A CHARACTERIZATION OF MODULAR NORMS IN TERMS OF SIMILAR TRANSFORMATIONS

Dedicated to Professor Kinjiro Kunugi
on his 60th birthday

By

Tetsuya SHIMOGAKI

1. Introduction. A modulared semi-ordered linear space is a universally continuous semi-ordered linear space1) R with a non-negative functional m called a modular which satisfies the following conditions:

M. 1) $|x|\leq |y|$, $x, y \in R$ implies $m(x)\leq m(y)$;
M. 2) $m(\xi x) = 0$ for each $\xi > 0$ implies $x = 0$;
M. 3) $\lim_{\xi \to 0} m(\xi x) = 0$ for each $x \in R$;
M. 4) $m(\xi x)$ is a convex function of $\xi > 0$ for each $x \in R$;
M. 5) $x \perp y$2) implies $m(x + y) = m(x) + m(y)$;
M. 6) $0 \leq x_\lambda \uparrow_{\lambda \in \Lambda} x$ implies $\sup_{\lambda \in \Lambda} m(x_\lambda) = m(x)$.

On a modulared space (R, m) a semi-continuous norm3) $\| \cdot \|_m$ can be defined by

\begin{equation}
\|x\|_m = \inf_{\xi} \left\{ \frac{1}{|\xi|}; \ m(\xi x) \leq 1 \right\} \quad (x \in R),
\end{equation}

that is, R is a normed semi-ordered linear space with the norm $\| \cdot \|_m$ at the same time. The converse of this, Every normed semi-ordered linear space $(R, \| \cdot \|)$ has an equivalent norm $\| \cdot \|_m$ defined by an appropriate modular m, is not true in general. Counter examples were constructed by the present author [7] and T. Andô [1].

L_p-spaces ($p \geq 1$) and Orlicz spaces L_{Φ}^λ on a σ-finite measure space (E, Ω, μ), with a countably additive non-negative measure μ defined on a σ-field Ω of E,

1) A semi-ordered linear space R is called universally continuous, if $0 \leq x_\lambda (\lambda \in \Lambda)$ implies $\bigcap_{\lambda \in \Lambda} x_\lambda \in R$, i.e. a conditionally complete vector lattice in Birkhoff's sense.

2) $x \perp y$ means that x and y are mutually orthogonal, i.e. $|x| \cap |y| = 0$.

3) A norm $\| \cdot \|$ is called semi-continuous, if $|x_\lambda| \uparrow_{\lambda \in \Lambda} |x|$ implies $\|x\| = \sup_{\lambda \in \Lambda} \|x_\lambda\|$.

4) $\| \cdot \|_m$ is termed the modular norm by m.

5) For the definition of an Orlicz space see [4].
are considered as modulared spaces with modulars $m_p(x)=\int_R|x(t)|^p\,d\mu(t)$ and $m_\phi(x)=\int_R\phi(|x(t)|)\,d\mu(t)$ respectively, where $x\leq y$ means $x(t)\leq y(t)$ a.e.

A modular m on R is called finite if $m(x)<+\infty$ for each $x\in R$, and is called almost finite if m is finite on a complete semi-normal manifold\(^6\) M of R. It is evident that the modulars of L_p-type $(1\leq p<+\infty)$ are finite and the modulars m_ϕ of Orlicz spaces are almost finite. m_ϕ is finite if and only if ϕ satisfies the so-called A_ϕ-condition.

An excellent axiomatic characterization of L_ϕ-spaces in terms of norms on semi-ordered linear spaces was established by F. Bohnenblust in [2]. Later on, H. Nakano characterized norms of L_ϕ-spaces as norms of unique indicatrix [5]. Since these characterizations are based on the particular structure of L_ϕ-norms, it seems to be difficult to obtain similarly simple characterizations of general modular norms, even of modular norms of Orlicz spaces, as L_ϕ-norms.

In this paper we shall present a necessary and sufficient condition in order that a norm $\|\cdot\|$ on R be the modular norm by a finite (almost finite) modular, in terms of the existence of a similar transformation T acting from R onto itself with the following property: for any $x,y\in R$ with $\|x\|=1$ and $x\perp y$, $\|T(x+y)\|=1$ holds if and only if $\|y\|=1$ does (Theorems 1, 2). According to the representation theory, this gives also an axiomatic characterization of modulared function spaces $L_M(\xi,t)$.\(^7\) In 5 we shall state some supplementary remarks with concrete explanations of these results in Banach function spaces.

2. Notations and the theorems. In what follows, let $(R, \|\cdot\|)$ be a non-atomic\(^8\) universally continuous semi-ordered linear space with a semi-continuous norm $\|\cdot\|$. A norm $\|\cdot\|$ is called continuous if $x_n\downarrow 0$ implies $\|x_n\|\downarrow 0$ always. If there exists a complete semi-normal manifold M such that $\|\cdot\|$ is continuous on M, $\|\cdot\|$ is called almost continuous. The modular norm $\|\cdot\|_m$ is continuous if and only if m is finite. We denote by V the unit ball and by S its surface respectively, i.e. $V=\{x: \|x\|\leq 1\}$ and $S=\{x: \|x\|=1\}$. We write $z=x+y$ if $z=x\oplus y$, with $x\perp y$ holds.

A one to one transformation T from R onto R is called similar, if it satisfies

\begin{align}
(2.1) \quad & T([p]x)=[p](Tx) \quad \text{for each } x\in R \text{ and projector } [p]; \\
(2.2) \quad & Tx\leq Ty \quad \text{if and only if } x\leq y; \\
(2.3) \quad & T(-x)=-Tx \quad \text{for each } x\in R.
\end{align}

\(^6\) A linear lattice manifold M is called semi-normal if $|y|\leq |x|$, $x\in M$ implies $y\in M$. A semi-normal manifold M is complete, if $M^{-1}={0}$.

\(^7\) For the definition of $L_M(\xi,t)$ see [3 or 6].

\(^8\) R is termed non-atomic, if each $0\neq x\in R$ can be decomposed into $x=y+z$ with $y,z\neq 0$ and $y\perp z$.

T. Shimogaki
We see easily from the definition that for a similar transformation T, T^{-1} is also such a one, and that T is order-continuous, i.e. $x_{
u} \uparrow_{\nu=1}^{\infty} a$ (or $x_{\nu} \downarrow_{\nu=1}^{\infty} b$) implies $Tx_{\nu} \uparrow_{\nu=1}^{\infty} Ta$ (resp. $Tx_{\nu} \downarrow_{\nu=1}^{\infty} Tb$).

Here we consider the following condition which establishes a relation between a similar transformation T and the norm on R:

(T.C.) For any x, y with $x \in S$ and $x \perp y$, $T(x + y) \in S$ holds if and only if $y \in S$.

Now we can prove

Theorem 2.1. In order that a given continuous norm $\| \cdot \|$ on R be the modular norm $\| \cdot \|_m$ by a modular m, it is necessary and sufficient that there exists a similar transformation T on R satisfying the condition (T.C.).

If a modular m is almost finite the modular norm is almost continuous. For an almost continuous norm $\| \cdot \|$ we denote by R_C the continuous manifold of R with respect to $\| \cdot \|$, i.e., the totality of all continuous elements\(^9\) of R. Evidently R_C is a complete semi-normal manifold on which $\| \cdot \|$ is continuous. Here we put $V_C = V \cap R_C$ and $S_C = S \cap R_C$. Then, for almost continuous norms we obtain

Theorem 2.2. In order that a given almost continuous norm $\| \cdot \|$ on R be the modular norm $\| \cdot \|_m$ by a modular m, it is necessary and sufficient that there exists a similar transformation T on R_C onto R_C which satisfies the following condition:

(T.C.') For any $x, y \in R_C$ with $x \in S_C$ and $x \perp y$, $T(x + y) \in S_C$ holds if and only if $y \in S_C$.

To the proofs of these theorems the succeeding sections 3 and 4 shall be devoted.

3. Construction of orthogonal additive functional ρ. In this section, let $\| \cdot \|$ be continuous on R and T be a similar transformation satisfying the condition (T.C.) From (2.1) -- (2.3) it follows that

\[(3.1) \quad T(x \oplus y) = Tx \oplus Ty \quad \text{and} \quad |Tx| = T(|x|) \quad \text{for} \quad x, y \in R.\]

First we shall prove several auxiliary lemmas easily derived from the assumption.

Lemma 1. We have $T(V) \subset V - S$.

Proof. Suppose $y \in S$ with $Ty \in S$. Then we have $T(y + 0) = Ty \in S$, which implies $0 \in S$ by (T.C.), a contradiction. On account of (2.2) and the semi-continuity of $\| \cdot \|$, it is now clear that $T(V) \subset V - S$ holds. Q. E. D.

\(^9\) If $\|x_{\nu}\| \not\to 0$ for each $x_{\nu} \not\to 0$ with $|x_{\nu}| \leq |a| (1 \leq \nu), a \in R$ is termed a continuous element of R with respect to $\| \cdot \|$.
In the sequel, we use the following notations:

\[(3.2) \quad S_0 = S \quad \text{and} \quad S_n = TS_{n-1} \quad (n=1, 2, \cdots) .\]

Now we have

Lemma 2. \(S_i \cap S_j = \emptyset\) holds for \(i \neq j\) \((i, j = 1, 2, \cdots)\).

Proof. If \(z \in S_i \cap S_j\) for some \(i, j\) with \(i < j\), i.e., \(z = T^i x = T^j y\) for some \(x, y \in S\) we get \(x = T^{j-i} y\). Putting \(c = T^{j-i} y\), we obtain \(x = Tc\) and \(c \in V\), which is inconsistent with Lemma 1.

Lemma 3. For each \(x \in S_n\) \((n = 0, 1, 2, \cdots)\) \(x\) can be decomposed into \(x = x_1 \oplus x_2\) in such a way that \(x_i \in S_{n+1}\) \((i = 1, 2)\) holds.

Proof. \(x \in S_n\) implies \(T^{-n} x \in S\), whence \(\|T^{-(n+1)} x\| > 1\). Now we put \(a = T^{-(n+1)} x\). Since \(R\) contains no atomic element and \(\cdot \|\cdot\|\) is continuous, we can find an element \(p\) such that \([p] a \in S\) holds. Because of \([p] a, Ta \in S\), it follows from (T.C.) that \((1 - [p]) a \in S\) holds. Hence \(x = T^{n+1} a = T^{n+1} [p] a + T^{n+1} (1 - [p]) a\) with \(T^{n+1} [p] a, T^{n+1} (1 - [p]) a \in S_{n+1}\) simultaneously.

It is obvious from Lemma 3 that \(x \in S\) if and only if \(x\) is represented as, for any fixed \(n\),

\[(3.3) \quad x = T^n \left(\bigoplus_{i=1}^{2^n} x_i \right) ,\]

where \(x_i \in S\) \((i = 1, 2, \cdots, 2^n)\).

Lemma 4. Let \(a, b \in S\) and \(a \perp b\). Then

\[(3.4) \quad \|T^n a \oplus b\| > 1\]

stands for each \(n \geq 1\).

Proof. We shall prove this lemma by inducition. In case of \(n = 1\), \(\|Ta \oplus b\| = 1\) implies \(\|T(a \oplus T^{-1} b)\| = 1\), whence \(T^{-1} b \in S\), contradicting Lemma 1. Thus (3.4) is valid for \(n = 1\). Now suppose that (3.4) holds for each \(n \leq k\) and \(\|T^{k+1} a \oplus b\| = 1\) for some \(a, b \in S\) with \(a \perp b\). Then \(\|T (T^k a \oplus T^{-1} b)\| = 1\) holds and \(T^{-1} b\) can be represented as \(T^{-1} b = b_i \oplus b_j, b_i \in S\) \((i = 1, 2)\). From this and \(\|T \{(T^k a \oplus b_i) + b_j\}\| = 1\), it follows that \(\|T^k a \oplus b\| = 1\) holds on account of (T.C.), but this contradicts the inducition hypothesis. \(\Box\).

Lemma 5. If \(x = \bigoplus_{i=1}^{m} x_i = \bigoplus_{j=1}^{m} y_j \oplus y_0\) with \(x_i \in S, y_j \in S\) \((i = 1, 2, \cdots, n; j = 1, 2, \cdots, m)\) and furthermore \(x\) is not a complete\(^{1)}\) element, then \(n \geq m\) holds.

Proof. Suppose contrarily \(n < m\). Since \(R\) is non-atomic, we can find a set of mutually orthogonal elements \(\{z_i\}_{i=1}^{\rho} \subset S\) such that \(z_i \perp x\) \((1 \leq i \leq \rho)\) and

\(^{1)} \quad x \in R\) is called a complete element if \(\{x\} \perp = \{0\}\) holds.
$n + \rho = 2^\mu$ for some $\mu \geq 1$. Then $T^\mu\left(\bigoplus_{i=1}^{\rho}z_i \oplus x\right) = T^\mu\left(z_1 \oplus \cdots \oplus z_\rho \oplus y_1 \oplus \cdots \oplus y_\mu \oplus y_0\right) = T^\mu\left(y_1 \oplus \cdots \oplus y_\mu \oplus z_1 \oplus \cdots \oplus z_\rho\right) + T^\mu\left(y_0\right)$, which implies $1 = \|T^\mu(x \oplus z)\| \geq \|w + T^\mu y_\mu\|$, where $w = T^\mu(y_1 \oplus \cdots \oplus y_\mu \oplus z_1 \oplus \cdots \oplus z_\rho)$ belongs to S. However, this is inconsistent with the preceding lemma. Q.E.D.

Lemma 6. If x is not a complete element and $x = x_1 \oplus \cdots \oplus x_k = y_1 \oplus \cdots \oplus y_\mu = x_1 \oplus \cdots \oplus x_n$, where $x_\nu \in S_{m_\nu}, y_\mu \in S_{n_\mu}$ and $y_0 \in V$ ($1 \leq \nu \leq k, 1 \leq \mu \leq l, 0 \leq m_\nu, n_\mu$), then $\sum_{\nu=1}^{k} \frac{1}{2^{m_\nu}} \geq \sum_{\mu=1}^{l} \frac{1}{2^{n_\mu}}$ holds.

Proof. We put $N = \text{Max} \{m_\nu, n_\mu\}$. Then, for each $\nu (1 \leq \nu \leq k) x$ is decomposed into $x = x_\nu, x_\nu, \ldots \oplus x_\nu, 2^{N-m_\nu}$ with $x_\nu \in S_N$ ($1 \leq \nu \leq 2^{N-m_\nu}$). Similarly $y_\mu = y_\mu, y_\mu, \ldots \oplus y_\mu, 2^{N-n_\mu}$ with $y_\mu \in S_N$ holds for each j ($1 \leq j \leq 2^{N-n_\mu}$). Hence both $x = \oplus \oplus \oplus x_\nu, \mu$ and $x = \oplus \oplus y_\mu, j \oplus y_0$ holds, which implies $T^{-N}x = \oplus \oplus x_\nu, \mu = \oplus \oplus T^{-N}y_\mu, j \oplus T^{-N}y_0$ with $T^{-N}x_\nu, \mu \in S$ and $T^{-N}y_\mu, j \in S$ for each ν, μ, i, j. In view of the preceding lemma we find

$$\sum_{\nu=1}^{k} 2^{N-m_\nu} \geq \sum_{\mu=1}^{l} 2^{N-n_\mu}.$$

Thus we obtain

$$\sum_{\nu=1}^{k} \frac{1}{2^{m_\nu}} \geq \sum_{\mu=1}^{l} \frac{1}{2^{n_\mu}}.$$

Q.E.D.

Here we turn to define an orthogonal additive functional (i.e. $\rho(x + y) = \rho(x) + \rho(y)$ for $x \perp y$) on R from $\|\cdot\|$. Let R_0 be the set of all non-complete elements of R and \mathfrak{U} be the totality of elements of R_0 which can be represented as $x_1 \oplus \cdots \oplus x_n$ with $x_i \in S_{m_i}$ ($i = 1, 2, \ldots, n; n = 1, 2, \cdots$). On \mathfrak{U} we define a functional ρ' as follows:

$$\rho'(x) = \sum_{i=1}^{n} \frac{1}{2^{m_i}},$$

where $x = x_1 \oplus \cdots \oplus x_n$ with $x_i \in S_{m_i}$ ($1 \leq i \leq n$). According to Lemma 6 we see that this definition has a sense. It is evident from the definition that ρ' is orthogonally additive on \mathfrak{U}. Next, we put for each $x \in R$

$$\rho(x) = \begin{cases} \sup_{|y| \leq |x|, y \in \mathfrak{U}} \rho'(y), & |y| \leq |x|, y \in \mathfrak{U} \\ 0, & \text{if there exists no element } y \in \mathfrak{U} \text{ with } |y| \leq |x|. \end{cases}$$

In the succeeding section we shall show that ρ thus defined is in fact a modular on R and that $\|\cdot\|$ is nothing but the modular norm by ρ.

\begin{align}
\rho'(x) &= \sum_{i=1}^{n} \frac{1}{2^{m_i}}, \\
\rho(x) &= \begin{cases} \sup_{|y| \leq |x|, y \in \mathfrak{U}} \rho'(y), & |y| \leq |x|, y \in \mathfrak{U} \\ 0, & \text{if there exists no element } y \in \mathfrak{U} \text{ with } |y| \leq |x|. \end{cases}
\end{align}
4. Properties of ρ and the proofs of Theorems. In view of construction of ρ and Lemma 6 we see easily that ρ satisfies the modular conditions M.1) and M.2). Since R contains no atomic element, we have also

$$\rho(x) = \rho'(x) \quad \text{for each } x \in \mathfrak{A}.$$

(4.1)

In order to prove the remaining conditions M.3),~M.6), we need some lemmas.

Lemma 7. We have

$$\rho(x) > \frac{1}{2^m} \quad \text{and} \quad \rho(x) < \frac{1}{2^m} \quad \text{imply} \quad \|T^{-m}x\| > 1 \quad \text{and} \quad \|T^{-m}x\| \leq 1 \quad \text{respectively} \quad (m=0,1,2,\cdots);$$

$$(4.2) \quad \rho(x) < +\infty, \quad \text{for each } x \in R;$$

$$(4.3) \quad \rho(x) = \sup_{[p]x \in \mathfrak{A}} \rho'([p]x), \quad \text{if } \rho(x) > 0.$$

Proof. (4.2) follows immediately from the definition of ρ. Since $\| \cdot \|$ is continuous, each element $x \in R$ can be represented as $x = \bigoplus_{i=1}^{n} x_i$ with $\|x_i\| \leq 1$ ($1 \leq i \leq n$) for some $n \geq 1$. From this we have $\rho(x) \leq n$ in view of (3.5), (4.2) and M.2). Thus (4.3) is valid. Next, we shall show that if $\rho(x) > \frac{k}{2^m}$ x is written as $x = \bigoplus_{i=1}^{k} x_i \oplus x_0$ with $\|T^{-m}x_i\| > 1$ for each i ($1 \leq i \leq k$). By (3.6) there exists $0 \leq x' \in \mathfrak{A}$ such that $|x| \geq x' = \bigoplus_{i=1}^{k} x_i' \oplus x_0'$ with $x_i' \in S_m$ ($1 \leq i \leq k$) and $x_0' \in \mathfrak{A}$. Now we decompose x_0' into $x_0' = \bigoplus_{i=1}^{k} x_i''$ with $x_i'' \in \mathfrak{A}$ for each i. On the ground of Lemma 4 $\|T^{-m}(x_i' \oplus x_i'')\| > 1$ ($1 \leq i \leq k$) must hold. Putting $x_i = [x_i' \oplus x_i'']x$ and $x_0 = x - \bigoplus_{i=1}^{k} x_i$, we obtain $x = \bigoplus_{i=1}^{k} x_i \oplus x_0$ with $\|T^{-m}x_i\| > 1$ for each i ($1 \leq i \leq k$).

From this one derives easily that if $\rho(x) > \frac{k}{2^m}$ there exist projectors $\{[p_i]\}_{i=1}^{k}$ such that $[p_i] \leq [x_i]$ and $\|T^{-m}[p_i]x_i\| = 1$ hold ($1 \leq i \leq k$), where $\{x_i\}_{i=1}^{k}$ satisfies the above condition. Since $\{p_i\} x_i \in S_m$ and $\bigoplus_{i=1}^{k} [p_i] x_i = \sum_{i=1}^{k} [p_i]x$, $\rho'([p]x) \geq \frac{k}{2^m}$ follows and (4.4) is proved, where $[p] = \sum_{i=1}^{k} [p_i].$

Q. E. D.

Lemma 8. ρ is orthogonally additive, i.e., it satisfies M.5).

Proof. From the definition of ρ it follows that

$$\rho(x \oplus y) \geq \rho(x) + \rho(y)$$

which completes the proof.
A Characterization of Modular Norms in Terms of Similar Transformations

holds. Now suppose $\rho(x \oplus y) > \rho(x) + \rho(y)$ for some $x, y \in R$ with $x + y \in R_\circ$.

By (4.4) there exist projectors $[p], [q]$ for which $\rho(x) - \rho'([p] x) < \frac{1}{2^{m+2}}$, $\rho(y) - \rho'([q] y) < \frac{1}{2^{m+2}}$, $[p] x \in \mathfrak{U}$ and $[q] y \in \mathfrak{U}$ hold. Since $\rho((1-[p])x) \leq \rho(x) - \rho'([p] x) < \frac{1}{2^{m+2}}$ and $\rho((1-[q])y) \leq \rho(y) - \rho'([q] y) < \frac{1}{2^{m+2}}$ hold, we can find $\alpha, \beta \geq 1$ such that both $\alpha(1-[p])x$ and $\beta(1-[q])y$ belong to S_{m+2} according to (4.2) and the fact that T is similar. Putting $x' = [p] x + \alpha(1-[p])x$ and $y' = [q] y + \beta(1-[q])y$, we obtain $x', y' \in \mathfrak{U}$ and $\rho'(x' \oplus y') = \rho'(x') + \rho'(y') = \rho'([p] x) + \rho'([q] y) + \frac{1}{2^{m+1}}$, since ρ' is orthogonally additive on \mathfrak{U}. Hence we get

$$\rho'(x' \oplus y') \geq \rho(x \oplus y) > \rho(x) + \rho(y) + \frac{1}{2^{m}} \geq \rho'([p] x) + \rho'([q] y) + \frac{1}{2^{m+1}}$$

which is, however, a contradiction. Thus we see easily that ρ is orthogonally additive by virtue of Lemma 7. Q. E. D.

Lemma 9. We have

(4.5) \[\rho(x) \leq 1 \text{ if and only if } \|x\| \leq 1. \]

Proof. The fact that $\|x\| \leq 1$ implies $\rho(x) \leq 1$ is obvious by virtue of Lemma 4. On the other hand, for any x with $\rho(x) \leq 1$ we can find a sequence of projectors $\{[p_\nu]\}_{\nu=1}^\infty$ such that $[p_\nu] \uparrow_{\nu=1}^\infty [x]$, $[p_\nu] x \in \mathfrak{U}$ and $\rho([p_\nu] x) \uparrow_{\nu}^\infty \rho(x) \leq 1$ on account of (4.4) and the orthogonal additivity of ρ. By (4.1) and the definition of ρ', we now get $\|[p_\nu] x\| \leq \nu$ for each $\nu \geq 1$, hence $\|x\| \leq 1$ because of the semi-continuity of $\|\cdot\|$. Q. E. D.

Lemma 10. ρ is semi-continuous, i.e., it satisfies M. 6.1)

Proof. Let $0 \leq x_i \uparrow_{i \in I} x$ and $\rho(x) > \frac{k}{2^m}$. As is shown in the proof of (4.4), there exists $p \in R$ such that $[p] x \in \mathfrak{U}$, $[p] x = \bigoplus_{i=1}^k x_i$ and $\|T^{-m} x_i\| > 1$ (1 \leq i \leq k). Then, since $[w_i] x_i \uparrow_{i \in I} [w_i] x = x_i$ holds for each i and $\|\cdot\|$ is semi-continuous, we have for a sufficiently large λ that $\|T^{-m} [w_i] x_i\| > 1$ stands for every i (1 \leq i \leq k). Therefore we have

11) In case of $\rho(x) = 0$ (or $\rho(y) = 0$), we choose $p = 0$ (resp. $q = 0$).
\[\rho(x_{\lambda_{0}}) \geqq \rho([p]x_{\lambda_{0}}) \geqq \frac{k}{2^{m}}, \]

which shows the semi-continuity of \(\rho \).

Lemma 11. \(\rho \) satisfies M.3). i.e., \(\lim_{\xi \to 0} \rho(\xi x) = 0 \).

Proof. If \(\rho(\xi x) > \frac{1}{2^{m}} \) holds for each \(\xi > 0 \), we have \(\|T^{-m}\xi x\| > 1 \). Since \(\cap_{\xi > 0} \xi|x| = 0 \) stands, \(\cap_{\xi > 0} T^{-m}\xi|x| = 0 \) holds. Hence it follows that \(\|T^{-m}\xi x\| \to 0 \) as \(\xi \to 0 \), because of the continuity of \(\|\cdot\| \). This is a contradiction. Q. E. D.

Summing up the above results, we see that \(\rho \) satisfies all the conditions of modular except M.4). Next lemma shall show that \(\rho \) fulfils M.4) too.

Lemma 12. \(\rho(\xi x) \) is a convex function of \(\xi (\xi \geqq 0) \) for each \(x \in R \).

Proof. We shall first show that the set \(B_{\xi} = \{x : \rho(x) \leqq \xi\} \) is convex for every \(\xi \) with \(0 \leqq \xi \leqq 1 \). Let \(x, y \in B_{\xi} \) and \(\alpha, \beta > 0 \) with \(\alpha + \beta = 1 \). By virtue of semi-continuity of \(\rho \), we may assume without loss of generality that there exists \(0 \neq z \in R \) belonging to \(\{x, y\}^{\perp} \). Furthermore we may choose \(z \) as \(\rho(z) = 1 - \xi \), since \(\rho \) satisfies (4.3) and \(R \) has no atom. It follows that both \(x + z \) and \(y + z \) belong to \(V \), hence \(\alpha(x + z) + \beta(y + z) \) also does. Consequently, we obtain \(\rho(\alpha x + \beta y) + \rho(z) \leqq 1 \) by Lemma 9, hence \(ax + by \in B_{\xi} \). Therefore \(B_{\xi} \) is convex.

Next, suppose that \(\rho(\xi x) \leqq 1 \) and \(\rho(\eta x) \leqq 1 \) for some \(x \in R \) and \(\xi > \eta \geqq 0 \). Since \(\rho \) is finite, orthogonally additive and semi-continuous, we can find \(p \in R \) for which \(\rho(\xi[p]x) = \rho(\xi(1-\[p\])x) \) holds. If \(\rho(\eta[p]x) < \rho(\eta(1-\[p\])x) \) stands for such \([p] \), there can be constructed a system of projectors \(\{[p_{s}]\}_{(0 \leqq s \leqq 0)} \) and \(\{[p_{s}']\}_{(0 \leqq s \leqq 1)} \) such that \([p_{s}] \downarrow ([p_{s}'] \uparrow) \) as \(a \downarrow 0 \), \([p_{s}] \leqq [p] \), \([p_{s}'] \leqq (1 - [p]) \) with \([p_{1}] = [p] \), \([p_{0}] = (1 - [p]) \), and \(\rho(\xi[p_{s}]x) = \rho(\xi(1 - [p])x) = \alpha \rho(\xi[p]x) \) holds for each \(0 \leqq a \leqq 1 \). Putting \([q_{s}] = [p_{s}] + (1 - [p])[p_{s}'] \), we obtain \([q_{s}] \leqq [x] \) and \(\rho(\xi[q_{s}]x) = \rho(\xi(1 - [q_{s}])x) \) for every \(\alpha \). Furthermore we see easily that both \(\rho(\eta[q_{s}]x) < \rho(\eta(1 - [q_{s}])x) \) and \(\rho(\eta[q_{s}]x) > \rho(\eta(1 - [q_{s}])x) \) hold. From this it follows that \(\rho(\eta[q_{s}]x) = \rho(\eta(1 - [q_{s}])x) \) stands for some \(\alpha \). In consequence, we have shown that there exists \(p \in R \) such that \(\rho(\xi[p]x) = \frac{1}{2} \rho(\xi x) \) and \(\rho(\eta[p]x) = \frac{1}{2} \rho(\eta x) \) hold simultaneously. Because \(\rho(\xi[p]x + \eta(1 - [p])x) = \rho(\eta[p]x + \xi(1 - [p])x) = \frac{1}{2} \{\rho(\xi x) + \rho(\eta x)\} \leqq 1 \), we have

\[
\rho \left(\frac{1}{2}(\xi x + \eta y) \right) \leqq \frac{1}{2} \{\rho(\xi x) + \rho(\eta y)\}
\]

by the fact shown just above.
Finally, since each x can be decomposed orthogonally into $x=\bigoplus_{i=1}^{n}x_{i}$ with $\rho(x_{i})\leqq 1$ ($1\leqq i\leqq n$), we see that (4.6) holds for any $x\in R$, i.e. $\rho(\xi x)$ is a convex function of ξ ($\xi \geqq 0$) for each $x\in R$.

Here we are in position to prove the theorems stated in 2.

Proof of Theorem 1. Sufficiency. The functional ρ constructed in 3 is a modular satisfying (4.5), as is shown above. Hence we have $\|x\| = \inf \left\{ \frac{1}{|\xi|} ; \rho(\xi x) \leqq 1 \right\}$ i.e., $\|\cdot\|$ is the modular norm by the modular ρ.

Necessity. Let $\|\cdot\|$ be the modular norm by a modular m on R. m is necessarily finite since $\|\cdot\|$ is continuous. In the same manner as in the proof of Theorem 2 in [8], we can construct a similar transformation T_{0} on R satisfying

$$m(T_{0}x) = \frac{1}{2}m(x) \quad \text{for every } x \in R.$$

It is now clear that T_{0} satisfies the condition (T.C.). Q. E. D.

Proof of Theorem 2. Sufficiency. In view of Theorem 1 we find a finite modular ρ on a complete semi-normal manifold R_{C} of R, for which $\|\cdot\|$ is the modular norm on R_{C}. We extend now ρ on the whole space R as follows:

$$\rho_{0}(x) = \sup_{0 \leqq y|_{x} \in R_{C}} \rho(y) \quad (x \in R).$$

ρ_{0} thus defined is an almost finite modular on R, as is easily seen, and $\rho_{0}(x) = \rho(x)$ if $x \in R_{C}$. Because of the semi-continuity of $\|\cdot\|$ and ρ, $\|x\| = \inf \left\{ \frac{1}{|\xi|} ; \rho_{0}(\xi x) \leqq 1 \right\}$ holds for each $x \in R$, that is, $\|\cdot\|$ is the modular norm by ρ_{0}. The necessity is derived similarly as the proof of Theorem 1. Q. E. D.

5. Here let $(R, \|\cdot\|)$ be the same as in 3 and ρ be the modular defined, in the manner described above, from $\|\cdot\|$ and a similar transformation T on R satisfying the condition (T.C.). From the construction of ρ one derives easily

$$\rho(Tx) = \frac{1}{2} \rho(x) \quad (x \in R).$$

Also this enables us obviously to restate properties of the modular ρ in terms of similar transformations T:

12) Of course, we can state properties of ρ by means of $\|\cdot\|$, since there are found closed relations between modulars and their norms [1, 6, and 7].
restatements in terms of T. Being trivial, their proofs are omitted.

5.1. ρ is simple (i.e. $\rho(x)=0$ implies $x=0$), if and only if $\bigcap_{m \geq 1} T^m x = 0$
for each $x \in R$.

5.2. ρ is uniformly simple (i.e. $\inf_{\|x\| \leq \delta} \rho(x) > 0$ for each $\delta > 0$), if and only
if for each $\varepsilon > 0$ there exists $m \geq 0$ with $\sup_{x \in S} \|T^m x\| < \varepsilon$.

5.3. ρ is uniformly finite (i.e. $\sup_{\|x\| \leq \delta} \rho(x) < +\infty$ for each $\delta > 0$), if and
only if for each $\delta > 0$ there exists $m \geq 0$ with $\inf_{x \in S} \|T^{-m} x\| > \delta$.

5.4. ρ is upper bounded (i.e. $\rho(\alpha x) \leq \rho(x)$ holds for every $x \in R$, where
$1 < \alpha, \gamma$ are fixed constants), if and only if $T \leq \left(\frac{1}{2} \right)^{\frac{1}{\nu}} I^{13}$ for some $\nu \geq 1$.

Finally let (E, Ω, μ) be a σ-finite non-atomic measure space with a countably
additive non-negative measure μ on a σ-field Ω of E. A module ρ of measurable functions on E is a semi-normal manifold of modulared
function space $L_{M(\xi, t)}$ defined by a modular function $M(\xi, t)$ on $[0, \infty) \times E$,
that is, X is contained in the totality of all measurable functions \mathfrak{h} such that
$\int_{E} M(\alpha |f(t)|, t) d\mu(t) < +\infty$ for some $\alpha > 0$, and

\begin{equation}
(5.1) \quad m(f) = \int_{E} M(|f(t)|, t) d\mu(t)
\end{equation}

holds for each $f \in X$. Conversely, it is known [6] that each modulared semi
ordered linear space R can be considered as a modulared function space $L_{M(\xi, t)}$ on a measure space (E, Ω, μ) suitably chosen, and m is represented by (5.1).

For any finite modulared function space $L_{M(\xi, t)}(E)$ we can obtain a similar transformation T with the condition (T.C.) directly as follows: We define for $(\xi, t) \in [0, \infty) \times E$

\begin{equation}
(5.2) \quad h(\xi, t) = \begin{cases}
M^{-1}(\xi) = \left(\frac{1}{2} \right)^{\frac{1}{\nu}} I^{13} \end{cases}
\end{equation}

where $M^{-1}(\xi)$ is the inverse of the function $M(\xi) = M(\xi, t)$ for each $t \in E$. Then $h(\xi, t)$ on $[0, \infty) \times E$ is a Carathéodory’s function, and the transformation \mathfrak{h} defined by

13) I is the identity operator on R and 5.4 follows from Theorem 3.3 of [9].

14) For the definition of modular functions see [3 or 6]. Roughly speaking, $M(\xi, t)$ is
a N^ν-function of ξ for each $t \in E$. In $M(\xi, t)$ we consider $\int_{E} M(|f(t)|, t) d\mu(t)$ as a modular m
always.

15) m on $L_{M(\xi, t)}$ is finite, if and only if $M(2t, t) \leq \tau M(\xi, t) + a(t)$ for all $(\xi, t) \in [0, \infty) \times E$,
where $\tau > 0$ and $a(t) \in L_{1}(E)[3]$. m is almost finite if and only if $M(\xi, t) < +\infty$ a.e. in $[0, \infty) \times E$.

forms a similar transformation satisfying the condition (T.C.) for the modular norm on $L_{M(\xi,t)}$. Conversely, in view of Theorem 1 we have

Theorem 3. If $(X, \| \cdot \|)$ is a normed function space with a continuous norm $\| \cdot \|$, and if a similar transformation h from X onto X, defined by a Carathéodory's function $h(\xi, t)$ on $[0, \infty) \times E$, satisfies the condition (T.C.), then there can be found a modular function $M(\xi, t)$ on $[0, \infty) \times E$ such that X is a semi-normal manifold of $L_{M(\xi,t)}$, $M(\xi, t)$ satisfies (5.2), and $\| \cdot \|$ coincides with the modular norm of the space $L_{M(\xi,t)}$.

Remark 1. In this theorem if moreover, $(X, \| \cdot \|)$ is monotone complete (i.e. $0 \leq f_\ast \uparrow$, sup $\| f_\ast \| < +\infty$ implies $\bigcup_{\ast=1}^\infty f_\ast \in X$), then $X=L_{M(\xi,t)}$ holds.

Remark 2. In Theorem 3, if $h(\xi, t)=h(\xi)$ for all $(\xi, t) \in [0, \infty) \times E$, then $L_{M(\xi,t)}$ can be replaced by an Orlicz space L_M.

When $\| \cdot \|$ is almost continuous, we have a similar theorem as above on the basis of Theorem 2. In this case, h acts from $L^0_{M(\xi,t)}$, the finite manifold of $L_{M(\xi,t)}$ (the totality of all $f \in L_{M(\xi,t)}$ with $m(\xi f) < +\infty$ for every $\xi \geq 0$), onto itself and satisfies (5.2), if $0 < M(\xi, t) < +\infty$.

On the basis of Theorems 1 and 2, a theorem characterizing the modular norms in terms of norms only can be obtained, and it shall be shown in a separate paper.

References

16) We assume that X is semi-normal.
17) For $h(\xi, t)$ we assume $h(0, t) = 0$ for all $t \in E$.
18) Strictly speaking, $h(\xi, t) = M_t^{-1}\left(\frac{1}{2}M(\xi, t)\right)$ holds a.e. for (ξ, t) satisfying $M(\xi, t) > 0$. In general, $h(\xi, t) = \xi$ does not hold for (ξ, t) with $M(\xi, t) = 0$.

Department of Mathematics,
Hokkaido University

(Received September 28, 1964)