<table>
<thead>
<tr>
<th>Title</th>
<th>A NOTE ON NON-COMMUTATIVE KUMMER EXTENSIONS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author(s)</td>
<td>Ôhori, Masayuki; Tominaga, Hisao</td>
</tr>
<tr>
<td>Citation</td>
<td>Journal of the Faculty of Science Hokkaido University. Ser. 1 Mathematics = 北海道大学理学部紀要 18(1-2): 078-080</td>
</tr>
<tr>
<td>Issue Date</td>
<td>1964</td>
</tr>
<tr>
<td>Doc URL</td>
<td>http://hdl.handle.net/2115/56052</td>
</tr>
<tr>
<td>Type</td>
<td>bulletin (article)</td>
</tr>
<tr>
<td>File Information</td>
<td>JFSHIU_18_N1-2_078-080.pdf</td>
</tr>
</tbody>
</table>
A NOTE ON NON-COMMUTATIVE KUMMER EXTENSIONS

By

Masayuki OHORI and Hisao Tominaga

Let a simple ring A (with 1 and minimum condition) be strictly Galois with respect to (an F-group) \mathfrak{H} in the sense of [2]. Then $B=J(\mathfrak{H}, A)$ is a simple ring with $[A : B]=\#\mathfrak{H}$, and the following facts have been given in [2] and [3]. (As to notations and terminologies used in this note, we follow [2].)

1°. Let \mathfrak{N} be an F-subgroup of \mathfrak{H}. If $N=J(\mathfrak{N}, A)$, then A/N is strictly Galois with respect to \mathfrak{N}, $[N : B]=(\mathfrak{H} : \mathfrak{N})$ and $\mathfrak{H}(N)=\mathfrak{N}$. In particular, if \mathfrak{N} is an invariant subgroup of \mathfrak{H} then $\mathfrak{H}|\mathfrak{N}=\mathfrak{H}/\mathfrak{N}$.

2°. A contains an \mathfrak{H}-normal basis element (\mathfrak{H}-n.b.e.), that is, A contains an element a such that $\{a\sigma; \sigma\in \mathfrak{H}\}$ forms a (linearly independent) right B-basis of A.

3°. If $\sigma\rightarrow x_{\sigma}$ is an anti-homomorphism of \mathfrak{H} into B^\ast (the multiplicative group of units of B) then there exists an element $x\in A^\ast$ such that $x_{\sigma}=ax$.

4°. Let \mathfrak{H} be cyclic with a generator σ of order m, and $B\cap C$ (C the center of A) contains a primitive m-th root of 1. If there exists an element $a\in A^\ast$ such that $a\sigma=a\zeta$, there holds $A=\bigoplus_{i=0}^{m-1}Ba_{i}=\bigoplus_{i=0}^{m-1}a^{i}B$.

Further, A/B was called an \mathfrak{H}-Kummer extension if \mathfrak{H} is a commutative DF-group whose exponent is m_{0} and $B\cap C$ contains a primitive m_{0}-th root of 1, and [3, Theorem 3] enabled us the notion of an \mathfrak{H}-Kummer extension to be naturally regarded as a generalization of the classical one for (commutative) fields. On the other hand, in his paper [1], C. C. Faith proved that any commutative Kummer extension A/B is completely basic, more precisely, every normal basis element of A/B is a normal basis element of A/B' for any intermediate field B' of A/B. The purpose of this note is to carry over the last proposition to division rings. In fact, by the validity of $1°-4°$, a slight modification of Faith's proof will accomplish our attempt. Firstly, we exhibit the following characterization of an \mathfrak{H}-Kummer extension.

Theorem 1. Let $\mathfrak{H}=\{\eta_{1}, \cdots, \eta_{m}\}$ be a DF-group of A whose exponent is m_{0}. If A/B is an \mathfrak{H}-Kummer extension then $A=\bigoplus_{i=1}^{m_{0}}a_{i}B=\bigoplus_{i=1}^{m_{0}}Ba_{i}$ with some $a_{i}\in A^\ast$ such that every $\zeta_{ij}=a_{i}^{-1}a_{j}$ is contained in $B\cap C$, and conversely.
Proof. Let $\mathfrak{H}=\mathfrak{H}_1 \times \cdots \times \mathfrak{H}_e$ with cyclic $\mathfrak{H}_i=[\sigma_i]$ of order m_i. Then, the exponent m of \mathfrak{H} coincides with the least common multiple $\{m_1, \cdots, m_e\}$. Now, let ζ be a primitive m_i-th root of 1 contained in $B \cap C$, and let $\zeta_i=\zeta^{m_i/m_i}$, that is evidently a primitive m_i-th root of 1. Then, $\eta=\prod_{j=1}^{e} \sigma_j^{s_j} \rightarrow \zeta_i^{s_j}$ defines a homomorphism of \mathfrak{H} into $(B \cap C^*)$ $(i=1, \cdots, e)$. Thus, by 3°, there exists an element $x_i \in A_i$ such that $x_i \sigma_i=x_i \zeta_i$ and $x_i \sigma_j=x_i \zeta_i$ for all $j \neq i$. Noting that $J(\mathfrak{H}_2 \times \cdots \times \mathfrak{H}_e, A)$ contains x_i and is strictly Galois with respect to \mathfrak{H}, by 1°, 4° yields at once $J(\mathfrak{H}_2 \times \cdots \times \mathfrak{H}_e, A)=\oplus_{t=0}^{m_i-1}x_i^{t_i}$ and $\cdots,x_i^{t_1}B$, repeating similar arguments, we obtain $J(\mathfrak{H}_e,J(\mathfrak{H}_2 \times \cdots \times \mathfrak{H}_e, A))=\oplus_{t=1}^{m_i-1}x_i^{t_i}$ in particular, $A=\oplus_{0 \leq t_i \leq m_i}x_i^{t_i} \cdots x_i^{t_1}B$. If $\eta=\prod_{i=1}^{e} \sigma_j^{s_j}$ $(0 \leq s_i \leq m_i)$ is an arbitrary element of \mathfrak{H} and $a=x_i^{s_i} \cdots x_i^{t_1}$, then it is easy to see $a\eta=a\zeta_1^{s_1} \cdots \zeta_i^{s_i}$, so that $a^{-1} \cdot a\eta=\zeta_1^{s_1} \cdots \zeta_i^{s_i}$ is contained in $B \cap C$, as desired. Conversely, assume that $A=\oplus_{t=0}^{m_i-1}a_iB$ $(a_i \in A \cap \mathfrak{H})$ and every $\zeta_j=a_i^{-1} \cdot a_i \eta_j$. As ζ_j is contained in B, it is easy to see that $\zeta_j^{m_i}=a_i^{-1} \cdot a_i \eta_j$ for $k=0,1, \cdots$. We see therefore that if η_j is of order k then $a_i \eta_j^{k}=a_i$ and $\zeta_j^{m_i}=1$, whence it follows that some one among ζ_j (σ_j) is a primitive k-th root of 1. We see accordingly $B \cap C$ contains a primitive m_i-th root of 1. Next, if $a=\sum_{i=1}^{m}a_i b_i$ $(b_i \in B)$ is an arbitrary element of A, then $a\eta \eta_i=\sum_{i=1}^{m}a_i \eta_i \eta_i \cdot b_i=\sum_{i=1}^{m}a_i \zeta_i^{s_i}=a \eta \eta_i$, which asserts \mathfrak{H} is abelian.

The next will be easily seen from the proof of Theorem 1.

Corollary 1. Let A/B be an \mathfrak{H}-Kummer extension. If $\mathfrak{H}=\mathfrak{H}_1 \times \mathfrak{H}_2$ with $B_i=J(\mathfrak{H}_i, A)$, then $A=B,B_2=\mathfrak{H},$ and every \mathfrak{H}-n.b.e. of B_i/B is an \mathfrak{H}-n.b.e. of A/B_i.

Corollary 2. Let A/B be an \mathfrak{H}-Kummer extension with a basis $\{a_1, \cdots, a_m\}$ as in Theorem 1. Then, $a=\sum_{i=1}^{m}a_i b_i$ $(b_i \in B)$ is an \mathfrak{H}-n.b.e. if and only if every b_i is in B.

Proof. By assumption, $\eta_j=\sum_{i=1}^{m}a_i \eta_j \cdot b_i=\sum_{i=1}^{m}a_i \zeta_i^{s_j}$. Accordingly, a is an \mathfrak{H}-n.b.e. if and only if the matrix $(b_i \zeta_i^{s_j})$ is regular. In any rate, A contains an \mathfrak{H}-n.b.e. by 2°, so that the matrix $(b_i \zeta_i^{s_j})$ is regular for some choice of b_i, whence it follows the matrix $(\zeta_i^{s_j})$ is regular. Thus, a is an \mathfrak{H}-n.b.e. if and only if $(\begin{smallmatrix} b_i & 0 \\ 0 & b_m \end{smallmatrix})$ is regular, that is, every b_i is in B.

Lemma 1. Let A be a division ring, A/B an \mathfrak{H}-Kummer extension, and $\mathfrak{H}=\mathfrak{H}_1 \times \mathfrak{H}_2$ with cyclic $\mathfrak{H}_1=[\sigma_1]$ of order m_1. If \mathfrak{H}_0 is a subgroup of \mathfrak{H} containing \mathfrak{H}_2, then every \mathfrak{H}-n.b.e. of A/B is an \mathfrak{H}_0-n.b.e. of A/B_0.

Proof. Let $B_i=J(\mathfrak{H}_i, A)$ $(i=0,1,2)$, and $\mathfrak{H}_i=\mathfrak{H} \cap \mathfrak{H}_0=[\sigma_i]^*$ with a posi-
tive divisor s of m_i. Then, $\mathfrak{H}_0 = \mathfrak{H}_1^* \times \mathfrak{H}_2$. To be easily seen from the proof of Theorem 1, there exist (non-zero) elements $a_i = 1, a_2, \ldots, a_n \in B$, and $a \in B_2$ such that $A = \bigoplus_{0 \leq j < m_1} a \cdot a^j B, \ a_{i-1} \cdot a \eta \in B \cap C$ for each $\eta \in \mathfrak{H}_0$, and $a \sigma_i = a \zeta_i$, where ζ_i is a primitive m_i-th root of 1 contained in $B \cap C$. If n_i/m_is then $a^{n_i} \sigma_i = a^{n_i}, n/s \leq \lambda < s$ forms a right B-basis of B_0 by (1º). It follows therefore $\{a_i a^n; 1 \leq i \leq n, 0 \leq \mu < n_1\}$ is a right B_r-basis of A and $(a_i a^n)^{-1} (a_i a^n) \eta \in B \cap C$ for each $\eta \in \mathfrak{H}_0$. Now, if $u = \sum_{i \leq j, \mu} a_i a^n b_{i \mu} (b_{i \mu} \in B)$ is an \mathfrak{H}-n.b.e. of A/B then every $b_{i \mu}$ is non-zero by Corollary 2, whence we see that every $\sum_i a^n b_{i \mu}$ is a non-zero element of B_r. Hence, again by Corollary 2, u is an \mathfrak{H}_r-n.b.e. of A/B_0.

In [1], a subgroup H of a p-primary abelian group G of finite order was called a regular subgroup if G has a factorization $G = [g_1] \times \cdots \times [g_s]$ such that $H = [g_1^\sharp] \times \cdots \times [g_s^\sharp]$ with some α_i, and [1, Lemma 2.4] proved that if H is a subgroup of a finite p-primary abelian group G and contains $G^p = \{g^p ; g \in G\}$ then it is a regular subgroup. By the light of this fact, we can prove now our principal theorem.

Theorem 2. Let A be a division ring. If A/B is an \mathfrak{H}-Kummer extension then it is \mathfrak{H}-completely basic, that is, any \mathfrak{H}-n.b.e. of A/B is always an \mathfrak{H}^*-n.b.e. of $A/J(\mathfrak{H}, A)$ for every subgroup \mathfrak{H}^* of \mathfrak{H}.

Proof. As is well-known, $\mathfrak{H} = \mathfrak{H}_1 \times \cdots \times \mathfrak{H}_r$, with the p_i-primary components \mathfrak{H}_i. If \mathfrak{H}_i is a subgroup of \mathfrak{H} with prime index p_i, then $\mathfrak{H}_i = \mathfrak{H}_i^* \times \mathfrak{H}_i^*$ with a subgroup \mathfrak{H}_i^* of \mathfrak{H}_i and $\mathfrak{H}_i^* \times \cdots \times \mathfrak{H}_i^*$. As $(\mathfrak{H}_i : \mathfrak{H}_i^*) = p_i$ implies $\mathfrak{H}_i^* \supseteq \mathfrak{H}_i$, \mathfrak{H}_i^* is a regular subgroup of \mathfrak{H}_i by [1, Lemma 2.4]. And so, by Lemma 1, we see that any \mathfrak{H}-n.b.e. of A/B is an \mathfrak{H}_r-n.b.e. of $A/J(\mathfrak{H}, A)$. Now, the proof of our theorem will be completed by the induction with respect to the order of \mathfrak{H}.

References

Department of Mathematics, Hokkaido University

(Received April 10, 1964)