<table>
<thead>
<tr>
<th>Title</th>
<th>AN INVERSE THEOREM OF GROSS'S SFAR THEOREM</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author(s)</td>
<td>Kuramochi, Zenjiro</td>
</tr>
<tr>
<td>Citation</td>
<td>Journal of the Faculty of Science Hokkaido University. Ser. 1 Mathematics = 北海道大学理学部紀要, 17(3-4): 084-095</td>
</tr>
<tr>
<td>Issue Date</td>
<td>1963</td>
</tr>
<tr>
<td>Doc URL</td>
<td>http://hdl.handle.net/2115/56040</td>
</tr>
<tr>
<td>Type</td>
<td>bulletin (article)</td>
</tr>
<tr>
<td>File Information</td>
<td>JFSHIU_17_N3-4_084-095.pdf</td>
</tr>
</tbody>
</table>

Hokkaido University Collection of Scholarly and Academic Papers : HUSCAP
AN INVERSE THEOREM OF GROSS'S
STAR THEOREM

Dedicated to Prof. Kinjiro Kunugi on his 60th birthday

By

Zenjiro KURAMOCHI

Let \(w = w(z) \) be an analytic function of \(z \) in a Riemann surface \(R \) whose values fall on the \(w \)-sphere. Let \(z = z^{-1}(w) \) be its inverse. Let \(e(w, w_0) \) be an arbitrary regular element of \(z^{-1}(w) \). We continue analytically \(e(w, w_0) \), using only regular element (without any algebraic element) along every ray: \(\arg(w - w_0) = \theta \ (0 \leq \theta < 2\pi) \) toward infinity. Then, there arise two cases whether the continuation defines a singularity \(\omega_{\theta} \) in a finite distance or not, in the former case, we call the ray a singular ray. For each singular ray: \(\arg(w - w_0) = \theta \), we exclude the segment between the singularity \(\omega_{\theta} \) and \(w = \infty \) from the \(w \)-plane. The remaining domain \(\Omega \) is clearly a (single valued) regular branch of \(z = z^{-1}(w) \). Let \(\rho = \rho(\theta) \) the polar coordinate of the singularity \(\omega_{\theta} \) or \(\infty \) according as the singular ray exists or not. Then \(\rho(\theta) \) is clearly lower semicontinuous and \(S_{n} = E[\theta; \rho(\theta) \leq n] \) is closed. We call the set \(E[\theta; \rho(\theta) < \infty] \) the singular set \(S \) of \(\Omega \). Then by \(S = \sum_{n=1}^{\infty} S_{n} \) \(S \) is an \(F_{c} \) set. Then the famous Gross's Star Theorem is as follows:

Theorem. Let \(R \) be a domain such that \(R = E[z; |z| < \infty] \) in the \(z \)-plane and let \(f(z) \) be an analytic function of \(z \in R \) whose values fall on the \(w \)-plane. Let \(\Omega \) be a star domain. Then \(S \) is a set of linear measure zero.

This theorem was extended by M. Tsuji\(^1\) to the case: \(R \) is a domain in the \(z \)-plane such that the boundary of \(R \) is a set of capacity zero and also extended by Z. Yûjôbô\(^2\) to the case: \(R \) is a Riemann surface with null-boundary. The method used by them is essentially the same as used by W. Gross. On the other hand, T. Yoshida\(^3\) showed that the Gross's theorem holds for not only conformal mappings but also for quasiconformal mappings.

and M. Ohtsuka9 extended the class of conformal mappings to a little wider class than quasiconformal mappings in which the Gross's theorem holds. Further we proved that there exists a Riemann surface $R \in O_{AB}^6$ such that the covering surface over the w-plane (mapped by an analytic function $w = w(z)$: $z \in R$) has not Gross's property (singular set of Ω is $|w| = 1$) and also there exists a domain $D \in O_{AB}^6$ in the z-plane such that ∂D is a set of linear measure zero on a straight and its covering surface (mapped by an analytic function in D) has not Gross's property. Above two examples show that the validity of the Gross's theorem depends on the size of the boundary (boundary of R must be so small that R has null-boundary) but on the complexity of the boundary. In the present paper we consider an inverse of Gross's theorem i.e. to consider "how to construct a covering surface for given singular set?".

Let $F_i (i = 1, 2, \ldots)$ be a closed set on $|w| = 1$. If $\text{dist}(F_i, \sum_{j \neq i} F_j) > 0$, we call $\sum F_i$ a discrete F_* set. We shall prove

Theorem. Let S be an arbitrary discrete F_* set of linear measure zero on $|w| = 1$. Then we can construct a covering surface \mathfrak{R} which is conformally equivalent to a planer domain with null-boundary such that \mathfrak{R} has a star domain Ω whose singular set is S.

At present we cannot prove the above theorem under the condition that the connectivity of \mathfrak{R} is one. We suppose that the above theorem is valid for arbitrary F_* but it is complicated too much to construct a covering surface for any F_*. Now by this theorem we know that Gross's theorem cannot be improved for Riemann surface of connectivity ∞ but it remains the problem: Is the singular set S of a star domain of a covering surface (which is conformally equivalent to $|z| < \infty$) smaller than sets of measure zero?

I. Extension of \mathcal{L} through D. Let \mathcal{L} be a leaf identical to the whole w-plane. Let D be a circular echelon

$$D: \quad R e^{-\alpha} < |w| < R, \quad -\frac{\theta}{2} < \arg w < \frac{\theta}{2}, \quad \theta < \pi, \quad \alpha > 0.$$

Let $U(w)$ be a C_1-function in D such that $U(w) = 2(\alpha + \log R - \log |w|)/\alpha$ in

7) If a continuous function has partial derivatives almost everywhere, we call it a C_1 function.
the part $D': \text{Re}^{-\alpha}(|w| < \text{Re}^{-\frac{\alpha}{2}}$ of D and $U(w)=1$ in the part $D'': \text{Re}^{|w|} \geq \text{Re}^{-\frac{\alpha}{2}}$ of D. Let $V(w)$ be a harmonic function in the complementary set of $D+C:C=E[w:|w|\leq 1]$ such that $V(w)=0$ on ∂C and $V(w)=U(w)$ on ∂D. Then $D(V(w))$ depends on $U(w)$ and D. Let $\bar{U}(w)$ be a C_1-function in the complementary set of C such that $\bar{U}(w)=U(w)$ in D and $U(w)=0$ on ∂C. Then by the Dirichlet principle

$$D(\bar{U}(w)) \geq D(U(w)) + D(V(w)).$$

As $\theta \to 0$, i.e. D becomes narrow, $D(U(w)) \to 0$ but $D(V(w))$ does not tend to zero. Now we shall prove the following

Lemma. Let C and D and $U(w)$ be as above. We can construct a closed Riemann surface \Re_D, covering surface of a finite number of sheets $\mathcal{L}, \mathcal{L}_1, \cdots, \mathcal{L}_{n+1}$ over the w-plane of genus 0 satisfying the following conditions:

1). Every branch point lies on J: $\arg w = -\frac{\theta}{2}$, $\text{Re}^{-\alpha} < |w| < \text{Re}^{|w|}$ and J': $\arg w = \frac{\theta}{2}$, $\text{Re}^{-\alpha} < |w| < \text{Re}^{|w|}$, where $\text{Re}^{-\alpha} > 1$.

2). D connects $\mathcal{L}, \mathcal{L}_1, \cdots, \mathcal{L}_{n+1}$ so that every \mathcal{L}_i ($i=1, 2, \cdots, n$) contains a part D_i of D, \mathcal{L} and \mathcal{L}_{n+1} do not contain any part of D.

3). There exists a C_1-function $\bar{U}(w)$ in \Re_D such that $\bar{U}(w)=U(w)$ in D, $\bar{U}(w)=0$ in \mathcal{L}, $\bar{U}(w)=1$ in \mathcal{L}_{n+1} and

$$D(\bar{U}(w)) \leq 3D(U(w)) = \frac{6\theta}{\alpha}.$$

Such operation (to construct \Re_D through D) will be called extension of \mathcal{L} though D.

Proof. Let D_i and I_i and I_i' ($i=1, 2, \cdots, n$) be an echelon and a segment as follows:

- D_i: $\text{Re}^{-\alpha+\frac{\theta}{2}} < |w| < \text{Re}^{-\frac{\theta}{2}}$, $-\frac{\theta}{2} < \arg w < \frac{\theta}{2}$,
- I_i: $\text{Re}^{-\alpha+\frac{\theta}{2}} < |w| < \text{Re}^{-\frac{\theta}{2}}$, $\arg w = -\frac{\theta}{2}$,
- I_i': $\text{Re}^{-\alpha+\frac{\theta}{2}} < |w| < \text{Re}^{-\frac{\theta}{2}}$, $\arg w = \frac{\theta}{2}$,

$$\sum_{i=1}^{n} D_i = D', \text{ where } \gamma = \frac{\alpha}{2n}.$$
Then D_i's are conformally equivalent. Map D_i by $\xi = \log w$ onto a rectangle K_i such that $K_i: \log R - \alpha + (i-1)\tau < \eta < \log R - \alpha + i\tau$, $-\frac{\theta}{2} < \zeta < \frac{\theta}{2}$, where $\xi = \gamma + i\zeta$. Then $U(w) \rightarrow U_i(\xi) = 2(\alpha - \log R + \gamma)/\alpha$, $U_i(\xi) = (i-1)/n$ on $\eta = \log R - \alpha + (i-1)\tau$ and $U_i(\xi) = i/n$ on $\eta = \log R - \alpha + i\tau$. We shall define a function $\tilde{U}_i(\xi)$ corresponding to K_i from $U_i(\xi)$. Let K'_i be the symmetric image of K_i with respect to $\eta = \log R + i\gamma - \alpha$:

$$K'_i: \quad \log R - \alpha + i\tau < \eta < \log R - \alpha + (i+1)\tau, \quad -\frac{\theta}{2} < \zeta < \frac{\theta}{2}.$$

Let Γ_U and Γ_L be semicircles as follows:

$\Gamma_U: \quad |\xi - p_U| < \tau, \quad \pi \geq \arg(\xi - p_U) \geq 0$,

$\Gamma_L: \quad |\xi - p_L| < \tau, \quad 2\pi \geq \arg(\xi - p_L) \geq \pi$.

Consider the Dirichlet integral of $\tilde{U}_i(\xi)$. Then $D_{K_i + K'_i}(\tilde{U}_i(\xi)) = \frac{2}{n}$, $D(U(w)) = \frac{2}{n} \times \frac{2\theta}{\alpha} = \frac{4\theta}{n\alpha}$ and $D_{\Gamma_U}(\tilde{U}_i(\xi)) = D_{\Gamma_L}(\tilde{U}_i(\xi)) = \int_{\rho\Rightarrow 0}^{\frac{\alpha}{2n}} \int_{0}^{\pi} \left[\left(\frac{\partial}{\partial\rho} \tilde{U}_i(\xi) \right)^2 + \frac{1}{\rho^2} \left(\frac{\partial}{\partial\varphi} \tilde{U}_i(\xi) \right)^2 \right] \rho d\rho d\varphi = \left(\frac{\alpha}{2n} \right)^2 \frac{4\pi}{\alpha^2} = \frac{\pi}{n^2}$, where $(\xi - p_U) = \rho e^{i\varphi}$ in Γ_U and
$(\xi - p_{L}) = \rho \ e^{\varphi}$ in Γ_{L}

Hence

$$D_{\xi_{g}}(\tilde{U}_{\xi}(\xi)) = \frac{4\theta}{n\alpha} + \frac{2\pi}{n^{2}}.$$

Map $K_{L} + K_{L} + \Gamma_{U} + \Gamma_{L}$ in the ξ-plane to $D_{\xi} + D_{\xi} + \Gamma_{U} + \Gamma_{L}$ in the w-plane by $w = e^{\xi}$ and consider the function $\tilde{U}_{\xi}(w)$ such that $\tilde{U}_{\xi}(w) = \tilde{U}_{\xi}(\log w) = \tilde{U}_{\xi}(\xi)$ in $D_{\xi} + D_{\xi} + \Gamma_{U} + \Gamma_{L}$ and $\tilde{U}_{\xi}(w) = \frac{i - 1}{n}$ outside of $D_{\xi} + D_{\xi} + \Gamma_{U} + \Gamma_{L}$. This w-plane is denoted by \mathcal{L}_{ξ} in which $\tilde{U}_{\xi}(w)$ is defined. Clearly

$$D_{\xi_{g}}(\tilde{U}_{\xi}(w)) = \frac{4\theta}{n\alpha} + \frac{2\pi}{n^{2}}.$$ (1)

Structure of \mathcal{R}_{D}. Let S_{i}^{+} and S_{i}^{-} be slits as follows:

$S_{0}^{-}: |w| = Re^{-\alpha}, -\theta < \arg w < \theta$ in \mathcal{L}.

$S_{i}^{+}: |w| = Re^{-\alpha + (i-1)\gamma}, -\theta < \arg w < \theta$ in \mathcal{L}_{i}, $i = 1, 2, \ldots, n$.

$S_{i}^{-}: |w| = Re^{-\alpha + i\gamma}, -\theta < \arg w < \theta$ in \mathcal{X}_{i}.

$S_{n+1}^{-}: |w| = Re^{\alpha - \frac{\theta}{2}}$, $-\frac{\theta}{2} < \arg w < \frac{\theta}{2}$ in \mathcal{L}_{n+1}.

where \mathcal{L}_{n+1} is a leaf identical to the w-plane.

Connect \mathcal{L} with \mathcal{L}_{1} crosswise on $S_{0}^{-} (= S_{1}^{+})$, connect \mathcal{L}_{i} and \mathcal{L}_{i+1} crosswise on $S_{i}^{-} (= S_{i+1}^{+})(i = 1, 2, \ldots, n)$. Then we have an $n + 2$ sheeted covering surface over the w-plane. Clearly \mathcal{R}_{D} is closed and of genus zero. We define a new C_{1}-function $\hat{U}(w)$ in \mathcal{R}_{D} as follows: Put $\hat{U}(\xi) = \hat{U}_{\xi}(w) = 0$ in \mathcal{L}, $\hat{U}(w) = \tilde{U}_{\xi}(w)$ in \mathcal{L}_{i} ($i = 1, 2, \ldots, n$) and $\hat{U}(w) = 1$ in \mathcal{L}_{n+1}. Then since $\hat{U}(w) = \tilde{U}_{\xi}(w) = U(w)$ on $S_{i}^{-} (= S_{i+1}^{+})(i = 0, 1, 2, \ldots, n)$ through which \mathcal{L}_{i} and \mathcal{L}_{i+1} are connected and since $\tilde{U}_{\xi}(w)$ is a C_{1}-function, $\hat{U}(w)$ is a C_{1}-function in \mathcal{R}_{D}, where \mathcal{L}_{0} means \mathcal{L}. Then the Dirichlet integral of $\hat{U}(w)$ is given as $D(\hat{U}(w)) = n\left(\frac{4\theta}{n\alpha} \right) + n\left(\frac{4\pi}{n^{2}}\right)$. Choose a number n such that $\frac{4\pi}{n} < \frac{2\theta}{\alpha}$. Then $D(\hat{U}(w)) < 3D(U(w)) = \frac{6\theta}{\alpha}$, hence we have the lemma.

II. Extension of \mathcal{L} through $\sum D_{m}$ ($m = 1, 2, \ldots, m_{0}$). Let

$$D_{m}: \ Re^{-\alpha} < |w| < R, \ \theta_{m} < \arg w < \theta_{m}', \ \theta_{m}' < \theta_{m+1}.$$

In every D_{m} let $U(w) = 2(\alpha - \log R + \log w)/\alpha$ for $Re^{-\alpha} < |w| < Re^{-\frac{\theta}{2}}$ and $U(w)$
An Inverse Theorem of Gross's Star Theorem

$=1$ for $Re^{-\frac{\alpha}{a}} \leq |w| < R$. We define $L_{m,1}, L_{m,2}, \cdots, L_{m,n(m)+1}$ and connect them on slits contained in D_m as mentioned in I such that there exists a C_1-function $\hat{U}_m(w)$ in $L_{m,1} + L_{m,2} + \cdots + L_{m,n(m)+1}$, $\hat{U}_m(w) = 0$ in L, $\hat{U}_m(w) = 1$ in $L_{m,n(m)+1}$ and $D(\hat{U}_m(w)) \leq 3D_{p_m}(U(w))$. Then we have a covering surface $\mathcal{R}_{\Sigma D}$ of $1 + (n(1)+1) + (n(2)+1) + \cdots + (n(m)+1)$ number of sheets and of genus zero. Put $\hat{U}(w) = \hat{U}_m(w)$ in $L + \sum_{m=1}^{m_0} \sum_{n=1}^{n(m)+1} L_{m,n}$. Then since $\hat{U}_m(w) = 0$ in L, $\hat{U}(w)$ is a C_1-function in $\mathcal{R}_{\Sigma D}$ and

$$D(\hat{U}(w)) = \sum_{m=1}^{m_0} D(\hat{U}_m(w)) \leq 3 \sum_{m=1}^{m_0} D_{p_m}(U(w)) = \frac{6}{\alpha} \sum_{m=1}^{m_0} (\theta'_m - \theta_m).$$

Now the projection of every branchpoint of $\mathcal{R}_{\Sigma D}$ lies on arg$w = \theta_m$ and arg$w = \theta'_m (m = 1, 2, \cdots, m_0)$. We consider the star domain Ω of $\mathcal{R}_{\Sigma D}$ with centre at $w = 0$ of L. Then $\partial \Omega$ consists of segments $|w| > Re^{-\alpha}$, arg$w = \theta_m$ and $|w| > Re^{-\alpha}$, arg$w = \theta'_m (m = 1, 2, \cdots, m_0)$ and Ω is composed of the following parts:

$$\Omega = \hat{\mathcal{L}} + \sum_{m=1}^{m_0} \sum_{n=1}^{n(m)+1} \hat{L}_{m,n}$$

and $D_m \subset \sum_{n=1}^{n(m)} \approx \hat{\mathcal{L}}_{m,n}$ where

$$\hat{\mathcal{L}}: E[w: |w| < Re^{-\alpha}] + \sum_{m=1}^{m_0} E[w: |w| > Re^{-\alpha}, \theta'_m < \arg w < \theta_{m+1}]$$

$$+ E[w: |w| > Re^{-\alpha}, \theta'_m < \arg w < \theta_m] \text{ of } L.$$

$$\hat{\mathcal{L}}_{m,1}: E[w: Re^{-\alpha + m}\theta_m > |w| > Re^{-\alpha}, \theta_m < \arg w < \theta'_m] \text{ of } L_{m,1}$$

$$\cdots$$

$$\hat{\mathcal{L}}_{m,n}: E[w: Re^{-\alpha + nt_m}\theta_m > |w| > Re^{-\alpha + (n-1)\tau_m}, \theta_m < \arg w < \theta'_m] \text{ of } L_{m,n}$$

$(n = 2, 3, \cdots, n(m))$$$

$$\cdots$$

$$\hat{\mathcal{L}}_{m,n+1}: E[w: |w| > Re^{-\frac{\alpha}{2}}, \theta_m < \arg w < \theta'_m], \text{ where } \tau_m = \alpha/2n(m)$

and $m = 1, 2, \cdots, m_0$ and $n = 1, 2, \cdots, n(m)+1$.

The function $\hat{U}(w)$ in Ω is as follows: $\hat{U}(w) = 0$ in $\hat{\mathcal{L}}$, $\hat{U}(w) = 2(\alpha - \log R + \log |w|)/\alpha$ in $\sum_{m=1}^{m_0} \sum_{n=1}^{n(m)} \hat{\mathcal{L}}_{m,n}$ and $\hat{U}(w) = 1$ in $\sum_{m=1}^{m_0} \mathcal{L}_{m,n(m)+1}$.

III. Extension of \mathcal{L} through a closed set F of linear measure zero on $|w| = 1$. The complementary set of $F = CF = \sum_{l=1}^{\infty} I_l$, where I_l is an open interval. Put $F_i = \Gamma \sum_{l=1}^{I_i} I_i (\Gamma: |w| = 1)$. Then $F_i = J_{i,1} + J_{i,2} + \cdots + J_{i,m(l)+1} + p_{i,1}$.
$+p_{t,2}+\cdots+p_{t,m^{t}(l)}$, where $J_{t,i}$ is a closed interval and $p_{t,i}$ is an isolated point of F_t. Clearly $F=\bigcap_{t=1}^{\infty} F_t$. Let $l'(l)$ be the smallest number such that $\text{mes } F_{l'(l)}<\frac{1}{4^l}$. For simplicity we denote $F_{l'(l)}$ by F_l. Then $F=\bigcap_{l=1}^{\infty} F_l$ and $\text{mes } F_{l}<\frac{1}{4^l}$. Put $A_l=J_{l,1}+J_{l,2}+\cdots+J_{l,m(l)}$ and $B_l=p_{l,1}+\cdots+p_{l,m(l)}$. Then $F_l=A_l+B_l$ and $F_{l+1}=A_{l+1}+B_{l+1}$. Since every $p_{l,m}$ is isolated in F_l and is contained in F, $B_l\subset B_{l+1}$. Hence by $F_{l}\supset F_{l+1}$

\[B_{l+1}-B_l \subset A_l \]

And

\[F_l=A_l+\sum_{t=1}^{l} (B_t-B_{t-1}), \quad F=\bigcap_{t=1}^{\infty} A_t+\sum_{t=1}^{\infty} (B_t-B_{t-1}), \]

where $B_0=0$.

Since $\text{mes } F=0$, F does not contain any closed interval and

\[F=\sum_{t=1}^{\infty} \sum_{m=1}^{m(l)} (q_{t,m}+q_{t,m}') + \lim_{l=\infty} B_l, \]

where $q_{t,m}$ and $q_{t,m}'$ are endpoints of $J_{t,m}$.

We define echelons $D_{t,m}$, $\hat{D}_{t,m}$, $\tilde{D}_{t,m}$ ($D_{t,m} = \hat{D}_{t,m} + \tilde{D}_{t,m}$) and a slit $t_{l,m}$ from F_l as follows:

\[D_{t,m} : \quad \Re^{-\frac{\alpha}{2^{l-1}}}<|\omega|<R, \quad \theta_{t,m}<\arg \omega<\theta_{t,m}', \]

\[\hat{D}_{t,m} : \quad \Re^{-\frac{\alpha}{2^{l-1}}}<|\omega|<\Re^{-\frac{\alpha}{2^{l}}}, \quad \theta_{t,m}<\arg \omega<\theta_{t,m}', \]

\[\tilde{D}_{t,m} : \quad \Re^{-\frac{\alpha}{z^{l}}}<|\omega|<R, \quad \theta_{lm}<\arg \omega<\theta_{t,m}'-\frac{\alpha}{l}, \quad m=1,2,\cdots,m(l) \]

\[t_{l,m} : \quad \Re^{-\frac{\alpha}{2^{l-1}}}<|\omega|<\Re^{-\frac{\alpha}{2^{l}}}, \quad \arg \omega = \arg p_{t,m}\in(B_l-B_{l-1}), \]

\[\overline{t_{l,1}} \]

Fig. 3.
An Inverse Theorem of Gross's Star Theorem

Let \(\theta_{l,m} = \min_{W \subseteq -J_l,m} \arg w \) and \(\theta_{l,m}' = \max_{W_{\overline{c}}J_l,m} \arg w \).

\[\sum_{m=1}^{m(l)} D_{l,m} \supset \sum_{m=1}^{m(l+1)} D_{l+1,m}, \] \[\sum_{m=1}^{m(l)} \hat{D}_{l,m} \cap \sum_{m=1}^{m(l+1)} \hat{D}_{l+1,m} = 0 \]

Then \[\sum_{m=1}^{m(l)} D_{l,m} \supset \sum_{m=1}^{m'(l+1)} t_{l+1,m}, \sum_{m=1}^{m(l)} \hat{D}_{l,m} \cap \sum_{m=1}^{m'(l)} t_{l,m} = 0 \].

IV. Extension of 1st step of \(L \) through \(F \). Let \(L \) be a leaf. Let \(U_i(w) = 2(\alpha - \log R + \log |w|)/\alpha \) in \(\sum_{m=1}^{m(1)} \hat{D}_{1,m} \) and \(U_i(w) = 1 \) in \(\sum_{m=1}^{m(1)} \hat{D}_{1,m} \).

We extend \(L \) through \(\sum_{m=1}^{m(1)} D_{1,m} \) (see II) to \(\mathcal{R}' = \mathcal{L} + \sum_{m=1}^{m(1)} \sum_{n=1}^{n(1,m)+1} L_{1,m,n} \). Then since \(\mathcal{L} \) exists a \(C_1 \)-function \(U_i(w) \) in \(\mathcal{R}' \) such that \(U_i(w) = 0 \) in \(L \), \(U_i(w) = 1 \) in \(\sum_{m=1}^{m(1)} X_{1,m,n(m)+1} \) and \(D(U_i(w)) = \frac{6\theta_1}{\alpha} \), where \(\theta_1 = \sum_{m=1}^{m(1)} (\theta_{1,m}' - \theta_{1,m}) \leq \frac{1}{4} \).

Next we connect a leaf \(L_{1,m}' \) with \(L \) crosswise on \(t_{1,m} (m=1,2, \cdots, m'(1)) \). Put \(\mathcal{R}'(F, 1) = \mathcal{R}' + \sum_{m=1}^{m(1)} \approx^\Gamma_{1,m} \) and put \(U(w, F, 1) = 0 \) in \(\sum_{m=1}^{m(1)} \hat{D}_{1,m} \) and \(U(w, F, 1) = U_1(w) \) in \(\mathcal{R}' \). Then since \(U_i(w) = 0 \) in \(L \), \(U(w, F, 1) \) is also a \(C_1 \)-function in \(\mathcal{R}'(F, 1) \) and \(D(U(w, F, 1)) = D(U_i(w)) \). Put

\[\mathcal{R}(F, 1) = \mathcal{R}'(F, 1) - \sum_{m=1}^{m(1)} L_{1,m,n(m)+1} \]

Then \(\partial \mathcal{R}(F, 1) \) is composed of \(m(1) \) number of compact relative boundary components \(B(F, 1) \) such that each component lies on the slits on which \(L_{1,m,n(m)+1} \) is connected. Such operation is called the extension of first step of \(L \) through \(F \).

Extension of 2nd step of \(L \) through \(F \). We extend every \(L_{1,m,n(m)+1} (m = 1, 2, \cdots, m'(1)) \) through \(\sum_{n'} D_{z,m} \) (\(\sum' \) means the sum over \(D_{z,m} \) contained in \(D_{1,m} \)) by defining \(L_{z,m,n} (n = 1, 2, \cdots, n(2,m)+1) \) and connect \(L_{z,m} \) on \(t_{z,m} (m = 1, 2, \cdots, m'(2)) \) crosswise to obtain \(\mathcal{R}'(F, 2) = \mathcal{R}'(F, 1) + \sum_{m=1}^{m(2)} \sum_{n=1}^{n(2,m)+1} L_{z,m,n} \). Put \(\mathcal{R}(F, 2) = \mathcal{R}'(F, 2) - \sum_{m=1}^{m(2)} L_{z,m,n(2,m)+1} \). Then there exists a \(C_1 \)-function \(U(F, w, 2) \) in \(\mathcal{R}(F, 2) \) such that \(U(F, w, 2) = 0 \) in \(\mathcal{R}'(F, 1) \), \(U(F, w, 2) = 1 \) on \(B(F, 2) = \partial \mathcal{R}(F, 2) \) and

\[D(U(F, w, 2)) = 3D(U_2(w)) = \frac{6\theta_2}{\alpha} \],

where \(U_2(w) = 2(\alpha - \log R + \log |w|)/\alpha \) in \(\sum_{m=1}^{m(2)} D_{z,m} \) and \(U_2(w) = 1 \) in \(\sum_{m=1}^{m(2)} D_{z,m} \) and \(\theta_2 = \sum_{m=1}^{m(2)} (\theta_{2,m}' - \theta_{2,m}) \leq \frac{1}{4^2} \).
Suppose $\mathcal{R}(F, l)$ is defined, we define $(l+1)$-th step and $\mathcal{R}(F, l+1)$ as follows: we extend $L_{l,m,n(l,m)+1}$ (m = 1, 2, ..., m(l)) through $\sum' D_{l+1,m}$ (\sum' means over $D_{l+1,m}$ contained in $D_{l,m}$) by defining $\mathcal{L}_{l+1,m,n(t.m)+1}(m=1,2,\cdots,m(l))$ through $\sum D_{l+1,m}$ (\sum means over $D_{l+1,m}$). We extend $X_{l+1,m}^f$ and connecting $\sum_{m=1}^{m(l+1)}L_{l+1,m}$ on $\sum_{m=1}^{m(l+1)}t_{l+1m}$ ($\sum \subset \sum_{m=1}^{m(l)}D_{l,m}$). Put

$$\mathcal{R}'(F, l+1) = \mathcal{R}'(F, l) + \sum_{m=1}^{m(l+1)}L_{l+1,m} + \sum_{m=1}^{m(l+1)}X_{l+1,m}^f$$

and

$$\mathcal{R}(F, l+1) = \mathcal{R}'(F, l+1) - \sum_{m=1}^{m(l+1)}X_{l+1,m,n(l+1,m)+1}$$

There exists a C_1 function $U(F, w, l+1)$ in $\mathcal{R}(F, l+1)$ such that $U(F, w, l+1) = 0$ in $\mathcal{R}'(F, l)$, $U(F, w, l+1) = 1$ on $B(F, l+1)$ and $D(U(F, w, l+1)) \leq \frac{6\theta_{l+1}}{2^{l+1}}$. Such extension is called the extension of $l+1$-th step of \mathcal{L} through F. Put $\mathcal{R}_F = \lim_{l} \mathcal{R}(F, l)$. Then \mathcal{R}_F has the following properties:

1). \mathcal{R}_F is a Riemann surface of planer character of connectivity $\leq \infty$ and has null-boundary.

2). Let Ω_F be a star domain of \mathcal{R}_F with centre at $w = 0$ of \mathcal{L}. Then Ω_F contains the part of \mathcal{L} outside of $\sum_{m=1}^{m(1)}K_{1,m} + \sum_{m=1}^{m(1)}K_{1,m}$, where

$K_{1,m}$: $Re^{-a} < |w| < \infty$, $\theta_{1,m} < \arg w < \theta_{1,m}'$, $m = 1, 2, \cdots, m(1)$

$K_{1,m}'$: $Re^{-a} < |w| < \infty$, $\arg w = \theta_{1,m}' = \arg t_{1,m}$, $m = 1, 2, \cdots, m'(1)$

3). Let Ω_F be as above. Then the singular set of Ω_F is F.

1). Clearly every $\mathcal{R}(F, l)$ is of planer character and $B(F, l)$ consists of $n(l)$ number of components. Hence \mathcal{R}_F is of planer character and its connectivity $\leq \infty$. Now $\mathcal{R}(F, l)$ (l = 1, 2, ...,) is an exhaustion of \mathcal{R}_F, let $\omega_l(w)$ be a harmonic function in $\mathcal{R}(F, l) - C$ such that $\omega_l(w) = 0$ on ∂C and $\omega_l(w) = 1$ on $B(F, l)$, where $C = E[w:|w| < 1]$ of \mathcal{L}. Then by the Dirichlet principle $D(\omega_l(w)) \leq D(U(F, w, l)) \leq \frac{6}{4^l \times 2^{l+1}}$. Whence $\lim_{l=\infty} \omega_l(w) = 0$ and \mathcal{R}_F has null-boundary.

2). is clear from the structure of $\mathcal{R}(F, 1)$.

3). If p is an accumulating point of $\lim B_l$, $p \in A_l$ for any l and $p \in \bigcap_{l=1}^{\infty} A_l$, by $F_i = A_i + (B_{l-1} - B_{l-2}) \supset F$. Now $\mes F = 0$ and F does not contain any arc. Whence if $p \in \bigcap_{l=1}^{\infty} A_l$, $p \in \sum_{l=1}^{\infty} \sum_{m=1}^{m(l)} (q_{l,m} + q_{l,m}^f)$. Corresponding fact occurs for
An Inverse Theorem of Gross's Star Theorem

In fact for \(p \in \sum_{l=1}^{\infty} \sum_{m=1}^{m(l)} (q_{l,m} + q'_{l,m}) - \lim_{l=\infty} B_l \), there exists a ray: \(r(p) \) such that \(r(p): Re^{-\frac{a}{2^l}} \leq |w| < \infty, \arg w = \arg p \). Suppose \(p \in \sum_{l=1}^{\infty} \sum_{m=1}^{m(l)} (q_{l,m} + q'_{l,m}) - \lim_{l=\infty} B_l \). Then since there exist only a finite number of points \(\{q_{l,m}\} \) and \(\{q'_{l,m}\} \) for given \(l \), there exists a sequence \(q_{l_1,i_1}, q_{l_2,i_2}, \ldots \rightarrow p \), \(l_1 < l_2 \ldots \). Hence there exists a sequence of rays \(r_{l,i}: Re^{-\frac{a}{2^i}} \leq |w| < \infty, \arg w = \arg q_{l,i} \) tending to the ray \(r(p) \). Thus to every \(p \in F \) a singular ray corresponds and the singular set \(S \) of \(\Omega_F \) is \(F \).

V. Extension of \(L \) through a discrete \(F \) set of measure zero.

Let \(F_0 = \sum_{i=1}^{\infty} F_i \), \(\delta_i = \text{dist}(F_i, \sum_{j \neq i} F_j) > 0 \) and \(F_{i,0} = \{ p : \text{dist}(F_i, p) \leq \frac{\delta_i}{2} \} \).

Then \(\overline{F}_{i,0} \supset F_i \) and \(\overline{F}_{i,0} \cap \overline{F}_{j,0} = 0 \) for \(i \neq j \). Every \(F_i \) is expressed by

\[
F_i = \cap_{l=1}^{\infty} A_{i,l} + \sum_{l=1}^{\infty} (B_{i,l} - B_{i,l-1}),
\]

where \(B_{i,0} = 0 \) and

\[
A_{i,l} = J_{i,l,1} + J_{i,l,2} + \cdots + J_{i,l,m(i,l)} \quad \text{and} \quad B_{i,l} = p_{i,l,1} + p_{i,l,2} + \cdots + p_{i,l,m'(i,l)}.
\]

Since \(\text{mes} F_i = 0 \), there exists a number \(l(i) \) such that \(\text{mes} A_{i,l} < \frac{\delta_i}{4} \) and \(A_{i,l} + B_{i,l} \subset \overline{F}_{i,0} \) for \(l > l(i) \). On the other hand, by (3) we suppose without loss of generality that

\[
A_{i,l} + B_{i,l} \subset \overline{F}_{i,0}, \quad i = 1, 2, \ldots.
\]

Also we can suppose

\[
\text{mes} A_{i,l} \leq 1/2^l, \quad l = 1, 2, \ldots.
\]

We define \(D_{i,l,m}(m = 1, 2, \ldots, m(i,l)) \) and \(t_{i,l,m}(m = 1, 2, \ldots, m'(i,l)) \) from \(F_i = \bigcap_{l=1}^{\infty} A_{i,l} + \lim_{l=\infty} B_{i,l} \) for every \(i \). Let

\[
R_1 = e^{\beta l} \quad \text{and} \quad \alpha = \alpha^l, \quad \beta > \alpha > 2.
\]

By (6) we have

\[
\log(R_1 e^{-\frac{\alpha l}{2}}/R_i) = \beta^{l+1} - \beta^l - \frac{\alpha^{l+1}}{2} > \beta^l \left(\frac{\beta}{2} - 1 \right) \rightarrow \infty \quad \text{as} \quad i \rightarrow \infty.
\]
At first we extend \mathcal{L} through F_1 by $\{D_{1,l,m}\} + \{t_{1,l,m}\}$ and we obtain \Re_{F_1}. Then

1°. By (2) of III Ω_{F_1} (star domain of \Re_{F_1} with centre at $w=0$ of \mathcal{L} contains the part of \mathcal{L} outsider of K_1: $R e^{-\frac{a_i}{2}} \leq |w| \leq \infty$, $\arg w = \theta \in \overline{F}_1$.

2°. There exists a sequence of bordered Riemann surface $\{\Re(F_l, l)\}$ $(l=1, 2, \ldots)$, where $\Re(F_1, l) \rightarrow \Re(F_1)$ as $l \rightarrow \infty$ and $\Re(F_1, l)$ has compact relative boundary $B(F_1, l)$. This $\Re(F_1, l)$ is extended through $(\sum_{m=1}^{m(1,1)}D_{1,1,m} + \sum_{m=1}^{m(1,1)}t_{1,1,m}) + (\sum_{m=1}^{m(1,2)}D_{1,2,m} + \sum_{m=1}^{m(1,2)}t_{1,2,m}) + \cdots + (\sum_{m=1}^{m(1,l)}D_{1,l,m} + \sum_{m=1}^{m(1,l)}t_{1,l,m})$. We call $\Re(F_1l)$, a surface of l-th step through F_1.

3°. There exists a C_1-function $U(F_1, w, l)$ in $\Re(F_1, l)$ such that $U(F_1, w, l) = 0$ in \mathcal{L}, $U(F_1, w, l) = 1$ on $B(F_1, l)$ and $D(U(F_1, w, l)) \leq \frac{6}{\alpha_1} \text{mes}(A_1,l) \leq \frac{6}{2^{l}\alpha_1}$.

By (1) Ω_{F_1} contains the part of \mathcal{L} not lying on $(K_1+K_2+\cdots+K_t)$ where $K_t: R e^{-\frac{a_{i+1}}{2}} \leq |w| \leq \infty \arg w = \theta \in \overline{F}_t$. Hence

\[\sum_{m=1}^{m(t+1,1)}D_{t+1,1,m} + \sum_{m=1}^{m(t+1,1)}t_{t+1,1,m} \]

is contained in $\Omega_{\Sigma F_1}$. Whence the extension of $\Omega_{\Sigma F_1}$ through F_{t+1} can be performed. This is the extension of \mathcal{L} through F_{t+1}. Thus we can define the extension of $\Omega_{\Sigma F_1}$ through F_{t+1} to obtain $\Re_{\Sigma F_1}$. Also there exists a C_1-function $U(F_{t+1}, w, l)$ in $\Re(F_{t+1}, l)$ such that $U(F_{t+1}, w, l) = 0$ in \mathcal{L}, $U(F_{t+1}, w, l) = 1$ on $B(F_{t+1}, l)$ and

\[D(U(F_{t+1}, w, l)) \leq \frac{6}{2^{t}\alpha_{t+1}}. \]

Put

\[\Re_{F_0} = \lim_{t \to \infty} \Re_{\Sigma F_t}. \quad \text{Then } \Re_{F_0} \]

has the following properties:

1°. \Re_{F_0} is the surface of planer character and \Re_{F_0} has null-boundary.

2°. The singular set S of the star domain Ω of \Re_{F_0} with centre at $w=0$ on \mathcal{L} is F_0.

\[\text{Fig. 4.} \]
An Inverse Theorem of Gross's Star Theorem

Proof of 1°). We must define an exhaustion \(M_n (n=1, 2, \cdots) \) of \(M_{F_s} \) with compact relative boundary \(\partial M_n \). Let \(C \) be the circle \(|w|<1\) in \(C \). We extend \(\mathcal{L} \) through \(F_i \) till \(n \)-th step, \(\mathcal{L} \) through \(F_i \) till \((n-1) \)-th step... and through \(F_n \) till first step. Then we have the surface composed of \(\mathcal{L} + (\mathcal{R}(F_1, n)-\mathcal{L}) + (\mathcal{R}(F_2, n-1)-\mathcal{L}) + \cdots + B(F_n, 1) \). This surface has compact relative boundary consisting of \(B(F_1, n)+B(F_2, n-1)+\cdots+B(F_n, 1) \). We extract the part \(\Gamma_n : R_{n+1}e^{-a_{n+1}}<|w|<\infty \) (in which \(\mathcal{L} \) will be extended through \(F_{n+1} \), \(F_{n+2} \) ...). Then we have the surface composed of \(\mathcal{L} + (\mathcal{R}(F_1, n)-\mathcal{L}) + (\mathcal{R}(F_2, n-1)-\mathcal{L}) + \cdots + (\mathcal{R}(F_n, 1)-\mathcal{L}) \). This surface has compact relative boundary consisting of \(B(F_1, n)+B(F_2, n-1)+\cdots+B(F_n, 1) \).

We extract the part \(\Gamma_n \):

\[\begin{align*}
&\sum_{j=1}^{n} B(F_1, n+1-j) + \partial \Gamma_n \\text{from} \\ \mathcal{L}
&\text{of this surface.} \\
&\text{The remaining surface} \ M_n \ \text{has relative boundary} \\
&\sum_{j=1}^{n} B(F_1, n+1-j) + \partial \Gamma_n \\
\end{align*} \]

Let \(G_n \) be a ring in \(C \) such that \(R_n<|w|<R_{n+1}e^{-a_{n+1}} \) and let \(V_n(w) \) be a \(C_1 \)-function in \(M_n \) such that \(V_n(w) \) is harmonic in \(G_n \), \(V_n(w)=0 \) in \(M_n-G_n \), \(V_n(w)=1 \) on \(\partial G_n \) lying on \(|w|=R_{n+1}e^{-a_{n+1}} \). Then by (6)

\[D(V_n(w))=2\pi/\log\frac{R_{n+1}e^{-a_{n+1}}}{R_n} \leq \frac{2\pi}{\beta^{n} \left(\frac{\beta}{2} - 1 \right)} \]

Let \(\mathcal{U}_n(w)=V_n(w) \) in \(G_n \) and \(\mathcal{U}_n(w)=U(F_1, w, n)(=U(F_2, w, n-1)=\cdots=U(F_n, w, 1)) \) in \(X-G_n \), \(\mathcal{U}_n(w)=U(F_1, w, n) \) in \(\mathcal{R}(F_1, n)-X \), \(\mathcal{U}_n(w)=U(F_2, w, n-1) \) in \(\mathcal{R}(F_2, n-1)-X \) ... and \(\mathcal{U}_n(w)=V(w) \) in \(G_n \).

Then \(\mathcal{U}_n(w) \) is a \(C_1 \)-function in \(M_n \) such that \(\mathcal{U}_n(w)=0 \) on \(\partial C \) and \(\mathcal{U}_n(w) = 1 \) on \(\partial M_n \). Then by the Dirichlet principle and by (6) and (7)

\[D(\omega_n(w)) \leq D(\mathcal{U}_n(w)) \leq \sum_{i=1}^{n} D(U(F_i, w, n+1-i)) + D(V_n(w)) \leq \]

\[\frac{6}{2^{n+1} \alpha_i} + \frac{2\pi}{\beta^n \left(\frac{\beta}{2} - 1 \right)} + \frac{6n}{2^{n+1}} + \frac{2\pi}{\alpha^n \left(\frac{\beta}{2} - 1 \right)} \]

where \(\omega_n(w) \) is a harmonic function in \(M_n-C \) such that \(\omega_n(w)=1 \) on \(\partial M_n \) and \(\omega_n(w)=0 \) on \(\partial C \). It is evident that \(\lim_{n} \omega_n(w)=0 \) and \(\{M_n\} \) is an exhaustion of \(M_{F_s} \). Hence \(M_{F_s} \) has null-boundary. Next since every \(M_n \) is a surface of planer character, \(M_{F_s} \) is of planer character.

2°). It can be proved that the singular set \(S \) of \(\Omega \) satisfies \(S=\sum F_i=F_s \) as III. Hence \(M_{F_s} \) is the Riemann surface required and the Theorem is proved.

Department of Mathematics
Hokkaido University

(Received June 24, 1963)