<table>
<thead>
<tr>
<th>Title</th>
<th>ON THE DISTRIBUTION OF ALMOST PRIMES IN AN ARITHMETIC PROGRESSION</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author(s)</td>
<td>Uchiyama, Saburô</td>
</tr>
<tr>
<td>Citation</td>
<td>Journal of the Faculty of Science Hokkaido University. Ser. 1 Mathematics = 北海道大学理学部紀要, 18(1-2): 001-022</td>
</tr>
<tr>
<td>Issue Date</td>
<td>1964</td>
</tr>
<tr>
<td>Doc URL</td>
<td>http://hdl.handle.net/2115/56050</td>
</tr>
<tr>
<td>Type</td>
<td>bulletin (article)</td>
</tr>
<tr>
<td>File Information</td>
<td>JFSHIU_18_N1-2_001-022.pdf</td>
</tr>
</tbody>
</table>

Hokkaido University Collection of Scholarly and Academic Papers : HUSCAP
ON THE DISTRIBUTION OF ALMOST PRIMES IN AN ARITHMETIC PROGRESSION

By

Saburô UCHIYAMA

1. Introduction. An almost prime is a positive integer the number of whose prime divisors is bounded by a certain constant. The purpose of this paper is to deal with an existence problem of almost primes in a short arithmetic progression of integers. We shall prove the following

Theorem. Let k and l be two integers with $k \geq 1$, $0 \leq l \leq k-1$, $(k, l)=1$. There exists a numerical constant $c_{1}>0$ such that for every real number $x \geq c_{1}k^{3.5}$ there is at least one integer n satisfying

$$ x < n \leq 2x, \quad n \equiv l \pmod{k}, \quad V(n) \leq 2,$$

where $V(n)$ denotes the total number of prime divisors of n. In particular, if we write $a(k, l)$ for the least positive integer $n (>1)$ satisfying

$$ n \equiv l \pmod{k}, \quad V(n) \leq 2,$$

then we have

$$ a(k, l) < c_{2}k^{3.5}$$

with some absolute constant $c_{2}>0$.

It is of some interest to compare our results presented above, though they are not the best possible, with a recent result of T. Tatuzawa [5] on the existence of a prime number p satisfying $x < p \leq 2x$, $p \equiv l \pmod{k}$ and a celebrated theorem of Yu. V. Linnik concerning the upper bound for the least prime $p \equiv l \pmod{k}$ (cf. [3: X]).

Our proof of the theorem is based essentially upon the general sieve methods due to A. Selberg. The deepest result which we shall refer to is:

$$ \pi(x) = li x + O \left(x \exp(-c_{3}(\log x)^{1/2}) \right)$$

with a positive constant c_{3}, where $\pi(x)$ denotes, as usual, the number of primes not exceeding x (in fact, a slightly weaker result will suffice for our purpose). Apart from this, the proof is entirely elementary.

Notations. Throughout in the following, k represents a fixed positive
integer, \(l \) an integer with \(0 \leq l \leq k - 1 \), \((k, l) = 1 \). The letters \(p, q \) are used to denote prime numbers and, \(d, m, n, r \) to denote positive integers. The functions \(\mu(n) \) and \(\varphi(n) \) are Möbius’ and Euler’s functions, respectively. The function \(g(n) \) is defined as follows: \(g(1) = 1 \) and for \(n > 1 \) \(g(n) \) is the greatest prime divisor of \(n \).

\(s, t, u, v, w, x, y, z \) will be used to denote real numbers, constant or variable. \(c \) represents positive constants, not depending on \(k \) and \(l \), which are not necessarily the same in each occurrence; the constants implied in the symbol \(O \) are either absolute or else uniform in \(k \) and \(l \).

2. Preliminaries. There needs the following lemma for later calculations:

Lemma 1. We have

\[
\sum_{p \leq t} \frac{1}{p} = \log \log t + c_4 + O\left(\frac{1}{\log t}\right),
\]

where \(c_4 \) is a constant;

\[
\sum_{p \leq t} \frac{\log p}{p} = \log t + O(1);
\]

\[
\prod_{p \leq t} \left(1 - \frac{1}{p}\right)^{-1} = e^C \log t + O(1),
\]

where \(C \) is Euler’s constant; and

\[
\varphi(m) > c \frac{m}{\log \log 3m}.
\]

These results are well known. For a proof see [3: I, Theorems 3.1, 4.1 and 5.1].

Let \(M \geq 0, N \geq 2 \) be arbitrary but fixed integers and put

\[
y = 2k(N + 1), \quad w = y^{\frac{1}{2} - \varepsilon},
\]

where \(0 < \varepsilon < \frac{1}{4} \): we shall fix \(\varepsilon = \frac{1}{7} \) later on. Further we put

\[
z = y^{\frac{1}{\alpha}}, \quad z_1 = y^{\frac{1}{\beta}}, \quad z_2 = y^{\frac{1}{\gamma}},
\]

where \(\alpha, \beta, \gamma \) are fixed real numbers satisfying

\[
10 \geq \gamma \geq 4 \geq \alpha > 2 \geq \beta > 1.
\]
On the Distribution of Almost Primes in an Arithmetic Progression

First we wish to evaluate from below the number S_1 of those integers of the form $kn+l$ $(M<n\leqq M+N)$ which are not divisible by any prime $p\leqq z$. Applying the ‘lower’ sieve of A. Selberg (see [2] and [7]), we find that

$$S_1 \geqq (1-Q)N-R_1,$$

where

$$Q = \sum_{p \leqq z, (p,k)=1} \frac{1}{pZ_p}$$

with

$$Z_p = \sum_{n \leqq w/p} \frac{\mu^2(n)}{\varphi(n)},$$

and

$$R_1 = O\left(\frac{w^3}{\sqrt{z}}\right).$$

It will be shown later that

$$Z_p > c \frac{\varphi(k)}{k} \log p$$

for all $p \leqq z$,

and so we have, by Lemma 1,

$$R_1 = O\left(\frac{w^3(\log \log 3k)^2}{z \log z}\right).$$

We put

$$H_p = \prod_{q \leqq p, (q,k)=1} \left(1 - \frac{1}{q}\right)$$

for $p \leqq z$.

Then it is easily verified that

$$1-Q = \prod_{p \leqq z, (p,k)=1} \left(1 - \frac{1}{p}\right) - \sum_{p \leqq z, (p,k)=1} \frac{H_p - Z_p}{pH_pZ_p}.$$

Lemma 2. We have

$$S_1 \geqq \frac{KN}{\varphi(k)} \prod_{p \leqq z} \left(1 - \frac{1}{p}\right) - N \sum_{p \leqq z, (p,k)=1} \frac{H_p - Z_p}{pH_pZ_p} + O\left(\frac{N(\log \log 3k)^3}{z \log z}\right) + O\left(\frac{w^3(\log \log 3k)^2}{z \log z}\right).$$

Proof. We have only to prove that

$$\prod_{p \leqq z, (p,k)=1} \left(1 - \frac{1}{p}\right) = \frac{k}{\varphi(k)} \prod_{p \leqq z} \left(1 - \frac{1}{p}\right) + O\left(\frac{(\log \log 3k)^3}{z \log z}\right)$$
\[
(1) \quad \prod_{p \leq z, p \mid k} \left(1 - \frac{1}{p}\right)^{-1} = \frac{k}{\varphi(k)} + O\left(\frac{(\log \log 3k)^3}{z}\right).
\]

Now we have
\[
0 \leq \prod_{p \leq z, p \mid k} \left(1 - \frac{1}{p}\right) - \frac{\varphi(k)}{k} = \prod_{p \leq z, p \mid k} \left(1 - \frac{1}{p}\right) - \prod_{p \mid k} \left(1 - \frac{1}{p}\right) = \sum_{d > z, d \mid k \delta(p)} \sum_{a \mid k, \equiv 0(p)} \frac{\mu^2(d)}{d} = \sum_{p > z, p \mid k} \frac{1}{p} \sum_{d \mid k, (d, p) = 1} \frac{\mu^2(d)}{d} = o\left(\frac{1}{z} \log z \log \log 3k\right) = o\left(\frac{\log \log 3k}{z}\right),
\]
from which follows (1) at once.

Let \(q \) be a prime number in the interval \(z < q \leq z \), with \((q, k) = 1 \). We next evaluate from above the number \(S(q) \) of those integers \(kn + l \ (M < n \leq M + N) \) which are not divisible by any prime \(p \leq z \) and are divisible by the prime \(q \). Applying the ‘upper’ sieve of A. Selberg (see the Appendix below), we find that
\[
S(q) \leq \frac{N}{qW_q} + R(q),
\]
where
\[
W_q = \sum_{n \leq z, (n, k) = 1} \frac{\mu^2(n)}{\varphi(n)}
\]
with
\[
a = \frac{\alpha}{2} \left(1 - 2\varepsilon - \frac{\log q}{\log y}\right)
\]
and
\[
R(q) = O\left(\frac{z^a}{W_q^2}\right) = O\left(\frac{w^a}{qW_q^2}\right).
\]

Now, let \(r \geq 1 \) be a fixed integer and let \(S_r \) denote the number of those integers of the form \(kn + l \ (M < n \leq M + N) \) which are not divisible by any prime \(p \leq z \) and are divisible by at least \(r + 1 \) distinct primes \(q \) in the interval \(z < q \leq z \), with \((q, k) = 1 \). Clearly \(S_r \) is not greater than
On the Distribution of Almost Primes in an Arithmetic Progression

\[\sum_{z < q \leq z_1} \frac{1}{q W_q} \leq \frac{N}{r+1} \sum_{z < q \leq z_1} \frac{1}{q W_q} + O \left(\frac{w^r (\log \log 3k)^2}{\log^2 y} \right). \]

Hence:

Lemma 3. We have

\[S_2 \leq \frac{N}{r+1} \sum_{z < q \leq z_1} \frac{1}{q W_q} + o \left(\frac{w^r (\log \log 3k)^2}{\log^2 y} \right). \]

Proof. It will later be shown that

\[W_q > c \frac{\varphi(k)}{k} \log y \quad \text{for } z < q \leq z_1. \]

It follows that

\[\sum_{z < q \leq z_1} \frac{1}{q W_q} = O \left(\frac{w^r (\log \log 3k)^2}{\log^2 y} \right), \]

since

\[\sum_{z < q \leq z_1} \frac{1}{q} = \log \frac{\alpha}{\beta} + O(1) = O(1). \]

3. **Some lemmas.** Here we collect some auxiliary results which will be needed in the next two sections.

Lemma 4. We have

\[\sum_{d|m} \frac{\mu^2(d) \log d}{d} = O \left((\log \log 3m)^2 \right). \]

Proof. The left-hand side is equal to

\[\sum_{d|m} \frac{\mu^2(d)}{d} \sum_{p|d} \log p = \sum_{p|m} \log p \sum_{d|m} \frac{\mu^2(d)}{d} \]

\[= \sum_{p|m} \log p \sum_{d|m/p} \frac{\mu^2(d)}{d}, \]

where we have

\[\sum_{d|m/p \equiv 0 (p)} \frac{\mu^2(d)}{d} \leq \sum_{d|m} \frac{1}{d} = O(\log \log 3m) \]
and

\[\sum_{p|m} \frac{\log p}{p} = \sum_{p\leq \log m} \frac{\log p}{p} + O(1) \]

\[= O(\log \log 3m). \]

This proves Lemma 4.

Lemma 5. We have

\[\sum_{n \leq t} \frac{\mu^2(n)}{\varphi(n)} = \frac{\varphi(m)}{m} \log t + O(\log \log 3m). \]

Proof. H. N. Shapiro and J. Warga [4: Appendix I] have proved that

\[\sum_{n \leq t} \frac{\mu^2(n)}{n} = \frac{\varphi(m)}{m} \prod_{p|m} \left(1 - \frac{1}{p^2}\right) \log t + O(\log \log 3m). \]

Using this inequality we obtain

\[\sum_{n \leq t} \frac{\mu^2(n)}{\varphi(n)} = \sum_{n \leq t} \frac{\mu^2(n)}{n} \prod_{p|n} \left(1 + \frac{1}{p-1}\right) \]

\[= \sum_{n \leq t} \frac{\mu^2(n)}{n} \sum_{d|n} \frac{1}{\varphi(d)} \]

\[= \sum_{d \leq t} \frac{\mu^2(d)}{d \varphi(d)} \sum_{n \leq \frac{t}{d}} \frac{\mu^2(n)}{n} \prod_{p|n} \left(1 - \frac{1}{p^2}\right) \log \frac{t}{d} + O(\log \log 3dm) \]

\[= \frac{\varphi(m)}{m} \prod_{p|m} \left(1 - \frac{1}{p^2}\right) \sum_{d=1}^{\infty} \frac{\mu^2(d)}{d^2} \prod_{p|d} \left(1 - \frac{1}{p^2}\right)^{-1} \log \frac{t}{d} \]

\[+ O\left(\sum_{d \leq t} \frac{\mu^2(d)}{d \varphi(d)} \log \log 3dm \right) \]

\[= \frac{\varphi(m)}{m} \prod_{p|m} \left(1 - \frac{1}{p^2}\right) \sum_{d=1}^{\infty} \frac{\mu^2(d)}{d^2} \prod_{p|d} \left(1 - \frac{1}{p^2}\right)^{-1} \log t \]

\[+ O\left(\sum_{d \leq t} \frac{\mu^2(d)}{d^2} \prod_{p|d} \left(1 - \frac{1}{p^2}\right)^{-1} \log d \right) \]

\[+ O\left(\sum_{d \leq t} \frac{\mu^2(d)}{d \varphi(d)} \log \log 3dm \right). \]
On the Distribution of Almost Primes in an Arithmetic Progression

\[\frac{\varphi(m)}{m} \log t + O(\log \log 3m), \]

since

\[\sum_{d|m} \frac{\mu^2(d)}{d^2} \prod_{p|d} \left(1 - \frac{1}{p^s} \right)^{-1} = \prod_{p|m} \left(1 + \frac{1}{p^s} \right)^{-1} = \prod_{p|m} \left(1 - \frac{1}{p^s} \right)^{-1}. \]

Now, for \(u > 0, \ v \geq 2 \), let \(G(u, v) \) denote the number of positive integers \(n \leq u \) with \(g(n) \leq v \).

Define the function \(\rho(s) \) by the following properties:

\[\rho(s) = \begin{cases} 0 & (s < 0); \\ 1 & (0 \leq s \leq 1); \\ \rho'(s) = -\rho(s-1) & (s > 1); \\ \rho(s) \text{ continuous for } s > 0. \end{cases} \]

Then the following result has been proved by N. G. de Bruijn [1]:

Lemma 6. Let \(u > 0, \ v \geq 2 \), and put \(t = (\log u)/\log v \). Then we have

\[G(u, v) = O(u e^{-ct}) \]

and, more precisely,

\[G(u, v) = u \rho(t) \left(1 + O\left(\frac{\log(2 + t)}{\log v} \right) \right) + O(1) + O\left(u t^2 P(v) \right), \]

where \(P(v) \) is a function satisfying

\[\begin{align*} P(v) & \downarrow 0 \quad (v \to \infty), \\ P(v) & > (\log v)/v \quad (v \geq 2), \\ |\pi(v) - \text{li} v| & < v P(v)/\log v \quad (v \geq 2). \end{align*} \]

As to the function \(\rho(s) \) itself, it is not difficult to prove the following result, which is known as a lemma of N. C. Ankeny:

Lemma 7. For \(s_1 \geq s_2 \geq 1 \) we have

\[\rho(s_1) \leq \rho(s_2) e^{- (s_1 - s_2)}, \]

so that

\[\int_s^\infty \rho(t) dt \leq \rho(s) \quad (s \geq 1). \]

For a proof of this result see [8].

4. **Evaluation of \(S_1 \).** We are now going to find an explicit lower bound for \(S_1 \) on the basis of Lemma 2.
First we have to evaluate Z_p and $H_p - Z_p$ for $p \leq z$. To accomplish this we distinguish three cases on the magnitude of the prime p.

It is clear that

$$T_p \overset{\text{def}}{=} \sum_{\substack{n > w/\sqrt{p} \atop g(n) \leq p \atop (n, k) = 1}} \frac{1}{n} \geq H_p - Z_p \geq 0.$$

Case 1: $2 \leq p \leq \exp(\log y)^{3}$. By partial summation we get

$$T_p \leq \sum_{\substack{n > w/\sqrt{p} \atop g(n) \leq p}} \frac{1}{n} = \sum_{n > w/\sqrt{p}} \frac{G(n, p)}{n^2} + O(y^{-c}),$$

where $c_z = \frac{1}{2} - \varepsilon - \frac{1}{2\alpha}$. By Lemma 6 we have

$$\sum_{n > w/\sqrt{p}} \frac{G(n, p)}{n^2} = O\left(\sum_{n > w/\sqrt{p}} n^{-\left(1 + c/\log p\right)} \right) = O\left((\log y)^{\frac{2}{3}} \exp\left(-c(\log y)^{\frac{1}{3}}\right)\right).$$

It follows that

$$H_p - Z_p = O\left(\frac{1}{\log^{2} y}\right), \quad Z_p > c \frac{\varphi(k)}{k} \log p,$$

since, by Lemma 1,

$$H_p = \prod_{q \leq \exp(\log y)^{3}} \left(1 - \frac{1}{q}\right)^{-1} \geq \frac{\varphi(k)}{k} e^{c \log p} + O(1).$$

Case 2: $\exp(\log y)^{3} < p \leq z$. We have

$$T_p = \sum_{\substack{n > w/\sqrt{p} \atop g(n) \leq p \atop (n, k) = 1}} \frac{1}{n} \sum_{d | (n, k)} \mu(d)$$

$$= \sum_{d | (n, k)} \frac{\mu(d)}{d} \sum_{\substack{n > w/\sqrt{p} \atop g(n) \leq p}} \frac{1}{n}$$

$$= \sum_{d | (n, k)} \frac{\mu(d)}{d} \sum_{\substack{n > w/\sqrt{p} \atop g(n) \leq p}} \frac{1}{n}$$

$$+ \sum_{d | (n, k)} \frac{\mu(d)}{d} \sum_{\substack{w/\sqrt{p} \leq n > w/\sqrt{p} \atop g(n) \leq p}} \frac{1}{n}$$
\[
\prod_{q|k, q \leqq p} \left(1 - \frac{1}{q} \right) \sum_{g(n) \leqq p} \frac{1}{n} + O \left((\log \log 3k)^2 \right),
\]

since we have, by Lemma 4,

\[
\sum_{d|k, g(d) \leqq p} \frac{\mu(d)}{d} \sum_{\simeq, q(n) \leqq p} \frac{1}{n} = O \left(\frac{\log \log 3k}{\sqrt{p}} \right) = O \left((\log \log 3k)^2 \right).
\]

Now, by partial summation, we have

\[
\sum_{n > w/\sqrt{p}} \frac{1}{n} = \sum_{n > w/\sqrt{p}} \frac{G(n, p)}{n^2} + O \left(y^{-c}\right),
\]

Here, by Lemma 6, we find that

\[
\sum_{n > \exp(\log y)^2} \frac{G(n, p)}{n^2} = O \left(\sum_{n > \exp(\log y)^2} n^{-\frac{1+c}{\log p}} \right)
\]

\[
= O \left(\exp(-c \log y) \right)
\]

so that

\[
\sum_{n > w/\sqrt{p}} \frac{G(n, p)}{n^2} = \sum_{\exp(\log y)^2 < n > w/\sqrt{p}} \frac{G(n, p)}{n^2} + O \left(\frac{1}{\log^2 y} \right).
\]

Let us write \(I \) for the interval \(w/\sqrt{p} < n \leqq \exp(\log y)^2 \). Then, by making use of the result in Lemma 6, we obtain

\[
\sum_{n \in I} \frac{G(n, p)}{n^2} = \sum_{n \in I} \frac{1}{n} \rho \left(\frac{\log n}{\log p} \right) \left(1 + O \left(\frac{\log \log y}{\log p} \right) \right)
\]

\[
+ O \left(\sum_{n \in I} \frac{1}{n} \right) + O \left(\sum_{n \in I} \left(\frac{\log n}{\log p} \right)^2 P(p) \right).
\]

It is easily verified that

\[
\sum_{n \in I} \frac{1}{n} \rho \left(\frac{\log n}{\log p} \right) = \log p \int_{t_p}^{\infty} \rho(t) dt + O \left(y^{-c} \right),
\]

where \(t_p = (\log w/\sqrt{p}) / \log p \);
\[
\sum_{n \in \mathcal{I}} \frac{1}{n} = O(y^{-\epsilon_5}); \quad \sum_{n \in \mathcal{I}} \left(\frac{\log n}{\log p} \right)^2 P(p) = O\left(\frac{1}{\log^2 y} \right),
\]
where we have taken \(P(v) = c \exp(-c(\log v)^{\frac{1}{2}}) \).

We thus have
\[
T_p = \log p \int_{t_p}^{\infty} \rho(t) dt \left(1 + O\left(\frac{\log \log y}{\log p} \right) \right) + O\left(\frac{1}{\log^2 y} \right).
\]

Hence
\[
H_p - Z_p \leq \prod_{q \uparrow k, q \leq p} \left(1 - \frac{1}{q} \right) \log p \int_{t_p}^{\infty} \rho(t) dt \left(1 + O\left(\frac{\log \log y}{\log p} \right) \right)
\]
\[
+ O\left((\log \log 3k)^2 \right),
\]
\[
Z_p \geq \prod_{q \mid k, q \leq p} \left(1 - \frac{1}{q} \right) \left(e^c - \int_{t_p}^{\infty} \rho(t) dt \log p + O(\log \log y) \right)
\]
\[
+ O\left((\log \log 3k)^2 \right).
\]

Case 3: \(z_1 < p \leq z \).

Put \(t_p = (\log w/\sqrt{p})/\log p \), as before. If \(0 < t_p \leq 1 \) then we have
\[
Z_p = \sum_{\substack{n \leq w/\sqrt{p} \\gcd(n,k)=1 \\gcd(n,q)=1}} \frac{\mu^2(n)}{\varphi(n)}
\]
\[
= \frac{\varphi(k)}{k} \log \frac{w}{\sqrt{p}} + O(\log \log 3k)
\]
\[
= \frac{\varphi(k)}{k} t_p \log p + O(\log \log 3k),
\]
\[
H_p - Z_p = \frac{\varphi(k)}{k} (e^c - t_p) \log p + O(\log \log 3k),
\]
by Lemma 5. If \(t_p > 1 \) then
\[
Z_p \geq \sum_{n \leq w/\sqrt{p} \\gcd(n,k)=1} \frac{\mu^2(n)}{\varphi(n)} - \sum_{p \mid q, \gcd(n,k)=1} \sum_{n \leq w/\sqrt{p}} \frac{\mu^2(n)}{\varphi(n)}
\]
\[
= \sum_{n \leq w/\sqrt{p} \\gcd(n,k)=1} \frac{\mu^2(n)}{\varphi(n)} - \sum_{p \mid q, \gcd(n,k)=1} \frac{1}{\varphi(q)} \sum_{n \leq w/\sqrt{p} \\gcd(n,q)=1} \frac{\mu^2(n)}{\varphi(n)},
\]
where, again by Lemma 5,
On the Distribution of Almost Primes in an Arithmetic Progression

\[
\sum_{p \leq q \leq w^{1/2}} \frac{1}{\varphi(q)} \sum_{n \leq w^{1/2}} \frac{\mu^{2}(n)}{\varphi(n)} n \leq w/q \overline{p} = \sum_{(q,k) = 1} \frac{1}{\varphi(q)} \sum_{(n,qk) = 1} \frac{\mu^{2}(n)}{\varphi(n)} n \leq w/q \overline{p} (\frac{\varphi(qk)}{qk} \log \frac{w}{q\sqrt{p}} + O(\log \log 3qk))
\]

\[
= \frac{\varphi(k)}{k} \sum_{p \leq q \leq w^{1/2}} \frac{1}{q} \log \frac{w}{q\sqrt{p}} + O\left(\sum_{p \leq q \leq w^{1/2}} \frac{\log \log 3qk}{\varphi(q)} \right)
\]

\[
= \frac{\varphi(k)}{k} \left(\log \frac{w}{\sqrt{p}} \log \frac{\log \frac{w}{\sqrt{p}}}{p} - \log \frac{w}{\sqrt{p}} + \log p \right) + O(\log \log y),
\]

and hence

\[
Z_p \geq \frac{\varphi(k)}{k} (2t_p - 1 - t_p \log t_p) \log p + O(\log \log y).
\]

Therefore

\[
H_p - Z_p \leq \frac{\varphi(k)}{k} \left(e^C - (2t_p - 1 - t_p \log t_p) \right) \log p + O(\log \log y).
\]

Here we have, as in the proof of Lemma 2,

\[
H_p = \prod_{q < p, q \mid k} \left(1 - \frac{1}{q} \right) \prod_{q < p} \left(1 - \frac{1}{q} \right)^{-1}
\]

\[
= \left(\frac{\varphi(k)}{k} + O\left(\frac{\log \log 3k}{p} \right) \right) (e^C \log p + O(1))
\]

\[
= \frac{\varphi(k)}{k} e^C \log p + O(\log \log 3k).
\]

We are now in position to be able to evaluate the sum

\[
\sum_{p \leq z} \frac{H_p - Z_p}{pH_p Z_p}.
\]

Define:

\[
A(t) = \begin{cases}
 \frac{e^C - t}{t} & (0 < t \leq 1), \\
 \frac{e^C - (2t - 1 - t \log t)}{2t - 1 - t \log t} & (1 < t < e^C),
\end{cases}
\]
where \(t = e^\epsilon \) is the unique solution of
\[
2t - 1 - t \log t = 0, \quad t > 1,
\]
so that \(1.8 < c_6 < 1.9 \); and
\[
B(t) = \frac{\int_t^\infty \rho(s) \, ds}{e^\epsilon - \int_t^\infty \rho(s) \, ds} \quad (t > \frac{1}{4}).
\]

Let us put, for the sake of brevity,
\[
z_3 = \exp(\log y)^{2/3}.
\]

Then we have
\[
\sum_{\substack{z_3 < p \leq z_1 \atop (p, k) = 1}} \frac{H_p - Z_p}{pH_pZ_p} = O \left(\frac{k}{\varphi(k)} \frac{\log \log 3k}{\log^2 y} \right)
= O \left(\frac{k}{\varphi(k)} \frac{\log \log 3k}{\log^2 y} \right),
\]
and, noticing that
\[
\prod_{1 < q \leq p} \left(1 - \frac{1}{q} \right)^{-1} \leq \frac{k}{\varphi(k)}
\]
for every \(p \),
\[
\sum_{z_3 < p \leq z_1 \atop (p, k) = 1} \frac{H_p - Z_p}{pH_pZ_p} \leq \frac{k}{\varphi(k)} \frac{\log \log 3k}{\log^2 y} + O \left(\frac{k}{\varphi(k)} \frac{\log \log 3k}{\log^2 y} \right),
\]
where we have used the inequality
\[
\sum_{z_3 < p \leq z_1} \frac{1}{p \log^2 p} = O \left(\sum_{z_3 < n \leq z_1} \frac{1}{n \log^2 n} \right) = O \left(\frac{1}{\log^2 z_3} \right).
\]

We now assume that \(r, 4 \leq r \leq 10 \), be integral. Write \(J_r \) for the interval \(y^{1/r+1} < p \leq y^{1/r} (\nu \geq r) \). Then, since the function \(B(t) \) is monotone decreasing,
\[
\sum_{z_3 < p \leq z_1} \frac{B(t_p)}{p \log p} = \sum_{\gamma \leq \nu < \varphi(y)} \sum_{p \in J_r} \frac{B(t_p)}{p \log p}
\]
On the Distribution of Almost Primes in an Arithmetic Progression

\[
\begin{align*}
\leq & \sum_{\gamma \leq \nu < \log y} \left(\sum_{\nu \in J_{\nu}} \frac{1}{\nu} \right) \max_{\nu \leq \nu \leq \nu} B(t_{\nu}) \\
\leq & \sum_{\gamma \leq \nu < \log y} \log \frac{\nu+1}{\nu} B \left(\left(\frac{1}{2} - \epsilon \right) \nu - \frac{1}{2} \right) \\
& + O \left(\sum_{\gamma \leq \nu < \log y} \frac{1}{\nu} \right) \\
\leq & \frac{1}{\log y} \sum_{\nu = 0}^{\infty} (\nu + 1) \log \frac{\nu+1}{\nu} B \left(\left(\frac{1}{2} - \epsilon \right) \nu - \frac{1}{2} \right) + O \left(\frac{1}{\log^{\gamma/3} y} \right).
\end{align*}
\]

Thus we obtain

\[
\sum_{\gamma \leq \nu < \log y} \frac{H_{p} - Z_{p}}{p \log Z_{p}} \leq \frac{k}{\varphi(k)} e^{-c} \sum_{\nu = 0}^{\infty} (\nu + 1) \log \frac{\nu+1}{\nu} B \left(\left(\frac{1}{2} - \epsilon \right) \nu - \frac{1}{2} \right) \\
+ O \left(\frac{k}{\varphi(k)} \frac{(\log \log 3k)^3}{\log y} \right) + O \left(\frac{k}{\varphi(k)} \frac{\log \log y}{\log y} \right).
\]

We have similarly

\[
\sum_{\gamma \leq \nu < \log y} \frac{H_{p} - Z_{p}}{p \log Z_{p}} \leq \frac{k}{\varphi(k)} e^{-c} \sum_{\nu = 0}^{\infty} A(t_{\nu}) \\
+ O \left(\frac{k}{\varphi(k)} \frac{(\log \log 3k) \log \log y}{\log y} \right).
\]

Put

\[
n = [\log^{1/2} y], \quad u_{j} = \alpha + \frac{\gamma - \alpha}{n} j \quad (j \geq 0),
\]

and write \(K_{j} \) for the interval

\[
y^{1/u_{j+1}} < p \leq y^{1/u_{j}} \quad (0 \leq j \leq n-1).
\]

Now, the function \(A(t) \) is continuous, monotone decreasing in the interval \(0 < t \leq e \) and monotone increasing in the interval \(e < t < e^{n} \). Thus, if we denote by \(m \) the integer for which

\[
\left(\frac{1}{2} - \epsilon \right) u_{m} - \frac{1}{2} \leq e < \left(\frac{1}{2} - \epsilon \right) u_{m+1} - \frac{1}{2},
\]

then
\[
\sum_{z, p | z, (p, k) = 1} \frac{A(t_p)}{p \log p} = \sum_{j=0}^{n-1} \sum_{p \in K_j} \frac{A(t_p)}{p \log p}
\]

\[
\leq \sum_{j=0}^{n-1} \left(\sum_{p \in K_j} \frac{1}{p} \right) \max_{\not\in x_j} \frac{A(t_p)}{\log p}
\]

\[
\leq \sum_{j=0}^{n-1} \log \frac{u_{j+1}}{u_j} \frac{u_{j+1}}{u_j} A \left(\left(\frac{1}{2} - \varepsilon \right) u_j - \frac{1}{2} \right)
\]

\[
+ \log \frac{u_{m+1}}{u_m} \frac{u_{m+1}}{u_m} \max \left(A \left(\left(\frac{1}{2} - \varepsilon \right) u_m - \frac{1}{2} \right), A \left(\left(\frac{1}{2} - \varepsilon \right) u_{m+1} - \frac{1}{2} \right) \right)
\]

\[
+ \sum_{j=m+1}^{\iota-1} \log \frac{u_{j+1}}{u_j} \frac{u_{j+1}}{\log y} A \left(\left(\frac{1}{2} - \varepsilon \right) u_j - \frac{1}{2} \right)
\]

\[
+ O \left(\sum_{j=0}^{n-1} \frac{u_j}{\log^2 y} \right)
\]

\[
= \frac{1}{\log y} \int_{\alpha}^{\gamma} A \left(\left(\frac{1}{2} - \varepsilon \right) u - \frac{1}{2} \right) du + O \left(\frac{1}{\log^{3/2} y} \right),
\]

where it should be noticed that we have uniformly

\[
u_{j+1}, \log \frac{u_{j+1}}{u_j} = \frac{r - \alpha}{n} + O \left(\frac{1}{n^2} \right)
\]

Hence

\[
\sum_{z, p | z, (p, k) = 1} \frac{H_p - Z_p}{p H_p Z_p} \leq \frac{k}{\varphi(k)} \frac{e^{-C}}{\log y} \int_{\alpha}^{\gamma} A \left(\left(\frac{1}{2} - \varepsilon \right) u - \frac{1}{2} \right) du
\]

\[
+ O \left(\frac{k}{\varphi(k)} \frac{\log \log y \log \log 3k}{\log^2 y} \right) + O \left(\frac{k}{\varphi(k)} \frac{1}{\log^{3/2} y} \right).
\]

Collecting these results, we thus obtain, via Lemma 2, the following

Lemma 8. We have

\[
S_i \geq \frac{kN}{\varphi(k)} \frac{e^{-c}}{\log y} \left(\alpha - \int_{\alpha}^{\gamma} A \left(\left(\frac{1}{2} - \varepsilon \right) u - \frac{1}{2} \right) du \right.
\]

\[
- \sum_{\nu=0}^{m} (\nu+1) \log \frac{\nu+1}{\nu} B \left(\left(\frac{1}{2} - \varepsilon \right) \nu - \frac{1}{2} \right)
\]

\[
+ O \left(\frac{kN}{\varphi(k)} \frac{(\log \log 3k)^3}{\log^{1/3} y} \right) + O \left(\frac{kN}{\varphi(k)} \frac{\log \log y}{\log^{1/3} y} \right)
\]

\[
+ O \left(\frac{N(\log \log 3k)^3}{y^{1/4} \log y} \right) + O \left(y^{1-2\epsilon} (\log \log 3k)^2 \right).
\]
5. Evaluation of S_t. By virtue of Lemma 3, our present task is only to estimate the quantity

$$\sum_{z<q\leq z_1} \frac{1}{qW_q}.$$

We set

$$C(t) = \begin{cases} \frac{\alpha}{a} & (0<a\leq 1), \\ \frac{\alpha}{2a - 1 - a \log a} & (1<a\leq 2), \end{cases}$$

where

$$a = \frac{\alpha}{2} \left(1 - 2\varepsilon - \frac{1}{t}\right).$$

Then, it is not difficult to verify, by Lemma 5, that, with $t = t_q = (\log y)/\log q$

$$W_q = \sum_{n \leq q, \varphi(n) \leq \varphi(k) \varphi(n)} \frac{\mu^2(n)}{\varphi(n)} (n,k) = 1 \geq \frac{\varphi(k)}{k} \frac{\log y}{C(t_q)} + O(\log \log 3k) \quad (z < q \leq z_1),$$

and consequently

$$\sum_{z<q\leq z_1} \frac{C(t_q)}{q} \leq \frac{k}{\varphi(k)} \frac{1}{\log y} \sum_{z<q\leq z_1} \frac{C(t_q)}{q} + O\left(\frac{k}{\varphi(k)} (\log \log 3k)^2 \frac{\log^2 y}{\log y}\right).$$

Put

$$n = \lfloor \log^{1/2} y \rfloor, \quad u_j = \beta + \frac{\alpha - \beta}{n} j \quad (0 \leq j \leq n),$$

and write L_j for the interval

$$y^{1/u_{j+1}} < q \leq y^{1/u_j} \quad (0 \leq j \leq n-1).$$

Then we have

$$\sum_{z<q\leq z_1} \frac{C(t_q)}{q} = \sum_{j=0}^{n-1} \sum_{q \in L_j} \frac{C(t_q)}{q} \leq \sum_{j=0}^{n-1} \left(\sum_{q \in L_j} \frac{1}{q}\right) \max_{q \in L_j} C(t_q) \leq \sum_{j=0}^{n-1} \left(\log \frac{u_{j+1}}{u_j} + O\left(\frac{1}{\log y}\right)\right) C(u_j) = \int_{\beta}^{\alpha} C(u) \frac{du}{u} + O\left(\frac{1}{\log^{1/2} y}\right).$$
since the function $C(t)$ is continuous and decreases monotonously for $t>(1-2\varepsilon)^{-1}$ and since we have uniformly
\[
\log \frac{u_{j+1}}{u_j} = \frac{\alpha-\beta}{n} \frac{1}{u_j} + O\left(\frac{1}{n^2}\right) \quad (0 \leq j \leq n-1).
\]

We thus have proved the following

Lemma 9. We have
\[
S_2 \leq \frac{1}{r+1} \frac{kN}{\varphi(k)} \frac{1}{\log y} \int_{\beta}^{\alpha} \frac{C(u)}{u} du + O\left(\frac{kN}{\varphi(k)} \frac{(\log \log 3k)^2}{\log^2 y}\right) + O\left(\frac{1}{\log^{3/2} y}\right).
\]

6. **Numerical computations.** We need the following easy lemma, a part of which has already been used in the proof of Lemmas 8 and 9.

Lemma 10. The function
\[
f(s) = \frac{1}{2s-1-s \log s} \quad (1<s<e^{c_6})
\]
is positive, convex, and monotone decreasing for $1<s \leq e$ and monotone increasing for $e<s<e^{c_6}$.

Putting $f_1(s) = (f(s))^{-1}$, we see that $f_1(s)>0$, $f_1'(s) = 1 - \log s$ and $f_1''(s) = -1/s$, and the result follows at once.

We now choose $\varepsilon = \frac{1}{7}$ and take
\[
\alpha = 4, \quad \beta = 2, \quad \text{and} \quad r = 10.
\]

Our aim in this section is to compute numerically two integrals and a sum appearing in Lemmas 8 and 9.

(i) Computation of
\[
\int_{\alpha}^{\gamma} A\left(\frac{1}{2} - \varepsilon\right) du = \int_{4}^{10} A\left(\frac{5}{14} u - \frac{1}{2}\right) du.
\]

The integral is equal to
\[
\int_{4}^{4.2} A\left(\frac{5}{14} u - \frac{1}{2}\right) du + \int_{4.2}^{10} A\left(\frac{5}{14} u - \frac{1}{2}\right) du,
\]
where the first integral is found to be
On the Distribution of Almost Primes in an Arithmetic Progression

\[\int_{\frac{5}{14} u - \frac{1}{2}}^{\frac{5}{14} u - \frac{1}{2}} \frac{1}{14} \log \frac{14}{13} du - 0.2 < 0.1696, \]

while the second is

\[\int_{\frac{5}{14} u - \frac{1}{2}}^{\frac{5}{14} u - \frac{1}{2}} F(u) du - \int_{\frac{5}{14} u - \frac{1}{2}}^{\frac{5}{14} u - \frac{1}{2}} F(u) du \]

with \(F(u) = f(s(u)) \), where \(f(s) \) is the function defined in Lemma 10 and \(s(u) = \frac{5}{14} u - \frac{1}{2} \). To estimate the integral of \(F(u) \) over \((4.2, 10)\) we proceed as follows.

We find:

\[F(4.2) = 1.0000; \quad F(4.5) < 0.9080; \]
\[F(5) < 0.8011; \quad F(6) < 0.6803; \]
\[F(7) < 0.6197; \quad F(8) < 0.5907; \]
\[F(9) < 0.5820; \quad F(10) < 0.5896. \]

By Lemma 10, the function \(F(u) \) is convex for \(4.2 \leq u \leq 10 \). Hence

\[\int_{\frac{5}{14} u - \frac{1}{2}}^{\frac{5}{14} u - \frac{1}{2}} F(u) du \leq \frac{3}{20} \left(F(4.2) + F(4.5) \right) + \frac{1}{4} \left(F(4.5) + F(5) \right) \]
\[+ \frac{1}{4} \left(F(5) + F(10) \right) + \left(F(6) + F(7) + F(8) + F(9) \right) \]
\[< 3.8817, \]

and the second integral in (3) is less than

\[3.8817 e^c - 5.8 < 1.1137. \]

Thus we have

\[\int_{\frac{5}{14} u - \frac{1}{2}}^{\frac{5}{14} u - \frac{1}{2}} \frac{1}{14} \log \frac{14}{13} du < 0.1696 + 1.1137 = 1.2833. \]

(ii) Computation of

\[\sum_{\nu=7}^{\infty} \frac{1}{\nu+1} \log \frac{\nu+1}{\nu} B\left(\frac{1}{2} - \epsilon, \nu - \frac{1}{2} \right) \]
\[= \sum_{\nu=10}^{\infty} \frac{1}{\nu+1} \log \frac{\nu+1}{\nu} B\left(\frac{5}{14}, \nu - \frac{1}{2} \right). \]
By the definition (2), the function $\rho(s)$ is positive and monotone decreasing for $s > 0$, and moreover

$$\rho(s) = 1 - \log s \quad \text{for} \quad 1 \leq s \leq 2.$$

Put $s(\nu) = \frac{5}{14}\nu - \frac{1}{2}$. Then we have $s(10) = \frac{43}{14} > 3$ and

$$\rho\left(s(10)\right) \leq \rho(3) \leq \rho(2)e^{-1} = (1 - \log 2)e^{-1} < 0.1129,$$

by Lemma 7. Now, using Lemma 7 again, we find that for $\nu \geq 10$

$$B\left(s(\nu)\right) \leq \frac{\rho(s(\nu))}{e^{\nu} - \rho(s(\nu))} \leq \frac{\rho(s(10))}{e^{\nu} - \rho(s(10))} e^{-\frac{s}{14}(\nu - 10)}.$$

Since $(\nu + 1)\log((\nu + 1)/\nu)$ decreases monotonously as $\nu \to \infty$, we thus obtain

$$\sum_{\nu=10}^{\infty} (\nu + 1) \log\frac{\nu + 1}{\nu} B\left(s(\nu)\right) \leq 11 \log \frac{11}{10} \frac{\rho(s(10))}{e^{\nu} - \rho(s(10))} \frac{1}{1 - e^{-s/14}} < 0.2366.$$

(iii) Computation of

$$\int_{\beta}^{\alpha} \frac{C(u)}{u} \, du = \int_{2}^{4} \frac{C(u)}{u} \, du.$$

For $2 \leq u \leq 4$ we have

$$\frac{3}{7} \leq a = 2\left(\frac{5}{7} - \frac{1}{u}\right) \leq \frac{13}{14}.$$

Hence

$$\int_{2}^{4} \frac{C(u)}{u} \, du = 2 \int_{2}^{4} \left(\frac{5}{7} u - 1\right)^{-1} \, du$$

$$= \frac{14}{5} \log \frac{13}{3} < 4.1058.$$

7. Proof of the theorem. Let $1 \leq k < x$, $0 \leq l \leq k - 1$, $(k, l) = 1$. Take

$$M = \left[\frac{x - l}{k}\right], \quad N = \left[\frac{x}{k}\right],$$

and put
Let \(y = 2k(N+1), \quad z = y^{1/4}, \quad z_1 = y^{1/2}, \quad w = y^{5/14} \).

Then it is clear that \(y > 2x \) and that \(M < n \leq M + N \) implies \(x < kn + l \leq 2x \).

By \(D(x; k, l) \) we denote the number of those integers of the form \(kn + l \) \((M < n \leq M + N)\) which are divisible by no primes \(p \leq z \), by at most two primes \(q \) in \(z < q \leq z_1 \), and by no integers of the form \(q^2 \), \(q \) being a prime in \(z < q \leq z_1 \): clearly such an integer \(kn + l \) \((M < n \leq M + N)\), if it exists, has at most two prime factors, i.e. \(V(kn + l) \leq 2 \).

In order to estimate \(D(x; k, l) \) from below, we apply Lemma 8 and Lemma 9 with \(r = 2 \). Let us note that we have from the data in §6

\[
e^{-c} \left(4 - \int_{4}^{10} A(s(u)) du - \sum_{\nu=10}^{\infty} (\nu+1) \log \frac{\nu+1}{\nu} B(s(\nu)) \right)
> e^{-c} (4 - 1.2833 - 0.2366) > 1.3923
\]

and

\[
\frac{1}{3} \int_{2}^{4} \frac{C(u)}{u} du < \frac{4.1058}{3} = 1.3686.
\]

Now, the number \(R_2 \) of those integers \(kn + l \) \((M < n \leq M + N)\) which are not divisible by any prime \(p \leq z \) and are divisible by some integer \(q^2 \) with \(q \) in \(z < q \leq z_1 \) does not exceed

\[
\sum_{z < q \leq z_1} \left(\frac{N}{q^2} + 1 \right) = O \left(\frac{N}{z} \right) + O(z_1).
\]

We find, therefore, that

\[
D(x; k, l) \geq S_1 - S_2 - R_2 \geq (1.3923 - 1.3686) \frac{kN}{\varphi(k)} \frac{1}{\log y}
+ O \left(\frac{kN}{\varphi(k)} \frac{\log \log 3k^3}{\log^{1/3} y} \right) + O \left(\frac{kN}{\varphi(k)} \frac{\log \log y}{\log^{1/3} y} \right)
+ O \left(\frac{N}{\log \log 3k^3} \frac{y^{1/4}}{\log y} \right) + O \left(y^{5/14} \log \log 3k^3 \right) + O \left(\frac{N}{y^{1/4}} \right).
\]

Since \(N = \frac{x}{k} + O(1), \ \ 2x < y \leq 4x \), it follows that

\[
D(x; k, l) \geq 0.0237 \frac{1}{\varphi(k)} \frac{x}{\log x}
+ O \left(\frac{1}{\varphi(k)} \frac{x(\log \log 3k^3)}{\log^{1/3} x} \right) + O \left(\frac{1}{\varphi(k)} \frac{x \log \log x}{\log^{1/3} x} \right)
\]
$+O\left(\frac{1}{k} \frac{x^{3/4} (\log \log 3k)^3}{\log x}\right) + O\left(x^{5/7} (\log \log 3k)^2\right) + O\left(\frac{1}{k} x^{3/4}\right)$.

Let $c_7 > 3.5$ be a fixed number. If $x \geqq k^{c_7}$ and k is sufficiently large, then all the error terms on the right-hand side of the above inequality for $D(x; k, l)$ are of negligible order of magnitude, with respect to the leading term. Thus, for all large enough k, $x \geqq k^{c_7}$ implies that

$$D(x; k, l) > 0.0236 \frac{1}{\varphi(k)} \frac{x}{\log x} > 1.$$

Hence, by continuity argument, we conclude that there is a (finite) natural number k_0 such that, if $k \geqq k_0$ and $x \geqq k^{c_7}$ then we have $D(x; k, l) > 0$. Therefore there exists an absolute constant $c_1 > 0$ such that

$$D(x; k, l) > 0 \quad \text{for all} \quad x \geqq c_1 k^{c_7}, \quad k \geqq 1.$$

* This completes the proof of our theorem.

Appendix

ON THE 'UPPER' SIEVE OF A. SELBERG

Here we aim at generalizing the results obtained in [6].

Let $N > 1$ and let a_1, a_2, \cdots, a_N be rational integers not necessarily different from each other. Let S denote the number of those integers $a_j (1 \leqq j \leqq N)$ which are not divisible by any prime number $p \leqq z$, where $z \geqq 2$. Suppose that for every positive integer d

$$S_d \overset{\text{def}}{=} \sum_{\substack{n \leqq N \atop a_n \equiv 0 (d)}} 1 = \frac{\omega(d)}{d} N + R(d),$$

where $R(d)$ is the error term for S_d and $\omega(d)$ is a multiplicative function of d. We put

$$f(d) = \frac{d}{\omega(d)}$$

and suppose that $f(d) > 1$ for all $d > 1$.

Let w be an arbitrary but fixed real number such that $w \geqq 2$. We define for positive integers m and d

$$f_i(m) = \sum_{n|m} \mu(n) f\left(\frac{m}{n}\right),$$
\[W(d) = \sum_{r \leq w/d, (r, d) = 1} \epsilon_z(r) \frac{\mu^2(r)}{f_1(r)}, \quad W = W(1), \]
\[\lambda(d) = \epsilon_z(d) \mu(d) \prod_{p \mid d} \left(1 - \frac{1}{f(p)}\right)^{-1} \cdot \frac{W(d)}{W}, \]
where \(\epsilon_z(n) = 0 \) or 1 according as \(n \) has or has not a prime factor \(\geq z \). Then we have, since \(\lambda(1) = 1 \),
\[S \leq \sum_{n \leq N} \left(\sum_{d \mid n} \lambda(d) \right)^2 = \sum_{d \leq w} \left(\frac{\lambda(d_1) \lambda(d_2)}{f(d)} \right) \frac{N}{f(d)} + \sum_{d_1, d_2 \leq w} |\lambda(d_1) \lambda(d_2) R(\{d_1, d_2\})|, \]
where \(\{d_1, d_2\} \) denotes the least common multiple of \(d_1 \) and \(d_2 \).

Now
\[\sum_{d \leq w} \left(\sum_{d_1, d_2 \leq w} \lambda(d_1) \lambda(d_2) \right) \frac{1}{f(d)} = \sum_{r \leq w} f_1(r) \left(\sum_{d \leq w} \lambda(d) \frac{1}{f(d)} \right)^2 = \frac{1}{W^2} \sum_{r \leq w} f_1(r) \left(\sum_{d \leq w} \epsilon_z(d) \mu(d) \frac{\mu^2(d)}{f_1(r)} \sum_{m \leq w/d, (m, d) = 1} \epsilon_z(m) \frac{\mu^2(m)}{f_1(m)} \right)^2 = \frac{1}{W^2} \sum_{r \leq w} \epsilon_z(r) \frac{\mu^2(r)}{f_1(r)} = \frac{1}{W}. \]

We thus have proved the following

Theorem. Under the notations and conditions described above we have
\[S \leq \frac{N}{W} + R \]
with
\[R = \sum_{d_1, d_2 \leq w} |\lambda(d_1) \lambda(d_2) R(\{d_1, d_2\})| \]

This is a generalization of [3: II, Theorem 3.1].

To evaluate the remainder term \(R \) explicitly, let us suppose that for all positive integers \(d, d_1, d_2 \).
\[|R(d)| \leq B \omega(d), \quad \omega(\{d_1, d_2\}) \leq \omega(d_1) \omega(d_2), \]

where \(B > 0 \) is a constant independent of \(d \). These conditions imply

\[R \leq B \left(\sum_{d \leq w} \lambda(d) \omega(d) \right)^2. \]

Then, it is not difficult to show that we have, in general,

\[R = O \left(w^2 (\log \log w)^2 \right), \]

and, in the special case where \(\omega(p) \leq 1 \) for all primes \(p \leq x \),

\[R = O \left(\frac{w^2}{W^2} \right), \]

where the constants implied in the symbol \(O \) depend only on the constant \(B \).

The proof of these estimates of the remainder term \(R \) can easily be carried out just in the same way as in [6], and we shall omit the details (cf. also [7]).

References

Department of Mathematics,
Hokkaido University

(Received September 11, 1963)