ON QUASI-GALOIS EXTENSIONS OF
DIVISION RINGS

Dedicated to Prof. Kinjiro Kunugi on his 60th birthday

By

Takasi NAGAHARA and Hisao TOMINAGA

Throughout the present paper, R be always a division ring, and S a division subring of R. And, we use the following conventions: $C=V_R(R)$, $V=V_R(S)$, $H=V_R^2(S)=V_R(V_R(S))$, and further for any subrings $R_1 \supseteq R_2$ of R the set of all R_2-(ring) isomorphisms of R_1 into R will be denoted as $\Gamma(R_1/R_2)$. As to other notations and terminologies used in this paper, we follow the previous one [3]. We consider here the following conditions:

(I) If S' is a subring of R properly containing S with $[S':S]<\infty$ then $\Gamma(S'/S)\neq 1$.

(I') If S' is a subring of R properly containing S with $[S':S]<\infty$ then $\Gamma(S'/S)\neq 1$.

(II) If $S_1 \supseteq S_2$ are intermediate rings of R/S with $[S_1:S]<\infty$ then $\Gamma(S_1/S)|S_2=\Gamma(S_2/S)$.

(II') If $T_1 \supseteq T_2$ are intermediate rings of R/H with $[T_1:H]<\infty$ then $\Gamma(T_1/S)|T_2=\Gamma(T_2/S)$.

Following [5], R/S is said to be (left-)quasi-Galois when (I) and (II) are fulfilled. Symmetrically, if (I') and (II') are done, we shall say R/S is right-quasi-Galois. In [5], we can find some fundamental theorems of quasi-Galois extensions. The purpose of the present paper is to expose several additional theorems concerning such extensions. At first, we shall recall the following lemmas which have been obtained in [4] and [5].

Lemma 1. If S' is an intermediate ring of R/S then $[V:V_R(S')]$.

1) In [5], the condition that if T is an intermediate ring of R/H with $[T:H]<\infty$ then $\Gamma(T/S)|H=\Gamma(H/S)$ was cited as (II'). However, it will be rather natural to alter it like above.
[S':S]_l, and particularly in case V^2_R(S)=S the equality holds (provided we
do not distinguish between two infinite dimensions). If [S':S]_l<\infty then
V^2_R(S')=H[S'], and if R|S is (left-) locally finite then so is R/H.

Lemma 2. Let R/S be locally finite. In order that R/S is quasi-Galois it is necessary and sufficient that (I') and (II) are satisfied, and if (I') and (II') are satisfied then R/S is quasi-Galois.

Lemma 3. Let R be locally finite and quasi-Galois over S. If T is
an intermediate ring of H|S then T\Gamma(T|S)\subseteq H, whence it follows \Gamma(H|S)
=\mathfrak{G}(H|S).

Lemma 4. Let R be locally finite and quasi-Galois over S. If S' is
an intermediate ring of R/S with [S':S]_l<\infty then R/S' is quasi-Galois,
V^2_R(S')|S' is outer Galois and \mathfrak{G}(V^2_R(S')|S')\approx \mathfrak{G}(H[H\cap S']) by contraction, and
\Gamma(V^2_R(S')|S') |S'=\Gamma(S'/S).

By Lemma 4, in the same way as in the proof of [3, Lemma 3.5], we
can prove that if R is locally finite and quasi-Galois over S and R' an in-
termediate ring of R/S with [H[R']:H]_l<\infty then H[R'] is locally finite and outer Galois over R' and \mathfrak{G}(H[R']|R')\approx \mathfrak{G}(H[H\cap R']) by contraction.
Accordingly, we can apply the same argument as in the proof of [4, Lemma 4] to obtain the next

Theorem 1. Let R be locally finite and quasi-Galois over S. If R'
is an intermediate ring of R/S, and H' an intermediate ring of H/S that
is Galois over S, then H'[R'] is locally finite and outer Galois over R' and
\mathfrak{G}(H'[R']|R')\approx \mathfrak{G}(H[H\cap R']) (algebraically and topologically) by contraction.

The proof of the next lemma will be easy from that of [3, Lemma 3.2].

Lemme 5. Let T be an intermediate division ring of R/S, and \mathfrak{G} an
automorphism group of H[T]. If J(\mathfrak{G},H[T])=T and H\mathfrak{G}=H then [H^*:T:H^*]_l^\mathfrak{G}=[T:H\cap T]_l and [T\cdot H^*:H^*]_l=[T:H\cap T]_l, for each intermediate
division ring H* of H/H\cap T.

Now, Lemmas 4 and 5 enable us to apply the argument used in the
proof of [3, Lemma 3.2] to obtain the next lemma.

Lemma 6. Let R be locally finite and quasi-Galois over S. If S' is
an intermediate ring of R/S with [S':S]_l<\infty then [H^*[S']:H^*]_l=[R^*:H
\cap R^*]_l=[S':H\cap S']_l, for each intermediate rings H* of H[H\cap S'] and R*
of H[S']/S'.

By the validity of Lemma 6, the proof of the next theorem proceeds
evidently just like that of [3, Theorem 3.2] did.

2) $H^*\cdot T$ means the module product of H^* and T.
Theorem 2. Let R be locally finite and quasi-Galois over S. If T is an f-regular intermediate ring of $R|S$ then $[T:H\cap T]=[V:V_R(T)],<\infty$.

Lemma 7. If R/H is locally finite and R' is an intermediate ring of R/H with $[R':H],<\infty$ then R/H is right-locally finite and $[R':H]_r=[R':H]_r$.

Proof. Although the first assertion is [2, Lemma 4] itself, we shall prove here both. Let X be an arbitrary finite subset of V that is linearly left-independent over $V'=V_R(R')$, and let $R_i=R'[X]$, that is evidently left-finite over H. We set here $V_i=V_{R_i}(H)$, $V'_i=V_{R_i}(R')$, and $C_i=V_{R_i}(R_i)$. Then, $[V_i:C_i]_{\infty}[R_i:H],<\infty$ by Lemma 1, whence it follows $[V_i:V'_i]=(V_i:V'_i)<\infty$. On the other hand, Lemma 1 yields also $[V_i:V'_i]<[R':H]_r$, whence we obtain $[V_i:V'_i]<[R':H]_r$. Recalling here that $X\subseteq V_i$ and $V'_i\subseteq V'$, we obtain $\bigoplus X<\bigoplus V_i<\bigoplus V', that is, $[V:V']_r<\bigoplus V'_i$. Lemma 1 yields therefore $[R':H]_r=[V:V']_r<\bigoplus V'_i$, because $V'_iV'=igoplus V'$. Now, the right-local finiteness of R/H is evident, and so it follows symmetrically $[R':H]_r<[R':H]_r$. We have proved therefore that $[R':H]_r=[R':H]_r$.

The next corollary has been stated in [2, Theorem 2], whose proof was essentially due to [1, Theorem 7.9.2]. However, we have recently found that the proof of [1, Theorem 7.9.2] would be open to doubt—we are afraid that the proof of [1, Theorem 7.8.1] was no longer efficient in that of [1, Theorem 7.9.2]. Because of this reason, we should like to present a new proof without making use of [1, Theorem 7.9.2] to our corollary.

Corollary 1. Let R be Galois over S and locally finite over H. If S' is an intermediate ring of $R|S$ with $[S':S],<\infty$ then $[S':S]_r=[S':S]_r$.

Proof. At first, if R/S is outer Galois, [3, Lemma 1.3] yields at once $\infty>[S':S]_r=[(\mathfrak{u}|S')R:R],\infty=[(\mathfrak{u}|S')C:R].\infty=[(\mathfrak{u}|S')R:R],\infty=[S':S]_r$. Next, for general case, R/S' is Galois by [2, Theorem 1] and there holds $\infty>[H[S']:H]_r=[H[S']:H], by Lemma 7. And so, by Lemmas 1 and 5, we obtain $\infty>[H[S']:H]_r>[S':H]_r>[V:V_{R}(S')_r]=[H[S']:H]_r, and \infty>[H[S']:H]_r>[H\cdot S':H]_r=[S':H]_r>[V:V_{R}(S')_r]=[H[S']:H]_r$. Accordingly, it follows $[S':H\cap S']_r=[H[S']:H],=[H[S']:H]_r=[S':H\cap S']_r<\infty$. Recalling here that H/S is outer Galois, as is noted above, there holds $[H\cap S':S]_r=[H\cap S':S],<\infty$. Now, combining these equalities, our assertion $[S':S]=S:S]_r$ will be evident.

Now, we shall prove the next theorem.

Theorem 3. The following conditions are equivalent to each other:

3) Since the division ring R is $\mathfrak{G}r_{i}$-irreducible and $V_{hom(R,R)}(\mathfrak{G}r_{i})=S_{i}$, $\mathfrak{G}r_{i}$ is dense in $Hom_{S_{i}}(R,R)$ by Jacobson’s density theorem [1, p. 28].
(1) R/S is locally finite and quasi-Galois, (1a) R/S is right-locally finite and right-quasi-Galois, (2) R/S is locally finite and (I)', (II) are fulfilled, (2a) R/S is right-locally finite and (I)', (IIa) are fulfilled, (3) R/S is locally finite and (I)', (II') are fulfilled, and (3a) R/S is right-locally finite and (I)', (II') are fulfilled.

Proof. In virtue of Lemma 2, one will readily see that only the implications (1) \Rightarrow (3) and (1) \Rightarrow (1a) are left to be shown.

(1) \Rightarrow (3). Let $T_1 \supseteq T_2$ be intermediate rings of R/H with $[T_1:H]_r < \infty$. Choose an intermediate ring S'_1 of T_1/S such that $[S'_1:S]_r < \infty$ and $T_1 = H[S'_1]$ and an intermediate ring S_i of T_i/S'_i such that $[S_i:S]_r < \infty$ and $T_i = H[S_i] = V_H(S_i)$. If we set $S_2 = T_2 \cap S_i (\supseteq S'_2)$, then $[S_2:S]_r < \infty$ and $T_2 = H[S_2] = V_H(S_2)$ evidently. As R/S_i is quasi-Galois, $\mathfrak{G}(T_2/S_2) = \mathfrak{G}(T_i/S_i) | T_2$ by Lemma 4. Noting that $\Gamma(T_i/S_i)|S_2 = \Gamma(T_2/S_2)$, by Lemma 4, for each $\sigma \in \Gamma(T_i/S_i)$ we can find some $\rho \in \Gamma(T_i/S_i)$ such that $\sigma | S_2 = \rho | S_2$. By Lemma 3, $T_2 \sigma = H[S_2] \subseteq H[S_2] \subseteq T_2$. Let $T_2 = H[S_2]$ and $\sigma^{-1}\rho^{-1} \in \Gamma(T_i/S_2) = \mathfrak{G}(T_2/S_2) = \mathfrak{G}(T_i/S_i) | T_2$. Accordingly, ρ is contained in $\Gamma(T_i/S_i)$ \Rightarrow (3) obviously.

(1) \Rightarrow (1a). Let S' be an intermediate ring of R/S with $[S':S]_r < \infty$. Since $\mathfrak{G}(H[S']/S') \approx \mathfrak{G}(H/H \cap S')$ by contraction (Lemma 4), Lemmas 1, 5 and 7 yield $[S':H \cap S']_r = [S':H:H]_r \leq [H[S']:H]_r < \infty$. On the other hand, recalling that H/S is outer Galois by Lemma 2, we obtain $[H \cap S':S]_r = [H \cap S':S]_r < \infty$. (See the proof of Corollary 1.) Combining those, we obtain $[S':S]_r < \infty$, which proves evidently the right-local finiteness of R/S. Now, our assertion will be obvious.

Corollary 2. Let R be locally finite and quasi-Galois over S. If S' is an intermediate ring of R/S finitely generated over S then $[S':S]_r = [S':S]_r$.

Proof. As R/H is locally finite by Lemma 1 and R is right-locally finite and right-quasi-Galois over S by Theorem 3, Lemmas 6 and 7 together with their symmetries yield $[S':H \cap S']_r = [H[S']:H]_r = [H[S']:H]_r = [S':H \cap S']_r$. Hence, we readily obtain $[S':S]_r = [S':S]_r$. (Cf. the proof of Corollary 1.)

The following corollary is [3, Corollary 3.5] itself. However, its proof contained a gap. In fact, in order to be able to apply the argument used in the proof of [3, Lemma 3.9], we had to prove the validity of (II'). This fact requested is now secured by Theorem 3.

Corollary 3. If R is locally finite and quasi-Galois over S and $[R:H]_r \leq \aleph_0$, then R/S is Galois.

Further, for the sake of completeness, we shall give here the proof of the following theorem [5, Theorem 2].
Theorem 4. If R/S is locally finite and quasi-Galois then so is R/T for each f-regular intermediate ring T of R/S.

Proof. Obviously, by Lemma 4, we may restrict our proof to the case that $T\subseteq H$. Let F be an arbitrary finite subset of R, and set $S' = S[F]$, $H' = T[H \cap S']$, $R' = H'[S'] = T[F]$. Then, $[R':H]' = [S':H \cap S'] < \infty$ by Lemma 6. On the other hand, noting that H is locally finite and outer Galois over S, there holds $[H':T] < \infty$ by [3, Conclusion 2.1]. Hence, we have $[T[F]:T], [R':H]', [H':T] < \infty$, which means evidently the local finiteness of R/T. Moreover, as $V^\tau_k(T) = H$ and the condition (II') holds by Theorem 3, our assertion is a consequence of Theorem 3.

Lemma 8. Let R be locally finite and quasi-Galois over S. If T is an f-regular intermediate ring of R/S then $\Gamma(V^\tau_k(T)/S)|T = \Gamma(T'/S)$.

Proof. Take an intermediate ring S' of T/S such that $[S':S], < \infty$ and $V^\tau_k(S') = V^\tau_k(T)$. Then, $T' = V^\tau_k(T) = V^\tau_k(S') = H[S']$ and $[T':H], < \infty$ by Lemma 1. As $\mathfrak{B}(T'/S) \approx \mathfrak{B}(H/H \cap S')$ by contraction (Lemma 4), [3, Conclusion 2.1] will yield at once $T = (H \cap T)[S']$. Now, let σ be an arbitrary element of $F(T/S)$. Then, by Lemma 4 $\sigma | S' = \tau | S'$ for some $\tau \in \Gamma(T'/S)$, and by Lemma 3 we see that $T_\sigma = (H \cap T)\sigma[S'\sigma] \subseteq H[S'\sigma] = H(S'\sigma) = T'\sigma$. And so, $\sigma^{-1} \in \Gamma(T'/S') = \mathfrak{B}(T'/S')|T$ by Lemmas 3, 4 and [3, Conclusion 2.1], whence we have $\sigma = (\sigma^{-1})\tau \in \Gamma(T'/S)|T$.

By the light of Lemma 8, we can prove the following extension theorem of isomorphisms that corresponds to [3, Theorem 3.5].

Theorem 5. Let R be locally finite and quasi-Galois over S, and $T_i \supseteq T_i$ intermediate rings of R/S. If T_i is f-regular then $\Gamma(T_i/S) = \Gamma(T_i/S)|T_i$.

Proof. Setting here $T_i = V^\tau_k(T_i)(i = 1, 2)$, we have $T_i \supseteq T_i \supseteq H$, $T_i \supseteq T_i \supseteq T_i$, $[T_i':H], < \infty$ by Lemma 1, and so $\Gamma(T_i/S) = \Gamma(T_i'/S)|T_i(i = 1, 2)$ and $\Gamma(T_i'/S) = \Gamma(T_i'/S)|T_i'$ by Lemma 8 and Theorem 3 respectively. It follows therefore $\Gamma(T_i'/S) = \Gamma(T_i'/S)|T_2$, $T_2 = \Gamma(T_i'/S) | T_2 = (\Gamma(T_i'/S)|T_2) | T_2 = \Gamma(T_i/S)|T_2$.

References

Department of Mathematics,
Okayama University
and
Department of Mathematics,
Hokkaido University

(Received May 31, 1963)