let \(\omega_{n}(z) \) be a harmonic function in \((R_{\frac{\delta}{2}} \cap R_{n+i}) - ((R_{n+i} - R_{n}) \cap R_{\delta})\) such that \(\omega_{n}(z) = 0 \) on \(\partial R_{\frac{\delta}{2}} \), \(\omega_{n}(z) = 1 \) on \((R_{n+i} - R_{n}) \cap R_{\delta})\) and

\[\frac{\partial}{\partial n} \omega_{n+i}(z) = 0 \text{ on } \partial R_{n+i} - R_{\delta}. \]

Then \(D(\omega_{n+i}(z)) \leqq \frac{4D_{R_{\delta}}(G(z))}{(\frac{\delta}{2})^{2}} < \infty \). Hence \(\omega_{n+i}(z) \Rightarrow \omega_{n}(z) \) as \(i \to \infty \) and \(\omega_{n}(z) \Rightarrow \omega(B \cap R_{\frac{\delta}{2}}, z, R_{\frac{\delta}{2}}) = 0 \) as \(n \to \infty \). On the other hand, \(w(B \cap R_{\frac{\delta}{2}}, z, R_{\frac{\delta}{2}}) = \lim w_{n}(z) \), where \(w_{n}(z) \) is a harmonic function in \(R_{n} \cap R_{\frac{\delta}{2}} \) such that \(w_{n}(z) = 0 \) on \(\partial R_{\frac{\delta}{2}} \cap R_{n} \) and \(w_{n}(z) = 1 \) on \(\partial R_{n+i} - R_{\delta} \). By the maximum principle \(w_{n}(z) \geqq \omega_{n+i}(z) \) and \(w_{n}(z) \geqq \omega_{n}(z) \). Whence by letting \(n \to \infty \), \(0 = w(B \cap R_{\frac{\delta}{2}}, z, R_{\frac{\delta}{2}}) \geqq w(B \cap R_{\delta}, z, R_{\frac{\delta}{2}}) \). Hence

\[D(\omega_{n}(z)) \downarrow 0 \text{ as } n \to \infty. \quad (47) \]

Put \(R^{*} = (R_{\frac{\delta}{2}} \cap R_{n_{0}}) + R_{\delta} \), where \(n_{0} \) is a certain number. Let \(F \) be a closed compact arc on \(\partial R_{\frac{\delta}{2}} \cap R_{n_{0}} \). Let \(\omega_{n}^{*}(z) \) be a harmonic function in \(R^{*} \cap R_{n} \) such that \(\omega_{n}^{*}(z) = 0 \) on \(F \), \(\omega_{n}^{*}(z) = 1 \) on \(R_{\delta} \cap \partial R_{n} \) and \(\frac{\partial}{\partial n} \omega_{n}(z) = 0 \) on
Then \(D(\omega_{n}(z)) \leq D(\omega_{n}(z)) \). Hence \(\omega_{n}(z) \downarrow 0 \) as \(n \to \infty \) and
\[
\lim_{n} D(\omega_{n}(z)) = 0.
\]

Hence there exists a sequence of harmonic functions \(\omega_{n}^{*}(z) \) in \(R^{*} \) such that \(\omega_{n}^{*}(z) = 0 \) on \(F \), \(\frac{\partial}{\partial n} \omega_{n}^{*}(z) = 0 \) on \((\partial R^{*} \cap R_{n}) - F \) and \(\omega_{n}^{*}(z) = M_{n} \) on \(\partial R_{n} \cap R^{*} \).

Hence there exists a sequence of exceptional sets \(H_{n} \) in the interval \((e^{M_{n}}, e^{M_{n}/2}) \) such that \(\lim \frac{\text{mes } H_{n}}{(e^{M_{n}} - e^{M_{n}/2})} = \frac{1}{4} \delta_{n} \) and that \(r \notin H_{n} \) implies \(L(r) < \delta_{n} \), where \(\lim_{\gamma \to \infty} \delta_{n} = 0 \).

Lemma a. Let \(G_{i} \) be a domain in \(R^{*} \) and let \(U_{i}(z) \) be a function in \(R^{*} - G_{i} \) which is harmonic in \(R^{*} - G_{i} \) and on \(\partial G_{i} \) such that the Dirichlet integral of \(U_{i}(z) \) is finite \((i = 1, 2, \cdots, i_{0})\). Then there exists a sequence of compact curves \(\{\gamma_{j}\} \) such that \(\gamma_{j} \) separates \(B \) from \(F \), \(\{\gamma_{j}\} \) clusters at \(B \) and that
\[
\int_{\gamma_{j} \cap (R^{*} - G_{i})} \frac{\partial}{\partial n} U_{i}(z) ds \to 0 \quad \text{as} \quad j \to \infty \quad \text{for every} \quad i.
\]

Proof. Let \(U(z) \) be one of \(\{U_{i}(z)\} \) and put
\[
L(r) = \int_{C_{r}} \frac{\partial}{\partial n} |U(z)| r d\theta = \int_{C_{r}} \frac{\partial}{\partial n} U(z) ds,
\]
where \(r e^{i\theta} = e^{\omega_{n}^{*}(z) + i\tilde{\omega}_{n}^{*}(z)} \) and \(\tilde{\omega}_{n}^{*}(z) \) is the conjugate function of \(\omega_{n}^{*}(z) \).

Suppose that there exist two positive constants \(\gamma \) and \(\delta \) and infinitely many numbers \(n' \) with the following properties:

There exists a closed set \(H_{n} \) in the interval \((e^{M_{n}}, e^{M_{n}/2}) \) such that
\[
\frac{\text{mes } H_{n}}{(e^{M_{n}} - e^{M_{n}/2})} \geq \gamma \quad \text{and} \quad L(r) \geq \delta > 0 \quad \text{for any} \quad r \in H_{n}.
\]

Since
\[
\int_{C_{r}} d\theta \leq 2\pi,
\]
we have by Schwarz's inequality
\[
D_{R-G}(U(z)) = \left(\int \left(\frac{\partial U(z)}{\partial r} \right)^{2} + \frac{1}{r^{2}} \left(\frac{\partial U(z)}{\partial \theta} \right)^{2} \right) r dr \geq \frac{1}{2\pi} \int_{e^{M_{n}}}^{e^{M_{n}/2}} \frac{L^{2}(r)}{r} dr \geq \frac{1}{2\pi} \int_{e^{M_{n}/2}}^{e^{M_{n}}} \frac{1}{r} dr = M_{n} (1 - \gamma) \delta^{2},
\]
Let \(n \to \infty \). Then \(D_{R-G}(U(z)) \uparrow \infty \). This is a contradiction. Hence there exists a sequence of exceptional sets \(H_{n} \) in the interval \((e^{M_{n}}, e^{M_{n}/2}) \) such that
\[
\lim_{n} \frac{\text{mes } H_{n}}{(e^{M_{n}} - e^{M_{n}/2})} \leq \frac{1}{4} \delta_{n} \quad \text{and} \quad \lim_{n \to \infty} \delta_{n} = 0.
\]
Returning to case of $U_i(z)$. Let $\{H_{i,n}\}$ be a sequence of exceptional sets corresponding to $U_i(z)$ and $\delta_{i,n}$ be the corresponding quantities of $H_{i,n}$. Then we see that
\[
\lim_{n} \frac{\text{men}(\sum_{1}^{i_{0}}H_{i,n})}{(e^{u_{n}}-e^{\frac{M_{n}}{2}})} \leq \frac{1}{4}
\] and the corresponding quantities of $H_{i,n}$ are contained in $R^* - R_{n^{'}}$, since $\omega_{n}^*(z) < \frac{M_{n}}{2}$ in $(R_{n^{'}} - R_{0})$. It follows that \(
\max_{i} \delta_{i,n} \rightarrow 0 \) as $n \rightarrow \infty$. On the other hand, the niveau curves with height $\geq \frac{M_{n}}{2}$ are contained in $R^{*} - R_{n^{'}}$. Since $\omega_{n}^*(z) < \frac{M_{n}}{2}$ in $(R_{n^{'}} - R_{0})$. It follows that
\[
\int_{C_{r} \cap (R - G_{1})} |\frac{\partial U_i(z)}{\partial n}| ds \leq \max \delta_{i,n} \quad (\rightarrow 0 \text{ as } n \rightarrow \infty)
\]
and every niveau curve C_{r} with $r \in (e^{M_{n}}, e^{\frac{M_{n}}{2}})$ clusters at B as $n \rightarrow \infty$. Consider niveau curves C_{r} mentioned above as γ_{j}. Then we have the lemma.

Lemma b. Let $V_{M}(p) = E[z \in R : N(z, p) > M] \quad p \in B_{1} - B_{S}$ and $\nu_{m}(p) = E[z \in \overline{R} : \delta(z, p) < \frac{1}{m}]$. Then
\[
\lim_{M = \infty} V_{M}(p) \cap \nu_{m}(p) = 0.
\]

Let $U_{m,M}(z)$ be a harmonic function in $R_{\delta} - (R_{M} \cap U_{m}(p))$ such that $U_{m,M}(z) = 0$ on ∂R_{δ} and $U_{m,M}(z) = M - \delta$ on $\partial(R_{M} \cap \nu_{m}(p))$ and has M.D.I., where $R_{M} = E[z \in R_{\delta} : G(z) > M]$. Then by the Dirichlet principle
\[
D(U_{m,M}(z)) \leq C_{RM} D(G(z)) \leq MK.
\]
Let $U_{m,M}(z)$ be a harmonic function in $R_{\delta} - (R_{M} \cap \nu_{m}(p))$ such that $U_{m,M}(z) = 0$ on ∂R_{δ} and $U_{m,M}(z) = G(z) - \delta$ on $\partial(R_{M} \cap \nu_{m}(p))$ and has M.D.I. over $R_{\delta} - (R_{M} \cap \nu_{m}(p))$. Consider $(U_{m,M}(z) + U_{m,M}(z))$ and $G(z) - \delta$ in $(R_{\delta} - R_{M}) \cap R_{\delta}$. Then by the maximum principle
\[
U_{m,M}(z) + U_{m,M}(z) + M w(B_{n} \cap R_{\delta}, z, R_{\delta}) \geq G(z) - \delta \geq U_{m,M}(z) - M w(B_{n} \cap R_{\delta}, z, R_{\delta}),
\]
where $B_{n} = R - R_{n}$ and $w(B_{n} \cap R_{\delta}, z, R_{\delta})$ is H.M. of $B_{n} \cap R_{\delta}$ relative to R_{δ}, i.e., $w(B_{n} \cap R_{\delta}, z, R_{\delta})$ is a harmonic function in $R_{\delta} - (B_{n} \cap R_{\delta})$ such that $w(B_{n}$
\(R_s, z, R_s = 0 \) if \(R_s \cap \{B_n \cap R_s\} \) and \(1 \) on \(\partial(B_n \cap R_s) \). Let \(n \to \infty \).

Then \(w(B_n \cap R_s, z, R_s) \to w(B \cap R_s, z, R_s) \leq w(B \cap R_s, z, R_s) = 0 \) by (46). Hence
\[
U_{m, M}(z) + U'_{m, M}(z) \geq G(z) - \delta \geq U_{m, M}(z).
\]

Now by \(G(z) \leq N(z, p) \), \(E[z : G(z) > M] = R_M \subset V_M(p) \). \(U_{m, M}(z) \) and \(N(z, p) \) have M.D.I. over \(R_s - (R_M \cap C_{U_m}(p)) \) on \(\partial R_s \).

\[\frac{M_D}{R} + \partial(R_M \cap C_{U_m}(p)) \], whence by the maximum principle
\[U_{m, M}(z) \leq N(z, p). \]

Hence by Lemma b
\[\lim_{M \to \infty} U'_{m, M}(z) \leq \lim_{M \to \infty} \frac{M_D}{R} C_{U_m}(p) N(z, p) = 0. \]

Let \(G(z, q) \) be the Green's function of \(R \), and let \(v(q) \) be a neighbourhood of \(q \). Then \(D(G(z, q)) < \infty \). By \(D(U_{m, M}(z)) \leq MK \), hence by Lemma a there exists a sequence \(\{\gamma_j\} \) such that
\[
\int_{\gamma_j} \left| \frac{\partial}{\partial n} U_{m, M}(z) \right| ds \to 0 \quad \text{and} \quad \int_{\gamma_j} \left| \frac{\partial}{\partial n} G(z, q) \right| ds \to 0
\]
and \(\gamma_j \) clusters at \(B \) as \(j \to \infty \).

Let \(R_j \) be the compact part of \(R_s \) divided by \(\gamma_j \). Then \(R_s = \bigcup_{j=1}^\infty R_j \).

Put \(\Omega_{M_0}^{M_1} = E[z \in R : M_0 < U_{m, M}(z) < M_1] \) and \(C_{M_i} = E[z \in R : U_{m, M}(z) = M_i] \).

Then
\[
\int_{C_{M_0} \cap P_j} \frac{\partial}{\partial n} U_{m, M}(z) ds = \int_{C_{M_1} \cap R_j} \frac{\partial}{\partial n} U_{m, M}(z) ds + \int_{\gamma_j} \frac{\partial}{\partial n} U_{m, M}(z) ds.
\]

Since \(\frac{\partial}{\partial n} U_{m, M}(z) \geq 0 \) on \(C_{M_0} \) and \(C_{M_1} \), we have by (49)
\[
\int_{C_{M_0}} \frac{\partial}{\partial n} U_{m, M}(z) ds = \lim_{j \to \infty} \int_{C_{M_0} \cap R_j} \frac{\partial}{\partial n} U_{m, M}(z) ds = \lim_{j \to \infty} \int_{C_{M_1} \cap R_j} \frac{\partial}{\partial n} U_{m, M}(z) ds
\]
\[= \int_{C_{M_0}} \frac{\partial}{\partial n} U_{m, M}(z) ds. \]

Since \(D(U_{m, M}(z)) = \int_{R_j \cap (R_M \cap C_{U_m}(p))} \frac{\partial}{\partial n} U_{m, M}(z) ds + \int_{R_j \cap (R_M \cap U_m(p))} \frac{\partial}{\partial n} U_{m, M}(z) ds \)
and \(U_{m, M}(z) = M - \delta \) on \(\partial(R_M \cap U_m(p)) \), we have by letting \(j \to \infty \),
\[
D(U_{m, M}(z)) = \int_{R_j \cap (R_M \cap U_m(p))} \frac{\partial}{\partial n} U_{m, M}(z) ds (\leq MK). \quad \text{Since} \ U_{m, M}(z) = M - \delta \text{ on } \partial(R_M \cap U_m(p)),
\]
we have by (50)
\[
\int_{C_L} \frac{\partial}{\partial n} U_{m, M}(z) ds \leq 2K \quad \text{for} \quad \frac{M}{2} > \delta, \quad \text{for every} \ L.
\]
By the Green's formula
\[\int_{\partial R_{M} \setminus v_{m}(p)} U_{m,M}(z) \frac{\partial}{\partial n} G(z, q) ds = \int_{\partial R_{M} \setminus v_{m}(p)} (M - \delta) \frac{\partial}{\partial n} G(z, q) ds. \]

Now \(U_{m,M}(z) = M - \delta \) on \(\partial R_{M} \setminus v_{m}(p) \), whence
\[\int_{\partial R_{M} \setminus v_{m}(p)} U_{m,M}(z) \frac{\partial}{\partial n} G(z, q) ds = (M - \delta) \int_{\partial R_{M} \setminus v_{m}(p)} \frac{\partial}{\partial n} G(z, q) ds. \]

Similarly by \(G(z, q) < L_{0} \) in \(C_{0}(q) \),
\[\int_{\partial R_{M} \setminus v_{m}(p)} U_{m,M}(z) \frac{\partial}{\partial n} G(z, q) ds = 0 \text{ as } j \to \infty. \]

Hence by letting \(j \to \infty \), we have
\[U_{m,M}(q) = \frac{1}{2\pi} \int_{\partial R_{M} \setminus v_{m}(p)} G(z, q) \frac{\partial}{\partial n} U_{m,M}(z) ds. \quad (52) \]

\(p \) is regular by the assumption. Hence for any given positive number \(\varepsilon \) there exists a neighbourhood \(u_{m}(p) \) such that \(G(z, q) < \varepsilon \) in \(u_{m}(p) \). Hence by (51) and (52)
\[U_{m,M}(q) \leq \frac{1}{\pi} K \varepsilon. \]

Let \(M \to \infty \). Then \(G(q) = \lim_{M \to \infty} U_{m,M}(q) + \delta \) by (48). But \(\varepsilon \) and \(\delta \) are arbitrary. Hence \(G(z) = 0 \). Thus \(N(z, p) = 0 \) and \(N(z, p) \) is Poisson's integrable.

Let \(U_{i}(z) \) \((i = 1, 2, \ldots N)\) and the cardinal number of \(N \leq \mathcal{X} \) be a harmonic function in \(R - R_{0} \) vanishing on \(\partial R_{0} \). If any finite number of \(\{U_{i}(z)\} \) are linearly independent, we say that \(\{U_{i}(z)\} \) is linearly independent.

Theorem 16.

a) \(\{N(z, p_{i})\}: p_{i} \in B_{1} \) is linearly independent.

b) If there exists a point in \(B_{g,r} \setminus (B_{1} - B_{S}) \), then there exist infinitely many linealy independent H.D. functions vanishing on \(\partial R_{0} \), where \(B_{g,r} \) is the set of regular points for the Green's function.

c) \(R \in H.N.D. (N = \infty \) and \(\mathcal{X}_{0} \) if and only if both \(B_{g,r} \setminus (B_{1} - B_{S}) \) and \(B_{S,1} \) (set of singular points of first kind) are at most enumerable and the number of points of \(B_{S,2} \) (set of singular points of second kind) = \(\infty \) and \(\mathcal{X}_{0} \).

d) \(R \in H.N.D. (N < \infty \) if and only if \(B_{g,r} \setminus (B_{1} - B_{S}) = 0 = B_{S,1} \) and the number of points of \(B_{S,2} \) is \(N \).

Proof of a. Assume \(\{N(z, p_{i})\} \) is not linearly independent. Then
there exists a linear form $\sum_{j=1}^{l} c_{i}N(z, p_{i}) = 0$. Suppose $c_{1}, c_{2}, \ldots, c_{m} > 0$ and $c_{m+1}, \ldots, c_{l} < 0$.

Then $$\sum_{l}^{m} c_{i}N(z, p_{i}) = \sum_{m+1}^{l} c_{i}N(z, p_{i}).$$

Put $U(z) = \sum_{1}^{m} c_{i}N(z, p_{i})$ and $F = \sum_{1}^{m} c_{i}N(z, p_{i})$, $F' = \sum_{m+1}^{l} c_{i}N(z, p_{i})$. Then F and F' are closed and $\text{dist} (F, F') > 0$. By Theorem 12. a) and b) of P

$$U(z) = F > F'$$

Then F and F' are closed and $\text{dist} (F, F') > 0$.

By Theorem 12. a) and b) of P

$a)$

$b)$

$c)$
Let α and α_M be the cardinal numbers of linearly independent functions $\{N(z, p_i)\}$ and $\{U(z, M, p_i)\}$: $p_i \in B, r -(B_1 - B_8)$ respectively. Assume $\alpha = \aleph$. Since $\alpha = \lim_{M=\infty} \alpha_M$, there exists a constant M_0 such that $\alpha_M \geq \aleph$. Hence there exist an \aleph number of linearly independent H_0D functions in $R - R_0$ vanishing on ∂R_0, whence $R \in H.N.D. (N = \aleph)$. This is a contradiction. Hence $B_{g, r} \cap (B_1 - B_8)$ is at most enumerable.

Next $N(z, p) = \omega(p, z): a > 0$ for $p \in B_1 (\subset B_1)$ (whence $N(z, p) \in H.D$).

Hence by a) $\{\omega(p, z)\}$ is linearly independent, whence B_1 is also at most enumerable. We show $B_{s, 2}$ consists of infinitely many points (clearly $\leq \aleph_0$ by Theorem 10. b). Assume that $B_{s, 2}$ consists of $n_0 < \infty$ number of points $p_1, p_2, \ldots, p_{n_0}$. If $B_{s, 1} \neq 0$, let $q \in B_{s, 1}$. Now $B_{s, 1} + (B_{g, r} \cap (B_1 - B_8))$ is at most enumerable, $B_{g, i}$ (set of irregular points) is an F_i set of capacity zero by Theorem 11. d) of P, B_0 is also an F_i set of capacity zero. Whence H.M. of $B_{s, 1} + B_{g, i} + B_0 + B_{g, r} \cap (B_1 - B_8)$ is zero. Let $\nu_{a}(q) = E[\in R: \delta(z, q) < \delta_0]: 2\delta_0 = 2 \min \delta(p, q)$. Then $(\nu_{a}(q) - q)$ is an F_i set of harmonic measure zero. Hence by Theorem 9 $q \in B_{s, 2}$. This is a contradiction. Hence if $B_{s, 2} = p_1 + \cdots + p_{n_0}$, $B_{s, 1} = 0$.

Assume $B_{s, 2} = p_1 + p + \cdots + p_{n_0}$. Then $B_0 + B_{g, i} + B_{s, 1} + (B_{g, r} \cap (B_1 - B_8))$ is an F_i set of capacity zero (clearly of harmonic measure zero). Hence it can be proved similarly as in Theorem 1. d)

$$\sum_{i=1}^{n_0} \text{mes} E_i = 2\pi - \text{mes (image of } \partial R_0),$$

where E_i is the image of $p_i \in B_{s, 1}$ on $|\xi| = 1$.

By Theorem 12. c) every $U(z) \in H.D$. has angular limits $= \text{const a.e. on } E_i$. Whence $R \in H.N.D. (N = n_0)$. This is a contradiction. Hence $B_{s, 2}$ consists of infinitely many points and we have also $\sum \text{mes } E_i = 2\pi - \text{mes (image of } \partial R_0).$

Sufficiency is evident. Thus we have c).

Proof of d). Suppose $R \in H.N.D. (N < \infty)$. Then by a) $B_{g, r} \cap (B_1 - B_8) = 0$ and $B_{s, 2}$ consists of at most $n_0 \leq N$ number of points. Whence as in c) $B_{s, 1} = 0$ and

$$\sum_{i=1}^{n_0} \text{mes } E_i = 2\pi - \text{mes (image of } \partial R_0),$$

where E_i is the image of $p_i \in B_{s, 2}$.

Whence $R \in H.n_0.D$. Hence $n_0 = N$, i.e. $B_{s, 2}$ consists of N number of points. Thus we have d).

Remark. If $R \in H.N.D. (N < \infty), \omega(p, z)$ of $p \in B_{s, 2}$ is an $H.D$. function. In fact, $\omega(p, z) = \sum \alpha_{i, j} w(p, z)$. Now $\{\omega(p, z)\}$ is linearly independent,
whence the determinant $|\alpha_{ij}|=0$ and $w(p, z) = \sum_{i} \beta_{ji} w(p_{i}, z)$, where $|\beta_{ji}|$ is the inversed matrix of $|\alpha_{ij}|$. Hence $w(p, z) \in H.D.$

PART III. On Subdomains.

Let G be a domain18 in $R-R_n$. Let $w(B \cap G, z, G)$ be $H.M.$ of $(B \cap G)$ relative to G. i.e. $w(B \cap G, z, G) = \lim_{n \to \infty} w_n(z)$, where $w_n(z)$ is a superharmonic function in G which is harmonic in $G \cap R_n$, $w_n(z) = 0$ on $\partial G \cap R_n$ and $w_n(z) = 1$ on $(R-R_n) \cap G$. Map the universal covering surface G^∞ of G onto $|\xi| < 1$. Then $w(B \cap G, z, G)$ has angular limits $= 1$ or 0 a.e. on $|\xi| = 1$.

Proof. The image of ∂G is composed of enumerably infinite number of arcs on $|\xi| = 1$. Clearly $w(B \cap G, z, G) = 0$ on the image of ∂G. For simplicity put $w(z) = w(B \cap G, z, G)$, if $w(z) = 0$, our assertion is trivial. Suppose $w(z) > 0$. Then by P.H.2. sup $w(z) = 1$. Let E_o be the set where the Green's function $G(z, p)$ of G has angular limits $= 0$. Then mes $E_o = 2\pi$. Let E be the set where $w(z)$ has angular limits between 0 and 1. Assume mes $E > 0$. Then for any given positive number ε, we can find a closed set $E' \subset (E \cap E_o)$, a number $\delta > 0$, a domain D and a ring $\Re_m: 1 > |\xi| > 1 - \frac{1}{m}$, such that mes $(E-E') < \varepsilon$. D is containing an end part of $A(\theta)$ of $e^{i\theta} = E'$ and bounded by $\sum_{e^{r\theta} \in E} \partial A(\theta) + E'$ and a circle $|\xi| = 1 - \frac{1}{m}$ with the following property: $1 - \delta > w(z) > \delta$ in $D \cap \Re_m$, i.e. $D \cap \Re_m$ is contained in the image of $\Omega_{\delta}^{-\delta} = E[\zeta \in G: \delta < w(z) < 1 - \delta]$. Since ∂G is composed of analytic curves and $w(z) = 0$ on ∂G, the image of ∂G does not fall in $D \cap \Re_m$, image of $(\partial R_n \cap G) \cap |\xi| = 1$ as $n \to \infty$ and $\partial R_n \cap G$ separates E' from $|\xi| = 1 - \frac{1}{m}$ by $G(z, p) = 0$ on $\partial R_n \cap G$. Let $w^{p}(\xi)$ be a harmonic function in D such that $w^{p}(\xi) = 1$ on E' and $= 0$ on $\partial D - E'$. Then as usual $w(B \cap \Omega_{\delta}^{-\delta}, z, G) \leq w^{p}(\xi) > 0$.

On the other hand, $w(Q_{\delta}^{-\delta} \cap B, z, G) \leq w(B \cap G, z, G)$ and sup $w(G \cap \Omega_{\delta}^{-\delta}, z, G) \leq 1 - \delta$. Hence by P.H.2. $w(Q_{\delta}^{-\delta} \cap B, z, G) = 0$. This is a contradiction. Hence mes $E = 0$. Thus $w(B \cap G, z, G)$ has angular limits $= 0$ or 1 a.e. on $|\xi| = 1$.

Let $\{z_i\}$ be a sequence such that $z_i = B$ and $\lim_{i} w(z_i) < 1$, we say that $\{z_i\}$ converges to the annexed relative boundary. Let $E_{K,A}$ be the set where $w(z)$ has angular limits $= 0$ and is not the image of ∂G. We call

18) See 5).
$E_{K,A}$ \textit{K-annexed relative boundary}. We call E_{B} where $w(z)$ has angular limits $=1$ the image of the ideal boundary. Then by the above fact $w(B \setminus G, z, G) = w(E_{B}, \xi)$, where $w(E_{B}, \xi)$ is H.M. of E_{B} with respect to $|\xi| < 1$. We denote by $H_{o}.B.$ $(H_{o}.D)$ the class of bounded (Dirichlet bounded) harmonic functions in a domain G vanishing on ∂G. Also we denote by $O_{H_{0},B}$ $(O_{H_{0},D})$ and $H_{o}.N.B.$ $(H_{o}.N.D)$ the class of domain in which there exist no non constant $H_{o}.B.$ $(H_{o}.D.)$ function and there exist an N number of linearly independent $H_{o}.B.$ $(H_{o}.D.)$ functions respectively.

11. Class $O_{H_{o}B}$ and $H_{o}.N.B.$ Since G is a Riemann surface, we can define K-Martin’s topology in G and we have at once Theorem 2. But it is more interesting to characterize the class $H_{o}.N.B.$ by K-Martin’s topology of $R \supset G$.

\textbf{Theorem 17.} a) Every $H_{o}.B.$ function has angular limits $=0$ a.e. on $E_{K,A}$.

b) $G \in O_{H_{o}B}$ if and only if $\text{mes } E_{B} = 0$.

c) $G \in H_{o}.N.B.$ if and only if G contains K-approximately N number of singular points p_{i} of R and $w((B - \sum p_{i}) \setminus G, z, G) = 0$.

d) If $R \in H.N.B., G \in H_{o}.N'.B.$ and $N' \leq N$.

\textit{Proof of a).} Let $U(z) \in H_{o}.B.$ and let $U_{n}(z)$ be a harmonic function in $G \setminus R_{n}$ such that $U_{n}(z) = |U(z)|$ on $(\partial R_{n} \setminus G) + (\partial G \setminus R_{n})$. Then $|U(z)| \leq |U_{n}(z)| \leq M w_{n}(z)$, where $M = \sup_{z \in G} U(z)$ and $w_{n}(z)$ is a harmonic function in $G \setminus R_{n}$ such that $w_{n}(z) = 0$ on $\partial G \setminus R_{n}$ and $w_{n}(z) = 1$ on $G \setminus \partial R_{n}$. Let $n \to \infty$. Then $|U(z)| \leq M w(B \setminus G, z, G)$. Hence we have a).

\textit{Proof of b).} If $\text{mes } E_{B} = 0$, $w(B \setminus G, z, G) = 0$ and every harmonic function $U(z)$ has angular limits $=0$ by (54) and $G \in O_{H_{o}B}$. Suppose $\text{mes } E_{B} > 0$. Then $w(B \setminus G, z, G) > 0$ and $G \notin O_{H_{o}B}$. Thus we have b).

\textit{Proof of c).} Suppose G contains $p_{i} \in B_{s}$ K-approximately. Then $w(p \setminus G, z, G) > 0$ and K-minimal in G by Theorem 4. a). Let E_{i} be the set on which $w(p_{i} \setminus G, z, G)$ has angular limits $=1$ almost everywhere. Then by Theorem 1 $w(p_{i} \setminus G, z, G) = w(E_{i}, \xi)$ and every $U(z) \in H_{o}.B.$ has angular limits $=a_{i}$ a.e. on E_{i} and $\text{mes } E_{i} \setminus E_{j} = 0$ for $p_{i} \neq p_{j}$. Hence the only one uniquely determined bounded K-minimal function in G corresponds to every E_{i}. If $w(B \setminus G, z, G) > w(\sum p_{i} \setminus G, z, G)$, we can construct an \aleph number of linearly independent $H_{o}.B.$ functions. Hence if $G \in H.N.B.$ ($N = \aleph_{0}$), $\text{mes } (E_{B} - \sum E_{i}) = 0$. Conversely suppose $\text{mes } (E_{B} - \sum E_{i}) = 0$. Then every function $\epsilon H_{o}.B.$ is a linear form of $\{w(G \setminus p_{i}, z, G)\}$. Hence we have b).
Proof of d). This is clear by c).

12. **Class O\(_{H_{0}D}\) and \(H_{0}.N.D.\)** Let \(N'(z, p)\) be a harmonic function with one logarithmic singularity at \(p\), \(N'(z, p)=0\) on \(\partial G\) and \(N'(z, p)\) has minimal \(D^*\)irichlet integral. Then \(N'(z, p)\) is uniquely determined. We call \(N'(z, p)\) \(N\)-Green’s function of \(G\). Let \(G(z, p)\) be the Green’s function of \(G\). If \(N'(z, p)>G(z, p)\) for at least one point \(p\), we say that \(G\) has the ideal boundary of positive capacity.

Theorem 18. a) If \(N'(z_0, p)>G(z_0, p)\) for two points \(p\) and \(z_0\) then \(N'(z, q)>G(z, q)\) for any points \(q\) and \(z\) in \(G\).

b) Let \(E_{N,A}\) be the set where \(N'(z, p)\) has angular limits=0 (which is not the image of \(\partial G\)), we call \(E_{N,A}\) \(N\)-annexed relative boundary. Then every \(U(z)\in H_{0}.D.\) function in \(G\) has angular limits=0 a.e. on \(E_{N,A}\) and \(E_{N,A}\supset E_{K,A}\).

c) The following conditions are equivalent.

1) \(G\) has the ideal boundary of positive capacity, i.e. \(N'(z, p)\)
\[>G(z, p)^{19}.\]

2) \(G\not\in 0_{H_{0}D}\).

3) \(\text{mes } (E_{B} - E_{N,A}) > 0\).

Proof of a). \(N'(z, p)\geq G(z, p)\). If for a point \(z_0\) \(N'(z_0, p)=G(z_0, p),\) \(N'(z, p)=G(z, p)\). This is a contradiction. Hence \(N'(z, p)>G(z, p)\) for any points \(p\) and \(z\). Next by the Green’s formula \(N'(p, q)=N'(q, p)\) and \(G(p, q)=G(q, p)\), whence \(N'(p, q)-G(p, q)>0\) and \(N'(z, q)>G(z, q)\). Hence we have \(a)\).

Proof of b). If \(\text{mes } E_{N,A}=0\), our assertion is trivial. Suppose \(\text{mes } E_{N,A}>0\). Let \(U(z)\in H_{0}.D.\) Then \(U(z)\) has angular limits a.e. on \(|\xi|=1\). Suppose \(U(z)\) has angular limits\(\equiv 0\) a.e. on \(E_{N,A}\). Then we can find a closed set \(E'\) in \(E_{N,A}\) and a number \(a>0\) such that \(U(z)\) has angular limits \(>a\) or \(<-a\) a.e. on \(E'\). Without loss of generality, we can suppose that \(U(z)\) has angular limits \(>a>0\) a.e. on \(E'\). Put \(\Omega_\alpha=E[z\in G: U(z)>a]\) and \(\Omega_\alpha=E[z\in G: U(z)>0]\). Let \(\omega(G\cup \Omega_\alpha, z, \Omega_\alpha)\) be C.P. of \((G\cup \Omega_\alpha)\) relative \(\Omega_\alpha\). Then by the Dirichlet priciple
\[D(\omega(G\cup \Omega_\alpha, z, G))\leq D(\omega(G\cup \Omega_\alpha, z, \Omega_0))\leq \frac{D(U(z))}{a^2}M < \infty.\]

Let \(\omega(\Omega_{\alpha}, z, G)\). Then by \((\omega(\Omega_{\alpha}, \Omega_{\alpha})\subset \Omega_{\alpha}\)
\[D(\omega(\Omega_{\alpha}, \Omega_{\alpha}, z, G))\leq D(\omega(G\cup \Omega_\alpha, z, G))\leq M.\]

19 This condition is a far simpler for \(G\not\in 0_{H_{0}D}\) than the condition given by A. Mori: On the existence of harmonic functions on a Riemann surface. Journ of the Faculty of Science University Tokyo. Vol. VI, 1951.
Now as usual it can be proved that H.M. \(w(\Omega, \Omega_a \cap B, z, G) \) of
\((\Omega, \Omega_a \cap B) \geqq w(E', \xi) > 0 \), because \(N' \) has angular limits \(0 < \varepsilon \) on \(E' \) and \(U(z) > a \) a.e. on \(E' \). Hence
\[
0 < w(\Omega, \Omega_a \cap B, z, G) \leqq w(\Omega, \Omega_a \cap B, z, G).
\]

Let \(F_n \) be a closed set in \(G \) such that \(F_n \uparrow F \). If \(D(w(F, z, G)) < \infty \). Then \(D(w(F_n, z, G)) \leqq D(w(F, z, G)) \). Hence \(D(\omega(F_n, z, G)) \leqq \omega(F, z, G) \). Now \(\omega(F, z, G) = 1 \) on \(F \) except at most a set of capacity zero and has M.D.I. On the other hand, \(\omega(F, z, G) \) has also M.D.I. Hence by Lemma 1. b) of \(P \)
\[
\omega(F, z, G) = \lim_{n} \omega(F_n, z, G).
\]

Put \(G_n^* = E[z \in G : \delta(z, \partial G) \geqq \frac{1}{n}] \). Then \(\Omega, \Omega_a \cap \Omega_a \cap G_n^* \). Hence for the same \(\varepsilon \) used for \(\Omega, \Omega_a \), there exists a number \(n_0 \) such that
\[
\omega(\Omega, \Omega_a \cap G_n^*, z, G) > \omega(\Omega, \Omega_a \cap G_n^*, z, G) - \varepsilon, \tag{55}
\]
Then also by the Dirichlet principle
\[
D(\omega(\Omega, \Omega_a \cap G_n^*, z, G)) \leqq D(\omega(\Omega, \Omega_a \cap G_n^*, z, G)) \leqq M.
\]

Let \(N_n'(z, z_0) \) be a harmonic function in \(\Omega, \Omega_a \cap G_n^* \) such that \(N_n'(z, z_0) = 0 \) on \(\partial G \). We have
\[
\int_{\Omega, \Omega_a \cap G_n^*} \frac{\partial}{\partial n} \omega_n(z) ds = D(\omega(\Omega, \Omega_a \cap G_n^*, z, G)) \leqq M.
\]
By the Green's formula
\[
\int_{\Omega, \Omega_a \cap G_n^*} \frac{\partial}{\partial n} N_n'(z, z_0) ds = \int_{\Omega, \Omega_a \cap G_n^*} \frac{\partial}{\partial n} \omega_n(z) ds.
\]
By \(\int_{\Omega, \Omega_a \cap G_n^*} \frac{\partial}{\partial n} N_n'(z, z_0) ds = 0 \) we have
\[
\omega_n(z) = \frac{1}{2\pi} \int_{\Omega, \Omega_a \cap G_n^*} N_n'(z, z_0) ds \leqq \frac{1}{2\pi} \max_{z \in \Omega, \Omega_a \cap G_n^*} N_n'(z, z_0) \int_{\Omega, \Omega_a \cap G_n^*} \frac{\partial}{\partial n} \omega(z) ds.
\]
Let \(n \rightarrow \infty \). Then
\[\omega(\omega\Omega_{z} \Omega_{a} G^*, z_0, G) \leq \frac{\varepsilon}{2\pi} M \text{ by } N'(z, z_0) < \varepsilon \text{ in } \omega\Omega. \] (56)

Take \(\varepsilon < \min \left(\frac{1}{M}, \frac{\omega(\omega\Omega_{z} \Omega_{a} G^*, z_0, G)}{4} \right) \). Then by (55) and (56)

\[0 < \omega(\omega\Omega_{z} \Omega_{a} B, z_0, G) \leq \omega(\omega\Omega_{z} \Omega_{a} G^*, z_0, G) + \varepsilon \leq \varepsilon + \frac{\varepsilon}{2\pi} M \]

This is a contradiction. Hence mes \(E' = 0 \) and every \(U(z) \in H_{0}.D \) has angular limits \(= 0 \) a.e. on \(E_{K,A} \). There exists a number \(M \) such that \(N(z, p) < M \) in \(G \cap (R-R_{n_0}) \) for a number \(n_0 \), whence \(N(z, p) \leq M w(G \cap B, z, G) \) in \((R-R_{n_0}) \). Hence \(E_{K,A} \subset E_{N,A} \). Thus we have (b).

Proof of c. Clearly by \(D(N(z, p) - G(z, p)) < \infty \), \(D(N(z, p)) < \infty \) and \(D(G(z, p)) < \infty \) we have \(D(N(z, p) - G(z, p)) < \infty \), where \(v(p) \) is a neighbourhood of \(p \). Hence \(N(z, p) - G(z, p) \in H_{0}.D \) and (1) implies 2).

Assume mes \((E_{B} - E_{N,A}) = 0 \). Then by (b) \(U(z) \in H_{0}.D \) has angular limits \(= 0 \) a.e. on \(|\xi| = 1 \), whence \(G \in 0_{H_{0},D} \). Hence (2) implies (3).

Assume \(N'(z, p) = G(z, p) \). Then \(N'(z, p) \) has angular limits \(= 0 \) a.e. on \(|\xi| = 1 \), whence mes \((E_{B} - E_{N,A}) = 0 \). Hence (3) implies (1).

Suppose that \(G \) has the ideal boundary of positive capacity, i.e. \(N'(z, p) - G(z, p) > 0 \). In \(G \) we can introduce \(N \)-Martin’s topology by use of \(N \)-Green’s function of \(G \), but

\[\int \frac{\partial}{\partial n} N(z, p) ds \text{ is not necessarily } \leq 2\pi \]

but \(\leq 2\pi \). Then we have Theorem 16. Now as in case of H.N.B. it is more useful to characterize the class \(H_{0}.D \) by the \(N \)-Martin’s topology of \(R-R_{p} \). Even when \(\sup N(z, p) = \infty : p \in R-R_{p} + B_{0} \), we say that \(G \) contains \(p \) \(N \)-approximately, if \(N(z, p) \geq cG N(z, p) \) and if \(p_{CG} N(z, p) = 0 \). We denote by \(B_{s} \) and \(B_{s} \), the sets of singular points, of regular points for the Green’s function of \(R-R_{p} \).

Superharmonicity in a domain \(G \).

Let \(U(z) \) be a function of \(C_{1} \)-class such that \(U(z) = 0 \) on \(\partial G \), \(U(z) > 0 \) in \(G \) and \(D(\min(M, U(z))) < \infty \) for \(M < \infty \). Let \(D \) be a domain with compact \(\partial D \). Let \(\varphi U^{M}(z) \) be a function in \(G \) such that \(\varphi U^{M}(z) = \min(M, U(z)) \) on \(D \), \(\varphi U^{M}(z) = 0 \) on \(\partial G \) and \(\varphi U^{M}(z) \) has M.D.I. over \(G - D \). Put \(\varphi U(z) = \lim_{M \to \infty} \varphi U^{M}(z) \). If \(\varphi U(z) \leq U(z) \) for any domain \(D \) with compact \(\partial D \), we say that \(U(z) \) is \(\overline{\text{superharmonic in } G} \).

Then it is easily seen that all theorems about superharmonic functions in \(R-R_{p} \) are valid for \(\overline{\text{superharmonic functions in } G} \). Hence for a non compact
domain $D \ni U(z)$ is also defined.

Theorem 19. a) Let $v_n(p) = E \left[z \in R : \delta(z, p) < \frac{1}{n} \right] : p \in R - R_0 + B_1 - B_s$ with respect to N-Martin's topology of $R - R_0$. Then $v_n(p)$ contains p N-approximately.

b) Let G be a domain in $R - R_0$ such that G contains $p \in (R - R_0 + B_1 - B_s)$ N-approximately. Then $N(z, p) - \overline{CGN(z, p)}$ is superharmonic in \overline{G} and $\tilde{N}(z, p) = \bar{N}(z, p)$, where $\tilde{N}(z, p) = N(z, p) - \overline{CGN(z, p)}$.

c) If G contains $p \in (B_1 - B_s) \cap B_{g,r}$ N-approximately. Then $N(z, p) - \tilde{N}(z, p)$ is representable by Poisson's integral and $\sup \tilde{N}(z, p) = \infty$. Hence there exist infinitely many linearly independent H_0.D. functions in G.

Proof of a.) p is the kernel of the canonical mass distribution of $N(z, p)$ and $\text{dist}(p, C_{U_n}(p)) \geq \frac{1}{n}$. Hence by Theorem 13, c) of $P N(z, p) > c_{v_n(p)} N(z, p)$. Since $\text{Cap}(p) = 0$, by Theorem 6 a) of $P c_{v_n(p)} N(z, p) - p(c_{v_n(p)} N(z, p)) = U(z)$ is superharmonic in $\overline{R - R_0}$. Let F be the kernel of the canonical mass distribution of $U(z)$. Assume $\text{p}_{c_{v_n(p)}} N(z, p) > 0$. Then $F + p$ is the kernel of the canonical mass distribution of $c_{v_n(p)} N(z, p)$ ($= U(z) + p(c_{v_n(p)} N(z, p)) = U(z) + a N(z, p) : a > 0$). On the other hand, F' (the kernel of the canonical mass distribution of $c_{v_n(p)} N(z, p)$) is contained in $C_{U_n}(p)$ by Theorem 13 d) of P. But by the same theorem $F' = F + p$. This is a contradiction. Hence $\text{p}_{c_{v_n(p)}} N(z, p) = 0$. Thus $v_n(p)$ contains p N-approximately.

Proof of b.) Put $\tilde{N}(z, p) = N(z, p) - \overline{CGN(z, p)}$. We show that $\tilde{N}(z, p)$ is superharmonic in \overline{G}. Put $V_M = E \left[z \in G : \tilde{N}(z, p) > M \right]$. $\text{v}_{n(p)} - \text{CV}_M N(z, p)$ and $\text{v}_{n(p)} - \text{CV}_M \left(c_{G} N(z, p) + M \omega(V_M, z) \right)$ are superharmonic in $\overline{R - R_0}$ and harmonic in $R - R_0 - (\text{v}_{n(p)} - \text{CV}_M) \equiv N(z, p) - c_{G} N(z, p) + M = \text{v}_{n(p)} - \text{CV}_M \left(c_{G} N(z, p) + M \omega(V_M, z) \right)$ on $\text{v}_{n(p)} - \text{CV}_M + \partial R_0$, where $\text{v}_{n(p)} = E \left[z \in R : \delta(z, p) < \frac{1}{n} \right]$. Whence by the maximum principle

$\text{v}_{n(p)} - \text{CV}_M \left(c_{G} N(z, p) + M \omega(V_M, z) \right) \leq \text{v}_{n(p)} - \text{CV}_M \left(c_{G} N(z, p) + M \omega(V_n(p), z) \right) \equiv v_n(p) \nabla G N(z, p) + M \omega(V_n(p), z)$. Let $n \rightarrow \infty$. Then by the assumption that $\text{p}_{c_{G} N(z, p)} = 0$, we have by $\text{Cap}(p) = 0$

$\text{v}_{n(p)} - \text{CV}_M \left(c_{G} N(z, p) + M \omega(V_n(p), z) \right) \downarrow 0$ as $n \rightarrow \infty$ and $\lim \text{v}_{n(p)} - \text{CV}_M N(z, p) = 0$. Then $N(z, p) \geq \text{v}_{n(p)} - \text{CV}_M N(z, p) \equiv v_n(p) \nabla G N(z, p) \equiv \text{v}_{n(p)} - \text{CV}_M N(z, p)$, whence

$N(z, p) \geq v_n(p) \nabla G N(z, p) \equiv \lim v_n(p) \nabla G N(z, p) = N(z, p)$.
Hence
\[N(z, p) \geq V_M N(z, p) \geq v_n(p) \geq M N(z, p) \geq N(z, p). \] (56)

By Theorem 4. c) of P, \(v_M \cap R_n N(z, p) \uparrow v_M N(z, p) = N(z, p) \) as \(n \to \infty \).

By Theorem 4. a) of P, \(v_M \cap R_n N(z, p) \rightarrow v_M N(z, p) \) as \(n \to \infty \).

\(v_M \cap R_n N(z, p) \) and \(CG(v_M \cap R_n N(z, p)) \) are superharmonic in \(R - R_0 \) by Theorem 4. a) of P. Now \(v_M \cap R_n N(z, p) \) on \(V_M \cap R_n \) and \(CG(v_M \cap R_n N(z, p)) \) \(\leq CG N(z, p) \), whence
\[v_M \cap R_n N(z, p) \geq CG(v_M \cap R_n N(z, p)) \geq N(z, p) \geq N(z, p) \]
on the other hand \(v_M \cap R_n N(z, p) \geq CG(v_M \cap R_n N(z, p)) = N(z, p) \) on \(\partial G \). Hence \(E[z \in \partial G : 0 < v_M \cap R_n N(z, p) - CG(v_M \cap R_n N(z, p)) < M] = \Omega_n^M \). Hence
\[D_{R - R_0 - (V_M \cap R_n)}(V_M \cap R_n N(z, p)) \leq 2\pi M^* \] and \(D_{R - R_0 - (V_M \cap R_n)}(CG(V_M \cap R_n N(z, p)) \leq 2\pi M^* \)
by Lemma 2. c) of P.

\(D_{\Omega_{n,m}^M}(A_n(z) - B_n(z)) \leq (2\pi + \epsilon)M \) for \(m \geq m_0 \).

\(\Omega_{n,m}^M = E[z \in \partial G : 0 < A_n(z) - B_n(z) < M] \cap R_m \). Consider the Dirichlet integral of \((A_n(z) - B_n(z)) \) on \(\Omega_{n,m}^M \).

Then \(D_{\Omega_{n,m}^M}(A_n(z) - B_n(z)) = M \int _{\partial \Omega_{n,m}^M} \frac{\partial A_n(z)}{\partial n} ds = M \int _{\partial \Omega_{n,m}^M} \frac{\partial B_n(z)}{\partial n} ds = 0 \)
\(A_n(z) \rightarrow v_M \cap R_n N(z, p) \leq N(z, p) \) as \(m \to \infty \). Hence for any given positive number \(\epsilon \), there exists a number \(m_0 \) such that \(\int _{\partial R_0} \frac{\partial A_n(z)}{\partial n} ds \leq \int _{\partial R_0} \frac{\partial N(z, p)}{\partial n} ds + \epsilon = 2\pi + \epsilon \), for \(m \geq m_0 \).

Hence
\(D_{\Omega_{n,m}^M}(A_n(z) - B_n(z)) \leq (2\pi + \epsilon)M \) for \(m \geq m_0 \).

By \(A_n(z) \to v_M \cap R_n N(z, p) \) and \(B_n(z) \to CG(v_M \cap R_n N(z, p)) \) as \(m \to \infty \),
\(\Omega_{n,m}^M \to \Omega_n^M = E[z \in \partial G : 0 < v_M \cap R_n N(z, p) - CG(v_M \cap R_n N(z, p))] \) as \(m \to \infty \).
Let Ω be a domain completely contained in Ω_n^M. Then for any given number l there exists a number m' such that $(\Omega \cap R_l) \subset \Omega_{n,m}^M$ for $m \geq m'$. Then by Fatou's lemma
\[
D_{\Omega \cap R_l}(V_{M \cap}R_{n}N(z, p)-CG(V_{M \cap}R_{n}N(z, p))) \leq \varliminf_{m=\infty} D_{\Omega_{n,m}^M}(A_{m}(z)-B_{m}(z)) \leq 2\pi M.
\]
Let $l \to \infty$ and then $\Omega \uparrow \Omega_n^M$. Then
\[
D_{\Omega_n^M}(V_{M \cap}R_{n}N(z, p)-CG(V_{M \cap}R_{n}N(z, p))) \leq 2\pi M
\]
Next $V_{M \cap}R_{n}N(z, p) \uparrow V_{M}N(z, p)$ as $n \to \infty$ and by Theorem 4. h) of P
\[
CG(V_{M \cap}R_{n}N(z, p)) \uparrow CG(V_{M}N(z, p))=_{CG}N(z, p)
\]
Hence as above $D(\min(M, N(z, p))=D_{\Omega_n^M}(\tilde{N}(z, p)-CGN(z, p)) \leq 2\pi M$.

(57)

Let D be a domain in G with compact ∂D. Then there exists a number n_0 such that $\partial D \subset R_{n_0}$. Let $J_n^M(z)$ be a harmonic function in $(G \cap R_n)-D(n \geq n_0)$ such that $J_n^M(z)=\min(M, N(z, p))$ on $\partial G \cap R_n$ and $\frac{\partial}{\partial n} J_n^M(z)=0$ on $\partial R_n \cap (G-D)$, where $M>\sup_{z \in \partial D} N(z, p)$. Then $H_{n}^{M}(z)$ satisfies
\[
J_{n}^{M}(z)-H_{n}^{M}(z) \text{ is a harmonic function in } (G \cap R_{n})-D \text{ such that } J_{n}^{M}(z)-H_{n}^{M}(z)=0 \text{ on } \partial G \cap R_{n} \text{ and } (N(z, p)-CGN(z, p)) \text{ on } \partial D.
\]
Hence $(J_{n}^{M}(z)-H_{n}^{M}(z))$ converges in mean as $n \to \infty$. Put $\tilde{D}(z, p) \equiv \lim (J_{n}^{M}(z)-H_{n}^{M}(z))$. Then $\tilde{D}(z, p)$ has M.D.I. over $G-D$ with value $N(z, p)-CGN(z, p)(=\tilde{N}(z, p))$ on $\partial G \cap \partial D$ and
\[
\tilde{D}(z, p) \equiv \lim_{n} (J_{n}(z)-H_{n}(z))(=_{CG+D}N^{M}(z, p)-CG+D(N(z, p)) \text{ for every } M.
\]
Let $M \to \infty$. Then $\tilde{D}(z, p) =_{CG+D}(N(z, p)-CG+D(N(z, p))$. On the other hand, by Theorem 4. b) of P $CG \equiv CG \equiv CG$.
$\tilde{N}(z, p) = c_{0} + D N(z, p) - c_{0} R_{n} (G(z)) \leq N(z, p) - c_{0} N(z, p) = \tilde{N}(z, p)$. (58)

Put $D = v_{m}(p) \cap R_{n} \cap G$. Then $\tilde{N}(z, p) = c_{0} + D N(z, p) - c_{0} N(z, p)$. Let $n \to \infty$. Then by $(v_{m}(p) + CG) \cap p$ we have $v_{m}(p) + CG N(z, p) = N(z, p)$. Whence by letting $m \to \infty$

$\tilde{N}(z, p) = N(z, p) - c_{0} N(z, p) = \tilde{N}(z, p)$. (59)

Assume $\tilde{N}(z, p) \leq M < \infty$. Then $\tilde{N}(z, p) \leq M \omega(p, z) = 0$. This is a contradiction.

Hence $\sup \tilde{N}(z, p) = \infty$. (60)

By (57), (58), (59) and (60) we have b.

Proof of c. Put $\tilde{N}(z, p) = N(z, p) - c_{0} N(z, p)$. Suppose $p \in B_{S_{2}} \cap (B_{s} - B_{S})$. Then there exists no non constant generalized Green’s function in $R - R_{0}$ smaller than $N(z, p)$ by Theorem 15. Assume that there exists a non constant generalized Green’s function $\tilde{G}(z)$ in G smaller than $\tilde{N}(z, p)$.

Put $V_{M} = \{ z \in G : \tilde{G}(z) > M \}$. Let $G_{M}^{n}(z)$ be a harmonic function in $R_{n} - R_{0} - V_{M}$ such that $G_{M}^{n}(z) = \min(M, G(z))$ on $V_{M} + \partial R_{n}, G_{M}^{n}(z) = 0$ on $\partial R_{n} + (\partial R_{n} - G)$ and has M.D.I. over $R_{n} - R_{0} - V_{M}$. Then by the Dirichlet principle $D(G_{M}^{n}(z)) \leq D(\min(M, \tilde{G}(z)) < \infty$. Put $G(z) = \lim_{M = \infty} \lim_{n} G_{M}^{n}(z)$. Then $G(z)$ is a generalized Green’s function in $R - R_{0}$ smaller than $N(z, p)$. This is a contradiction. Hence there exists no generalized Green’s function $G(z)$ smaller than $\tilde{N}(z, p)$. Hence $\tilde{N}(z, p)$ is Poisson’s integrable and by (60) $\sup \tilde{N}(z, p) = \infty$. Thus by Theorem 16. b we have c.

Theorem 20. a) If G contains $p \in B_{S_{2}}$ N-approximately, G contains p K-approximately by Theorem 12. b) and there exists a harmonic domain V such that $D(\omega(V, z, G)) < \infty$ and $\omega(p \cap V, z, G) > 0$. Map the universal covering surface G_{e} of G onto $|\xi| < 1$. Let E be the set on which $\omega(p \cap V, z, G)$ has angular limits 1 almost everywhere. Then $\mes E > 0$, $\mes(E \cap E_{e, \xi, a}) = 0$ and E does not depend on the domain V, in other words, let V_{1} and V_{2} be domains such that $G_{M}^{n}(z) = \min(M, G(z))$ and $G_{M}^{n}(z) = 0$ on $\partial R_{n} + (\partial R_{n} - G)$ and has M.D.I. over $R_{n} - R_{0} - V_{M}$. Then by the Dirichlet principle $D(G_{M}^{n}(z)) \leq D(\min(M, \tilde{G}(z)) < \infty$. Put $G(z) = \lim_{M = \infty} \lim_{n} G_{M}^{n}(z)$. Then $G(z)$ is a generalized Green’s function in $R - R_{0}$ smaller than $N(z, p)$. This is a contradiction. Hence there exists no generalized Green’s function $G(z)$ smaller than $\tilde{N}(z, p)$. Hence $\tilde{N}(z, p)$ is Poisson’s integrable and by (60) $\sup \tilde{N}(z, p) = \infty$. Thus by Theorem 16. b we have c.

b) Suppose G contains $p_{i} \in B_{S_{2}}$ N-approximately. Then $\omega(p_{i} \cap V, z, G)$ has angular limits $= \text{const} < 1$ a.e. on E_{i}, where E_{i} is the image of p_{i}: $p_{i} \equiv p_{j}$ and $p_{i} + p_{j} \in B_{S_{2}}$ and G contains p_{j} N-approximately.

c) If G contains p K-approximately and not contains p N-appro-
approximately, then the set E_w where $w(p \cap G, z, G)$ has angular limits $= 1$ is contained in $E_{N,A}$.

Proof of a). By Theorem 12. b) mes $E > 0$ and $U(z) \in H_0.D$. has angular limits $= a$ a.e. on E. Next $U(z) \in H_0.D$ must have angular limits $= 0$ a.e. on $E_{N,A}$, whence mes $(E \cap E_{N,A}) = 0$, because $\omega(p \cap V, z, G) \in H_0.D$.

Assume mes $(E_1 \cap E_2) = 0$. Then $\omega(p \cap V_1, z, G) = 1$ a.e. on E_1 and $= a < 1$ a.e. on E_2. Put $\Omega_2 = E[z \in G : \omega(p \cap V_1, z, G) > 1 - 2\delta]$ and $\Omega_1 = E[z \in G : \omega(p \cap V_1, z, G) > 1 - \delta]$, where $\delta = \frac{1-a}{3}$. Then

$$D(\omega(\Omega_1, z, \Omega_2)) \leq \frac{1}{\delta^2} D(\omega(p \cap V_1, z, G)) < M < \infty.$$

Put $V_{1-}(p) = E[z : \omega(p, z) > 1 - \varepsilon]$ and $V_{1-} = E[z \in G : \omega(p \cap V_1, z, G) > 1 - \varepsilon]$. Then $V_{1-}(p) \supset V_{1-}$.

By P.H.3. $w(CV_{1-}(p) \cap z, G) \leq \omega(CV_n(p) \cap V_{1-}(p), z) \to 0$ as $\varepsilon \to 0$. (61)

By Theorem 7. c) we have

$$w(p \cap \Omega_1, z, \Omega_2) = w(V_{1-} \cap \Omega_1, z, \Omega_2)$$

for any $\varepsilon > 0$. (62)

$$\lim_{\varepsilon \to 0} w(V_{1-} \cap CV_n(p) \cap \Omega_1, z, \Omega_2) = \lim_{\varepsilon \to 0} w(V_{1-} \cap \Omega_1, z, \Omega_2).$$

Let $n \to \infty$. Then we have by (62) and (61)

$$w(p \cap \Omega_1, z, \Omega_2) = \lim_{\varepsilon \to 0} w(V_{1-} \cap \Omega_1, z, \Omega_2).$$

Since mes $E > 0$, we can find a closed set E' of positive measure in E such that both $w(p \cap V_1, z, G)$ and $w(p \cap V_1, z, G)$ converge uniformly along Stolz’s path at every point of E'. Hence we can find a closed set E'' and a domain D containing an endart of $A(\theta)$: $e^{i\theta} \in E''$ and is bounded by $E'' + \sum \partial A(\theta)$ and a circle $|\xi| = 1 - \frac{1}{m}$ such that the image of $\partial \Omega_2$ does not fall in D and the image of $\partial(V_{1-})$ separates E''. Hence as usual, we have $w(p \cap \Omega_1, z, \Omega_2) = \lim_{\varepsilon \to 0} w(V_{1-} \cap \Omega_1, z, \Omega_2) > 0$. Hence $D(\omega(p \cap \Omega_1, z, \Omega_2)) > 0$ and $D(\omega(p \cap \Omega_1, z, \Omega_2)) \leq D(\omega(\Omega_1, z, \Omega_2)) < M < \infty$.

Similarly we have $\infty > D(\omega(p \cap CV_2, z, G)) > 0$.

Putting $\tilde{G} = R - R_0$ and $B' = p$, we have $\omega(p \cap \Omega_1, z) = \omega(p \cap CV_2, z)$ by Separation Theorem S. 1. But these have their masses at only p and by P.C.3. $\sup \omega(p \cap CV_2, z) = 1 = \sup \omega(p \cap \Omega_1, z, \Omega_2)$ whence these are equal to $\omega(p, z)$. This is a contradiction. Hence mes $(E_1 \cap E_2) > 0$. On the other hand, $U(z) \in H_0.D$. has angular limits a_1 a.e. on E_1 and a_2 a.e. on E_2, but by mes $(E_1 \cap E_2)$
>0, \ a_1 = a_2 \text{ and } E_1 = E_2. \text{ Thus } E \text{ does not depend on } V.

Proof of b). Map the universal covering surface \((R-R_0)^\infty\) onto \(|\xi|<1\).
Let \(E_i\) be the set where \(\omega(p_i, z)\) has angular limits = 1. Suppose \(\omega(p_i, z)\) has angular limits = \(a\) a.e. on \(E_j\) \(i \neq j\). Assume \(a=1\). Put \(V_i^j = \{ z \in R : w(p_j, z) > 1 - \varepsilon \}\).

By Theorem 10. b) \(w(p_i, z) \geqslant w(E_i, \xi)\), whence \(\omega(p_i, z) \geqslant (1 - \varepsilon)\) on \(V_i^j\). Hence \(\omega(p_i, z) \geqslant (1 - \varepsilon)\) a.e. on \(E_j\). Now \(\omega(p_i, z) = \lim_n \omega(V_i^j, \omega_n(p_j), z) \geqslant (1 - \varepsilon)\) on \(E_j\). Hence \(\omega(p_i, z) \geqslant (1 - \varepsilon)\).

\(\sup \omega(p_j, z) \geqslant (1 - \varepsilon)\) on \(V_i^j\). Hence \(\omega(p_i, z) \geqslant (1 - \varepsilon)\) on \(E_j\). Thus \(\omega(p_i, z) \geqslant (1 - \varepsilon)\) on \(E_j\).

By Theorem 10. b) \(w(p_i, z) \geqslant w(E_i, \xi)\), whence \(\omega(p_i, z) \geqslant (1 - \varepsilon)\) on \(V_i^j\). Hence \(\omega(p_i, z) \geqslant (1 - \varepsilon)\) a.e. on \(E_j\).

Proof of c). Assume \(E_w \subset E_{NA}\). Then there exists a function \(U(z) \in H_0, D\) such that \(U(z)\) has angular limits = 0 a.e. on \(E_w\). Then we can suppose without loss of generality that \(U(z)\) has angular limits > \(a>0\) on a set \(E'\subset E_w\) of positive measure. Put \(\Omega_0 = E[z \in G : U(z) > 0]\) and \(\Omega_a = E[z \in G : U(z) > \frac{a}{2}]\).

\(D(\omega(p \cap \Omega, z, G)) \leqslant D(\omega(\Omega_a, z, \Omega_0)) \leqslant \frac{D(U(z))}{(\frac{a}{2})^2} < \infty\).

As usual we can find a closed set \(E''\subset E'\) of positive measure such that both \(U(z)\) and \(w(p, z, G)\) converge uniformly along Stolz's path terminating at \(E''\) and it can be proved that

\(w(p \cap \Omega_a, z, G) = \lim_{\varepsilon \to 0} w(V_i^j, \omega_n(p_j), z \in G : w(p, z, G) > [1 - \varepsilon])\). Hence

\(\infty > D(\omega(p \cap \Omega_a, z, G)) > 0\).

This means that \(G\) contains \(p\) \(N\)-approximately. This contradicts the assumption. Hence we have c).

It is necessary to make many preparations to study the class \(H.N.D.\) \((N= \infty \text{ and } = \mathcal{X}_0\)). Hence we consider only the class \(H_0,N.D.\) \((N< \infty)\).
Theorem 21. \(G \in H_0.N.D.(N < \infty) \) if and only if \(G \) contains \(N \) number of points \(eB_{s,2} \) of \(R - R_0 \) \(N \)-approximately and does not contain any point of \(B_{s,n} \) \(N \)-approximately. Map the universal covering surface \(G^\infty \) onto \(|\xi| < 1 \). Then the set \(\Gamma : |\xi| = 1 \) is divided into three kinds of sets, \(1^o \) image of \(\partial G \), \(2^o \) image of \(p(\in B_{S,2}) \) contained \(N \)-approximately and does not contain any point of \(B_{g,r} \cap (B_1 - B_S) + B_{S,1} \) \(N \)-approximately.

\[\text{mes} \left(E_B - E_{NA} - \sum E_i \right) > 0 \] implies \(G \in H_0.N.D. (N = \infty) \).

Put \(E^* = E_B - E_{NA} - \sum E_i \). We cover \(B - \sum p_i(p_i \in B_{S,2}) \) by a system of neighbourhoods \(u_n(q_j) \) of \(q_j \in B - B_{S,2} \) such that \(\omega(u_n(q_j) \cap B, z) \) has angular limits \(= 1 \) on the set whose measure \(< \frac{1}{2} \) \((u_n(q_j) \) depends on \(q_j \)).

\[\sum w(B \cap u_n(q_j), z, G) + \sum w(p_i, z, G) \geq w(B, z, G) \] there exists at least one \(u_n(q_j) \) such that \(\text{mes} \left(E^w_j \cap E^* \right) > 0 \), where \(E^w_j \) is the set on which \(w(u_n(q_j) \cap B, z) \) has angular limits \(= 1 \). Denote the
Singular points of Riemann Surfaces

above $u_n(q_j)$ by $\mathfrak{V}(q_1)$. Next cover $\mathfrak{V}(q_1)$ by $u_n'(q_j)$: $q_j \in B - B_{S,2}$ such that the measure of the set (where $\omega(u_n(q_j) - B, z)$ has angular limits = 1) < $\frac{1}{2^n}$.

Then there exists at least one $u_n'(q_j)$ such that $\text{mes } (E_n^W \cap E^*) > 0$, where E_n^W is the set where $w(u_n'(q_j) \cap \mathfrak{V}(q_1) \cap B, z, G)$ has angular limits = 1. Put $\mathfrak{V}_z(q) = \mathfrak{V}_1(q) \cap u_n'(q_j)$. In this way we can find a sequence

$\mathfrak{V}_1(q) \supset \mathfrak{V}_2(q) \supset \cdots$

This sequence has the following properties:

1. The measure of the set where $\omega(\mathfrak{V}_n(q_n) \cap B, z)$ has angular limits = 1 < $\frac{1}{2^n}$.

2. Let E_n^W be the set where $w(\mathfrak{V}_n(q_n) \cap B, z, G)$ has angular limits = 1. Then $E_1^W \supset E_2^W \supset \cdots$, $\text{mes } (E_n^W \cap E^*) = \alpha_n > 0$ and by $w(\mathfrak{V}_n(q_n) \cap B, z, G)$ < $\omega(\mathfrak{V}_n(q_n) \cap B, z)$ and $\alpha_n < \frac{1}{2^n}$ we have $\lim \alpha_n = 0$.

From the above sequence we extract a subsequence as follows:

Put $\mathfrak{V}_1'(q_1) = \mathfrak{V}_1(q_1)$. Let n_1 be the least integer such that $\frac{1}{2^{n_1}} < \alpha_1$.

Put $\mathfrak{V}_2'(q_2) = \mathfrak{V}_n'(q_n)$. Suppose $\mathfrak{V}_n'(q_n)$ is defined. Let n'' be the least integer such that $\frac{1}{2^{n''}} < \alpha_n$ and put $\mathfrak{V}_n'(q_n) = \mathfrak{V}_n'(q_{n''})$. Then we have a sequence

$\mathfrak{V}_1'(q_1) \supset \mathfrak{V}_2'(q_2) \supset \cdots$

The above sequence has the following properties:

1. The measure of the set where $\omega(\mathfrak{V}_n'(q_n) \cap B, z)$ has angular limits = 1 < α_{n-1}.

2. The measure of the set $(E_n^W \cap E^*)$ (where $w(\mathfrak{V}_n'(q_n) \cap B, z, G)$ has angular limits = 1 on $E_n^W = \alpha_n$, $\alpha_n > 0$ and $\alpha_1 > \alpha_2 > \alpha_3 > \cdots$: $\lim \alpha_n = 0$.

Let l be a given integer, we shall construct l number of linearly independent $H_0 \cdot D$ functions in G. $N(z, p) - G(z, p) > 0$ on E^*. We can find a closed set \hat{E} in $E^* \cap E_1^W$ such that $\text{mes } ((E^* \cap E_1^W) - \hat{E}) < \varepsilon_0$ and $N(z, p) - G(z, p) > \delta > 0$ on \hat{E}, where E_1^W is the set on which $w(\mathfrak{V}(q_1) \cap B, z, G)$ has angular limits = 1 and $\varepsilon_0 = \min (\alpha_n - \alpha_{n+1})$.

Put $Q = E \left[z \in G : N(z, p) - G(z, p) > \frac{\delta}{2} \right]$. Then

$D(\omega(Q, z, G)) < \frac{D(\omega(Q, z, G))}{(\frac{\delta}{2})^2} < M < \infty$.

Since $w(B \cap \mathfrak{V}_n(q_n), z, G) = 1$ a.e. on $E_n^W \cap \hat{E}$ $(n = 1, 2, \cdots l)$, it can be proved as
usual \(M > D(\omega(\Omega \cap B \setminus \mathcal{V}^n(q_n), z, G)) \), \(\omega(\Omega \cap B \setminus \mathcal{V}^n(q_n), z, G) \geq w(\Omega \cap B \setminus \mathcal{V}^n(q_n), z, G) \) and \(w(\Omega \cap B \setminus \mathcal{V}^n(q_n), z, G) = 1 \) a.e. on \(E^{nw}_n \cap \hat{E} \), where \(E^{nw}_n \) is the set where \(w(B \setminus \mathcal{V}^n(q_n), z, G) \) has angular limits \(1 \).

Let \(E^*_n \) be the subset of \(E^* \) where \(\omega(\Omega \cap B \setminus \mathcal{V}^n(q_n), z, G) = 1 \) and let \(\hat{\alpha}_n \) be its measure. Then by \(\omega(\Omega \cap B \setminus \mathcal{V}^n(q_n), z, G) \leq w(B \setminus \mathcal{V}^n(q_n), z, G) \) \(\alpha_{n-1} \geq \hat{\alpha}_n \). Next by \(\omega(\Omega \cap B \setminus \mathcal{V}^n(q_n), z, G) \geq w(\Omega \cap B \setminus \mathcal{V}^n(q_n), z, G) \) and \((E^*_n \cap \hat{E}) \supset (E^{nw}_n \cap \hat{E}) \) we have \(\hat{\alpha}_n \geq \alpha_n - \varepsilon_0 \). Hence \(\alpha_{n-1} \geq \hat{\alpha}_n \geq \alpha_n - \varepsilon_0 \). Whence by the property of \(\varepsilon_0 \)

\[
\hat{\alpha}_1 > \hat{\alpha}_2 > \hat{\alpha}_3 > \cdots > \hat{\alpha}_n.
\] (66)

Clearly by \((\Omega \cap B \setminus \mathcal{V}^n(q_n)) \supset (\Omega \cap B \setminus \mathcal{V}^n+1(q_{n+1})) \) and by (66) \(\{\omega(\Omega \cap B \setminus \mathcal{V}^n(q_n), z, G) \} \) is linearly independent and \(\epsilon \in H_{0,D} \). Now \(l \) is any integer. Hence \(G \in H_{0,N,D}. \) (\(N = \infty \)).

Proof of the theorem. Suppose \(G \in H_{0,N,D}(N < \infty) \). Then by Theorem 19. \(c) \) \(G \) does not contain any point of \(B_{g,r} \setminus (B_1-B_o) \) \(N \)-approximately and by (65) \(\text{mes}(E_B - E_{N,A}) = \text{mes} \sum E_i \). Let \(N' \) be the number of points \(\in B_{S,2} \) contained in \(G \) \(N \)-approximately. Then we can construct \(N' \) number of linearly independent \(H_{0,D} \) functions. On the other hand, every \(H_{0,D} \) function has angular limits \(a_i \) on \(E_i \), whence \(G \in H_{0,N'.D} \). Conversely if \(G \) contains \(p_k \in B_{S,2} \) \((i = 1, 2, \cdots, N) \) \(N \)-approximately and \(\text{mes}(E_B - E_{N,A}) = \text{mes} \sum E_i \), we have \(G \in H_{0,N'.D} \). Thus we have the theorem.

By Theorems 16 and 20 we have easily the following

Corollary. If \(R - R_0 \in H_{N,D}. \) (\(N \leq \kappa \)) \(G \in H_{0,N'.D} \) and \(N' \leq N \).
Singular points of Riemann Surfaces

In fact, \(w(B-B_{s,z},z)=0 \) implies \(\text{mes}(E_{B}-E_{N,s})=\sum E_{i} \), where \(E_{i} \) is the image of \(p_{i}\epsilon B_{s,z} \) contained in \(G \) \(N \)-approximately. Hence we have by Theorem 12. b), \(G^{\epsilon H_{0}.N.D.} \) and \(N'\leqq N \).

13. Covering property of Riemann surfaces.

Consider an analytic function \(w=f(z):z\epsilon R \). Let \(w_{0} \) be a point of the \(w \)-plane. Then the part of \(R \) over \(|w-w_{0}|<r \) consists of at most an enumerably infinite number of components. Such one component is called a connected piece on \(|w-w_{0}|<r \). Then

Theorem 22. a) Let \(R\epsilon H.N.B.(N\leqq \infty, N=\mathfrak{X}_{0}) \). Then every connected piece \(G \) over \(|w-w_{0}|<r \) covers \(|w-w_{0}|<r \) except at most a set of capacity zero.

b) Let \(R\epsilon H.N.D.(N\leqq \infty, N=\mathfrak{X}_{0}) \). Let \(G \) be a connected piece over \(|w-w_{0}|<r \). If the area of \(G \) is finite, \(G \) covers \(|w-w_{0}|<r \) except at most a set of capacity zero.

Proof of a). Suppose that \(G \) does not cover a set \(F \) (clearly closed) of positive capacity. Then there exists a subset \(F_{r} \) of \(F \) of positive capacity such that \(F_{r} \) is contained in the circle \(|w-w_{0}|<r_{0}<r \). Let \(T(w) \) be a bounded harmonic function in \(E[w: |w-w_{0}|<r]-F_{r} \) such that \(T(w)=0 \) on \(|w-w_{0}|=r \) and \(T(w)=1 \) on \(F_{r} \). Then \(T(z)=w(T(z))>0 \) in \(G \) and \(=0 \) on \(\partial G \). Hence \(w(B\sim G, z, G)\geqq T(z)>0 \).

\[w(B\sim G, z, G)\leqq w(B-B_{s}, z, G)+w(B_{s}\cap G, z, G)\leqq \sum w(B\cap p_{i}, z, G), \]

where \(p_{i}\in B_{s} \) and \(w(B-B_{s}, z, G)=0 \) by \(R\epsilon H.N.B. \).

Hence there exists at least one point \(p\epsilon B_{s} \) such that \(w(p\sim G, z, G)>0 \). This means that \(G \) contains \(p \) \(K \)-approximately. Hence by Theorem 4. b) there exists no non constant bounded analytic function. On the other hand, \(f(z) \) is bounded in \(G \). This is a contradiction. Hence we have a).

Proof of b). Suppose that \(G \) does not cover a set of positive capacity in \(|w-w_{0}|<r \). Then there exists a number \(r_{0} \) such that \(F_{r_{0}} \) of \(F \) in \(|w-w_{0}|<r_{0}<r \) is of positive capacity. Put \(\Omega=E[z\epsilon G: |f(z)-w_{0}|<r_{0}] \). Then \(w(\Omega\sim B, z, G)\geqq T(z) \), where \(T(z) \) is the function used in a). Since \(R\epsilon H.N.D. \), \(w(B-B_{s,2}, z)=0 \), hence there exists at least one point \(p\epsilon B_{s,2} \) such that \(w(\Omega\sim p, z, G)>0 \). Let \(S(w) \) be a continuous function in \(|w-w_{0}|<r \) such that \(S(w) \) is harmonic in \(r_{0}<|w-w_{0}|<r, S(w)=0 \) on \(|w-w_{0}|=r \) and \(S(w)=1 \) on \(|w-w_{0}|\leqq r_{0} \). Put \(S(z)=S(f(z)) \). Then

\[D(S(z))\leqq M^{2}A, \]

where \(A \) is the area of \(G \) and \(M=\max \{ \frac{\partial S(w)}{\partial u}, \frac{\partial S(w)}{\partial v} \} : w=u+iv. \)
Hence $0 < w(\Omega \cap p, z, G) \leq w(\Omega \cap p, z, G)$ and $D(w(\Omega \cap p, z, G)) \leq D(S(z)) < \infty$. This means G contains $p \in B_{s, z}$ N-approximately. Hence by Theorem 12. a) there exists no non constant analytic function with finite area in G. But $f(z)$ has finite area. This is a contradiction. Hence we have b).

Department of Mathematics, Hokkaido University

(Received July 20, 1961)