ON QUASI-INJECTIVE MODULES

A Generalization of the Theory of Completely Reducible Modules

By

Yōichi MIYASHITA

Contents

§ 0 Introduction. .. 158
§ 1 Preliminary results and maximal independent sets of uniform submodules. .. 159
§ 2 Complemented submodules. 165
§ 3 A module in which the d·c-correspondence is a closure operation. 170
§ 4 Quasi-injective modules. 173
§ 5 A quasi-injective module in which the d·c-correspondence is a continuous closure operation. 177
§ 6 Complemented submodules of a module over a ring with some minimum condition. 186

§ 0. Introduction. The main purpose of this paper is to extend some results on completely reducible modules to quasi-injective modules by replacing “irreducible submodules” with “uniform submodules”. To this end, a number of concepts and results on quotient rings (which are given by Johnson, Utumi, Goldie, Lambek) will be needed. Let R be a non-zero ring with 1. A unital R-left module V is called R-uniform if every pair of its non-zero R-submodules has a non-zero intersection (Goldie [3]). Let \(\{V_{\lambda}; \lambda \in \Lambda\} \), \(\{W_{\gamma}; \gamma \in \Gamma\} \) be maximal independent sets of R-uniform submodules of a unital R-left module M. Then there exists a 1–1 mapping f of Λ onto Γ such that $V_{\lambda} \sim W_{f(\lambda)}$ for all λ, where $V_{\lambda} \sim W_{f(\lambda)}$ means that a non-zero R-submodule of V_{λ} is R-isomorphic to an R-submodule of $W_{f(\lambda)}$ (Th. 1.10.) This result generalizes the one on the rank of abelian groups as well as the one on completely reducible modules. M is called R-quasi-injective if every R-homomorphism of any R-submodule of M into M can be extended to an R-endomorphism of M (Johnson and Wong [6]). If R is a left Noetherian ring (with 1) and M is R-quasi-injective, then M is a direct sum of R-quasi-injective uniform submodules, and such a representation of M is unique up to R-isomorphism (Th. 4.6). If R is a ring such that for any non-zero left ideal I, R/I contains a minimal R-left submodule, then an R-left module M is R-injective if and only if every R-homomorphism of any
maximal left ideal into M can be extended to an R-homomorphism of R into M. This is a corollary to Th. 6.1. Th. 6.1 generalizes also a result on neat subgroups of abelian groups. M is called an R-c.q.i.
dmodule if M is R-quasi-injective, and for any non-zero R-submodule A, $I_M(r_M(A))$ is the unique maximal submodule such that $I_M(r_M(A)) \supseteq A$ and every non-zero R-submodule of $I_M(r_M(A))$ has a non-zero intersection with A (Cor. to Prop. 5.11), where $K=\text{Hom}_R(M,M)$ acting on the right, $r_M(A)=\{\alpha \in K; A\alpha=0\}$ and $I_M(r_M(A))=\{u \in M; u \cdot r_M(A)=0\}$. Let M be a unital R-L-module, where L is a non-zero ring with 1. M is called an R-L-c.q.i.
dmodule if M is an $R \otimes_R L$-c.q.i.
dmodule, where L^o is the opposite ring of L and J the ring of rational integers. If M is an R-c.q.i.
dmodule then there hold the following: (1) M is a Q_o-c.q.i.
dmodule, where Q_o is any intermediate ring of Q and R_o of all (additive group) endomorphisms induced by R. (2) Every R-direct summand of M is an R-c.q.i.
dmodule. (3) Every R-K-submodule is an R-c.q.i.
dmodule and an R-K-c.q.i.
dmodule. (4) K is, as a K-left module, a K-c.q.i.
dmodule. And we can generalize some results on completely reducible modules in this situation. From these facts cited above, the center of any left injective ring with zero left singular ideal is also an injective ring with zero singular ideal.

The author wish to express his best thanks to Prof. G. Azumaya and Dr. H. Tominaga for their helpful suggestions.

§ 1. Throughout the present paper, M will denote a unital R-left module $(\neq 0)$, where R is a non-zero ring with 1. \mathfrak{M} and \mathfrak{S} denote the set of all non-zero R-submodules of M and the set of all subsets of M properly containing $\{0\}$, respectively. For $S \in \mathfrak{S}$, we set $S^-=\{0\} \cup \{x \in M; Rx \cap S \neq 0\}$. And we set $0^- = 0$. Then, to be easily seen, $S \subseteq T(S, T \in \mathfrak{S})$ implies $S^- \subseteq T^-$, $S \subseteq S^-=S^-$. And, $A \cap S=0$ $(A \in \mathfrak{M})$ implies $A \cap S^-=0$. Therefore, $S^- \subseteq S^-=(S \in \mathfrak{S})$ is nothing but to say that $X \cap S \neq 0$ $(X \in \mathfrak{M})$ implies $X \cap S^- \neq 0$. $S \in \mathfrak{S}$ is said to be dense in $T \in \mathfrak{S}$, if $S \subseteq T \subseteq S^-$. If S is dense in T then $S^- = T^-$ obviously, so that if S and T are dense in T and U respectively, then so is S in U, where $U \in \mathfrak{S}$. And, to be easily seen, $A \in \mathfrak{M}$ is dense in $B \in \mathfrak{M}$ if and only if $A \subseteq B$ and $X \cap A \neq 0$ for all $X \in \mathfrak{M}$ with $X \subseteq B$. "submodule" and "homomorphism" without modifier mean always "R-submodule" and "R-homomorphism" respectively.

Proposition 1.1. Let $\{A_\lambda; \lambda \in \Lambda\}$ and $\{B_\lambda; \lambda \in \Lambda\}$ be subsets of \mathfrak{M}. If $A_{\bar{\lambda}} = B_{\bar{\lambda}}$ for all λ, then $\sum A_\lambda = \sum \oplus A_\lambda$ (direct sum) if and only if $\sum B_\lambda = \sum \oplus B_\lambda$.

Proof. It suffices to prove that if $A_{\bar{i}} = B_{\bar{i}}$ $(i=1, \ldots, n)$ and $A_1 + \cdots + A_n = A_1 \oplus \cdots \oplus A_n$ then $B_1 + \cdots + B_n = B_1 \oplus \cdots \oplus B_n$. In fact, $A_1 \cap (A_2 + \cdots + A_n) = 0$ and $A_{\bar{i}} = B_{\bar{i}}$ yield $B_1 \cap (A_2 + \cdots + A_n) = 0$, which means $A_2 + \cdots + A_n + B_1 =$
\[A_1 \oplus \cdots \oplus A_n \oplus B. \] Similarly we obtain \(A_1 + \cdots + A_n + B_1 + B_2 = A_1 \oplus \cdots \oplus A_n \oplus B_1 \oplus B_2 \), and eventually \(B_1 + \cdots + B_n = B_1 \oplus \cdots \oplus B_n \).

Corollary. Let \(\{ A_i ; \lambda \in \Lambda \} \) and \(\{ B_i ; \lambda \in \Lambda \} \) be subsets of \(\mathfrak{M} \) such that \(A_i \subseteq B_i \) and \(\sum B_i = \sum \oplus B_i \). Then \(\sum A_i \) is dense in \(\sum B_i \) if and only if each \(A_i \) is dense in \(B_i \).

Proof. If \(\sum A_i \) is dense in \(\sum B_i \), then \(0 \neq X \cap \sum A_i = X \cap A_i \) for all \(X \in \mathfrak{M} \) with \(X \subseteq B_i \). Hence, each \(A_i \) is dense in \(B_i \). Conversely, if \(A_i^\ominus = B_i^\ominus \) for all \(\lambda \), then \(X \cap \sum A_i = 0 \) (\(X \in \mathfrak{M} \)) implies \(X \cap \sum B_i = 0 \), by Prop. 1.1. Hence, \(\sum A_i \) is dense in \(\sum B_i \).

\(V \in \mathfrak{M} \) is called *uniform* if every pair of non-zero submodules of \(V \) has a non-zero intersection (Goldie [3]).

Proposition 1.2. Let \(V \) and \(W \) be uniform submodules of \(M \). If \(V \cap W \neq 0 \), then \(V^\ominus = W^\ominus \).

Proof. As \(V \) is uniform, \(X \cap (V \cap W)^\ominus \neq 0 \) for all \(X \in \mathfrak{M} \) with \(X \subseteq V \), so that \(V \cap W \) is dense in \(V \), and symmetrically in \(W \). Hence, we obtain \(V^\ominus = (V \cap W)^\ominus = W^\ominus \).

The proof of the next proposition may be left to readers.

Proposition 1.3. Let \(\{ A_i ; \lambda \in \Lambda \} \) be a subset of \(\mathfrak{M} \) such that \(\sum A_i = \sum \oplus A_i \), and let \(A \) be a submodule of \(M \) such that \(A \cap \sum A_i \neq 0 \). If \(\{ A_{i_0} ; i = 1, \ldots, n \} \) is a minimal (finite) subset of \(\{ A_i \} \) such that \(A \cap \sum A_{i_0} \neq 0 \), then \(A \cap \sum A_{i_0} \) is isomorphically mapped into each \(A_{i_0} \) by the projection to \(A_{i_0} \).

In particular, if \(A \) is uniform, then \(\{ A_{i_0} \} \) is uniquely determined by \(A \).

Proposition 1.4. Let \(A_i, B_i (i = 1, 2) \) be in \(\mathfrak{M} \). If \(A_i \subseteq A_i^\ominus \) and \(B_i \subseteq B_i^\ominus \), then \((A_i \cap B_i)^\ominus \subseteq (A_i^\ominus \cap B_i^\ominus) \).

Proof. If \(X \cap (A_i \cap B_i)^\ominus \neq 0 \) (\(X \in \mathfrak{M} \)), then \((X \cap A_i) \cap B_i \neq 0 \) by \(B_i \subseteq B_i^\ominus \), whence \(X \cap (A_i \cap B_i) = (X \cap B_i) \cap A_i \neq 0 \) by \(A_i^\ominus \subseteq A_i \).

Corollary. Let \(A, B \in \mathfrak{M} \). If \(A^\ominus = B^\ominus \), then \(A^\ominus = (A \cap B)^\ominus = B^\ominus \). In particular, if \(A \) and \(B \) are dense submodules of \(M \) (i.e. dense in \(M \)), then so is \(A \cap B \).

Proposition 1.5. Let \(M' \) be an \(R \)-left module, and \(\varphi \) an \((R-) \) homomorphism of \(M' \) into \(M \). If \(S^{-} \subseteq T^{-} \) (\(S, T \in \mathfrak{S} \)), then \((S \varphi^{-})^{-} \subseteq (T \varphi^{-})^{-} \), where \(S \varphi^{-} = \{ u \in M' ; u \varphi \in S \} \). In particular, if \(S \) is dense in \(M \), then \(S \varphi^{-} \) is dense in \(M' \) (Johnson [5]).

Proof. If \(X' \cap T \varphi^{-} = 0 \) for some non-zero submodule \(X' \) of \(M' \), then \(X' \cap S \varphi^{-} \cap \text{Ker} \varphi \subseteq X' \cap S \varphi^{-} \cap T \varphi^{-} = 0 \). Hence, if \(X' \cap S \varphi^{-} \neq 0 \), then \(X' \varphi \cap S \neq 0 \). However, as \(S^{-} \subseteq T^{-} \), \(X' \varphi \cap S \neq 0 \) implies a contradiction \(X' \varphi \cap T \neq 0 \).
If a dense submodule of M is isomorphic to a dense submodule of an R-left module M', M is said to be similar to M', and denoted by $M \sim M'$. The similarity is an equivalence relation by Cor. to prop. 1.4. A subset $\{A_{\lambda}; \lambda \in A\}$ of \mathfrak{M} is called homogeneous if $A_{\lambda} \sim A_{\lambda'}$ for all $\lambda, \lambda' \in A$.

Proposition 1.6. Let $\{A_{\lambda}\}$ be a maximal independent homogeneous set of uniform submodules of M, and let $A \in \mathfrak{M}$. In order that $A \cap \Sigma A_{\lambda} \neq 0$, it is necessary and sufficient that A contains a uniform submodule U such that $U \sim A_{\lambda}$.

Proof. Since every non-zero submodule of A_{λ} is dense in A_{λ}, the necessity is a direct consequence of Prop. 1.3. And, the sufficiency follows from the maximality of $\{A_{\lambda}\}$.

Let A be a submodule of M. A complement A^c of A (in M) is a maximal submodule of M such that $A \cap A^c = 0$. And, a double complement A^{cc} of A is a complement of a complement of A such that $A^{cc} \supseteq A$. If $A \cap B = 0$ ($B \in \mathfrak{M}$), by Zorn’s lemma we can take a complement A^c of A such that $A^c \supseteq B$. Evidently, $0^c = M$ and $M^c = 0$. If A is a complement of some submodule of M, A is called a complemented submodule (of M). To be easily seen, every direct summand is a complemented submodule. The many-to-many correspondence $A\rightarrow A^{cc}$ is called the d.c.-correspondence, more precisely, the R-d.c.-correspondence in M.

Proposition 1.7. Let A be a submodule of M.

(i) A submodule X of M is a double complement of A if and only if X is a maximal submodule such that $A \subseteq X \subseteq A^{-}$. Accordingly, if C, D are arbitrary complement and double complement of A respectively, then C, D are complements of D, C respectively.

(ii) A is complemented if and only if A is a double complement of itself, that is, there exists no submodule X of M such that $A \subseteq X \subseteq A^{-}$. Accordingly, if A is complemented, A^{cc} is unique and coincides with A.

Proof. Evidently $0^{cc} = 0^{-} = 0$. If $A \neq 0$ is not dense in A^{cc}, then $A \oplus Y \subseteq A^{cc}$ for some $Y \in \mathfrak{M}$, and whence it follows $(A \oplus Y) \oplus A^c = A \oplus (Y \oplus A^c)$, where $A^{cc} = (A^c)^c$. This contradiction shows that A is dense in A^{cc}. And further, if $A^{cc} \subseteq W$ ($W \in \mathfrak{M}$) then $W \cap A^c \neq 0$, and so $W \nsubseteq A^{-}$. Conversely, let X be a maximal submodule such that $A \subseteq X \subseteq A^{-}$. Then $A^{-} \cap A^c = 0$ implies $X \cap A^c = 0$. We can take a double complement A^{cc} such that $A^{cc} \supseteq X$. Then, as $A^{cc} \subseteq A^{-}$, $A^{cc} = X$. Thus we have obtained the former assertion. Next, let $A = B^c$ ($B \in \mathfrak{M}$). We take a complement A^c of A such that $A^c \supseteq B$, and further we take a complement $(A^c)^c$ of A^c such that $(A^c)^c \supseteq A$. Then $A = (A^c)^c$, because $A^c \supseteq B$ and $A = B^c$.
Proposition 1.8. If \(\{ V_{i} ; \lambda \in \Lambda \} \) and \(\{ W_{r} ; r \in \Gamma \} \) are maximal independent homogeneous sets of uniform submodules of \(M \) such that \(V_{i} \sim W_{r} \), then \(\# \Lambda = \# \Gamma \), where \(\# \Lambda \) denotes the cardinal number of \(\Lambda \).

Proof. We shall distinguish between two cases.

Case 1. \(\# \Lambda < \infty \) or \(\# \Gamma < \infty \). Without loss of generality, we may assume \(\# \Gamma \leq \# \Lambda \). We set \(\{ W_{r} ; r \in \Gamma \} = \{ W_{i} , \cdots , W_{s} \} \). Let \(V_{i} = \sum_{i \in A} V_{i} \) for an arbitrary \(\lambda \in \Lambda \). If \(W_{i} = \sum_{i} V_{i} \cap W_{i} \neq 0 \) for all \(i \), then \(W_{i} = \sum_{i} V_{i} \) by Prop. 1.2. Since \(V_{i} \cap \sum V_{i} \neq 0 \), Prop. 1.1 yields \(V_{i} \cap \sum V_{r} = 0 \), which contradicts the maximality of \(\{ W_{i} ; i = 1 , \cdots , s \} \). Hence, for some \(W_{r} \), say \(W_{1} \), there holds \(V_{i} \cap W_{1} = 0 \). We set here \(V_{i} = V_{i} \cap W_{1} \). Then, \(V_{i} \cap V_{i} \neq 0 \) by the maximality of \(\{ V_{i} \} \), and \(\{ V_{i} , \lambda \neq \lambda \} \cup \{ W_{1} \} \) is a maximal independent homogeneous set of uniform submodules of \(M \). In fact, if \(\{ V_{i} ; \lambda \neq \lambda \} \cup \{ W_{1} \} \cup \{ U \} \) is an independent homogeneous set of uniform submodules then, as \((V_{i} \cap V_{j}) = V_{i} \) by Prop. 1.2, \((V_{i} \cap V_{j}) + U = (V_{i} \cap V_{j}) \cup V_{j} = V_{j} \), \(V_{i} \cup V_{j} + U = V_{i} + V_{j} + U = V_{i} \cup V_{j} \cup U \), which contradicts the maximality of \(\{ V_{i} \} \). Repeating the above argument, we obtain eventually \(\# \Lambda = \# \Gamma (= s) \).

Case 2. \(\# \Lambda = \infty \) and \(\# \Gamma = \infty \). By the maximality of \(\{ V_{i} \} \) and Prop. 1.3, for each \(V \in \{ V_{i} \} \) there corresponds the unique minimal (finite) subset \(\{ W_{i} , \cdots , W_{n} \} \) of \(\{ W_{r} \} \) such that \(V \cap \sum W_{i} \neq 0 \). We shall prove that \(\cup_{f} \{ W_{i} , \cdots , W_{n} \} = \sum W_{i} \). To this end, let \(V \) be an arbitrary member of \(\{ V_{i} \} \), and let \(\{ V_{i} , \cdots , V_{m} \} \) be the unique minimal (finite) subset of \(\{ V_{i} \} \) such that \(W \cap \sum V_{i} \neq 0 \). And then, let \(\{ W_{i} , \cdots , W_{n} \} \) be the unique minimal subset of \(\{ W_{i} \} \) such that \(V_{i} = V \cap \sum W_{i} \neq 0 \). Since each \(V_{i} \) is uniform, \(V_{i} \cap V_{i} = V_{i} \) by Prop. 1.2. Hence, there holds \(W \cap \sum V_{i} \neq 0 \), which means \(W \in \{ W_{i} \} \). We have seen therefore that \(\cup_{f} \{ W_{i} , \cdots , W_{n} \} \) coincides with \(\{ W_{i} \} \), whence it follows \(\# \Gamma \leq \# \Lambda \). And, we have symmetrically \(\# \Lambda \leq \# \Gamma \). Hence \(\# \Lambda = \# \Gamma \).

The set of all uniform submodules of \(M \) can be classified with respect to the equivalence relation \(\sim \). And, \(P \) will represent the set of all similar classes. The existense of maximal independent [homogeneous] set of uniform submodules is secured by Zorn's lemma.

Proposition 1.9. (i) If \(\{ V_{i} ; \lambda \in \Lambda \} \) is a maximal independent set of uniform submodules of \(M \), then for each \(\rho \in P \), \(\{ V_{i} ; \lambda \in \Lambda_{\rho} \} \) is a maximal independent homogeneous subset of \(\rho \), where \(\Lambda_{\rho} = \{ \lambda \in \Lambda ; V_{i} \in \rho \} \).

(ii) If for each \(\rho \in P \) there corresponds a maximal independent homogeneous subset \(\{ W_{i} ; r \in \Gamma_{\rho} \} \) of \(\rho \), then \(\cup_{\rho} \{ W_{i} ; r \in \Gamma_{\rho} \} \) is a maximal independent set of uniform submodules.

Proof. (i). For any \(U \in \rho , U \cap \sum V_{i} \neq 0 \), and further, \(U \cap \sum \lambda \in \rho V_{i} \neq 0 \) by
Prop. 1.3. Hence each \{V_{i}; \lambda \in \Lambda_{P}\} is a maximal independent subset of \rho.

(ii). Under the same notations as in (i); \(\sum_{\rho} W_{i} = \sum_{\rho} V_{i} \) by Prop. 1.6, so that \(\sum_{\rho}(\sum_{\rho} W_{i}) = \sum_{\rho}(\sum_{\rho} V_{i})\) by Prop. 1.1.

Combining Prop. 1.8 and Prop. 1.9(i), we obtain the following fundamental theorem:

Theorem 1.10. Let \{V_{i}; \lambda \in \Lambda\}\(^{1)}\) and \{W_{i}; \iota \in \Gamma\} be maximal independent sets of uniform [complemented uniform] submodules of \(M\). Then, there exists a 1–1 mapping \(f\) from \(\Lambda\) onto \(\Gamma\) such that \(V_{i} \sim W_{\iota(i)}\) for all \(\lambda \in \Lambda\).

This theorem extends the one on the rank of abelian groups (cf. Fuchs [1]) as well as the one on completely reducible modules, and will be treated again in \(\S\) 4. For any uniform submodule \(U \in \mathfrak{W}\), we denote the class containing \(U\) by \(\tilde{U}\).

Theorem 1.11. Let \(\bigcup_{\rho} \{V_{i}; \lambda \in \Lambda_{\rho}\}\) be any maximal independent set of uniform submodules, where \(V_{i} \in \rho\) (\(\lambda \in \Lambda_{\rho}\)), and let \(P_{0}\) be any non-empty subset of \(P\).

(i) \(\sum_{\rho} V_{i}\) depends on \(P_{0}\) only (and is independent of the choice of \(\{V_{i}\}\)).

(ii) \(\sum_{\rho} V_{i}\) depends on \(P_{0}\) only (and is independent of the choice of \(\{V_{i}\}\) and complements).

Proof. \(\{V_{i}; \lambda \in \Lambda_{\rho}\}\) is a maximal independent set of \(\bigcup_{\rho} P_{\rho}\rho\). For \(X \in \mathfrak{W}\), \(X \cap \sum V_{i} = 0\) if and only if \(X\) contains a uniform submodule \(U\) such that \(\tilde{U} \in \rho P_{0}\), where \(\sum V_{i} = \sum_{\rho} V_{i}\) (cf. the proof of Prop. 1.6). And, this is nothing but to say that \(\sum V_{i}\) is independent of the choice of \(\{V_{i}\}\) and is uniquely determined by \(P_{0}\). To prove (ii), we set \(C_{i} = (\sum V_{i})^{*}\), and take a complement \(C_{2}\) of a sum of another maximal independent subset of \(\bigcup_{\rho} P_{\rho}\rho\). If \(C_{i} \neq C_{2}\), say \(C_{i} \subsetneq C_{2}\), then there is some \(Y \in \mathfrak{W}\) such that \(Y \subset C_{2}\) and \(Y \cap C_{i} = 0\). Then, since \(Y \supset C_{2}\), \(Y \cap C_{i} \neq 0\). Therefore, by Prop. 1.3, there is a uniform submodule \(U\) such that \(U \subset (Y \cap C_{i})\) and \(\tilde{U} \in \rho P_{0}\). By the projection, \(U \subset Y \cap C_{i}\) is isomorphic to a submodule \(U^{*}\) of \(Y\). As \(\tilde{U} \in \rho P_{0}\) and \(U \subset Y \subset C_{2}\), we have \(\tilde{U} \in \rho P_{0}\) and \(U^{*} \subset C_{2}\). But this contradicts that \(C_{2}\) is a complement of a sum of a maximal independent subset of \(\bigcup_{\rho} P_{\rho}\rho\).

By the validity of Th. 1.10, we can define \(\dim M\) and \(\rho\)-dim \(M\) as \(\#A\) and \(\#A_{\rho}\), respectively, where \(\{V_{i}; \lambda \in \Lambda\}\) is an arbitrary maximal independent set of uniform submodules of \(M\) and \(A_{\rho} = \{\lambda \in \Lambda; V_{\lambda} \in \rho\}\). Evidently, we have \(\dim M = \sum_{\rho} \rho\)-dim \(M\). For any \(A \in \mathfrak{W}\), the set \(P(A)\) of the similar classes of uniform submodules of \(A\) may be regarded as a subset of \(P\). And, for any \(\rho \in P\), we

\(1\) For each \(V_{i}\), we take a double complement \(V_{i}^{*}\) of \(V_{i}\). Then, by Prop. 1.1 and Prop. 1.7, \(\{V_{i}^{*}; \lambda \in \Lambda\}\) is also a (maximal) independent set of uniform submodules.
define $\rho(A) = \{ X \in \rho; X \subseteq A \}$.

Proposition 1.12. If $\{ A_\gamma; \gamma \in \Gamma \}$ is an independent subset of \mathfrak{M}, then $\dim \sum_\gamma A_\gamma = \sum_\gamma \dim A_\gamma$ and ρ-dim $\sum_\gamma A_\gamma = \sum_\gamma \rho$-dim A_γ for all $\rho \in P$.

Proof. Let ρ be in P. For each A_γ, choose an arbitrary maximal independent subset $\{ V_{\tau}; \tau \in \Gamma_\gamma \}$ of $\rho(A_\gamma)$, and let B_γ be a complement of $V_{\tau} = \sum_{\tau \in \Gamma_\gamma} V_{\tau}$ in A_γ. Then, each $B_\gamma \oplus V_{\tau}$ being dense in A_γ, $\Sigma_\gamma (B_\gamma \oplus V_{\tau})$ in dense in ΣA_γ by Cor. to Prop. 1.1. If U is in $\rho(\Sigma A_\gamma)$ then $U \cap (\Sigma_\gamma (B_\gamma \oplus V_{\tau})) \neq 0$. So that $U \cap \Sigma V_{\tau} \neq 0$ by Prop. 1.3, because each B_γ does not contain a submodule belonging to ρ. This proves evidently that $\cup \{ V_{\tau}; \tau \in \Gamma_\gamma \}$ is a maximal independent subset of $\rho(\Sigma A_\gamma)$. Hence, ρ-dim $\sum_\gamma A_\gamma = \sum_\gamma \rho$-dim A_γ. And then, as $\dim A = \sum_\gamma \rho$-dim A for any $A \in \mathfrak{M}$, we obtain $\dim \sum_\gamma A_\gamma = \sum_\gamma \dim A_\gamma$.

Let A be a submodule of M, and A^c an arbitrary complement of A. Evidently, A and A^c may be regarded naturally as submodules of M/A^c and M/A respectively. Now, in this meaning, we have the following:

Proposition 1.13. Let A be a submodule and A^c an arbitrary complement of A. If A is non-zero then A is dense in M/A^c, and if A^c ($\neq 0$) is dense M/A then A is complemented. Consequently, if $B, C \in M$ have a common complement E then $B \sim M/E \sim C$.

Proof. If A is non-zero, $A \cap X \neq 0$ for each $X \in \mathfrak{M}$ with $X \subseteq A^c$, and hence $(A \oplus A^c)/A^c \cap X/A^c = (A \cap X) \oplus A^c/A^c \neq 0$. This implies that $(A \equiv) (A \oplus A^c)/A^c$ is dense in M/A^c. Next, if A^c is dense in M/A, then $(A^c \oplus A)/A \cap A^{c\gamma}/A = (A^c \cap A^{c\gamma} \oplus A)/A = 0$ yields $A^{c\gamma} = A$.

As any double complement of $A \in \mathfrak{M}$ is a complement of any complement of A (Prop. 1.7), by Prop. 1.13, complements of A are similar to each other. Thus $\dim A^c$ and ρ-dim A^c are uniquely determined by A, and we denote them by $\text{codim } A$ and ρ-codim A, respectively. Then, $\text{codim } A = \sum_\gamma \rho$-codim A, if $A \oplus A^c$ is dense in M, $\dim A + \text{codim } A = \dim M$ and ρ-dim $A + \rho$-codim $A = \rho$-dim M by Prop. 1.12.

Proposition 1.14. Let $V \in \mathfrak{M}$ be uniform, and let W be a submodule containing V. Then W is uniform if and only if V is dense in W.

Proof. If V is dense in W, then every non-zero submodule of W has a non-zero intersection with V, and hence W must be uniform. The “only if” part is evident.

Combining Prop. 1.14 with Prop. 1.7, we readily obtain

Corollary. A complemented uniform submodule is a maximal uniform submodule (i.e. maximal as a uniform submodule), and conversely.
§ 2. Complemented submodules. We shall begin this section with the following theorem (cf. [7], [8]).

Theorem 2.1. Let N be a dense submodule of M. If C is a complemented submodule of M, then $C \cap N$ is a complemented submodule of N and C is a double complement of $C \cap N$ in M. And if Z is a complemented submodule of N then $Z^\circ \cap N = Z$ for every double complement Z° of Z in M.

Proof. Let $C \cap N \neq 0$ be dense in $X \in \mathfrak{M}$ with $X \subseteq N$. If $X \not\subseteq C$ then $(X+C) \cap C^c \neq 0$, and so $0 \neq N \cap (X+C) \cap C^c = X \cap C^c$. Since $C \cap N$ is dense in X, we have a contradiction $(C \cap N) \cap (X \cap C^c) \neq 0$. Hence $X \subseteq C$, that is, $X = C \cap N$. This implies that $C \cap N$ is complemented in N (Prop. 1.7). Next, let Z be a non-zero complemented submodule of N. Then, as $Z^\circ \supseteq Z^\circ \cap N \rightarrow Z, Z$ is dense in $Z^\circ \cap N$, and hence $Z^\circ \cap N = Z$ by Prop. 1.7.

Let $A \supseteq B$ be submodules of M. If B/A is dense in M/A, then so is B in M. Because, if $B^c \neq 0$ then $(A \oplus B^c)/A \neq 0$ and $B/A \cap (A \oplus B^c)/A = (A \oplus (B \cap B^c))/A = 0$, a contradiction. Next, if C is a complemented submodule of M containing A then C/A is a complemented submodule of M/A. For, if C/A is non-zero and dense in X/A for $X \in \mathfrak{M}$ containing C then the same argument as above yields that C is dense in X, and so $C = X$ by Prop. 1.7. These prove the half of the following:

Theorem 2.2. Let C be a proper complemented submodule of M. Then, the set of all complemented submodules of M/C coincides with the set \{ $C'/C; C'$ ranges over the complemented submodules of M containing C \}, and the set of all dense submodules of M/C coincides with the set \{ $D/C; D$ ranges over the dense submodules of M containing C \}.

Proof. Let D be a dense submodule of M such that $D \supseteq C$, and let X be any submodule of M properly containing C. Then, C being complemented, $X \supseteq C \oplus Y$ for some $Y \in \mathfrak{M}$ by Prop. 1.7. As D is dense in M, $D \cap Y \neq 0$ and so $D/(C \cap X) \supseteq D/C \cap (C \oplus Y)/C = (C \oplus (D \cap Y))/C \neq 0$, which implies that D/C is dense in M/C. Next, let B/C be complemented in M/C for $B \in \mathfrak{M}$ with $B \supseteq C$. Then, since B is dense in B° and C is complemented in B°, the preceding implies that B/C is dense in B°/C. On the other hand, B/C being complemented in M/C, $B/C = B^\circ/C$, that is, $B = B^\circ$.

Theorem 2.3. If $A \supseteq B$ are submodules of M then for any A° there exists such a double complement B° that $A^\circ \supseteq B^\circ$.

Proof. Let \hat{M} be the injective envelope of M°, and A' a double complement of A° in \hat{M}, which is evidently a double complement of A in \hat{M}, and

2) The R-injective envelope \hat{M} of M is a (unital) injective R-module which contains M as a dense R-submodule.
$M \cap A' = A^{cc}$ by Th. 2.1. A' is then an (injective) direct summand of \hat{M} (see Proof. 4.2). If B' is a double complement of B in A' then, A' being injective, B' is a direct summand of A', and therefore of \hat{M}. Since M is dense in \hat{M}, by Th. 2.1, $M \cap B'$ is a complemented submodule of M. Noting here that B is dense in $M \cap B'$, by Prop. 1.7 we see that $M \cap B'$ is a double complement of B (in M) requested.

Corollary 1. If for any submodule X of M its double complement is uniquely determined, then the d.c-correspondence is a closure operation.

Corollary 2. For $V \in \mathfrak{M}$, the following conditions are equivalent:

(i) V is a minimal complemented (i.e. minimal as a complemented submodule $\neq 0$) submodule. (ii) V is a maximal uniform submodule. (iii) V is a complemented uniform submodule.

Proof. By Cor. to Prop. 1.14, a maximal uniform submodule is nothing but a complemented uniform submodule. And, a complemented uniform submodule is evidently a minimal complemented submodule. Conversely, let V be a minimal complemented submodule, and let $V \supset A$ ($A \in \mathfrak{M}$). Since a double complement A^{cc} of A in M is contained in V by Th. 2,3, the minimality of V yields $V = A^{cc}$, and hence every non-zero submodule of V is dense in V. And this is nothing but to say that V is uniform.

A submodule A of M is said to be meet irreducible (in M) if A can not be represented as an intersection of two submodules of properly containing A. Evidently, for a proper submodule A of M, M/A is uniform if and only if A is meet irreducible, in particular, M is uniform if and only if $\{0\}$ is meet irreducible in M.

Proposition 2.4. If a submodule B is properly contained in a non-dense submodule A of M, then B is meet reducible (i.e. not meet irreducible). Consequently, a non-dense meet irreducible submodule is a minimal meet irreducible submodule.

Proof. In fact, $B = A \cap (B \oplus A^{c})$ and $B \oplus A^{c} \supsetneqq B$.

Proposition 2.5. Let A be a proper submodule of M. Then the following conditions are equivalent:

(i) A is a maximal complemented submodule.

(ii) A is a complemented submodule, and A^{c} is uniform.

(iii) A is a non-dense meet irreducible submodule.

Proof. (i) \Rightarrow (ii). If A^{c} is not uniform, then there are non-zero B, C such that $A^{c} \supset B \oplus C$. Let B^{c} be a complement of B with $B^{c} \supset A \oplus C$. Then $M \supset B^{c} \supset A$, and this contradicts the maximality of A. (ii) \Rightarrow (iii). Since a
uniform module A^e may be regarded as a dense submodule of M/A, M/A is uniform by Prop. 1.14. (iii)\Rightarrow(i). Since $A=A^e\cap (A\oplus A^e)$ and $A\subseteq A\oplus A^e$, we have $A=A^e$. Assume that there exists a complemented submodule B such that $A\subseteq B\subseteq M$. Then, since $A\oplus X=B$ for some $X\in \mathfrak{M}$ and $B^e\neq 0$, we have a contradiction $(A\oplus X)\cap (A\oplus B^e)(=A+(A\oplus X)\cap B^e)=A$. Hence, A is a maximal complemented submodule.

Theorem 2.6. (i) Let $C\supsetneqq C_0$ be submodules of M. If C and C_0 are complemented in M and C respectively, then so is C_0 in M.

(ii) If $C\supsetneqq C_0$ are complemented submodules, then for each complement C^e of C there exists a complement C^e of C such that $C^e=C^e_0$.

Proof. (i) is an immediate consequence of Th. 2.3 and Prop. 1.7. Now, let X be a complement of $C\cap C_0^e$ ($\neq 0$) in C^e_0. As $C\cap X\subseteq C\cap C_0^e$ and $(C\cap C_0^e)\cap X=0$, $C\cap X=0$. Since $(C\cap C_0^e)\oplus X$ is dense in C^e_0, $C_0^e=((C\cap C_0^e)\oplus X)$ is dense in M (Cor. to Prop. 1.1), and therefore $C\oplus X$ is dense in M. If we take a complement C^e with $C^e\supsetneqq X$, X is dense in C^e. Hence, as X is complemented in M by (i), we have $C^e=X(\subseteq C^e_0)$. And, as $C^e\supsetneqq C^e_0$, $C^e\supsetneqq C^e_0$ (Prop. 1.7 (i)).

M is said to be locally uniform if every non-zero submodule of M contains a uniform submodule. And M is said to be finite-dimensional if every independent subset of \mathfrak{M} is finite (Goldie [2]). In the rest of this section, by making use of complemented submodules, we shall characterize these two types of modules.

Theorem 2.7. The following conditions are equivalent to one another:

(i) M is locally uniform.

(ii) Every non-zero complemented submodule contains a minimal complemented submodule.

(iii) Every proper complemented submodule is contained in a maximal complemented submodule.

Proof. (i)\Rightarrow(ii) will be easily seen by Th. 2.3 and its corollary.

(ii)\Rightarrow(iii). Let C be a proper complemented submodule. By assumption, $C^e\neq 0$ contains a minimal complemented submodule V. If we take a complement V^e containing C then, by Prop. 2.5, V^e is a maximal complemented submodule.

(iii)\Rightarrow(i). For any $A\in \mathfrak{M}$, A^e is contained in a maximal complemented submodule C. By Th. 2.6, A^e contains a complement C^e of C, and $A\cap C^e\neq 0$, for A is dense in A^e. Since C is a maximal complemented submodule, C^e is uniform by Prop. 2.5. Hence A contains a uniform submodule $A\cap C^e$.

The part (i)\iff(iii) of the following theorem was given in [2; Lemma (1.1)].
Theorem 2.8. The following conditions are equivalent to one another:

(i) \(M \) is finite-dimensional.

(ii) The descending chain condition holds for complemented submodules of \(M \).

(iii) The ascending chain condition holds for complemented submodules of \(M \).

Proof. If \(C_1 \supsetneq C \) are complemented submodules then \(C \oplus X \subseteq C \) for some \(X \in \mathfrak{M} \). From this fact, (i) \(\Rightarrow \) (ii) and (i) \(\Rightarrow \) (iii) will be easily seen. Next, if \(C_1 \supsetneq C_2 \supsetneq C_3 \supsetneq \cdots \) is an infinite descending chain of complemented submodules then for any \(C_i \) we can choose a complement \(C_{i+1} \) of \(C_{i+1} \) with \(C_i \subseteq C_{i+1} \). Then, as \(C_i \supsetneq C_{i+1} \), we see \(C_i \subseteq C_{i+1} \). Accordingly, we can find an infinite (strictly) ascending chain of complemented submodules, which proves (iii) \(\Rightarrow \) (ii).

To prove (ii) \(\Rightarrow \) (i), we assume that there exists an infinite independent set \(\{X_i; i=1,2,\cdots\} \subseteq \mathfrak{M} \), and set \(Y_n = X_n \oplus X_{n+1} \oplus \cdots \). Then, by Th. 2.3, for any double complement \(Y_n^\cap \) of \(Y_n \) we can find a double complement \(Y_n^\cap \) with \(Y_n^\cap \subseteq Y_n^\cap \). Evidently, there holds \(Y_n^\cap (=Y_n) \supsetneq Y_{n+1}^\cap \), so that \(Y_n^\cap \subseteq Y_{n+1}^\cap \). Hence there exists an infinite descending chain of complemented submodules: \(Y_i \supsetneq Y_{i+1} \supsetneq \cdots \). This proves (ii) \(\Rightarrow \) (i), completing the proof.

By Theorems 2.7 and 2.8, we readily obtain

Corollary. \(M \) is finite-dimensional if and only if \(M \) is locally uniform and \(\dim M < \infty \).

Let \(\{N_\lambda; \lambda \in A\} \) be a non-empty set of submodules of \(M \). The meet \(\cap N_\lambda \) is said to be irredundant if \(\cap (i \neq \lambda, N_\lambda \supsetneq \cap N_\lambda \cap N_\lambda \) for every \(\lambda \in A \). And the meet \(\cap N_\lambda \) is said to be \(s \)-irredundant if \(\cap (i \neq \lambda, N_\lambda \supsetneq \cap N_\lambda \cap N_\lambda \) for every \(\lambda \in A \). Evidently, an \(s \)-irredundant meet is irredundant. If \(\cap N_\lambda \) is irredundant [\(s \)-irredundant] then, for any non-empty subset \(A_\lambda \) of \(A \), \(\cap \lambda \notin A \) is also irredundant [\(s \)-irredundant]. To see these, assume first \(\cap N_\lambda \) be irredundant. If \(\cap \lambda \notin A \cap N_\lambda \cap N_\lambda \) for some \(\lambda \in A_\lambda \), then \(\cap N_\lambda \cap N_\lambda \), a contradiction. Next, assume \(\cap N_\lambda \neq M \) be \(s \)-irredundant and \(C \) a complement of \(\cap N_\lambda \). Then, \(\cap (i \neq \lambda, C_\lambda \cap C \supsetneq 0 \) for arbitrary \(\lambda \), so that for \(A = (\cap \lambda \notin A \cap N_\lambda \cap N_\lambda \) we have \(A \cap (\cap \lambda \notin A \cap N_\lambda \cap N_\lambda \neq 0 \) \(\lambda \in A_\lambda \). If \(\cap N_\lambda \) is a complemented submodule and irredundant then it is \(s \)-irredundant by Prop. 1.7.

Assume now that \(M \) is locally uniform, and let \(\{V_\lambda; \lambda \in A\} \) be a maximal independent set of uniform submodules of \(M \). For each \(V_\lambda \), choose a complement \(V_\lambda^c \) containing \(\Sigma i \in A \lambda \lambda_\lambda V_\lambda \). Then there holds \(\cap V_\lambda = \cap V_\lambda = 0 \). If not, non-zero \(\cap V_\lambda \) contains a uniform submodule, and so by the maximality of \(\{V_\lambda\} \), \(\cap (\Sigma V_\lambda) \neq 0 \) for some finite subset \(\{V_\lambda\} \). On the other hand, by the modular law, we can show
$V_i \cap \cdots \cap V_n \cap (V_1 \oplus \cdots \oplus V_n) = 0$. This contradiction proves $\cap V_i = 0$. Since $\cap \cap \cap_i V_i \supseteq V_i$ for all λ_i, $\cap V_i = 0$ is irredundant, and each $V_i (\neq M)$ is a maximal complemented submodule by Prop. 1.13, Prop. 1.14 and Prop. 2.5. Next, let $\cap \subseteq M/C_v = 0$ be an irredundant meet of maximal complemented submodules. Then, as $C_{v} \cap (\cap \cap \cap_i C_i) = 0$ for all v_0, each $\cap \cap \cap_i C_v$ is uniform by Prop. 2.5, and evidently $\{ \cap \cap \cap_i C_v; v_0 \in N\}$ is independent. The first assertion of the following theorem is thus an easy consequence of Th. 2.2.

Theorem 2.9. (i) Every proper complemented submodule C of M with locally uniform M/C can be represented as an s-irredundant meet of maximal complemented submodules, and codim $C = \dim M/C$ coincides with the maximum of the number of maximal complemented submodules appearing in an s-irredundant representation of C.

(ii) If $A = C_1 \cap \cdots \cap C_n$ is an s-irredundant finite meet of maximal complemented submodules then A is complemented, M/A is finite-dimensional, and n coincides with codim $A = \dim M/A$.

Proof. If is only left to prove (ii). As $(\cap_{i \neq 1} C_i) \subseteq A^c$ by assumption, we have $V_{i_0} = (\cap_{i \neq 1} C_i) \cap A^c \neq 0$ for all i_0. And then, as $V_i \subseteq A$ is uniform by Prop. 2.5, and $\sum V_i = \sum \oplus V_i \subseteq A^c$. Hence, $n \leq \dim A^c = \codim A$. Each M/C_i is uniform by Prop. 2.5, and the direct sum $M^c = \sum \oplus M/C_i$ is locally uniform by Prop. 1.3, so that M^c is finite-dimensional by Cor. to Th. 2.8. Since M/A is a subdirect sum of M/C_i's and $(C_1 + \cap_{i \neq 1} C_i)/C_i \cdots \oplus (C_n + \cap_{i \neq n} C_i)/C_n$ is dense in M^c by Cor. to Prop. 1.1, M/A is dense in M^c, whence it follows $\dim M/A = \dim M^c = n$ and that M/A is finite-dimensional. Now, A^c being embedded in M/A, $\dim M/A = n \leq \dim A^c$ yields the equality between them and the density of A^c in M/A, which means that A is complemented (Prop. 1.13).

Corollary. M is finite-dimensional if and only if M has a finite set of maximal complemented submodules which has zero intersection. If it is the case, a complemented submodule is nothing but an s-irredundant (finite) meet of maximal complemented submodules. (Cf. [2; Lemma (3.7)].)

Proof. Let M be finite-dimensional. If C is a proper complemented submodule, C^c being dense in M/C, M/C is finite-dimensional (so that locally uniform). C is therefore an s-irredundant finite meet of maximal complemented submodules by Th. 2.9 (i). The first assertion and the converse of the second one are evident by Th. 2.9.

A finite chain of submodules of M: $0 = C_0 \subseteq C_1 \subseteq \cdots \subseteq C_n = M$ is called a c-composition series of M if each C_i is a maximal complemented submodule of C_{i+1}. If $0 = C_0 \subseteq C_1 \subseteq \cdots \subseteq C_n = M$ is a c-composition series of M, then each C_i
is complemented in \(M \) by Th. 2.6 and \(C_i/C_{i-1} \) is uniform by Prop 2.5. If \(V_t \) is a complement of \(C_t-1 \) in \(C_t \), \(V_t \) is uniform by Prop. 2.5 and dense in \(C_i/C_{i-1} \). Since each \(C_t-1 \oplus V_t \) is dense in \(C_t \), so is \(V_1 \oplus \cdots \oplus V_n \) in \(M \) (cf. Cor. to Prop. 1.1). Hence, \(M \) is finite dimensional and \(n=\dim M \). Conversely, if \(M \) is finite-dimensional then Th. 2.8 secures the existence of a \(c \)-composition series. Combining the above with Th. 1.10, we readily obtain the following:

Proposition 2.10. \(M \) is finite-dimensional if and only if \(M \) has a \(c \)-composition series. If it is the case, the length of any \(c \)-composition series of \(M \) is equal to \(\dim M \) and for any two \(c \)-composition series \(0=C_0 \supseteq C_1 \supseteq \cdots \supseteq C_n=M \) and \(0=C'_0 \supseteq C'_1 \supseteq \cdots \supseteq C'_n=M \) there exists a 1-1 mapping \(f \) of \(\{C_i/C_{i-1} ; i=1,2,\cdots,n\} \) onto \(\{C'_i/C'_{i-1} ; i=1,2,\cdots,n\} \) such that \(C_i/C_{i-1}=f(C'_i/C'_{i-1}) \) for all \(i \).

§ 3. Throughout this section we assume that the d.c-correspondence is a closure operation, or what is the same, \(X^{oc}(X \in \mathfrak{M}) \) is uniquely determined by \(X \) (Cor. 1. to Th. 2.3).

Proposition 3.1. If the d.c-correspondence is a closure operation, then there hold the following:

(i) A finite or infinite meet of complemented submodules is complemented.

(ii) For any \(A, B \in \mathfrak{M}, \ A \cap B^{oc} \) is the unique double complement of \(A \cap B \) in \(A \).

(iii) For \(A, B \in \mathfrak{M}, \ A^{-} \subseteq B^{-} \) if and only if \(A^{oc} \subseteq B^{oc} \). Consequently, \(A^{-} = B^{-} \) if and only if \(A^{oc} = B^{oc} \).

Proof. (i) Let \(C_i(\lambda \in A) \) be complemented submodules. Then, as \(\cap C_i \subseteq C_i \) for all \(\lambda \), \((\cap C_i)^{oc} \subseteq C_i \) for all \(\lambda \) by Prop. 1.7, and hence \((\cap C_i)^{oc} \subseteq C_i \), that is, \((\cap C_i)^{oc} = C_i \). (ii) Let \(0 \neq (A \cap B)' \) be a double complement of \(A \cap B \) in \(A \), then \((A \cap B)' \subseteq (A \cap B)^{oc} \subseteq B^{oc} \), and so \((A \cap B)' \subseteq (A \cap B)^{oc} \). Since \(B \) is dense in \(B^{oc} \), so is \(A \cap B \) in \(A \cap B^{oc} \) by Prop. 1.4. Hence \((A \cap B)' = A \cap B^{oc} \). (iii) By Prop. 1.4, if \(A^{-} \subseteq B^{-} \) then \(A^{-} = (A \cap B)^{-} \). Hence \(A^{oc} = (A \cap B)^{oc} \subseteq B^{oc} \). Conversely, if \(A^{oc} \subseteq B^{oc} \) then \(A^{-} = (A^{oc})^{-} \subseteq (B^{oc})^{-} = B^{-} \).

Under the same notations as in Th. 1.11, we obtain the following.

Theorem 3.2. If the d.c-correspondence is a closure operation, then there hold the following:

(i) \((\sum_{i \in A_P} V_i)^{oc}\) depends on \(P_0 \) only (and is independent of the choice of \(\{V_i\} \)). We set then \(C(P_0) = (\sum_{i \in A_P} V_i)^{oc} \).

(ii) \((\sum_{i \in A_P} V_i)^{oc}\) depends on \(P_0 \) only (and is independent of the choice of \(\{V_i\} \) and complements).
(iii) $C(P_0)$ and $C(P_0)\supseteq$ are the unique complements of each other. $C(P)$ is zero or the unique maximal locally uniform submodule, and $C(P)^c$ is the unique maximal submodule containing no uniform submodules, and is the meet of all maximal complemented submodules.

Proof. (i) and (ii) are immediate consequences of Th. 1.11 and Prop. 3.1 (iii). (iii). By (i) and (ii), $C(P_0)^c$ is evidently the unique complement of $C(P_0)$. Let C be a complement of $C(P_0)^c$. Then $C\sim C(P_0)$ by Prop. 1.13. If $C\nsubseteq C(P_0)^c$, then $X\subseteq C$ and $X\cap C(P_0)=0$ for some $X\in \mathfrak{M}$. As $C\sim C(P_0)\sim \Sigma_{\mathfrak{P}} V_i$, we may assume that $X(\subseteq C)$ is isomorphically mapped in $\Sigma_{\mathfrak{P}} V_i$. Then, by Prop. 1.3, X contains a uniform submodule U such that $U\in P_0$. As $X\cap C(P_0)=0$, $U\cap \Sigma_{\mathfrak{P}} V_i=0$. But this contradicts that $\{V_i; \lambda\in \Lambda(P)\}$ is a maximal independent subset of $U\in \mathfrak{P}$. Hence $C\subseteq C(P_0)^c$, and so, by Prop. 3.1(iii), $C=C_{\mathfrak{P}}^c\subseteq C(P_0)^c=C(P_0)$. Since C is a complement of $C(P_0)^c$ and $C(P_0)^c\cap C(P_0)^c=0$, we have $C=C(P_0)$. Hence $C(P_0)$ is the unique complement of $C(P_0)^c$. Evidently $C(P)^c$ does not contain a uniform submodule, and $C(P)$ is locally uniform, because locally uniform ΣV_i is dense in $(\Sigma V_i)^c=C(P)$. If A is a locally uniform submodule, then $A\cap C(P)^c=0$, and so $A\subseteq C(P)^c=C(P)$. If B is a submodule containing no uniform submodules, then $B\cap C(P)=0$, and so $B\subseteq C(P)^c$. Next, if C_i is a maximal complemented submodule, then C_i^\perp is uniform, and C_i^\perp is contained in the unique maximal locally uniform submodule $C(P)$. Hence, by Th. 2.6, the unique complement $C(P)^c$ of $C(P)$ is contained in C_i. By Prop. 2.5, the meet of all maximal complemented submodules does not contain a uniform submodule, and hence it is contained in $C(P)^c$. Hence we conclude that $C(P)^c$ coincides with the meet of all maximal complemented submodules.

Theorem 3.3. If the d.c.-correspondence is a closure operation, then the following conditions are equivalent to one another:

(i) M is locally uniform.
(ii) The meet of all maximal complemented submodules is zero.
(iii) M is an irredundant subdirect sum of uniform modules.

Proof. Since $M/C(P)^c(\sim C(P))$ is locally uniform, $C(P)^c$ is an irredundant meet of maximal complemented submodules by Th. 2.9. Since $C(P)$ is the meet of all maximal complemented submodules and the unique maximal submodule containing no uniform submodules, our equivalences will be obvious.

Theorem 3.4. If the d.c.-correspondence is a closure operation then, for $A, B\in \mathfrak{M}$, there hold $\dim A+\dim B=\dim (A\cap B)+\dim (A+B)$ and $\rho\dim A+\rho\dim B=\rho\dim (A\cap B)+\rho\dim (A+B)$ ($\rho\in P$).

Proof. Since B^c and $A^c\cap B^c=(A^c\cap B^c)^c$ are complemented in A^c+B^c
and A^{cc} respectively, we have $\rho\text{-dim}(A^{cc} + B^{cc}) = \rho\text{-dim}(A^{cc} + B^{cc})/B^{cc_3} + \rho\text{-dim}B^{cc}$ and $\rho\text{-dim}A^{cc} = \rho\text{-dim}(A^{cc}/(A^{cc} \cap B^{cc}) + \rho\text{-dim}(A^{cc} \cap B^{cc})$ (Prop. 1.12 and Prop. 1.13). Now, $(A^{cc} + B^{cc})/B^{cc}$ is isomorphic to $A^{cc}/(A^{cc} \cap B^{cc})$, and so $\rho\text{-dim}(A^{cc} + B^{cc})/B^{cc} = \rho\text{-dim}A^{cc}/(A^{cc} \cap B^{cc})$. Hence $\rho\text{-dim}(A^{cc} \cap B^{cc}) + \rho\text{-dim}(A^{cc} + B^{cc}) = \rho\text{-dim}A^{cc} + \rho\text{-dim}B^{cc}$. By Prop. 1.4, $A \cap B$ is dense in $A^{cc} \cap B^{cc}$, and so $\rho\text{-dim}(A \cap B) = \rho\text{-dim}(A^{cc} \cap B^{cc})$. Since A and B are dense in A^{cc} and B^{cc} respectively, $\rho\text{-dim}A = \rho\text{-dim}A^{cc}$ and $\rho\text{-dim}B = \rho\text{-dim}B^{cc}$. Hence, as $\rho\text{-dim}(A + B) \leq \rho\text{-dim}(A^{cc} + B^{cc})$, we have $\rho\text{-dim}(A \cap B) + \rho\text{-dim}(A + B) \leq \rho\text{-dim}A + \rho\text{-dim}B$. Next, we take a maximal independent set $\{U_i\}$ of $\rho(A \cap B) = \{X \in \rho; X \subseteq A \cap B\}$, which can be extended to maximal independent sets $\{A_i\} \cup \{A_n\}$, $\{U_i\} \cup \{B_i\}$ of $\rho(A)$ and $\rho(B)$, respectively. Then $\{U_i\} \cup \{A_n\} \cup \{B_i\}$ is an independent set of $\rho(A + B)$. Because, if $(\sum A_m + \sum U_i) \cap \sum B_n \neq 0$, then by Prop. 1.3, this contains a member of $\rho(A \cap B)$, and hence $0 \neq \sum U_i \cap (\sum A_m + \sum U_i) \cap \sum B_n = \sum U_i \cap \sum B_n$, a contradiction. Thus we have $\rho\text{-dim}(A \cap B) + \rho\text{-dim}(A + B) = \rho\text{-dim}A + \rho\text{-dim}B$. Hence $\rho\text{-dim}(A \cap B) + \rho\text{-dim}(A + B) = \rho\text{-dim}(A^{cc} + B^{cc}) = \rho\text{-dim}A + \rho\text{-dim}B$ for every $\rho \in P$, and $\dim(A \cap B) + \dim(A + B) = \dim A + \dim B$.

The d.c-closure operation (in M) is called continuous if for each endomorphism φ of M the inverse image $C\varphi^{-1}$ of any complemented submodule C of M is complemented in M.

Proposition 3.5. If the d.c-correspondence is a closure operation, then the following conditions are equivalent:

(i) The d.c-correspondence is continuous.

(ii) $X^{cc}\varphi \subseteq (X\varphi)^{cc}$ for any $X \in \mathfrak{M}$ and any endomorphism φ of M.

(iii) For any endomorphism φ of M, $\text{Ker}\varphi$ is a complemented submodule of M.

Proof. (i) \Rightarrow (ii). As $X\varphi \subseteq (X\varphi)^{cc}$, $X \subseteq (X\varphi)^{cc}\varphi^{-1}$. Since $(X\varphi)^{cc}\varphi^{-1}$ is complemented, $X^{cc} \subseteq (X\varphi)^{cc}\varphi^{-1}$ and so $X^{cc}\varphi \subseteq (X\varphi)^{cc}$. (ii) \Rightarrow (iii). $(\text{Ker}\varphi)^{cc}\varphi \subseteq ((\text{Kea}\varphi)^{cc}\varphi = 0^{cc} = 0$, and hence $\text{Ker}\varphi = (\text{Ker}\varphi)^{cc}$, as desired. (iii) \Rightarrow (i). We may assume $\varphi \neq 0$. If C is a complemented submodule of M, then $C \cap M\varphi$ is complemented in $M\varphi$, by Prop. 3.1 (ii). Now, $M/\text{Ker}\varphi \cong M\varphi$, and $\text{Ker}\varphi$ is complemented in M by assumption. Since $C\varphi^{-1} = (C \cap M\varphi)\varphi^{-1}$, $C\varphi^{-1}/\text{Ker}\varphi$ is complemented in $M/\text{Ker}\varphi$. Hence $C\varphi^{-1}$ is complemented in M, by Th. 2.2.

Let K be the (R) endomorphism ring of M acting on the right. If the d.c-closure operation is continuous then, by Prop. 3.5 (ii), the (R) double complement of any R-K-submodule is also an R-K-submodule. We set $H(\rho) = \sum_{\rho \in V} V$, and $H(P_0) = \sum_{\rho \in P_0} H(\rho)$. Each $H(\rho)$ is called an (R) homogeneous component of M. $H(P_0) \subseteq C(P_0)$ by Th. 3.2 (i), and evidently $H(P_0)$ is dense in

3) For $A \in \mathfrak{M}$, $A \sim M/A^e$ by Prop. 1.13.
C(P_0), that is, H(P_0)^{ce} = C(P_0).

Theorem 3.6. If the d.c-correspondence is a continuous closure operation, then there hold the following:

(i) The contraction of an endomorphism of M to a uniform submodule is zero or 1–1.

(ii) For any non-empty subset P_0 of P, H(P_0), C(P_0) (= H(P_0)^{ce}) and C(P_0)^{ce} are all R-K-submodules of M.

(iii) For any direct summand C \subseteq \mathfrak{M} of M, the d.c-correspondence in C is a continuous closure operation.

Proof. (i). Let V \in \mathfrak{M} be uniform, and let \varphi be any endomorphism of M. If V \cap \ker \varphi \neq 0, then V \subseteq V^{ce} = (V \cap \ker \varphi)^{ce} \subseteq (\ker \varphi)^{ce} = \ker \varphi, and hence V_\varphi = 0. (ii). H(P_0) is R-K-admissible by (i), so that H(P_0)^{ce} = C(P_0) is. Next, if C(P)^{ce} is not K-admissible then C(P)^{ce} \varphi contains a uniform submodule for some endomorphism \varphi of M by Th. 3.2 (iii). Then, for some non-zero submodule A contained in C(P)^{ce}, A \varphi is uniform, so that (A \varphi)^{ce} is uniform and A^{ce} \varphi \subseteq (A \varphi)^{ce}. Since \ker \varphi is a complemented submodule, \ker \varphi \cap A^{ce} is a complemented submodule of M properly contained in A^{ce}. Hence there exists some X \in \mathfrak{M} with (\ker \varphi \cap A^{ce}) \oplus X \subseteq A^{ce}. Then, \varphi maps X isomorphically into the uniform submodule (A \varphi)^{ce}, and hence X is uniform. Accordingly, A being dense in A^{ce}, A contains a uniform submodule \overline{A} \cap X. This contradiction proves that C(P)^{ce} is R-K-admissible. We set P_1 = P - P_0. Then, since C(P)^{ce} + C(P_1) + C(P_0) = C(P)^{ce} \oplus C(P_1) \oplus C(P_0), C(P)^{ce} + C(P_1) is contained in C(P_0)^{ce}, so that dense in C(P_0)^{ce}. Hence, as C(P)^{ce} + C(P_1) is R-K-admissible, so is (C(P)^{ce} + C(P_1))^{ce} = C(P_0)^{ce}. (iii). By Prop. 3.1 (ii), the d.c-correspondence in C is a closure operation. Any endomorphism \varphi of C can be extended to an endomorphism \bar{\varphi} of M. Let C_0 be a complemented submodule of C. As C_0 is complemented in M by Th. 2.6 (i), C_0 \bar{\varphi}^{-1} is complemented in M, and therefore C \cap C_0 \bar{\varphi}^{-1} = C_0 \bar{\varphi}^{-1} is complemented (in M, and so) in C.

§ 4. Quasi-injective modules. A unital R-left module M is said to be R-quasi-injective, if every R-homomorphism of any R-submodule into M can be extended to an R-endomorphism of M (cf. [6]). Throughout this section, "quasi-injective" implies always "R-quasi-injective".

Proposition 4.1. M is (R-) quasi-injective if and only if M \cdot \text{Hom}_R(\hat{M}, \hat{M}) \subseteq M, where \hat{M} is the R-injective envelope of M. (See [6; Theorem 1.1].)

Corollary. Let M be quasi-injective, and let \{A_\lambda; \lambda \in \Lambda\} be an independent set of submodules of M. Then M \cap \sum A_\lambda = \sum (M \cap A_\lambda).
Proof. Let \(\varphi_i \) be the projection to \(A_i \). Then, each \(\varphi_i \) can be extended to an endomorphism \(\bar{\varphi}_i \) of \(\hat{M} \). Let \(u = u_{i_1} + \cdots + u_{i_n} \) be any element of \(M \cap \sum A_i \), where \(u_{i_k} \in A_{i_k} \) \((i = 1, 2, \ldots, n) \). Then, since \(M \) is quasi-injective, \(u_{i_k} = u\varphi_{i_k} = u\bar{\varphi}_{i_k} \in M \) by Prop. 4.1. Hence \(M \cap \sum A_i \subseteq \sum (M \cap A_i) \). As \(M \cap \sum A_i \supseteq \sum (M \cap A_i) \) is obvious, we have \(M \cap \sum A_i = \sum (M \cap A_i) \).

Proposition 4.2. (i) Let \(M_i \) \((i = 1, 2) \) be non-zero \(R \)-left modules, and let \(\varphi \) be an \(R \)-left homomorphism of \(M_1 \) into \(M_2 \). If a contraction of \(\varphi \) to a dense \(R \)-submodule \(M_0 \) of \(M_1 \) is 1–1, then so is \(\varphi \).

(ii) Let \(M_i \) \((i = 1, 2) \) be non-zero \(R \)-left modules. Then, \(M_1 \sim M_2 \) (similar) if and only if \(\hat{M}_1 \equiv \hat{M}_2 \), where \(\hat{M}_0 \) means the \(R \)-injective envelope of \(M_0 \).

(iii) Every \(R \)-complemented \(R \)-submodule of an \(R \)-injective \(R \)-left module \(I \) is an \(R \)-direct summand of \(I \).

Proof. (i). Since \(M_0 \) is dense in \(M_1 \), \(\text{Ker} \varphi \cap M_0 = 0 \) yields \(\text{Ker} \varphi = \{0\} \).

(ii). If a dense \(R \)-submodule \(M_0 \) of \(M_1 \) is isomorphic to a dense \(R \)-submodule \(M_0 \) of \(M_2 \), then \(\hat{M}_1 = \hat{M}_0 \equiv \hat{M}_2 = \hat{M}_2 \). Hence \(\hat{M}_1 \equiv \hat{M}_2 \). Conversely, assume \(\hat{M}_1 \equiv \hat{M}_2 \), then \(M_1 \sim \hat{M}_1 \equiv \hat{M}_2 \sim M_2 \). Hence \(M_1 \sim M_2 \). (iii). For any \(R \)-submodule of \(I \), its \(R \)-injective envelope is embedded isomorphically in \(I \). Hence, by Prop. 1.7, every \(R \)-complemented submodule of \(I \) is \(R \)-injective, and is an \(R \)-direct summand of \(I \).

Theorem 4.3. Let \(M \) be quasi-injective, and let \(C \) be a \(C \)-complemented submodule of \(M \). Then \(C \) is \((R) \)-quasi-injective, and \(M = C \oplus C^r \) for every complement \(C^r \) of \(C \).

Proof. \(C \oplus C^r \) is dense (in \(M \), and so) in \(\hat{M} \). Let \(C^{dd} \) and \((C^r)^{dd} \) be double complements of \(C \) and \(C^r \) in \(\hat{M} \) respectively. Then \(C^{dd} \oplus (C^r)^{dd} \) is injective by Prop. 4.2 (iii), and dense in \(\hat{M} \), and hence \(\hat{M} = C^{dd} \oplus (C^r)^{dd} \). By Cor. to Prop. 4.1, \(M = (M \cap C^{dd}) \oplus (M \cap (C^r)^{dd}) \). As \(M \cap C^{dd} = C \) and \(M \cap (C^r)^{dd} = C^r \) by Th. 2.1, we have \(M = C \oplus C^r \). Next, let \(A \) be any submodule of \(C \), and \(\varphi \) any homomorphism of \(A \) into \(C \). Then \(\varphi \) can be extended to an endomorphism \(\varphi_i \) of \(C^{dd} \), because \(C^{dd} \) is injective. Furthermore, \(\varphi_i \) can be extended to an endomorphism \(\varphi_{i_2} \) of \(\hat{M} \), and, as \(C = M \cap C^{dd} \), \(C^{dd} \varphi_i = C^{dd} \varphi_{i_2} \subseteq C^{dd} \) and \(M \varphi_i \subseteq M \) yield \(C \varphi_i \subseteq M \cap C^{dd} = C \). The contraction of \(\varphi_{i_2} \) to \(C \) is an extension of \(\varphi \) to an endomorphism of \(C \).

Proposition 4.4. Let \(M \) be quasi-injective. Then there hold the following:

(i) Every extension of an isomorphism between dense submodules of \(M \) is always an automorphism of \(M \).

(ii) If \(A \sim B \) \((A, B \in \mathcal{M}) \) then \(A^{ce} \equiv B^{ce} \).

Proof. (i). By Prop. 4.2 (i), this is evident. (ii). If \(A \sim B \), then \((A^{ce})^{dd} \equiv \)}
(B^\infty)_{dd}$ by some isomorphism φ, because $(A^\infty)_{ld}$ and $(B^\infty)_{dd}$ are injective envelopes of A and B, respectively (Prop. 4.2 (iii)). And, φ is given by some endomorphism φ_i of \hat{M}. Since M is quasi-injective, $A^\infty \varphi = A^\infty \varphi_i = (M \cap (A^\infty)_{dd}) \varphi \subseteq M \cap (B^\infty)_{dd} = B^\infty$ (Th. 2.1), and symmetrically $B^\infty \varphi^{-1} \subseteq A^\infty$, and hence $A^\infty \varphi_i = B^\infty$.

Now, for quasi-injective modules, Th. 1.10 can be sharpened as follows.

Theorem 4.5. Let M be quasi-injective, and let $\{V_i ; i \in A\}$ and $\{W_i ; i \in \Gamma\}$ be maximal independent sets of complemented uniform submodules. Then there exists a $1-1$ mapping f of Λ onto Γ such that $V_i \cong W_{f(i)}$ for all $i \in A$. Furthermore there exists an automorphism φ of M such that $V_i \varphi = W_{f(i)}$ for all $i \in A$.

Proof. The first half is a direct consequence of Th. 1.10 and Prop. 4.4 (ii), and then there exists an isomorphism φ_i of $\sum V_i$ onto $\sum W_i$ such that $V_i \varphi_i = W_{f(i)}$ for all i. By Th. 1.11, an arbitrary complement C of $\sum V_i$ is a complement of $\sum W_i$ as well. Hence, $x + y \rightarrow x + y \varphi_i (x \in C, y \in \sum V_i)$ is an isomorphism φ_2 between the dense submodules $C \oplus \sum V_i$ and $C \oplus \sum W_i$, and then φ_2 can be extended to an automorphism φ of M by Prop. 4.4 (i).

Corollary 1. If M is quasi-injective and finite-dimensional then M is a direct sum of a finite number of quasi-injective uniform submodules, and such a representation of M is unique up to isomorphism.

Proof. By the validity of Th. 4.5, it suffices to prove that M is a direct sum of a finite number of uniform submodules. Let $\{V_i ; i = 1, \ldots, n\}$ be a maximal independent set of complemented uniform submodules of M. Then $\{V_i ; i = 1, \ldots, n\}$ is independent, where V_i^{dd} is a double complement of V_i in \hat{M}. Since each V_i^{dd} is injective by Prop. 4.2 (iii), so is the sum $\sum V_i^{dd}$, and hence $\sum V_i^{dd}$ is a direct summand of \hat{M}. On the other hand, M being locally uniform, we readily see that $\sum V_i^{dd}$ is dense in \hat{M}, whence it follows $\hat{M} = \sum V_i^{dd}$. Since $M = M \cap \sum V_i^{dd} = \sum (M \cap V_i^{dd})$ and $V_i = M \cap V_i^{dd}$ by Cor. to Prop. 4.1 and Th. 2.1, we obtain eventually $M = \sum V_i$, as desired.

Corollary 2. Let M be quasi-injective.

(i) Every isomorphism of a finite-dimensional submodule A of M into M can be extended to an automorphism of M.

(ii) If finite-dimensional submodules A, B of M are similar, then $A^\infty \equiv B^\infty$ and $A^c \equiv B^c$.

Proof. (i). Let φ be an isomorphism of A into M. As A^∞ is quasi-injective (Th. 4.3) and finite-dimensional, A^∞ is a direct sum of a finite number of uniform submodules (Cor. 1 to Th. 4.5). Hence, by the proof of Th. 4.5, we can extend φ to an automorphism ϕ of M. (ii). By Th. 4.3 and Prop. 4.4 (ii), $M = A^\infty \oplus A^c = B^\infty \oplus B^c$ and $A^\infty \equiv B^\infty$. We have seen in (i) that the
isomorphism $A^e\cong B^e$ can be extended to an automorphism ϕ of M. And, $B^e\oplus B^e = M = M\phi = A^e\phi \oplus A^e\phi = B^e \oplus A^e\phi$, whence it follows $B^e \cong A^e\phi \cong A^e$.

Theorem 4.6. If R is a left Noetherian ring with 1, and M is quasi-injective, then M is a direct sum of uniform submodules, and such a representation of M is unique up to isomorphism.

Proof. For any non-zero element u of M, Ru is an R-module with the ascending chain condition for its submodules. Hence, Ru is locally uniform by Th. 2.7, so that M is locally uniform. Now, let $\{V_i\}$ be a maximal independent set of complemented uniform submodules of M. Each double complement V_i^{ad} of V_i in \hat{M} is injective by Prop. 4.2 (iii), and so $\Sigma \oplus V_i^{ad}$ is an injective dense submodule of \hat{M}. Hence, $\hat{M} = \Sigma \oplus V_i^{ad}$. Recalling here that $M \cap V_i^{ad} = V_i$ by Th. 2.1, Cor. to Prop. 4.1 yields $M = M \cap \Sigma \oplus V_i^{ad} = \Sigma \oplus (M \cap V_i^{ad}) = \Sigma \oplus V_i$. The final assertion is a consequence of Th. 4.5.

The proof of the following lemma proceeds just like in [1; Th. 22.3].

Lemma 4.7. Let $M = A \oplus B$. In order that B is R-K-admissible, it is necessary and sufficient that $M = A \oplus B'$ implies $B = B'$.

Under the same notations as in Th. 1.11, there holds the following:

Theorem 4.8. Let the d.c-correspondence in a quasi-injective module M be a closure operation. If P is a non-empty subset of P then M is the direct sum of R-K-submodules $(\Sigma_{i \in P} \oplus V_i)^c$ and $C(P) = (\Sigma_{i \in P} \oplus V_i)^c$.

Proof. By Th. 4.3, $M = (\Sigma_{i \in P} \oplus V_i)^c \oplus C(P) = C(P)^c \oplus C(P)$. And, by Th. 3.2 (iii) and Lemma 4.7, $C(P) = C(P)^c$ and $C(P)$ are R-K-submodules.

Proposition 4.9. Let M' be a unital R'-K'-module, where R', K' are rings with 1. And, assume that each R'-homomorphism of any finitely generated R'-submodule of M' into M' is induced by an element of K'.

(i) Let u be a non-zero element of M'. If $R'u$ is a uniform R'-submodule and each $\alpha \in K'$ with $u\alpha \neq 0$ induces an R'-isomorphism of $R'u$ onto $R'u\alpha$, then uK' is a minimal K'-submodule of M', and conversely.

(ii) Let uK' and vK' ($u, v \in M'$) be minimal K'-submodules of M'. If $R'u$ is similar to $R'v$ then uK' is K'-isomorphic to vK'.

Proof. (i). Assume first that uK' is minimal. If $R'u$ is not uniform, there exist two non-zero elements $au, bu \ (a, b \in R')$ with $R'au \cap R'bu = 0$. $x + y \rightarrow x \ (x \in R'au, \ y \in R'bu)$ defines evidently an R'-homomorphism ϕ of $R'au \oplus R'bu$ into M', which is induced by an element γ of K'. Since uK' is minimal, $uK' \cong auK'$ and $uK' \cong buK'$ naturally, and hence $auK' \cong buK'$ where

4) Since R is a left Noetherian ring, every left ideal of R is finitely generated. Therefore, every homomorphic image of any left ideal of R is finitely generated.
If $au = bu$. Therefore, as $0 \neq au = (au) \varphi = au \bar{\iota}, (bu) \varphi = bu \bar{\iota} \neq 0$. This contradiction proves the uniformity of $R'u$. For any $\alpha \in K'$ with non-zero ua, we have $uaK' = uK'$, and hence $au\alpha = 0 (a \in R')$ implies $au = 0$. Conversely, assume that $R'u$ is a uniform R'-submodule and each $\alpha \in K'$ with non-zero ua induces an R-isomorphism $R'u \cong R'ua$. Then, for any α with non-zero ua, there exists an element δ of K' such that $(ua)\delta = u$. Hence, $u = uad \in uaK'$. This implies that uK' is minimal. (ii). Let $R'au \equiv R'bv$, $0 \neq au \leftrightarrow bv (a, b \in R')$. Then, there exists an element $\iota \in K'$ such that $au\iota = bv$. Accordingly, $uK' \equiv auK' = au\iota K' = bvK' \equiv vK'$, and hence $uK' \equiv vK'$.

§ 5. A unital R-left module M is called an R-c.q.i-module if M is R-quasi-injective and the R-d.c-corrrespondence in M is a continuous closure operation. We set $K=\operatorname{Hom}_R(M, M)$, which acts on the right.

Noting that the kernel of any R-endomorphism of an R-c.q.i-module is an R-direct summand (Th. 4.3), the next proposition will be proved as in [7; 3.3 Theorem].

Proposition 5.1. If M is an R-c.q.i-module, then K is a regular ring.

Corollary. Let M be an R-c.q.i-module. If C and C' are R-direct summands (or equivalently, R-complemented submodules) of M then so is $C + C'$ (cf. [6; 1.4 Theorem]).

Proof. As is well known, $C = M\sigma$ and $C' = M\sigma'$ with some idempotent elements $\sigma, \sigma' \in K$. Then, K being a regular ring by Prop. 5.1, $K\sigma + K\sigma' = K\epsilon$ with an idempotent element $\epsilon \in K$, and so $M\sigma + M\sigma' = M \cdot K\sigma + M \cdot K\sigma' = M \cdot (K\sigma + K\sigma') = M \cdot K\epsilon = M\epsilon$. $C + C'$ is therefore an R-direct summand of M.

Theorem 5.2. Let M be an R-c.q.i-module.

(i) Let u be a non-zero element of M. Ru is uniform if and only if uK is minimal.

(ii) Every K-uniform submodule of M is isomorphic to a minimal (or equivalently, uniform) right ideal of K.

(iii) Let $Ru, Rv (u, v \in M)$ be uniform. $Ru \sim Rv$ (similar) if and only if $uK \equiv vK$ (or equivalently, $uK \sim vK$).

(iv) The sum $H(P)$ of all R-uniform submodules of M coincides with the K-socle (i.e. the sum of all minimal K-submodules) of M. The set \{H(\rho); \rho \in P\} of all R-homogeneous components of M coincides with the set of all K-homogeneous components of (the K-socle of) M, and each $H(\rho)$ is a direct sum of R-uniform submodules (as well as of minimal K-submodules).

(v) If $Ru (u \in M)$ contains an R-uniform submodule then uK contains a minimal K-submodule, and conversely. (Cf. [4; pp. 60–64 and pp. 124–126].)
Proof. (i). Combining Prop. 3.6 (i) and Prop. 4.9 (i), it will be evident. (ii). Let \(uK \) \((u \in M)\) be uniform, and set \(r(u) = \{ \alpha \in K; \, u\alpha = 0 \} \). Then, \((Ru)^{ce} = M \varepsilon\) with an idempotent \(\varepsilon \in K \), and \(M \varepsilon \cdot r(u) = (Ru)^{ce} \cdot r(u) \subseteq (Ru \cdot r(u))^{ce} = 0 \) by Prop. 3.5, whence it follows \(r(u) = r(M \varepsilon) = (1 - \varepsilon)K \). Hence, we have \(uK \cong K/r(u) = K/(1 - \varepsilon)K \supseteq \varepsilon K \). Since \(K \) is a regular ring, a uniform right ideal of \(K \) is minimal. Hence \(uK \) \((\cong \varepsilon K)\) is minimal. (iii) and (iv). Each \(R \)-homogeneous component \(H(\rho) \) is \(R \)-\(K \)-admissible by Th. 3.6 (ii), and is contained in a \(K \)-homogeneous component of \(M \) by (i) and Prop. 4.9 (ii). And, by (i), the sum \(\sum_{\lambda} \oplus H(\rho) \) of all \(R \)-uniform submodules coincides with the \(K \)-socle. Now, let \(\{ V_{i}; \lambda \in \Lambda \} \) be a maximal independent set of complemented \(R \)-uniform submodules of \(M \), and let \(V \) be arbitrary \(R \)-uniform submodule of \(M \). Then, \(V \cap (V_{i_{1}} \oplus \cdots \oplus V_{i_{n}}) \neq 0 \) for some finite subset \(\{ V_{i} \} \) of \(\{ V_{i} \} \), and so \(V \subseteq V^{cc} = (V \cap (V_{i_{1}} \oplus \cdots \oplus V_{i_{n}})^{ce} \subseteq (V_{i_{1}} \oplus \cdots \oplus V_{i_{n}})^{ce} = V_{i_{1}} \oplus \cdots \oplus V_{i_{n}} ^{ce} \) by Cor. to Prop. 5.1, whence it follows \(\sum_{\lambda} \oplus H(\rho) = \sum_{\lambda} \oplus V_{\lambda} \). Further, noting that \(H(\rho) \supseteq \sum_{\lambda \in \Lambda_{\rho}} \oplus V_{\lambda} \), we obtain \(H(\rho) = \sum_{\lambda \in \Lambda_{\rho}} \oplus V_{\lambda} \). Choose a \(K \)-homogeneous component \(N \) containing \(H(\rho) \). If we set \(S = \text{Hom}_{K}(N, N) \) acting on the left, then it is well known that \(N \) is \(S \)-\(K \)-minimal (cf. [4]). For any \(V_{i}(\lambda \in \Lambda_{\rho}) \), \(M = V_{i} \oplus V_{i}^{\prime} \) and the projection \(\pi \) of \(M \) onto \(V_{i} \) is contained in \(K \), so that for each \(\alpha \in S \) and \(v \in V_{i} \) we have \(\alpha v = \alpha (v \pi) = (\alpha v) \pi \in V_{i} \). Hence each \(V_{i}(\lambda \in \Lambda_{\rho}) \) and so \(H(\rho) \) is an \(S \)-submodule of \(N \), which implies \(H(\rho) = N \). And, at the same time, we obtain (iii). (v). Let \(\text{Rau} \) \((a \in R)\) be an \(R \)-uniform submodule of \(Ru \), and set \((\text{Rau})^{ce} = M \varepsilon \) with an idempotent \(\varepsilon \in K \). As \(M \varepsilon \) is still uniform, \(K \varepsilon \) is directly indecomposable, whence so is \(\varepsilon K \). Further, recalling that \(K \) is a regular ring, \(\varepsilon K \) is minimal. Since \(M \varepsilon = M \varepsilon \cdot \varepsilon = (Ru)^{ce} \subseteq (Ru \varepsilon)^{ce} \) yields \(u \varepsilon \neq 0 \), we have then \(\varepsilon K \subseteq uK \subseteq uK \). Conversely, let \(uK \) \((\delta \in K)\) be a minimal \(K \)-submodule of \(uK \). Then \(Ru \delta \) is uniform by (i). Since the unique maximal \(R \)-submodule \(H(P)^{ce} \) containing no \(R \)-uniform submodules is \(K \)-admissible (Th. 3.6 (ii)), \(Ru \) have to contain an \(R \)-uniform submodule.

In particular, Th. 5.2 (iv) and (v) yield at once.

Corollary. \(M \) is \(R \)-locally uniform if and only if it is \(K \)-locally uniform, and \(M \) is a (direct) sum of \(R \)-uniform submodules if and only if it is a (direct) sum of \(K \)-uniform (or equivalently, \(K \)-minimal) submodules (i.e. \(M \) is \(K \)-completely reducible). (Cf. Th. 4.5.)

Combining Prop. 3.6 (iii) and Th. 4.3, we obtain

Theorem 5.3. If \(M \) is an \(R \)-c.q.i.-module, then every complemented \(R \)-submodule of \(M \) is an \(R \)-direct summand of \(M \) and an \(R \)-c.q.i.-module.

We set \(Q = \text{Hom}_{K}(M, M) \), which acts on the left. We note here that every \(R \)-direct summand of \(M \) is \(Q \)-admissible, and so a \(Q \)-direct summand of \(M \).
Now, let Q_0 be an arbitrary intermediate ring of Q and the ring R_0 of all the (additive group) endomorphisms induced by R. For any Q_0-submodule A, one will easily see that a complement A^e in the R-module M is a complement A^d in the Q_0-module M, and conversely. And then, we see also that any double complement A^{ad} in the Q_0-module M coincides with A^{ae} uniquely determined. Noting here that $\text{Hom}_{Q_0}(M, M) = K$ and for each $a \in K$ there holds $A^{ad}a = A^{ae}a = (Aa)^{ae} = (Aa)^{ad}$, the d.c.-correspondence in the Q_0-module M is seen to be a continuous closure operation. If φ is a Q_0-homomorphism of a Q_0-submodule A into M, then φ is given by an element of K, because φ is an R-homomorphism. Since $\text{Hom}_{Q_0}(M, M) = K$, this implies that M is Q_0-quasi-injective. We have proved thus

Theorem 5.4. Let M be an $R \cdot c.q.i$-module. Then, for any intermediate ring Q_0 between Q and R_0, M is a Q_0-c.q.i-module, and for any Q_0-submodule A, $\{A^e\} = \{A^d\}$ and $A^{ae} = A^{ad}$.

Lemma 5.5. Let T be a ring with 1, which has no nilpotent (one-sided) ideals, and let e be an idempotent element of T such that Te is a (two-sided) ideal. Then e belongs to the center of T.

Proof. Since Te is an ideal, $Te \cdot T(1-e) = 0$. As $(T(1-e) \cdot Te)^2 = 0$, $T(1-e) \cdot Te = 0$ and hence $T(1-e) \subseteq l(Te) = \{a \in T; aTe = 0\}$. As $(l(Te) \cap Te)^2 = 0$, $l(Te) \cap Te = 0$. Hence $T(1-e) = l(Te)$ is an ideal of T. Let $1 = f + g$, where $f \in Te$, $g \in T(1-e)$. Then, as is easily seen, f and g are idempotent elements belonging to the center of T. As $Te = Tf$, we have $f = e$.

Let M be a unital R-left, K_i-right module, where K_i is a non-zero ring with 1. Let K_i^e be the opposite ring of K_i. We can consider M as a unital $R \otimes J K_i^e$-left module by means of $(a \otimes \beta^e)u = au\beta$ ($a \in R$, $\beta \in K_i$, $u \in M$), where J means the ring of rational integers. If M is an $R \otimes J K_i^e$-c.q.i-module, M is called an $R \cdot K_i$-c.q.i-module.

Let M be an $R \cdot c.q.i$-module. If B is an $R \cdot K$-submodule, then $B^{ae} \subseteq (B \alpha)^{ae} \subseteq B^{ee}$ for every $\alpha \in K$, so that B^{ee} is also an $R \cdot K$-submodule. If we set $B^{ee} = Me$ with an idempotent e in K, then $Me \cdot K \subseteq Me$, and hence $eK \subseteq Ke$, that is, Ke is an ideal of K. And, K being a regular ring, e is a central idempotent of K by the preceding lemma. As $M = B^e \oplus B^{ee}$, B^e is also an $R \cdot K$-submodule of M, and is the unique complement of B in the R-module M (Lemma 4.7). Hence, to be easily seen, the complement B^e of B in the $R \cdot K$-module M coincides with the one of B in the R-module M, which implies also $B^{ee} = B^{ee}$. Since $\text{Hom}_{R \cdot K}(M, M)$ is the center of K, for each r of the center of K, we have $B^{ee} r = B^{ee} (B^r)^{ee} = (B^r)^{ee}$. Hence, the $R \cdot K$-module M is a continuous closure operation. Let N be
a dense R-K-submodule of M and let φ be an R-K-homomorphism of N into M. Extending φ as an R-homomorphism to an element δ of K, we have $N(\alpha\delta-\delta\alpha)=0$ for all $\alpha\in K$. By the continuity, $M(\alpha\delta-\delta\alpha)=N^{ce}(\alpha\delta-\delta\alpha)\subseteq(N(\alpha\delta-\delta\alpha))^{ce}=0$, whence $\alpha\delta-\delta\alpha=0$ for all $\alpha\in K$. Thus we have proved the following theorem:

Theorem 5.6. If M is an R-c.q.i-module, then M is an R-K-c.q.i-module, and $B^e=B^e$ (uniquely determined), $B^{ce}=B^{ce}$ for every R-K-submodule B of M.

Theorem 5.7. Let M be an R-c.q.i-module. If N is any R-K-submodule of M then N is an R-c.q.i and R-K-c.q.i-module. (See Prop. 3.1 (ii).)

Proof. The R-quasi-injectivity of N is evident. And, by Prop. 3.1 (ii), the R-d.c-correspondence in N is a closure operation. In fact, if A is an R-submodule of N, then $A^{ce}\cap N$ is the unique R-double complement of A in N. Now, $K'=\text{Hom}_R(N,N)$ is the contraction of K to N. For any $\gamma\in K$, $(A^{ce}\cap N)\gamma\subseteq A^{ce}\gamma\cap N\subseteq (A\gamma)^{ce}\cap N=\text{the R-double complement of } A\gamma$ in N. Hence, N is an R-c.q.i-module. Moreover, by Th. 5.6, N is an R-K'-c.q.i-module, or what is the same, N is an R-K-c.q.i-module.

The following lemma is well known.

Lemma 5.8. If $r_M(I)\equiv \{u\in M; Iu=0\}=0$ for every dense left ideal I of R, then the R-d.c-correspondence is a continuous closure operation. In fact, if A is an R-submodule of M then $A^{ce}=\{u\in M; Iu\subseteq A$ for some dense left ideal $I\}$.

Proof. Let A be a non-zero R-submodule of M. For any $u\in A^{ce}$, $\exists a\in A^{ce}$ an R-homomorphism of R into a double complement A^{ce} of A. Since A is dense in A^{ce}, $\{a\in R; au\subseteq A\}$ is a dense left ideal of R by Prop. 1.5. Hence A^{ce} is contained in $A^+=\{u\in M; Iu\subseteq A$ for some dense left ideal $I\}$. If $I_1u_1, I_2u_2\subseteq A$ for dense left ideals I_1, and I_2 ($u_1, u_2\in M$), then $I_1\cap I_2$ is a dense left ideal and $(l_1\cap l_2)(u_1\pm u_2)\subseteq A$. Further for any aeR, $(l_1:a)\equiv \{b\in R; ba\in I_1\}$ is a dense left ideal by Prop. 1.5, and $(l_1:a)au\subseteq I_1u\subseteq A$. Hence, A^+ is an R-submodule of M. Next, if $A^{ce}\subseteq A^+$, A^{ce} being non-dense in A^+, there exists a non-zero submodule X of A^+ with $A^{ce}\cap X=0$. Choosing an arbitrary non-zero element $u\in X$, there exists a dense left ideal I with $Iu\subseteq A$. On the other hand, as $u\in X, Iu\subseteq X$, and hence $Iu=0$, contradicting our assumption. Hence, we have $A^{ce}=A^+$. The continuity of R-d.c-correspondence will be evident by Prop. 3.5 (ii).

As is seen from the above proof, $0^+=\{u\in M; Iu=0$ for some dense left ideal $I\}$ is an R-K-submodule of M, and is called the R-singular part (or singular submodule) of M. (And the K-singular part is defined in the similar
way.) Lemma 5.8 is now restated as follows: If the \(R \)-singular part of \(M \) is zero, then the \(R \)-d.c.-correspondence is a continuous closure operation.

Proposition 5.9. If \(M \) is an \(R \)-c.q.i-module, then the \(K \)-singular part of \(M \) and the left singular part of \(K \) (i.e. the singular part of \(K \) as a \(K \)-left module) are 0.

Proof. Let \(\tau \) be an arbitrary dense right ideal of \(K \). If \(u\tau = 0 \) \((u \in M)\) then \(R\tau = 0 \). Setting \((Ru)^{cc} = Ms \) with an idempotent \(\epsilon \in K \), \(M\epsilon = (Ru)^{cc} \subseteq (Ru)^{cc} = 0 \), that is, \(\epsilon \tau = 0 \), whence \(\tau \cap \epsilon K = \epsilon (\tau \cap \epsilon K) = 0 \). Since \(\tau \) is dense in \(K \), \(\epsilon K \) has to be 0, and so we have \(u = 0 \). Next, let \(I \) be an arbitrary dense left ideal of \(K \). If \(r(I) = \{ \epsilon \in K; \epsilon \alpha = 0 \} \) is non-zero, \(r(I) \) contains a non-zero idempotent \(\tau \), and so \(I \subseteq K(1-\tau) \), which contradicts the density of \(I \).

The next theorem has been stated in [7] without proof.

Theorem 5.10. If \(M \) is an \(R \)-c.q.i-module, then \(K \) is an injective \(K \)-left module in which the \(K \)-d.c.-correspondence is a continuous closure operation (or equivalently, \(K \) is a maximal left quotient ring with zero left singular part. (Cf. [8].))

Proof. Since the left singular part of \(K \) is \(\{0\} \) by Prop. 5.9, the \(K \)-d.c.-correspondence in the \(K \)-left module \(K \) is a continuous closure operation by Lemma 5.8. Accordingly, it is left only to prove the injectivity of \(K \). Let \(I \) be a left ideal, and \(\varphi \) a \(K \)-homomorphism of \(I \) into \(K \). For given \(u_{i} \in M \) and \(\alpha_{i} \in I \) \((i=1, \cdots, n)\), choose an element \(\tau \in K \) with \(\sum \alpha_{i} = K\tau \), and set \(\alpha_{i} = \alpha_{i}^{\tau} \) \((\alpha_{i} \in K)\), \(u = \sum u_{i} \alpha_{i}^{\tau} \). If we set \(r_{K}(u) = \{ \alpha \in K; u\alpha = 0 \} \) then, by Prop. 3.5 (ii), \(r_{K}(u) = r_{K}(Ru) = r_{K}((Ru)^{cc}) = \epsilon K \) with an idempotent \(\epsilon \in K \). Hence, if \(\sum u_{i} \alpha_{i} = 0 \) then \(\tau \in \epsilon K \cap I \), and so \(\epsilon \varphi = (\epsilon \tau) \varphi = \epsilon (\tau \varphi) \in \epsilon K \). And then, \(\sum u_{i} (\alpha_{i} \varphi) = u (\tau \varphi) = 0 \), which enables us to see that \(\sum v_{j} \beta_{j} \gamma_{j} \rightarrow \sum v_{j} (\beta_{j} \varphi) \) \((v_{j} \in M, \beta_{j} \in I)\) defines a \(R \)-homomorphism \(\varphi \) of \(MI \) into \(M \). Since \(M \) is \(R \)-quasi-injective, \(\varphi \) can be extended to some \(\delta \in K \). And, we have then \(\beta \varphi = \beta \delta \) for all \(\beta \in I \), which proves that \(K \) is injective.

Let \(A \) be an \(R \)-submodule of an \(R \)-c.q.i-module \(M \), and set \(A^{cc} = Ms \) with an idempotent \(\epsilon \in K \). Then, \(r_{K}(A) = r_{K}(A^{cc}) = (1-\epsilon)K \) and \(L_{M}((1-\epsilon)K) = \{ u \in M; u(1-\epsilon)K = 0 \} = Ms = A^{cc} \). In particular, by Th. 5.10, \(L(r(I)) \) coincides with the double complement \(I'' \) of \(I \) in \(K \) for any left ideal \(I \) of \(K \), where \(r(\ast) \), \(L(\ast) \) denote the right annihilator and left annihilator of \(\ast \) in \(K \). As \(L(r_{K}(A)) = L((1-\epsilon)K) = K\epsilon \), \(A^{cc} = M \cdot L(r_{K}(A)) \) and, in particular, \((M \cdot I)^{cc} = M \cdot L(r_{K}(MI)) = M \cdot L(r(I)) = MI'' \). We have proved therefore the following:

Proposition 5.11. Let \(M \) be an \(R \)-c.q.i-module. If \(A \) is an \(R \)-submodule of \(M \), and \(I \) a left ideal of \(K \) with the double complement \(I'' \) in \(K \), then \(A^{cc} = L_{M}(r_{K}(A)) = M \cdot L(r_{K}(A)), I'' = L(r(I)) \) and \((MI)^{cc} = MI'' \).
Let A be an R-submodule of M. For $\alpha \in K$, $A\alpha \cdot r_{K}(A\alpha) = 0$, and so $\alpha \cdot r_{K}(A\alpha) \subseteq r_{K}(A)$. Hence $l_{M}(r_{K}(A)) \cdot \alpha \cdot r_{K}(A\alpha) = 0$, that is, $l_{M}(r_{K}(A)) \cdot \alpha \subseteq l_{M}(r_{K}(A\alpha))$. Thus we have the following:

Corollary. M is an R-c.q.i-module if and only if M is R-quasi-injective and $A^{cc} = l_{M}(r_{K}(A))$ for any R-submodule A.

Let M be an R-c.q.i-module. Every R-complemented submodule of M is an R-direct summand of M (Th. 4.3). Every R-K-complemented submodule of M is an R-K-direct summand of M, by Th. 4.3 and Th. 5.6. Consequently, by Th. 5.10, every complemented left ideal of K is a left direct summand of K, and every complemented ideal of K is a two-sided direct summand of K. For any R-direct summand $M_{\varepsilon} (\varepsilon \in K)$, we correspond a left direct summand $K_{\varepsilon} = l(r_{K}(M_{\varepsilon}))$ of K. Then this is an order-isomorphism of the R-direct summands of M onto the left direct summands of K. From this fact and Th. 2.7, M is R-locally uniform if and only if K is R-locally uniform. And, M_{ε} is uniform if and only if K_{ε} is uniform (Cor. to Th. 2.3). Therefore, M contains an R-uniform submodule if and only if K contains a uniform (or equivalently, minimal) left ideal. To be easily seen, M_{ε} is K-admissible if and only if K_{ε} is an ideal, that is $\varepsilon K \subseteq K_{\varepsilon}$. In this case ε is a central idempotent (Lemma 5.5). Hence M is R-K-locally uniform if and only if K is ideal- (i.e. K-K-) locally uniform (Th. 2.7). And, M_{ε} is R-K-uniform if and only if K_{ε} is a uniform ideal (Cor. 2 to Th. 2.3). Therefore M contains an R-K-uniform submodule if and only if K contains a uniform ideal. Let $\{\varepsilon_{i}; i \in A\}$ be a set of idempotent elements of K. Then, $\Sigma M_{\varepsilon_{i}} = \Sigma \oplus M_{\varepsilon_{i}}$ if and only if $\Sigma K_{\varepsilon_{i}} = \Sigma \oplus K_{\varepsilon_{i}}$. To prove this fact, let $M_{\varepsilon_{1}} + \cdots + M_{\varepsilon_{n}} = M_{\varepsilon_{1}} \oplus \cdots \oplus M_{\varepsilon_{n}}$, where $\varepsilon_{i} = \varepsilon_{i} \in K$. If $K_{\varepsilon_{1}} \cap (K_{\varepsilon_{2}} + \cdots + K_{\varepsilon_{n}}) = \{0\}$, then $0 \neq u \in K$, then $0 \neq u \varepsilon_{i}$ for some $u \in M$. Then $0 \neq u \varepsilon_{i} \in M_{\varepsilon_{1}} \cap (M_{\varepsilon_{2}} + \cdots + M_{\varepsilon_{n}})$ a contradiction. Conversely, we assume that $K_{\varepsilon_{1}} + \cdots + K_{\varepsilon_{n}} = K_{\varepsilon_{1}} \oplus \cdots \oplus K_{\varepsilon_{n}}$. Let $K_{\varepsilon_{1}} + \cdots + K_{\varepsilon_{n}} = K_{\varepsilon}$, $\varepsilon = \varepsilon_{i} \in K$ and $\varepsilon = \varepsilon_{i} + \cdots + \varepsilon_{n}$, $\varepsilon_{i} \in K_{\varepsilon_{i}}$. Then $K_{\varepsilon_{i}} = K_{\varepsilon_{i}}$, $\varepsilon_{i}^{\alpha} = \varepsilon_{i}$ and $\varepsilon_{i}^{\alpha} \delta_{\varepsilon_{i}} = 0$, if $i \neq j$. Hence, as $M_{\varepsilon_{1}} = M_{\varepsilon_{1}}, M_{\varepsilon_{1}} + \cdots + M_{\varepsilon_{n}} = M_{\varepsilon} \oplus \cdots \oplus M_{\varepsilon_{n}}$. From this fact, R-$\dim M$ is equal to the left dimension of K, and R-K-$\dim M$ is equal to the ideal-dimension of K.

Let W, W' be two maximal R-K-uniform submodules such that $W \sim W'$ as R-K-submodules. Then, by the R-quasi-injectivity, there exists some $r \in K$ such that $W \cap W' \neq 0$. As $W \cap W' \neq 0$, and so $W = (W \cap W')^{cc} = W'$ (Th. 5.6). This shows that M has the unique maximal independent set of maximal R-K-uniform submodules (Th. 1.10). Let V and V' be R-uniform submodules such that $V \sim V'$. Then, by the R-quasi-injectivity, $V \delta \cap V' \neq 0$ for some $\delta \in K$. Hence each R-homogeneous component $H(\rho)$ is R-K-uniform, and each $H(\rho)^{cc} = C(\rho)$ is an R-K-homogeneous component of M. Hence the unique
maximal R-locally uniform submodule $C(P)=(\sum \oplus H(\theta))^{\epsilon}$ is R-K-locally uniform. Hence the unique maximal R-locally uniform submodule is contained in the unique maximal R-K-locally uniform submodule. Consequently, by Th. 3.2 (iii) and Th. 4.8 (and Th. 5.6), M has the following representation: $M = M_1 \oplus M_2 \oplus M_3$. Each M_i is R-K-admissible. The first component M_1 is R-locally uniform. The second component M_2 is R-K-locally uniform, but does not contain an R-uniform submodule. The third component M_3 contains neither an R-uniform submodule nor an R-K-uniform submodule. In this meaning, such a representation of M is unique. Because M_1 is the unique maximal R-locally uniform submodule, and $M_1 \oplus M_2$ is the unique maximal R-K-locally uniform submodule (see Lemma 4.7). Let each τ_i $(i=1,2,3)$ be the projection to M_i. Then each τ_i is a central idempotent. And, $K=K\tau_1 \oplus K\tau_2 \oplus K\tau_3$ and, to be easily seen, $\text{Hom}_R(M_1, M_1) = \tau_1 K\tau_1 = K\tau_1$. And further $\text{Hom}_R(M_1 \oplus M_2, M_1) = K(\tau_1 + \tau_2) = K\tau_1 + K\tau_2$ and $\text{Hom}_R(M_2 \oplus M_3, M_2) = K(\tau_2 + \tau_3) = K\tau_2 + K\tau_3$. As M_1 is R-locally uniform, $K\tau_1$ is left locally uniform. As $M_2 + M_3$ does not contain an R-uniform submodule, $K\tau_2 + K\tau_3$ does not contain a uniform left ideal. Hence $K\tau_1$ is the unique maximal locally uniform left ideal of K. Similarly we can see that $K\tau_1 + K\tau_2$ is the unique maximal locally uniform ideal of K. Hence $K\tau_i$ is the i-th component of a left injective ring K with zero (left) singular part.

Let A be an R-submodule. By the R-quasi-injectivity, $\text{Hom}_R(A, M) = K/r_k(A)$. Since $r_k(A) = r_k(A^{\epsilon})$ (Prop. 3.5 (ii)), $\text{Hom}_R(A, M) = \text{Hom}_R(A^{\epsilon}, M)$. If B is an R-K-submodule, then B^{ϵ} is also an R-K-submodule and $(\text{Hom}_R(B, M) = \text{Hom}_R(B^{\epsilon}, M))$. Let $M\tau = B^{\epsilon}$, where $\tau \in K$. Then $\text{Hom}_R(B^{\epsilon}, B^{\epsilon}) = \tau K\tau = K\tau$, and $\tau K\tau = K\tau$ is a two-sided direct summand of K. Let M_ϵ be R-uniform, where $\epsilon^2 = \epsilon \in K$. Then $K\epsilon$ is a uniform left ideal, and further, as K is a regular ring, $K\epsilon$ is a minimal left ideal. Hence $\text{Hom}_R(M_\epsilon, M_\epsilon) = \epsilon K\epsilon$ is a division ring.

Theorem 5.12. (i) K is a direct sum of three rings $\{K_i; i=1,2,3\}$. The ring K_1 is left locally uniform. The ring K_2 is ideal-locally uniform, but does not contain a uniform left ideal. The ring K_3 contains neither a uniform left ideal nor a uniform ideal. Such a representation of K is unique. And, the first component K_1 is uniquely represented as a complete direct sum of right endomorphism rings of vector spaces (over division rings). The second component K_2 is uniquely represented as a complete direct sum of prime rings containing no uniform left ideals.

(ii) The center of K is also an injective ring with zero singular part.

5) The "right" implies "acting on the right".
For any idempotent \(\nu \) of \(K \), \(\nu K \nu \) is also a left injective ring with zero left singular part.

Proof. The first half was already proved. In fact \(K_{i}=K_{\tau_{i}} \) (\(i=1, 2, 3 \)). Since \(\sum \oplus H(\rho) \) is \(R-K \)-admissible and \(R \)-dense in \(M_{i}, K_{i}=\text{Hom}_{R}(M_{i}, M_{i})=\text{Hom}_{R}(\sum H(\rho), \sum H(\rho)) \), and further, since each \(H(\rho) \) is \(R-K \)-admissible, \(K_{i}=\sum^{c} \oplus \text{Hom}_{R}(H(\rho), H(\rho)) \) (complete direct sum). Each \(H(\rho) \) is a direct sum of \(R \)-uniform submodules which are isomorphic to one another. Let \(V_{\rho} \) be a complemented uniform submodule belonging to \(\rho \). Then \(\text{Hom}_{R}(H(\rho), H(\rho)) \) is isomorphic to the ring of row-finite \((\rho \text{-dim } M)\)-dimensional matrices over the division ring \(\text{Hom}_{R}(V_{\rho}, V_{\rho}) \), that is, the right endomorphism ring of a \((\rho \text{-dim } M)\)-dimensional \(\text{Hom}_{R}(V_{\rho}, V_{\rho}) \)-left vector space. Let \(\{W_{\gamma}: \gamma \in \Gamma\} \) be the maximal independent set of complemented \(R-K \)-uniform submodules of \(M_{i} \). Since \(\sum \oplus W_{\gamma} \) is \(R-K \)-admissible and \((R-K\text{-dense in } M_{i}, \text{ and so}) R \)-dense in \(M_{i}, \text{Hom}_{R}(M_{i}, M_{i})=\text{Hom}_{R}(\sum W_{\gamma}, \sum W_{\gamma}) \), and further \(\text{Hom}_{R}(M_{i}, M_{i})=\sum^{c} \oplus \text{Hom}_{R}(W_{\gamma}, W_{\gamma}) \). Since each \(W_{\gamma} \) is an \(R \)-c.q.i.-module (Th. 5.7), \(\text{Hom}_{R}(W_{\gamma}, W_{\gamma}) \) is a regular ring (Prop. 5.1). And, since \(W_{\gamma} \) is \(R-K \)-uniform and an \(R-K \)-direct summand of \(M, \) \(\text{Hom}_{R}(W_{\gamma}, W_{\gamma}) \) is an ideal-direct summand of \(K \) and an ideal-uniform (and regular) ring. Hence each \(\text{Hom}_{R}(W_{\gamma}, W_{\gamma}) \) is a prime ring. Let \(K_{i}=\sum_{\gamma} \oplus K_{i}^{\gamma} \) and \(K_{i}^{\gamma}
abla=(0, \ldots, 0, K_{i}^{\gamma}, 0, \ldots, 0) \) (finite or infinite), where each \(K_{i}^{\gamma} \) is a left locally uniform ring. Then, to be easily seen, \(\sum K_{i}^{\gamma}=\sum \oplus K_{i}^{\gamma} \) is a dense ideal (i.e. \(K_{i}^{\gamma} \)-dense submodule of \(K_{i} \), and each \(K_{i}^{\gamma} \) is a complemented uniform ideal of \(K_{i} \), because each \((0, \ldots, 0, K_{i}^{\gamma}, 0, \ldots, 0) \) is a two-sided direct summand of \(\sum^{c} \oplus K_{i}^{\gamma} \). Hence \(\{K_{i}^{\gamma}: \gamma \in \Lambda\} \) is a maximal independent set of complemented uniform ideals of \(K_{i} \), which is uniquely determined. The uniqueness of the representation of \(K_{i} \) is similarly proved. (ii) follows from Th. 5.3, Th. 5.6 and Th. 5.10.

Remark. Let \(\{D_{\gamma}: \gamma \in \Gamma\} \) be a collection of division rings, and let \(\{A_{\gamma}: \gamma \in \Gamma\} \) be a collection of sets. We denote by \(D_{\gamma}^{(\mathbb{A}_{\gamma})} \) the direct sum of \(\mathbb{A}_{\gamma} \) copies of the \(D_{\gamma} \)-left vector space \(D_{\gamma} \). Then \(D_{\gamma}^{(\mathbb{A}_{\gamma})} \) is a \#\(\mathbb{A}_{\gamma} \)-dimensional \(D_{\gamma} \)-left vector space. And, \(\text{Hom}_{D_{\gamma}}(D_{\gamma}^{(\mathbb{A}_{\gamma})}, D_{\gamma}^{(\mathbb{A}_{\gamma})})=\text{End}_{D_{\gamma}}(D_{\gamma}^{(\mathbb{A}_{\gamma})}) \) acting on the right is (isomorphic to) the ring of row-finite \#\(\mathbb{A}_{\gamma} \)-dimensional matrices over \(D_{\gamma} \). Next, we consider the \(\sum \oplus D_{\gamma} \)-left module \(\sum \oplus D_{\gamma}^{(\mathbb{A}_{\gamma})} \), where \(D_{\gamma}^{(\mathbb{A}_{\gamma})} \oplus \sum D_{\gamma}^{(\mathbb{A}_{\gamma})}=0 \), if \(\gamma \neq \gamma \). Then \(\sum \oplus D_{\gamma}^{(\mathbb{A}_{\gamma})} \) is \(\sum \oplus D_{\gamma} \)-left completely reducible. Hence \(\sum \oplus D_{\gamma}^{(\mathbb{A}_{\gamma})} \) is a \(\sum \oplus D_{\gamma} \)-c.q.i.-module. Therefore the \(\sum \oplus D_{\gamma} \)-endomorphism ring acting on the right of \(\sum \oplus D_{\gamma}^{(\mathbb{A}_{\gamma})} \) is a left injective ring with zero (left) singular part. This ring is a complete direct sum of right endomorphism rings of vector spaces \(\{D_{\gamma}^{(\mathbb{A}_{\gamma})}: \gamma \in \Gamma\} \), because for any \(\sum \oplus D_{\gamma} \)-endomorphism \(\varphi \) of \(\sum \oplus D_{\gamma}^{(\mathbb{A}_{\gamma})} \), \(D_{\gamma}^{(\mathbb{A}_{\gamma})} \varphi=\varphi(1_{\gamma} \cdot D_{\gamma}^{(\mathbb{A}_{\gamma})}) \varphi=1_{\gamma} \cdot (D_{\gamma}^{(\mathbb{A}_{\gamma})} \varphi) \subseteq D_{\gamma}^{(\mathbb{A}_{\gamma})}, \) where \(1_{\gamma} \) is the identity of \(D_{\gamma} \).
Theorem 5.13. If an R-c.q.i-module M is R-locally uniform and R-faithful, then the following conditions are equivalent to each other:

(i) M is K-quasi-injective and $\text{Hom}_K(M, M) = R$.

(ii) The R-singular part of M is zero, and every R-uniform submodule is minimal. And further R is a complete direct sum of left endomorphism rings of vector spaces (over division rings).

Proof. (i) \Rightarrow (ii). This part follows from Th. 5.2 (ii), Prop. 5.9 and Th. 5.12. (ii) \Rightarrow (i). By Cor. to Th. 5.2, M is K-locally uniform. Let \bar{M} be the K-injective envelope of M. Then, as M is K-dense in \bar{M}, the K-socle M_0 of M coincides with the K-socle of \bar{M}, and further, by assumption, coincides with the R-socle of M (Th. 5.2 (iv)). Since M_0 is R-K-admissible and R-dense in M, $\text{Hom}_R(M_0, M) = K$. We set $R' = \text{Hom}_K(\bar{M}, \bar{M})$ acting on the left. Then, since M_0 is R'-K-admissible and K-dense in \bar{M} and the K-singular part (of M is zero, and so) of \bar{M} is zero, $R' = \text{Hom}_K(\bar{M}, \bar{M}) = \text{Hom}_K(M_0, M_0)$ by Lemma 5.8 and the K-injectivity of \bar{M}. We shall prove that $R' = R$. Let Ru be R-minimal. Then $R/I_R(u) \cong Ru$. Let $I_s \subseteq I_R(u)$, where I is a dense left ideal of R. Then $Iau = 0$, and, since R-singular part of M is zero, $au = 0$, that is, $a \in I_R(u)$. Hence $I_S(u)$ ($\neq R$) is a complemented left ideal of R (Lemma 5.8). Since $I_S(u)$ is dense in $R/I_R(u), Ru$ is naturally isomorphic to a minimal left ideal of R. Conversely, let I_a be a minimal left ideal. Then, since M is R-faithful, $I_p \neq 0$ for some $u \in M$. Evidently $I_a \subseteq I_s(u) \subseteq M_0$. Hence $M_0 = S \cdot M = \sum_{p \in \lambda} S_p \cdot M$, where $S = \sum_{p \in \lambda} S_p$ is the (left) socle of R and each S_p is a (left) homogeneous component of R such that $S_p \cdot M = H(\rho) \ (p \in \lambda)$. Let I_a be a minimal left ideal such that $I_s \subseteq S$. Then, S_a and $S_p \cdot M$ are direct sums of I_a's (up to isomorphism). From this fact, $\text{End}^2(I_a S) \cong \text{End}^2(I_a S)_o^g$ and $\text{End}^2(\lambda S_p \cdot M) \cong \text{End}^2(\lambda S_p)$, where $\text{End}^2(\lambda S_p)$ means the $\text{End}(\lambda S_p)$-endomorphism ring of S_p acting on the left. Now, since R is a regular ring, $(S \cap r(S))_o^g = 0$ implies $S \cap r(S) = 0$, and symmetrically $S \cap l(S) = 0$. Since R is a right locally uniform regular ring, S is a dense right ideal. Hence $r(S)_o^g = l(S) = 0$. Since R is a right injective ring with zero (right) singular part, $\text{End}(S) = \text{End}(R) = R$. (the left multiplications of elements of R). As $\text{End}(S) \supseteq R$, $(S \subseteq) \text{End}^2(S) \subseteq \text{End}(S) = R$. Hence $R = \text{End}^2(S)$. Since S_a and $S_p \cdot M$ are an ideal and...

6) Let N be a \mathcal{O}-left module, where \mathcal{O} is any operator domain, and let $N^{(\mathcal{A})}$ be a direct sum of A copies of N, where A is a non-empty set. Then $\text{End}^2(\mathcal{A}N^{(\mathcal{A})}) = \text{End}^2(\mathcal{A}N)$ naturally. To see this, let ε_{μ} be the \mathcal{O}-endomorphism such that $(0, \ldots, 0, \mu, 0, \ldots, 0) \mapsto (0, \ldots, 0, \mu, 0, \ldots, 0)$. Then any $\varphi \in \text{End}^2(\mathcal{A}N^{(\mathcal{A})})$ is commutative with every ε_{μ}. Set $N_1 = (0, \ldots, 0, \hat{N}, 0, \ldots, 0)$. Since $\varphi(N_1 \cdot \varepsilon_{\mu}) = (\varphi N_1) \varepsilon_{\mu} \subseteq N_1$, we have $\varphi N_1 \subseteq N_1$. We correspond $\varphi|N_1$ (the contraction of φ to N_1) to an element φ_1 in $\text{End}^2(\mathcal{A}N)$ naturally. Then, since φ is commutative with every ε_{μ}, $\varphi_1 = \varphi_\lambda$ for all $\lambda, \lambda' \in \mathcal{A}$.

an R-K-submodule respectively, $R_{I} = \text{End}^{a}(\rho S) \equiv \sum \oplus \text{End}^{a}(\rho S \cdot M)$ and $\text{End}^{a}(\rho S \cdot M) \equiv \sum \oplus \text{End}^{a}(\rho S \cdot M)$ naturally. As $\text{End}^{a}(\rho S) \equiv \text{End}^{a}(\rho S) \equiv \text{End}^{a}(\rho S \cdot M)$, $R_{I} = \text{End}^{a}(\rho S) \equiv \text{End}^{a}(\rho S \cdot M)$. Hence we have $\text{End}^{a}(\rho S \cdot M) = R$, as desired. Since $\text{End}^{a}(\rho S \cdot M) = \text{Hom}_{K}(M, \hat{M})$, this implies that M is K-quasi-injective (Prop. 4.1) and $\text{Hom}_{K}(M, M) = R$.

§ 6. Throughout this section, we assume that R is a ring with 1 such that for each non-zero left ideal I, R/I contains a minimal R-left submodule.

Theorem 6.1. Let A be an R-submodule of M. Then, the following conditions are equivalent to each other:

(i) A is a complemented submodule of M.

(ii) Let I be a maximal left ideal of R, u an element of M. If $Iu \subseteq A$ then there exists an element $v \in A$ such that $au = av$ for all $a \in I$.

Proof. (i) \Rightarrow (ii). We may assume that u is not contained in A (and so, A is a proper complemented submodule of M). Now, $(Ru + A)/A$ is a minimal submodule of M/A. Since A is complemented, $(A + A^{c})/A$ is dense in M/A by Prop. 1.13, and hence $(Ru + A)/A \subseteq (A + A^{c})/A$, that is, $u \in A + A^{c}$. Setting $u = v + v'$ with $v \in A$ and $v' \in A^{c}$, $Iu \subseteq A$ yields $Iv' = 0$. Hence, $I(u - v) = 0$, that is, $au = av$ for all $a \in I$. (ii) \Rightarrow (i). Suppose $A^{cc} \not\subseteq A$, and choose an arbitrary $x \in A^{cc}$ not contained in A. As A is dense in A^{cc}, there exists a non-zero $a \in R$ with $(0 \neq) ax \in A$. Then, $R/L = (Rx + A)/A \subseteq A^{cc}/A$, where $L = \{b \in R; bx \in A\}$ is a non-zero left ideal of R, so that, by the assumption for R, A^{cc}/A contains a minimal submodule $(Ru + A)/A (u \in A)$. As $I = \{b \in R; bu \in A\}$ is a maximal left ideal and $Iu \subseteq A$, there exists an element $v \in A$ such that $I(u - v) = 0$. $R(u - v)$ is then a minimal submodule of A^{cc}, and so $R(u - v) \subseteq A$ by the density of A in A^{cc}. But, $u - v \in A$ and $v \in A$ yield a contradiction $v \in A$. We have proved therefore $A^{cc} = A$.

Theorem 6.2. M is R-injective if and only if every R-homomorphism of any maximal left ideal of R into M can be extended to an R-homomorphism of R into M.

Proof. It suffices to prove the "if" part. To this end, we consider the R-injective envelope \hat{M} of M. Let I be a maximal left ideal of R, and let $Iu \subseteq M$ for an element $u \in \hat{M}$. Since $I \ni a \rightarrow au \in M$ is an R-homomorphism φ of I into M, φ can be extended to an R-homomorphism Φ of R into M. If $1\varphi = v \in M$, then $a(u - v) = a\varphi - a\psi = 0$ for all $a \in I$. Hence, M is complemented (and dense) in \hat{M} by Th. 6.1, which proves $M = \hat{M}$.

Theorem 6.3. Let R be further a left principal ideal ring.

(i) A is a complemented submodule of M if and only if $A \cap pM = pA$
for each \(p \in R \) generating a maximal left ideal of \(R \).

(ii) If \(pM = M \) for each \(p \in R \) generating a maximal left ideal of \(R \), then \(M \) is \(R \)-injective. (Cf. [1; p. 92].)

Proof. (i). Let \(Rp \) be an arbitrary maximal left ideal of \(R \). Then, the condition that if \(Rpu \subseteq A \) \((u \in M)\) then \(Rp(u - v) = 0 \) for some \(v \in A \) is equivalent to \(A \cap pM = pA \). Hence, (i) follows immediately from Th. 6.1. (ii). Let \(\hat{M} \) be the \(R \)-injective envelope of \(M \). Since \(M \cap p\hat{M} \subseteq M = pM \), \(M \) is complemented (and dense) in \(\hat{M} \) by (i). Hence \(M = \hat{M} \), as desired.

Example. Let \(J(a) \) and \(J(b) \) be (additive) cyclic groups of orders 4 and 2 respectively, where \(J \) denotes the ring of rational integers. We consider \(M = J(a) \oplus J(b) \). Now, \(J(a + b) \) is a complemented submodule by Th. 6.3. In fact, \(J(a + b) \cap 2M = \{0, a + b, 2a, 3a + b\} \cap \{0, 2a\} = \{0, 2a\} = 2(J(a + b)) \) and \(p(J(a + b)) = J(a + b) \) for all prime \(p \neq 2 \). \(J(a) \) is a direct summand and \(J(a) \cap J(a + b) = \{0, 2a\} = J(2a) \). But \(J(2a) \) is not complemented in \(M \), for \(J(2a) \cap 2M = \{0, 2a\} \neq 0 = 2(J(2a)) \). This elementary example shows that the d.c-correspondence is not always a closure operation.

References

