<table>
<thead>
<tr>
<th>Title</th>
<th>ON THE REPRESENTATION OF LARGE EVEN INTEGERS AS SUMS OF TWO ALMOST PRIMES. II</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author(s)</td>
<td>Uchiyama, Saburô</td>
</tr>
<tr>
<td>Citation</td>
<td>Journal of the Faculty of Science Hokkaido University. Ser. 1 Mathematics, 18(1-2), 069-077</td>
</tr>
<tr>
<td>Issue Date</td>
<td>1964</td>
</tr>
<tr>
<td>Doc URL</td>
<td>http://hdl.handle.net/2115/56054</td>
</tr>
<tr>
<td>Type</td>
<td>bulletin (article)</td>
</tr>
<tr>
<td>File Information</td>
<td>JFSHIU_18_N1-2_069-077.pdf</td>
</tr>
</tbody>
</table>
ON THE REPRESENTATION OF LARGE EVEN INTEGERS AS SUMS OF TWO ALMOST PRIMES. II

By

Saburō UCHIYAMA

In a previous paper [3] the writer has given with Miss A. Togashi an elementary proof for the fact that every sufficiently large even integer is representable as a sum of two almost primes, each of which has at most three prime factors, a result first obtained by A. I. Vinogradov. On the other hand, we are able to prove by a rather transcendental method that every large even integer is representable as a sum of a prime and an almost prime composed of at most four prime factors (see [4]). The aim in the present paper is to show that a somewhat weaker result than this can be obtained by an elementary argument. We shall prove the following

Theorem. Every sufficiently large even integer N can be written in the form

$$N = n_1 + n_2,$$

where $n_1 > 1$, $n_2 > 1$, $(n_1, n_2) = 1$ and

$$V(n_1) + V(n_2) \leq 5.$$

In other words, every large even integer N can be represented in the form $N = n_1 + n_2$, where $n_1 > 1$, $n_2 > 1$, $(n_1, n_2) = 1$ and either

$$V(n_1) = 1, \quad V(n_2) \leq 4,$$

or

$$V(n_1) \leq 2, \quad V(n_2) \leq 3.$$

Our method of proving this result is a refinement of that of proving the previous one, used in [3].

The writer wishes to express his gratitude to M. Uchiyama, Computation Centre, Hokkaido University, for providing various numerical data to him in

1) Throughout in this paper, the letters i, j, k, m, n (with or without indices) represent positive integers, while p, q (with or without indices) represent prime numbers. We denote by $V(m)$ the total number of prime divisors of m.
Let N be a sufficiently large but fixed even integer. We consider as in [3] the $\varphi(N)$ integers $a_n=n(N-n) \ (1 \leq n \leq N, (n, N)=1)$.

Let $x \geq 2$ be a fixed real number satisfying

$$N^{c_1} < x < N^{c_2},$$

where c_1 and c_2 are constants with $0 < c_1 < c_2 < 1$. We denote by $P(x)$ the number of those integers $a_n \ (1 \leq n \leq N, (n, N)=1)$ which are not divisible by any prime $p \leq x$. Using the sieve method of A. Selberg (cf. [5, Appendix]) we find that

$$P(x) \leq \frac{\varphi(N)}{W} + R,$$

where

$$W = \sum_{\substack{m \leq x^a \ \text{and} \ \varphi(m) \leq x}} \frac{\mu^2(m)}{f_1(m)},$$

and

$$R = O(B_N x^{a_a}(\log \log x)^a),$$

$a > 0$ being a constant. In the following we shall suppose that $0 < a \leq 4$.

For brevity's sake we put, for $0 < a \leq 1$,

$$F(a) = F_0(a) = a^2;$$

for $1 < a \leq 2$,

$$F(a) = F_1(a) = (2a-1)^2 - 2a^2 \log a;$$

for $2 < a \leq 3$,

$$F(a) = F_1(a) + F_2(a) + F_{2,1}(a) + F_{2,2}(a),$$

where

$$F_2(a) = (a-2)^2 + 2a^2 \log^2 \frac{a}{2} - \frac{1}{2} (a-2)(7a-2) \log \frac{a}{2}$$

and $F_{2,1}(a)$ and $F_{2,2}(a)$ are defined as follows: write

2) For the definitions of $f_1(m), g(m), A_N, B_N, C_N$ we refer to [3].
On the Representation of Large Even Integers as Sums of Two Almost Primes. II

\[a_i = 1 + \frac{a-2}{i+1} \quad (i \geq 1), \]

\[b_i = \frac{a}{2} - \frac{a-2}{4i+2} \quad (i \geq 1), \]

and let \(k_1, k_2 \) be arbitrary but fixed positive integers. Then

\[F_{2,1}(a) = \sum_{j=1}^{k_1} \left(8(a_{j+1}-1)(a_j-a_{j+1}) + 4a^2 \log a_{j+1} \log \frac{a-a_{j+1}}{a-a_j} \right. \]

\[-2(a_j-a_{j+1})(2a+a_j+a_{j+1}) \log a_{j+1} \]

\[-2(a_{j+1}-1)(4a-a_{j+1}-1) \log \frac{a-a_{j+1}}{a-a_j} \), \]

\[F_{2,2}(a) = \sum_{j=1}^{k_2} \left(8(b_{j+1}-b_j)\left(\frac{a}{2} - b_{j+1} \right) + 4a^2 \log b_{j+1} \log \frac{2(a-b_{j+1})}{a} \right. \]

\[-\left(\frac{a}{2} - b_{j+1} \right) \left(5a + 2b_{j+1} \right) \log \frac{b_{j+1}}{b_j} \]

\[-2(b_{j+1}-b_j)(4a-b_j-b_{j+1}) \log \frac{2(a-b_{j+1})}{a} \right). \]

Finally, we set for \(3 < a \leq 4 \)

\[F(a) = F_1(a) + F_2(a) + F_{2,1}(a) + F_{2,2}(a) - F_3(a), \]

where

\[F_3(a) \overset{\text{def}}{=} \frac{4}{9} (a-3)^3 \log \frac{a}{3} \cdot \left(3 \log^2 \frac{a}{3} \right. \]

\[+ 4 \log \frac{a}{3} \log \frac{3(a-2)}{a} + \log^2 \frac{2a-3}{a} \right). \]

(Note that the function \(F(a) \) thus defined is positive and continuous for \(0 < a \leq 4 \).) We have then, for \(0 < a \leq 4 \),

\[W \geq F(a) C_N \log^2 x + O(\log N \log \log N). \]

Indeed, it is easy to verify this relation for \(0 < a \leq 2 \) (cf. [3]). For \(2 < a \leq 3 \) we have

\[W = \sum_{m \leq x^a} \frac{\mu^2(m)}{f_1(m)} - \sum_{x < p \leq x^a} \sum_{m \leq x^a} \frac{\mu^2(m)}{f_1(m)} + \sum_{x < p_1 < \ldots < p_k} \sum_{m \leq x^a} \frac{\mu^2(m)}{f_1(m)}, \]
where the last double summation is found to be
\[\geq \frac{1}{2} \sum_{z < p_1 \leq x^{a/2}} \sum_{m \leq x^{a/2} \atop m \equiv 0 (p_1, p_2)} \mu^2(m) f_1(m) + O \left(\frac{\log^2 x}{x} \right) \]

\[+ \sum_{j=1}^{k_1} \sum_{a_j < p_1 \leq x^{a/2}} \sum_{m \leq x^{a/2} \atop m \equiv 0 (p_1, p_2)} \mu^2(m) f_1(m) + \sum_{j=1}^{k_2} \sum_{b_j < p_1 \leq x^{a/2}} \sum_{m \leq x^{a/2} \atop m \equiv 0 (p_1, p_2)} \mu^2(m) f_1(m) \]

\[= (F_1(a) + F_{21}(a) + F_{22}(a)) C_N \log^2 x + O(\log N \log \log N), \]

and for \(3 < a \leq 4\) we have
\[W = \sum_{m \leq x^{a}} \frac{\mu^2(m)}{f_1(m)} - \sum_{m \equiv 0 (p)} \sum_{m \leq x^{a/2} \atop m \equiv 0 (p_1, p_2)} \mu^2(m) f_1(m) \]

\[+ \sum_{z < p_1 \leq x^{a/3}} \sum_{m \leq x^{a/3} \atop m \equiv 0 (p_1, p_2)} \mu^2(m) f_1(m), \]

where the last double summation is (in absolute value)
\[\leq \left(\frac{1}{6} \sum_{z < p_1 \leq x^{a/3}} \frac{1}{2} \sum_{z < p_1 \leq x^{a/3}} \sum_{m \equiv 0 (p)} \mu^2(m) f_1(m) \right) \sum_{m \leq x^{a/3} \atop m \equiv 0 (p_1, p_2)} \mu^2(m) f_1(m) \]

\[+ O \left(\frac{\log^2 x}{x} \right) = F_3(a) C_N \log^2 x + O(\log N \log \log N). \]

This proves our assertion. Hence:

Lemma 1. For \(0 < a \leq 4\) we have
\[P(x) \leq \frac{2e^c}{F(a)} A_N \frac{\varphi(N)}{\log^2 x} + O \left(\frac{\varphi(N) (\log \log N)^5}{\log^3 N} \right) + O \left(B_N x^{2a} (\log \log N)^2 \right). \]

2. We now evaluate \(P(N^{1/u})\) for some values of \(u (\geq 2)\). The result to be obtained will be of the form either
\[P(N^{1/u}) \leq A(u) A_N \frac{\varphi(N)}{\log^2 N} + O \left(\frac{\varphi(N) (\log \log N)^5}{\log^3 N} \right) \]

or
\[P(N^{1/u}) \geq a(u) A_N \frac{\varphi(N)}{\log^2 N} + O \left(\frac{\varphi(N) (\log \log N)^5}{\log^3 N} \right). \]

Here, it is clear that \(0 \leq a(u) \leq A(u) < \infty (u \geq 2)\): moreover, we may assume
without loss of generality that each of the coefficients $A(u)$ and $a(u)$ is, as a function of u, monotone non-decreasing for $u \geq 2$.

Lemma 2. We have

$$a(10) = 98.0.$$

This is in substance identical with [1, Lemma 1]. The result is obtained by simply applying the sieve method of Viggo Brun. We note a rather better result than the above, viz. $a(10)=99.9818$, is known (see [2]): but this is not necessary for our purpose.

Lemma 3. For $8 \leq u \leq 9$ we have

$$A(u) = 1.0541u^2.$$

If we apply Lemma 1 with $x = N^{\frac{1}{u}}$ ($8 \leq u \leq 9$) and $a = 3.95$, then we get

$$P(N^{\frac{1}{u}}) \leq \frac{2e^{3C}u^2}{F(3.95)} A_N \frac{\varphi(N)}{\log^2 N} + O\left(\frac{\varphi(N)(\log \log N)^5}{\log^{3} N}\right),$$

and the result follows from this at once, since we have

$$\frac{2e^{3C}}{F(3.95)} < 1.0541,$$

where we have taken $k_1=20$ and $k_2=5$.

Lemma 4. Suppose that $3 \leq u \leq u_1 \leq 10$. If we set

$$a_1(u) = \max\left(a(u), a(u_1) - 2\int_{u-1}^{u_1-1} A(v)\frac{v+1}{v^2}dv\right),$$

then the coefficient $a(u)$ can be replaced by the new one, $a_1(u)$.

This is [1, Theorem 1].

Now, it is known that $a(9) = 75.58$ (see [1, p. 385]), while we find using the results in Lemmas 2 and 3 that

$$a(10) - 2\int_{8}^{9} A(v)\frac{v+1}{v^2}dv = a(10) - 2 \cdot 1.0541 \int_{8}^{9} (v+1)dv$$

$$= 98.0 - 20.0279 = 77.9721.$$

It follows from Lemma 4 (and the definition of $a(u)$) that $a_1(9) = 77.9721$, and we thus have proved the following

Lemma 5. We have
\[S_1^{\text{def}} = P(N^\frac{1}{9}) \geqq 77.9721 A_N \frac{\varphi(N)}{\log^2 N} + O\left(\frac{\varphi(N) \log \log N}{q \log^3 N} \right). \]

3. Let \(q, \langle q, N \rangle = 1 \), be a fixed prime number in the interval \(z < q \leqq z_1 \), where

\[z = N^\frac{1}{9}, \quad z_1 = N^\frac{5}{9}, \]

and let \(S(q) \) denote the number of those integers \(a_n = n(N-n) \ (1 \leqq n \leqq N, \langle n, N \rangle = 1) \) which are not divisible by any prime \(p \leqq z \) and are divisible by the prime \(q \). Then we find as in [3] that

\[S(q) \leqq \frac{2\varphi(N)}{q W_q} + R, \]

where

\[W_q \geqq \sum_{m \leqq z^a, \gamma(m) \leqq z} \frac{\mu^2(m)}{f_1(m)} \quad \text{with} \quad a = 4.5 \left(1 - 2\varepsilon - \frac{\log q}{\log N} \right) \]

and

\[R_q = O\left(\frac{N^{1-\varepsilon} \log \log N}{q} \right), \]

\(\varepsilon \) being a sufficiently small, fixed positive real number. Clearly we have \(0 < a < 4 \). Hence we may repeat the argument in the proof of Lemma 1 to obtain

\[W_q \geqq F(a) C_N \log^4 z + O(\log N \log \log N), \]

so that

\[S(q) \leqq \frac{C(t_q)}{q} A_N \frac{\varphi(N)}{\log^2 N} + O\left(\frac{\varphi(N) \log \log N}{q \log^3 N} \right), \]

where we have put \(t_q = (\log N)/\log q \) and

\[C_t = \frac{324e^{a_2}}{F(a)} \quad \text{with} \quad a = 4.5 \left(1 - 2\varepsilon - \frac{1}{t} \right). \]

Now, if we denote by \(S_2 \) the number of those integers \(a_n \ (1 \leqq n \leqq N, \langle n, N \rangle = 1) \) which are not divisible by any prime \(p \leqq z \) and are divisible by at least four distinct primes \(q, \langle q, N \rangle = 1 \), in the interval \(z < q \leqq z_1 \), then
On the Representation of Large Even Integers as Sums of Two Almost Primes. II

\[S_2 \leq \frac{1}{4} \sum_{q \leq z} S(q). \]

Since we have

\[\sum_{\frac{z}{q} \leq z, (q,N)=1} \frac{C_*(t_q)}{q} \leq \int_{1.8}^{9} \frac{C_*(t)}{t} dt + O\left(\frac{1}{\log^{1/2} N} \right), \]

we obtain the following lemma:

Lemma 6. We have

\[S_2 \leq \frac{1}{4} \int_{1.8}^{9} \frac{C_*(t)}{t} dt A_N \frac{\varphi(N)}{\log^2 N} + O\left(\frac{\varphi(N) (\log \log N)^2}{\log^{3/2} N} \right). \]

4. We shall show that for some sufficiently small \(\varepsilon > 0 \) we have

\[I(\varepsilon) \overset{\text{def}}{=} \frac{1}{4} \int_{1.8}^{9} \frac{C_*(t)}{t} dt \leq 77.5008. \]

To do this it will obviously suffice to prove that

\[I(0) < 77.500719, \]

since the integral defining \(I(\varepsilon) \) is, as a function of \(\varepsilon \), continuous at \(\varepsilon = 0 \).

We have

\[I(0) = \frac{1}{4} \int_{1.8}^{9} \frac{C_*(t)}{t} dt = 81e^x \int_{2}^{4} \frac{ds}{(4.5-s)F(s)} , \]

on substituting \(s = 4.5 \left(1 - \frac{1}{t} \right) \). It is not difficult to verify—by a simple but rather tedious calculation—that the function

\[k(s) = \frac{1}{(4.5-s)F(s)} \]

is convex on either of the intervals \(2 \leq s \leq 3 \) and \(3 \leq s \leq 4 \) (indeed, \(k(s) \) may be convex throughout on the interval \(2 \leq s \leq 4 \)). Hence, in order to estimate from above the value of the integral of \(k(s) \) over the interval \(2 \leq s \leq 4 \), we may apply the trapezoidal rule with an arbitrary set of division points including the point \(s = 3 \). Thus

\[\int_{2}^{4} k(s) ds \leq 0.05 \left(\frac{1}{2} k(2.00) + \sum_{j=1}^{39} k(2.00 + 0.05j) + \frac{1}{2} k(4.00) \right). \]
Taking again $k_1=20$ and $k_2=5$, we find that:

<table>
<thead>
<tr>
<th>$k(2.00)$</th>
<th>0.115781</th>
<th>$k(2.05)$</th>
<th>0.114122</th>
</tr>
</thead>
<tbody>
<tr>
<td>$k(2.10)$</td>
<td>0.112731</td>
<td>$k(2.15)$</td>
<td>0.111591</td>
</tr>
<tr>
<td>$k(2.20)$</td>
<td>0.110689</td>
<td>$k(2.25)$</td>
<td>0.110014</td>
</tr>
<tr>
<td>$k(2.30)$</td>
<td>0.109555</td>
<td>$k(2.35)$</td>
<td>0.109306</td>
</tr>
<tr>
<td>$k(2.40)$</td>
<td>0.109262</td>
<td>$k(2.45)$</td>
<td>0.109417</td>
</tr>
<tr>
<td>$k(2.50)$</td>
<td>0.109769</td>
<td>$k(2.55)$</td>
<td>0.110317</td>
</tr>
<tr>
<td>$k(2.60)$</td>
<td>0.111063</td>
<td>$k(2.65)$</td>
<td>0.111961</td>
</tr>
<tr>
<td>$k(2.70)$</td>
<td>0.113156</td>
<td>$k(2.75)$</td>
<td>0.114535</td>
</tr>
<tr>
<td>$k(2.80)$</td>
<td>0.116084</td>
<td>$k(2.85)$</td>
<td>0.117881</td>
</tr>
<tr>
<td>$k(2.90)$</td>
<td>0.119914</td>
<td>$k(2.95)$</td>
<td>0.122197</td>
</tr>
<tr>
<td>$k(3.00)$</td>
<td>0.124746</td>
<td>$k(3.05)$</td>
<td>0.127505</td>
</tr>
<tr>
<td>$k(3.10)$</td>
<td>0.130723</td>
<td>$k(3.15)$</td>
<td>0.134199</td>
</tr>
<tr>
<td>$k(3.20)$</td>
<td>0.138042</td>
<td>$k(3.25)$</td>
<td>0.142288</td>
</tr>
<tr>
<td>$k(3.30)$</td>
<td>0.146983</td>
<td>$k(3.35)$</td>
<td>0.152180</td>
</tr>
<tr>
<td>$k(3.40)$</td>
<td>0.157943</td>
<td>$k(3.45)$</td>
<td>0.164347</td>
</tr>
<tr>
<td>$k(3.50)$</td>
<td>0.171494</td>
<td>$k(3.55)$</td>
<td>0.179491</td>
</tr>
<tr>
<td>$k(3.60)$</td>
<td>0.188478</td>
<td>$k(3.65)$</td>
<td>0.198634</td>
</tr>
<tr>
<td>$k(3.70)$</td>
<td>0.210176</td>
<td>$k(3.75)$</td>
<td>0.223384</td>
</tr>
<tr>
<td>$k(3.80)$</td>
<td>0.238618</td>
<td>$k(3.85)$</td>
<td>0.256350</td>
</tr>
<tr>
<td>$k(3.90)$</td>
<td>0.277210</td>
<td>$k(3.95)$</td>
<td>0.302060</td>
</tr>
<tr>
<td>$k(4.00)$</td>
<td>0.332108</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

The above table was computed on the electronic digital computer, HIPAC 103. These data will give

$$\int_2^4 k(s)ds < 0.301618,$$

and consequently

$$I(0) < 81e^{\epsilon^2} \cdot 0.301618 < 77.500719.$$

This is the result which was to be shown.

5. Let us fix $\epsilon > 0$ so small as to satisfy $I(\epsilon) \leq 77.5008$, and suppose that $N \geq N_0 = N_0(\epsilon)$ be a sufficiently large even integer. Let S denote the number of those integers $a_n = n(N-n)$ ($1 \leq n \leq N$, $(n, N)=1$) which are divisible by no primes $p \leq z$, by at most three primes q, $(q, N)=1$, in the interval $z < q \leq z_1$, and by no integers of the form q^2 with q in the interval $z < q \leq z_1$, where, as before,

$$z = N^\frac{1}{9}, \quad z_1 = N^\frac{5}{9}.$$
Since the number S_3 of those integers a_n ($1 \leq n \leq N$, $(n, N) = 1$) which are not divisible by any prime $p \leq z$ and are divisible by some integer q^2 with q, $(q, N) = 1$, in $z < q \leq z_1$, is of $O(N^{\frac{8}{9}})$, we have, by virtue of Lemmas 5 and 6,

$$S \geq S_1 - S_2 - S_3$$

$$\geq (77.9721 - 77.5008) A_N \frac{\varphi(N)}{\log^2 N} + O\left(\frac{\varphi(N)(\log \log N)^2}{\log^{5/2} N}\right)$$

$$> 0.4712 A_N \frac{\varphi(N)}{\log^2 N} > 2.$$

This implies the existence of at least one integer n with $1 < n < N - 1$, $(n, N) = 1$, such that $V(a_n) \leq 5$, i.e.

$$V(n) + V(N - n) \leq 5,$$

which completes the proof of our theorem, since $N = n + (N - n)$.

References

Department of Mathematics,
Hokkaidô University

(Received April 1, 1964)