ON SOME CONSIDERATIONS OF HYPERSURFACES
IN CERTAIN ALMOST COMPLEX SPACES

By

Tamao NAGAI and Hidemaro KÔJYÔ

Introduction. Y. Tashiro [7] proved that an orientable hypersurface in an almost complex space has an almost contact structure. The purpose of the present paper is to study some properties of the induced almost contact metric structure for a hypersurface in a Kählerian space and those of the induced almost contact metric structure for a hypersurface in a K-space.

In §1 we shall give the definition of an induced almost contact metric structure for a hypersurface in an almost Hermitian space. The condition that a hypersurface in a Kählerian space be a normal contact space is already known [7]. §2 devoted to seek for a condition that a hypersurface in a Kählerian space be a contact metric space and a condition that a hypersurface in a Kählerian space be a normal almost contact metric space is given in §3. In §4 we shall show that every hypersurface in a non-Kählerian K-space can not admit a contact metric structure. §5 devoted to seek for a condition that a hypersurface in a K-space be a normal almost contact metric space. A property of a hypersurface admitting the second fundamental tensor with some conditions in a K-space will be discussed in §6.

We should like to express our sincere thanks to Dr. Y. Katsurada who gave us many valuable suggestions and constant guidances.

§1. An induced almost contact metric structure for a hypersurface in an almost Hermitian space. Let M^{2n+2} be a $(2n+2)$-dimensional almost Hermitian space with local coordinates $x^i (i=1, 2, \cdots, 2n+2)$ and we shall denote by F^i_j and g_{ij} its almost complex structure and Hermitian metric tensor respectively. Then we have

$$(1.1) \quad F^i_h F^h_j = -\delta^i_j, \quad g_{ij} F^i_h F^j_h = g_{hk}.$$

By virtue of (1.1) it follows that

$$(1.2) \quad F_{ij} = -F_{ji}, \quad (F_{ij} = g_{ij} F^i_h)$$

Let us consider that an orientable hypersurface M^{2n+1} in the almost Her-
Some Considerations of Hypersurfaces in Certain Almost Complex Spaces

m-dimensional space M^{2n+2} be defined by $2n + 2$ equations involving $2n + 1$ independent parameters u^α ($\alpha = 1, 2, \cdots, 2n + 1$) such that

$$x^i = x^i(u^\alpha).$$

The set of $2n + 2$ linearly independent vectors $(X_1^i, \cdots, X_{2n+2}^i)$ determines an enuple at each point of M^{2n+1}, where $X_1^i = \frac{\partial x^i}{\partial u^\alpha}$ and X^i is the contravariant component of the unit normal vector of M^{2n+1}. Now we put

$$X_1^i = g^{i\beta}X_{\beta}^j, \quad X_1^j = q_{ij}X^{j},$$

where $g^{i\beta}$ is determined by the equation $g^{i\beta}g_{\beta\gamma} = \delta_\gamma^i$ and $g_{ij} = g_{i\beta}X_{\beta}^i X_1^j$. Making use of these quantities we shall define $\varphi^\alpha_\beta, \xi^\alpha$ and η_β as follows:

$$\varphi^\alpha_\beta = F_{j}^{i}X_{i}^\alpha X_{\beta}^j, \quad \xi^\alpha = -F_{j}^{i}X_{i}^\alpha X^{j}, \quad \eta_\beta = F_{j}^{i}X_{i}X_{\beta}^j.$$

According to the relations

$$X_a^i X_1^i = 0, \quad X^i X_1^i = 0, \quad X^i X_1^i = 1, \quad X_a^i X_1^j = \delta_\beta^i,$$

we can see that the following conditions are satisfied:

$$\begin{cases}
\xi^\alpha \eta_\alpha = 1, & \text{rank } (\varphi^\alpha_\beta) = 2n, \\
\varphi^\alpha_\beta = 0, & \varphi^\alpha_\beta = 0, \\
\varphi^\alpha_\beta \varphi^\alpha_\gamma = -\delta_\gamma^i + \xi^\alpha \eta_\gamma.
\end{cases}$$

Therefore we may consider that the quantities $\varphi^\alpha_\beta, \xi^\alpha, \eta_\beta$ and $g^{i\beta}$ define an almost contact metric structure for M^{2n+1}. From (1.4) and (1.5) it follows that

$$\varphi_{a\beta} = -\varphi_{\beta a}. \quad (\varphi_{a\beta} = g_{a\gamma}\varphi^\gamma_\beta)$$

On making use of the Gauss’ equations we have from (1.3)

$$\varphi_{\beta i} = F_{j, k}^{i}X_1^j X_{\beta}^k + H_{i\gamma}^\alpha \eta_\gamma - H_{\beta i}^\alpha \xi_\gamma, \quad \eta^i = F_{j}^{i}X_{i}X_{\beta}^j.$$

where $H_{i\gamma}^\alpha = \varphi^\alpha_\gamma H_{\beta i}$, and $H_{\beta i}$ denotes the covariant component of the second fundamental tensor of M^{2n+1}. There exist the following four tensors in an almost contact metric structure:

2) Throughout the present paper the Latin indices are supposed to run over the range $1, 2, \cdots, 2n + 2$, and the Greek indices take the values $1, 2, \cdots, 2n + 1$.

3) In the present paper comma means the covariant differentiation with respect to the Riemann connection determined by g_{ij} and semi-colon denotes the covariant differentiation with respect to its induced connection.
contact metric space:

\begin{align}
N_a &= \xi^i (\eta_{bi;a} - \eta_{ai;b}) , \\
N_{\beta r} &= \varphi^i_{\beta} (\eta_{ri;a} - \eta_{ai;r}) - \varphi^i_{r} (\eta_{bi;r} - \eta_{ri;b}) , \\
N^\beta_{\gamma} &= \xi^i (\varphi^i_{\beta;i} - \varphi^i_{\gamma;i}) - \varphi^i_{\gamma} (\varphi^i_{\beta;i} - \varphi^i_{\gamma;i}) + \xi^i_{;i} \eta_{\beta} - \xi^i_{;i} \eta_{\gamma} , \\
N^\alpha_{\beta\gamma} &= \varphi^i_{\beta;i} (\eta_{ri;a} - \eta_{ai;r}) - \varphi^i_{\gamma;i} (\eta_{bi;r} - \eta_{ri;b}) + \xi^i_{;i} \eta_{\beta} - \xi^i_{;i} \eta_{\gamma} .
\end{align}

In this paper an almost contact metric structure with condition \(N^\sigma_{\beta r} = 0 \) is said to be normal and if \(\varphi_{a\beta} \) satisfies the condition

\begin{equation}
\varphi^a_{;\alpha} = \frac{1}{2} (\eta_{\alpha;a} - \eta_{a;\alpha}) ,
\end{equation}

we shall say that \(M^{2n+1} \) admits a contact metric structure.

\section{A condition that a hypersurface in a Kählerian space be a contact metric space}

Let us consider that \(M^{2n+2} \) be a Kählerian space. Then \(F^i_{;jk} = 0 \) holds good and from (1.7) and (1.8) we have

\begin{align}
\varphi^a_{;i} &= H^a_{;i} \xi^i - H^a_{;i} \xi^i , \\
\xi^i_{;i} &= H^a_{;i} \varphi^a_{;i} .
\end{align}

Substituting from (2.1) in the right hand member of (1.9)-(1.12), we obtain the following expressions for tensors \(N_a, N_{\beta r}, N^\alpha_{\beta \gamma} \) and \(N^\alpha_{\beta r} \) respectively:

\begin{align}
N_a &= H^a_{;i} \xi^i \varphi^a_{;i} , \\
N_{\beta r} &= H^i_{;i} \xi^i \eta_{\beta} - H^i_{;i} \xi^i \eta_{i} , \\
N^\alpha_{\beta} &= H^i_{;i} \xi^i \eta_{\beta} - H^i_{;i} \varphi^i \xi^i_{;i} , \\
N^\alpha_{\beta\gamma} &= H^i_{;i} \eta_{\beta} \varphi^i_{\gamma} - H^i_{;i} \eta_{\gamma} \varphi^i_{\beta} + \xi^i_{;i} \eta_{\beta} - \xi^i_{;i} \eta_{\gamma} .
\end{align}

Now, we shall prove the following theorem:

\textbf{Theorem 2.1.} In order that a hypersurface in a Kählerian space be a contact metric space, it is necessary and sufficient that \(H_{a;\beta} \) be of the form

\begin{equation}
H_{a;\beta} = - g_{a;\beta} + \phi \eta_{a} \eta_{\beta} + \frac{1}{2} \left\{ \varphi^a_{;a} (\varphi_{\beta r} + \eta_{\beta r}) + \varphi^a_{;\alpha} (\varphi_{\beta i} + \eta_{\beta i}) \right\} ,
\end{equation}

where \(\phi \) is a scalar function.

\textbf{Proof.} We shall first prove the necessity of (2.7). If a hypersurface is a contact metric space, then from \(N_a = 0 \) [5], (1.4) and (2.3) we have the relation
(2.8) \[H_{\alpha} \xi^3 = \rho \eta_\alpha, \]
where \(\rho \) is a scalar function. Also from (2.1) we have

(2.9) \[\varphi_{\alpha i a} + \varphi_{\beta i a} = 2H_{\alpha a} \eta_i - H_{\beta a} \eta_a - H_{\alpha i} \eta_\beta. \]

Multiplying (2.9) by \(\xi^i \) and summing for \(i \), with the aid of (2.8) it follows that

(2.10) \[\frac{1}{2} (\varphi_{\alpha i a} + \varphi_{\beta i a}) \xi^i = H_{\alpha a} - \rho \eta_\alpha \eta_\beta. \]

On the other hand, by virtue of (1.4) and (1.6) it follows that

\[(\varphi_{\alpha i a} + \varphi_{\beta i a}) \xi^i = \varphi_{\alpha}^i \eta_{i a} + \varphi_{\beta}^i \eta_{i a}. \]

Consequently by virtue of (2.10) and the last relation it must be satisfied that

(2.11) \[H_{\alpha a} = \rho \eta_\alpha + \frac{1}{2} (\varphi_{\alpha}^i \eta_{i a} + \varphi_{\beta}^i \eta_{i a}). \]

On the other hand, the condition (1.13) is satisfied. Hence we have

(2.12) \[\eta_{i a} = \eta_{i a} + 2 \varphi_{i a}. \]

Substituting from (2.12) in the right hand member of (2.11) we get

\[H_{\alpha a} = -g_{a \alpha} + \phi \eta_\alpha \eta_\beta + \frac{1}{2} \left\{ \varphi_{\alpha}^i (\varphi_{i a} + \eta_{i a}) + \varphi_{\beta}^i (\varphi_{a i} + \eta_{a i}) \right\}, \]

where \(\phi = \rho + 1 \).

Next we shall show that the relation (2.7) is the sufficient condition that a hypersurface in a Kählerian space admit a contact metric structure. If (2.7) is multiplied by \(\xi^3 \) and \(\beta \) is summed from 1 to \(2n+1 \), by virtue of (1.4) we obtain \(H_{\alpha \beta} \xi^\beta = \rho \eta_\alpha \). Therefore from (2.3) we get the condition \(N_{\alpha} = 0 \) and we see that the condition \(\eta_{\beta i a} \xi^i = 0 \) should be satisfied. Hence substituting from (2.7) in the right hand member of (2.2) we get

(2.13) \[\eta_{i a} = 2 \varphi_{i a} + \frac{1}{2} \eta_{i a} - \frac{1}{2} \eta_{a i} \varphi^i \varphi^a. \]

On the other hand, from the condition \(N_{\alpha} = 0 \) we may consider that \(H_{\alpha \beta} \) is of the form (2.11). If we substitute from (2.11) in the right hand member of (2.2), it follows that

(2.14) \[\eta_{i a} = -\eta_{a i} \varphi^i \varphi^a. \]

Therefore by virtue of (2.13) and (2.14) we get the relation
\[\varphi_{\gamma\delta} = \frac{1}{2}(\eta_{\delta;\gamma} - \eta_{\gamma;\delta}). \]

Accordingly we can see that the induced almost contact metric structure for \(M^{2n+1} \) is a contact metric structure.

On making use of the result of Theorem 2.1 for a hypersurface admitting a contact metric structure with the condition \(N^a_{\beta\gamma} = 0 \), we have the following corollary:

Corollary 2.1. In order that a hypersurface in a Kählerian space be a normal contact metric space, it is necessary and sufficient that \(H_{a\beta} \) be of the form

\[(2.15) \quad H_{a\beta} = -g_{a\beta} + \phi \eta_a \eta_{\beta}. \]

Proof. If \(M^{2n+1} \) is a normal contact metric space, then we have \(\varphi_{a\beta} = -\eta_{a;\beta} \) [5]. Accordingly substituting from this relation in the right hand member of (2.7), we get (2.15). Conversely if \(H_{a\beta} \) is of the form (2.15), by virtue of (2.1) it follows that

\[\varphi_{a\beta;\gamma} = \eta_a \eta_{\beta\gamma} - \eta_{\beta} g_{a\gamma}. \]

Therefore \(M^{2n+1} \) is a normal contact metric space [6].

§ 3. A condition that a hypersurface in a Kählerian space be a normal almost contact metric space. We suppose that a hypersurface in a Kählerian space admits an almost contact metric structure with the condition \(N^a_{\beta\gamma} = 0 \). In this case it is known that other three tensors \(N_a, N_{\beta\gamma} \) and \(N_{\beta}^X \) also vanish [4]. By virtue of \(N_a = 0 \) and (2.3) we have

\[(3.1) \quad H_{a\beta} \xi^\beta = \rho \eta_a. \]

Substituting from (3.1) in the right hand member of (2.4), we can see that \(N_{\beta\gamma} = 0 \) is satisfied identically. On making use of (3.1), from \(N^a_{\beta} = 0 \) and (2.5) we obtain

\[H_{a\beta} = \rho \eta_a \eta_{\beta} - \varphi^\beta \rho \eta_{a\beta}. \]

By virtue of the second relation in (1.5), the above relation may be rewritten as follows:

\[(3.2) \quad H_{a\beta} = -g_{a\beta} + \phi \eta_a \eta_{\beta} - \varphi^\beta (\varphi_{a\beta} + \eta_{a\beta}). \]

Conversely if the second fundamental tensor \(H_{a\beta} \) is of the form (3.2), it is evident that the condition (3.1) is satisfied. Then from (2.3) we get \(N_a = 0 \)

4) This result has proved by Y. Tashiro [7].
On Some Considerations of Hypersurfaces in Certain Almost Complex Spaces

119

and by virtue of (1.9) it should be satisfied that $\xi_{\gamma \delta}^\alpha \xi^\delta = 0$. Therefore if we substitute from (3.2) in the right hand member of (2.6) we can find that $N_{\beta \gamma}^\alpha = 0$ holds good. Consequently we have the following theorem:

Theorem 3.1. In order that a hypersurface in a Kählerian space be a normal almost contact metric space, it is necessary and sufficient that $H_{a\beta}$ be of the form (3.2).

On making use of the result of Theorem 3.1 for a hypersurface admitting a normal almost contact metric structure with the condition (1.13), we have the following corollary:

Corollary 3.1. In order that a hypersurface in a Kählerian space be a normal contact metric space, it is necessary and sufficient that $H_{a\beta}$ be of the form

(3.3) $H_{a\beta} = -g_{a\beta} + \phi \eta_\alpha \eta_\beta$.

Proof. If M^{2n+1} is a normal contact metric space, then we have $\varphi_{a\beta} = -\eta_{a;\beta}$ [5]. Accordingly from the result of Theorem 3.1 we have (3.3). The sufficiency of the condition (3.3) is proved by the same way as in Corollary 2.1.

§ 4. A certain remark on a hypersurface in a K-space. Let M^{2n+2} be a K-space, then we have the following condition [1]:

(4.1) $F_{\epsilon \delta, \eta} + F_{\epsilon \delta, \eta} = 0$.

Putting $F_{\epsilon \delta, \eta} X_\alpha^\epsilon X_\beta^\delta X_\gamma^\kappa = A_{\alpha \beta \gamma}$, and making use of (1.2) and (4.1) we find that the covariant tensor $A_{\alpha \beta \gamma}$ is skew-symmetric with respect to all indices. Then (1.7) becomes

(4.2) $\varphi_{a\beta;\gamma} = A_{\alpha \beta \gamma} + H_{a\gamma} \eta_\beta - H_{\beta \gamma} \eta_\alpha$.

Multiplying (4.2) by ξ^α and summing for α, it follows that

$$\varphi_{\alpha \beta;\gamma} \xi^\alpha - H_{\alpha;\gamma} \xi^\alpha \eta_\beta + H_{\beta \gamma} = A_{\alpha \beta \gamma} \xi^\alpha.$$

On making use of (1.6), the last relation may be rewritten as follows:

(4.3) $\varphi_{\alpha \beta}(\eta_{\alpha;\gamma} + H_{\alpha} \varphi_{\alpha}^\gamma) = -A_{\alpha \beta \gamma} \xi^\alpha$.

On the other hand, from (1.4) it follows that

(4.4) $\xi^\alpha \eta_\beta(\eta_{\alpha;\gamma} + H_{\alpha} \varphi_{\alpha}^\gamma) = 0$.

Adding (4.3) and (4.4) sides by sides, we get

(4.5) $(\varphi_{\alpha \beta} + \xi^\alpha \eta_\beta)(\eta_{\alpha;\gamma} + H_{\alpha} \varphi_{\alpha}^\gamma) = -A_{\alpha \beta \gamma} \xi^\alpha$.

Since the matrix $(\varphi_{\alpha \beta} + \xi^\alpha \eta_\beta)$ is non-singular, we obtain from (4.5)
Substituting from (4.2) in the right hand member of (1.9)–(1.12), we obtain the following expressions for tensors N, $N_{\beta\gamma}^\alpha$, N^α_{β}, respectively:

\begin{align*}
(4.7) & \quad N = H^{\alpha}_{\epsilon\delta} \xi^\delta \phi_{\gamma}^\alpha , \\
(4.8) & \quad N_{\beta\gamma} = 2A_{\epsilon\beta\gamma}^a \xi^\epsilon - 2A_{\epsilon\gamma}^a \xi^\epsilon \eta_{\beta} + H_{\beta}^a \xi^\epsilon \eta_{\gamma} , \\
(4.9) & \quad N^\alpha_{\beta} = 2A_{\epsilon\beta}^\alpha \xi^\epsilon + H_{\beta}^\alpha \xi^\epsilon - \phi_{\beta}^\alpha \xi^\epsilon + \xi_{\epsilon}^\alpha \eta_{\beta} - \xi_{\epsilon}^\alpha \eta_{\beta} + \phi_{\alpha}^\beta \phi_{\beta}^\epsilon \xi^\epsilon + \xi_{\epsilon}^\alpha \eta_{\beta} - \xi_{\epsilon}^\epsilon \eta_{\gamma} ,
\end{align*}

Before our theorem, we shall first prove the following lemma:

Lemma 4.1. If $A_{\alpha\beta\gamma} = 0$ holds good, then a K-space is necessarily a Kählerian space.

Proof. With respect to the envelope (X_{α}^i, X^i), the component of the tensor $F_{ij,k}$ is expressible as follows:

\begin{equation}
F_{ij,k} = \Phi_{\alpha\beta\gamma}^{(1)} X_{i}^\alpha X_{j}^\beta X_{k}^\gamma + \Phi_{\alpha\beta}^{(1)} X_{i}^\alpha X_{j}^\beta X_{k} + \Phi_{\alpha\beta}^{(2)} X_{i}^\alpha X_{j} X_{k}^\beta + \Phi_{\alpha\beta}^{(3)} X_{i} X_{j}^\alpha X_{k}^\beta + \Phi_{\alpha}^{(1)} X_{i}^\alpha X_{j} X_{k} + \Phi_{\alpha}^{(2)} X_{i} X_{j}^\alpha X_{k} + \Phi_{\alpha}^{(3)} X_{i} X_{j} X_{k}^\alpha .
\end{equation}

However, as in a K-space the tensor $F_{ij,k}$ is skewsymmetric with respect to all indices we have

\begin{align*}
(4.12) & \quad \left\{ \begin{array}{l}
\Phi_{\alpha\beta\gamma} = A_{\alpha\beta\gamma} , \\
\Phi_{\alpha\beta}^{(1)} = - \Phi_{\alpha\beta}^{(2)} = \Phi_{\alpha\beta}^{(3)} = F_{ij,k} X_{i}^\alpha X_{j}^\beta X_{k} , \\
\Phi_{\alpha}^{(1)} = \Phi_{\alpha}^{(2)} = \Phi_{\alpha}^{(3)} = \phi = 0 .
\end{array} \right.
\end{align*}

On the other hand, from (1.8) and (4.6) we have

\begin{equation}
F_{ij,k} X_{i}^\alpha X_{j}^\beta X_{k} = A_{\alpha\beta\gamma} \xi^\gamma \phi_{\alpha}^\beta .
\end{equation}

In consequence of (4.11), (4.12) and (4.13), it follows that if $A_{\alpha\beta\gamma} = 0$ holds good we must have $F_{ij,k} = 0$. This means that the space M^{2n+2} is a Kählerian space.

By virtue of Lemma 4.1, we have the following theorem:

Theorem 4.1. A hypersurface in a non-Kählerian K-space cannot admit a contact metric structure.

Proof. Suppose that a hypersurface in a K-space admits a contact metric structure. Then from (1.13) we have

\[\varphi_{\alpha\beta\gamma} + \varphi_{\beta\gamma\alpha} + \varphi_{\gamma\alpha\beta} = 0 . \]

On the other hand, from (4.2) and the skewsymmetric property of the tensor $A_{\alpha\beta\gamma}$, it follows that
On Some Considerations of Hypersurfaces in Certain Almost Complex Spaces

\[\varphi_{\alpha\beta;\gamma} + \varphi_{\beta\gamma;\alpha} + \varphi_{\gamma\alpha;\beta} = 3A_{\alpha\beta\gamma} \]

From the last two relations we find that \(A_{\alpha\beta\gamma} = 0 \) must be satisfied. Consequently from the result of Lemma 4.1, it is concluded that the K-space is necessarily a Kählerian space.

§ 5. A condition that a hypersurface in a K-space be a normal almost contact metric space. Let us consider that \(M^{2n+1} \) be a hypersurface in a K-space. Then we have

Lemma 5.1. If \(N_a = 0 \) and \(N_{\beta\gamma} = 0 \), then we have \(A_{a\beta\gamma} \xi^a = 0 \).

Proof. By virtue of (4.7), if \(N_a = 0 \) holds good we have

\[(5.1) \quad H_{\alpha} \xi^\alpha = \rho \eta_\alpha \]

Moreover, if \(N_{\beta\gamma} = 0 \) holds good, from (4.8) and (5.1) it follows that

\[(5.2) \quad A_{\delta\beta\gamma} \xi^\delta - A_{\delta\alpha\lambda} \xi^\delta \varphi_{\gamma}^\lambda = 0 \]

Multiplying (5.2) by \(\varphi_{\alpha}^\beta \) and summing for \(\beta \), by virtue of (1.4) we obtain

\[(5.3) \quad A_{\delta\beta\gamma} \xi^\delta \varphi_{\alpha}^\beta - A_{\delta\alpha\gamma} \xi^\delta = 0 \]

The last relation means that \(A_{\delta\epsilon\gamma} \xi^\delta \varphi_{\alpha}^\epsilon \) is symmetric with respect to indices \(\alpha \) and \(\gamma \). However because of the skewsymmetric property of \(F_{ij,k} \) the relation (4.13) shows that \(A_{\delta\epsilon\gamma} \xi^\delta \varphi_{\alpha}^\epsilon \) is skewsymmetric with respect to indices \(\alpha \) and \(\gamma \). Accordingly we must have

\[A_{\delta\beta\gamma} \xi^\delta \varphi_{\alpha}^\beta = 0 \]

Multiplying the last relation by \(\varphi_{\epsilon}^\alpha \) and summing for \(\alpha \), we get \(A_{\delta\epsilon\gamma} \xi^\delta = 0 \).

By virtue of the result of Lemma 5.1, we have the following theorem:

Theorem 5.1. In order that a hypersurface in a K-space be a normal almost contact metric space, it is necessary and sufficient that \(H_{a\beta} \) be of the form

\[(5.4) \quad H_{a\beta} = -g_{a\beta} + \phi \eta_a \eta_\beta - \varphi_{\gamma}^\delta (\varphi_{a\delta} + \eta_{a;\delta}) \]

and \(A_{a\beta\gamma} \) satisfy the relation

\[(5.5) \quad A_{a\beta\gamma} \varphi_{\gamma}^\delta = A_{a\gamma\delta} \varphi_{\beta}^\delta \]

Proof. We suppose that a hypersurface in a K-space admits a normal almost contact metric structure. Then four tensors \(N_a, N_{\beta\gamma}, N_{\alpha}, N_{\beta\gamma} \) vanish [4]. Making use of the result of Lemma 5.1, the relation (5.4) is obtained from \(N_a = 0, N_{\beta\gamma} = 0 \) and \(N_{\alpha} = 0 \). If we substitute from (5.4) in the right hand member of (4.10) it follows that
\[N_{\beta\gamma}^\alpha = 2A_{\beta\delta}^\alpha \varphi_{\gamma}^\delta - 2A_{\gamma\delta}^\alpha \varphi_{\beta}^\delta. \]

Therefore if \(N_{\beta\gamma}^\alpha = 0 \) holds good, the relation (5.5) is satisfied.

Conversely if \(H_{\alpha\beta} \) is of the form (5.4), by virtue of \((4.10) \) and \((5.5) \) we can easily obtain the relation \(N_{\beta\gamma}^\alpha = 0 \). Therefore our theorem has proved.

§ 6. A certain property of a hypersurface in a K-space. In this section we shall seek for a property of a hypersurface in a K-space, which is equivalent to the condition

\[(6.1) \quad H_{\alpha\beta} = -g_{\alpha\beta} + \phi \eta_{\alpha} \eta_{\beta}. \]

where \(\phi \) is a scalar function.

Substituting from \((6.1) \) in the right hand member of \((4.6) \), we have

\[(6.2) \quad \varphi_{\alpha\beta} = -\eta_{\alpha;\beta} + A_{\delta\epsilon\beta} \xi^\delta \varphi_{\alpha}' . \]

Next, we shall show that \((6.2) \) is the sufficient condition that \(H_{\alpha\beta} \) be of the form \((6.1) \). Multiplying \((6.2) \) by \(\xi^\beta \) and summing for \(\beta \), we have \(\eta_{\alpha;\beta} \xi^\beta = 0 \).

From the last relation it follows that \(N_{\alpha} = 0 \), then from \((4.7) \) we get the relation

\[(6.3) \quad H_{\alpha\beta} \xi^\beta = \rho \eta_{\alpha}. \]

Moreover, from \((4.2) \) we have

\[(6.4) \quad \varphi_{\alpha;\beta} + \varphi_{\beta;\alpha} = 2H_{\alpha\beta} \eta_{\gamma} - H_{\beta\gamma} \eta_{\alpha} - H_{\alpha\gamma} \eta_{\beta}. \]

Then if we use again the process by which \((2.11) \) is obtained from \((2.9) \) under the condition \((2.8) \), we can get from \((6.3) \) and \((6.4) \) the following expression for \(H_{\alpha\beta} \):

\[(6.5) \quad H_{\alpha\beta} = \rho \eta_{\alpha} \eta_{\beta} + \frac{1}{2} (\varphi_{\alpha\beta} \eta_{\rho\beta} + \varphi_{\beta\alpha} \eta_{\rho\alpha}) . \]

Solving \((6.2) \) for \(\eta_{\alpha;\beta} \) and substituting from the solution in the right hand member of \((6.5) \), we obtain \((6.1) \). Consequently we have the following theorem:

Theorem 6.1. The second fundamental tensor \(H_{\alpha\beta} \) of a hypersurface in a K-space is of the form

\[H_{\alpha\beta} = -g_{\alpha\beta} + \phi \eta_{\alpha} \eta_{\beta}, \]

if and only if \(\varphi_{\alpha\beta} \) satisfies the relation

\[\varphi_{\alpha\beta} = -\eta_{\alpha;\beta} + A_{\delta\epsilon\beta} \xi^\delta \varphi_{\alpha}'. \]
On Some Considerations of Hypersurfaces in Certain Almost Complex Spaces

References

Department of Mathematics,
Hokkaido University.

(Received August 31, 1964)