<table>
<thead>
<tr>
<th>Type</th>
<th>Instructions for use</th>
</tr>
</thead>
<tbody>
<tr>
<td>Title</td>
<td>A NOTE ON NON-COMMUTATIVE KUMMER EXTENSIONS</td>
</tr>
<tr>
<td>Author(s)</td>
<td>Ôhori, Masayuki; Tominaga, Hisao</td>
</tr>
<tr>
<td>Citation</td>
<td>Journal of the Faculty of Science Hokkaido University. Ser. 1 Mathematics = 北海道大学理学部紀要, 18(1-2): 078-080</td>
</tr>
<tr>
<td>Issue Date</td>
<td>1964</td>
</tr>
<tr>
<td>Doc URL</td>
<td>http://hdl.handle.net/2115/56052</td>
</tr>
<tr>
<td>File Information</td>
<td>JFSHIU_18_N1-2_078-080.pdf</td>
</tr>
</tbody>
</table>

Hokkaido University Collection of Scholarly and Academic Papers : HUSCAP
A NOTE ON NON-COMMUTATIVE KUMMER EXTENSIONS

By

Masayuki ŌHORI and Hisao TOMINAGA

Let a simple ring A (with 1 and minimum condition) be strictly Galois with respect to (an F-group) \mathfrak{G} in the sense of [2]. Then $B=J(\mathfrak{G}, A)$ is a simple ring with $[A:B]=\# \mathfrak{G}$, and the following facts have been given in [2] and [3]. (As to notations and terminologies used in this note, we follow [2].)

1°. Let \mathfrak{R} be an F-subgroup of \mathfrak{G}. If $N=J(\mathfrak{R}, A)$, then A/N is strictly Galois with respect to \mathfrak{R}, $[N:B]=(\mathfrak{G}:\mathfrak{R})$ and $\mathfrak{G}(N)=\mathfrak{R}$. In particular, if \mathfrak{R} is an invariant subgroup of \mathfrak{G} then $\mathfrak{G}|N\equiv \mathfrak{G}/\mathfrak{R}$.

2°. A contains an \mathfrak{G}-normal basis element (\mathfrak{G}-n.b.e.), that is, A contains an element a such that $\{a_{\sigma}; \sigma \in \mathfrak{G}\}$ forms a (linearly independent) right B-basis of A.

3°. If $\sigma \rightarrow x_{\sigma}$ is an anti-homomorphism of \mathfrak{G} into B^{*} (the multiplicative group of units of B) then there exists an element $x \in A^{*}$ such that $x_{\sigma}=xx_{\sigma}$.

4°. Let \mathfrak{G} be cyclic with a generator σ of order m, and $B \cap C$ (C the center of A) contains a primitive m-th root of 1. If there exists an element $a \in A^{*}$ such that $a_{\sigma}=a_{\sigma \zeta}$, there holds $A=\bigoplus_{i=0}^{m^{-1}} Ba^{i}=\bigoplus_{i=0}^{m^{-1}} a^{i}B$.

Further, A/B was called an \mathfrak{G}-Kummer extension if \mathfrak{G} is a commutative DF-group whose exponent is m_{0} and $B \cap C$ contains a primitive m_{0}-th root of 1, and [3, Theorem 3] enabled us the notion of an \mathfrak{G}-Kummer extension to be naturally regarded as a generalization of the classical one for (commutative) fields. On the other hand, in his paper [1], C. C. Faith proved that any commutative Kummer extension A/B is completely basic, more precisely, every normal basis element of A/B is a normal basis element of A/B' for any intermediate field B' of A/B. The purpose of this note is to carry over the last proposition to division rings. In fact, by the validity of $1^{o}-4^{o}$, a slight modification of Faith's proof will accomplish our attempt. Firstly, we exhibit the following characterization of an \mathfrak{G}-Kummer extension.

Theorem 1. Let $\mathfrak{G}=\{\eta_{1}, \cdots, \eta_{m}\}$ be a DF-group of A whose exponent is m_{0}. If A/B is an \mathfrak{G}-Kummer extension then $A=\bigoplus_{i=1}^{m_{0}} a_{i}B=\bigoplus_{i=1}^{m_{0}} Ba_{i}$ with some $a_{i} \in A^{*}$ such that every $\zeta_{ij}=a_{i}^{-1} \cdot a_{0} \eta_{j}$ is contained in $B \cap C$, and conversely.
Proof. Let $\mathfrak{S} = \mathfrak{S}_1 \times \cdots \times \mathfrak{S}_e$ with cyclic $\mathfrak{S}_i = [\sigma_i]$ of order m_i. Then, the exponent m_0 of \mathfrak{S} coincides with the least common multiple $\{m_1, \ldots, m_e\}$. Now, let ζ be a primitive m_0-th root of 1 contained in $B \cap C$, and let $\zeta_i = \zeta^{m_i/m_0}$, that is evidently a primitive m_i-th root of 1. Then, $\eta = \prod_{j=1}^{e} \sigma_i^{j-i} \rightarrow \zeta_i$ defines a homomorphism of \mathfrak{S} into $(B \cap C)^e$ (i.e., e, η). Thus, by 3^e, there exists an element $x_\epsilon \in A$ such that $x_\epsilon \sigma_i = x_\epsilon \zeta_i$ and $x_\epsilon \sigma_j = x_\epsilon$ for all $j \neq i$. Noting that $J(\mathfrak{S}_2 \times \cdots \times \mathfrak{S}_e, A)$ contains x_ϵ and is strictly Galois with respect to \mathfrak{S}, by 1e, 4e yields at once $J(\mathfrak{S}_2 \times \cdots \times \mathfrak{S}_e, A) = \oplus_{i=0}^{m_i-1} x_i^i B$. Repeating similar arguments, we obtain $J(\mathfrak{S}_1 \times \cdots \times \mathfrak{S}_e, A) = \oplus_{i=0}^{m_i-1} x_i^i B(\mathfrak{S}_1 \times \cdots \times \mathfrak{S}_e, A) = \oplus_{0 \leq t_i \leq m_i} x_i^i B$, in particular, $A = \oplus_{0 \leq t_i \leq m_i} x_i^i B$. If $\eta = \prod_{i=1}^{e} \sigma_i^{t_i}$ (0$\leq t_i < m_i$) is an arbitrary element of \mathfrak{S} and $a = x_\epsilon \cdots x_i^i$, then it is easy to see $a\eta = a\zeta^{\epsilon e} \cdots \zeta_i^{t_i}$, so that $a^{-1} \cdot a\eta = \zeta^{t_1} \cdots \zeta_i^{t_i}$ is contained in $B \cap C$, as desired. Conversely, assume that $A = \oplus_{i=0}^{m_i-1} a_i B$ (a$\in A$) and every $\zeta_{ij} = a_i^{-1} \cdot a_i \eta_j$ is contained in $B \cap C$. As ζ_{ij} is contained in B, it will be easy to see that $\zeta_{ij}^k = a_i^{-1} \cdot a_i \eta_j^k$ for $k = 0, 1, \ldots$. We see therefore that if η_j is of order k then $a_i \eta_j^k = a_i$ and $\zeta_{ij} = 1$, whence it follows that some one among ζ_{ij} (i.e., $0, \cdots, m$) is a primitive k-th root of 1. We see accordingly $B \cap C$ contains a primitive m_i-th root of 1. Next, if $a = \sum_{i=1}^{m_i} a_i b_i$ (b$\in B$) is an arbitrary element of A then $a\eta_i = \sum_{i=1}^{m_i} a_i b_i \eta_i = \sum_{i=1}^{m_i} a_i b_i \zeta_{ij} = a_i \eta_i \zeta_{ij}$, which asserts \mathfrak{S} is abelian.

The next will be easily seen from the proof of Theorem 1.

Corollary 1. Let A/B be an \mathfrak{S}-Kummer extension. If $\mathfrak{S} = \mathfrak{S}_1 \times \mathfrak{S}_2$ with $B_i = J(\mathfrak{S}_i, A)$, then $A = B_i B_2 = B_2 B_i$ and every \mathfrak{S}_i-n.b.e. of B_i/B is an \mathfrak{S}_i-n.b.e. of A/B_i.

Corollary 2. Let A/B be an \mathfrak{S}-Kummer extension with a basis $\{a_1, \ldots, a_m\}$ as in Theorem 1. Then, $a = \sum_{i=1}^{m} a_i b_i$ (b$\in B$) is an \mathfrak{S}-n.b.e. if and only if every b_i is in B.

Proof. By assumption, $a\eta_i = \sum_{i=1}^{m} a_i \eta_i \cdot b_i = \sum_{i=1}^{m} a_i b_i \zeta_{ij}$. Accordingly, a is an \mathfrak{S}-n.b.e. if and only if the matrix $(b_i \zeta_{ij}) = \left(\begin{array}{c} b_1 \\ 0 \\ b_m \end{array} \right)$ is regular. In any case, A contains an \mathfrak{S}-n.b.e. by 2^e, so that the matrix $(b_i \zeta_{ij})$ is regular for some choice of b_i, whence it follows the matrix (ζ_{ij}) is regular. Thus, a is an \mathfrak{S}-n.b.e. if and only if $(\begin{array}{c} b_1 \\ 0 \\ b_m \end{array})$ is regular, that is, every b_i is in B.

Lemma 1. Let A be a division ring, A/B an \mathfrak{S}-Kummer extension, and $\mathfrak{S} = \mathfrak{S}_1 \times \mathfrak{S}_2$ with cyclic $\mathfrak{S}_1 = [\sigma_i]$ of order m_i. If \mathfrak{S}_0 is a subgroup of \mathfrak{S} containing \mathfrak{S}_2, then every \mathfrak{S}_0-n.b.e. of A/B is an \mathfrak{S}_0-n.b.e. of $A/J(\mathfrak{S}_0, A)$.

Proof. Let $B_i = J(\mathfrak{S}_i, A)$ (i=0, 1, 2), and $\mathfrak{S}^* = \mathfrak{S}_0 \cap \mathfrak{S}_1 = [\sigma_i]$ with a posi-
tive divisor s of m_i. Then, $\mathfrak{H}_0 = \mathfrak{H}_1^* \times \mathfrak{H}_2$. To be easily seen from the proof of Theorem 1, there exist (non-zero) elements $a_i = 1$, a_2, \cdots, $a_n \in B_1$ and $a \in B_2$ such that $A = \bigoplus_{0 \leq j < m_i} a_j a^j B$, $a_i^{-1} \cdot a \eta \in B \cap C$ for each $\eta \in \mathfrak{H}_0$, and $a \sigma_i = a \sigma_i$, where σ_i is a primitive m_i-th root of 1 contained in $B \cap C$. If $n_i = m_i/s$ then $a^{n_i} \sigma_i = a^{n_i}$, so that $\{a^{n_i} ; 0 \leq \lambda < s\}$ forms a right B-basis of B_0 by 1°. It follows therefore $(a_i a^\mu ; 1 \leq i \leq n, 0 \leq \mu < n_1)$ is a right B_0-basis of A and $(a_i a^\mu)^{-1}$. $(a_i a^\mu) \eta \in B \cap C$ for each $\eta \in \mathfrak{H}_0$. Now, if $u = \sum_{i, \mu, \lambda} a_i a^\mu a^{n_1 \lambda} b_{ip \lambda} \in B_{1\mu \lambda}$ is an n.b.e. of A/B then every $b_{ip \lambda}$ is non-zero by Corollary 2, whence we see that every $\sum_1 a^{n_1} b_{ip \lambda}$ is a non-zero element of B_0. Hence, again by Corollary 2, u is an \mathfrak{H}_0-n.b.e. of A/B_0.

In [1], a subgroup H of a p-primary abelian group G of finite order was called a regular subgroup if G has a factorization $G = [g_1] \times \cdots \times [g_r]$ such that $H = [g_1^*] \times \cdots \times [g_r^*]$ with some α_i's and [1, Lemma 2.4] proved that if H is a subgroup of a finite p-primary abelian group G and contains $G^p = \{g^p ; g \in G\}$ then it is a regular subgroup. By the light of this fact, we can prove now our principal theorem.

Theorem 2. Let A be a division ring. If A/B is an \mathfrak{H}-Kummer extension then it is \mathfrak{H}-completely basic, that is, any \mathfrak{H}-n.b.e. of A/B is always an \mathfrak{H}-n.b.e. of $A/J(\mathfrak{H}^*, A)$ for every subgroup \mathfrak{H}^* of \mathfrak{H}.

Proof. As is well-known, $\mathfrak{H} = \mathfrak{H}_1 \times \cdots \times \mathfrak{H}_t$ with the p_i-primary components \mathfrak{H}_i. If \mathfrak{H}_i is a subgroup of \mathfrak{H} with prime index p_i, then $\mathfrak{H}_i = \mathfrak{H}_i^* \times \mathfrak{H}_2^*$ with a subgroup \mathfrak{H}_1^* of \mathfrak{H}_1 and $\mathfrak{H}_2^* = \mathfrak{H}_2 \times \cdots \times \mathfrak{H}_t$. As $(\mathfrak{H}_1 : \mathfrak{H}_1^*) = p_i$ implies $\mathfrak{H}_1^* \supseteq \mathfrak{H}_1^*$, \mathfrak{H}_1^* is a regular subgroup of \mathfrak{H}_1 by [1, Lemma 2.4]. And so, by Lemma 1, we see that any \mathfrak{H}-n.b.e. of A/B is an \mathfrak{H}-n.b.e. of $A/J(\mathfrak{H}, A)$. Now, the proof of our theorem will be completed by the induction with respect to the order of \mathfrak{H}.

References

Department of Mathematics, Hokkaido University

(Received April 10, 1964)