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ON THE LIMITS OF RIEMANN SUMS OF
FUNCTIONS IN BANACH SPACES

By

Michiko NAKAMURA and Ichiro AMEMIYA

Let $f(t)$ be a bounded function defined on a real interval $[a, b]$ taking
values in a Banach space $E$ . If $f$ is continuous, then the Riemann integral
$\int_{a}^{b}f(t)d\iota$ of $f$ can be defined as the limit (by the norm of $E$) of the Riemann
sums.

$\sum_{i=1}^{n}f(\tau_{i})(t_{i}-t_{i-1})$ , $(a=t_{0}<t_{1}<\cdots<t_{n}=b, t_{i-1}<\tau_{i}<t_{i})$

Where the limit is taken making ${\rm Max}|t_{i}-t_{i-1}|$ , the order of the partition
$i$

$\{t_{i}\}$ , tend to $0$ , A sequence of the Riemann sums of $f$ with the order of
partitions tending to $0$ can converge even if $f$ is not continuous. The limit
of such a sequence is said to be a Riemann limit of $f$ ; we denote the set
of all Riemann limits of $f$ by $R.L.(f)$ .

The question whether $R.L.(f)$ is always a convex set or not was asked
by I. Halperin who, with Miller in [3], has given the affirmative answer in
the case where $E$ is a Hilbert space, generalizing the result of finite dimensional
case by P. Hartman [1] and R. L. Jeffery [2].

Here we give (i) a condition for $E$ which is weaker than uniform con-
vexity and sufficient for R. $L.(f)$ to be convex for every $f,$ $(ii)$ an example of
a non-convex $R.L.(f)$ , and (iii) a proof of the non-emptiness of $R.L.(f)$ for
separable $E$ .

1. We consider the following property $(*)$ of Banach space $E$ :
$(^{*})$ For every $\epsilon>0$ , there exists $\delta>0$ such that for every finite sequence

$x_{1},$ $x_{2}\cdots,x_{n}\in E$ with $\Vert x_{i}\Vert\leqq\delta(i=1,2, \cdots, n)$ and $\sum_{i=1}^{n}\Vert x_{i}\Vert\leqq 1$ there exists a subset
$J$ of $\{1, 2, \cdots, n\}$ for which $\Vert\sum x_{i}-\sum x_{i}\Vert i\in Ji\not\in J<\epsilon$ .

We show, by an argument which is essentially due to [2], that for every
bounded function $f,$ $R.L.(f)$ is convex, if $E$ satisfies $(^{*})$ . We suppose that
$||f(t)\Vert\leqq 1$ for every $t$ in the interval.

Suppose $x,$ $y\in R.L.(f)$ , then there exist Riemann sums $x^{\prime}=\sum_{i=1}^{n}f(\tau_{i})(t_{i}-t_{\ell-1})$

and $y^{\prime}=\sum_{j=1}^{m}f(\sigma_{j})(s_{j}-s_{j- 1})$ with $\Vert x-x^{\prime}\Vert<\epsilon$ and $\Vert y-y^{\prime}\Vert<\epsilon$ .
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We can suppose, moreover, that for the intersection
$\{r_{0}, r_{1}, \cdots, r_{l}\}=\{t_{0}, t_{1}, \cdots, t_{n}\}_{\cap}\{s_{0}, s_{1}, \cdots,s_{m}\}$ ,

${\rm Max}(r_{k}-r_{k-1})<\delta k$

$\delta$ being chosen for $\epsilon$ as to satify the condition of $(^{*})$ . For every $k=1,2,$ $\cdots,l$,

we put

$x_{k}=\sum_{kr-1\leqq t_{i- I}<r_{k^{\gamma_{k-1}\leq s_{f-c\leq r_{k}}}}}f(\tau_{i})(t_{i}-t_{i-1})andy_{k}=$

$\sum$ $f(\sigma_{j})(s_{f}-s_{j-1})$ ,

then we have $x^{\prime}=\sum_{k=1}^{l}x_{k}$ $y^{\prime}=\sum_{k=1}^{l}y_{k}$ and $\Vert x_{k}\Vert,$ $\Vert y_{k}\Vert\leqq\delta$ .

Now we can apply the conclusion of $(^{*})$ to the sequence $\frac{x_{k}-y_{k}}{2},$ $k=1,2,$ $\cdots,l$ ,

since $\Vert\frac{x_{k}-y_{k}}{2}\Vert\leqq\delta$ and $\sum_{k=1}^{l}\Vert\frac{x_{k}-y_{k}}{2}\Vert\leqq 1$ . So there exists $J\subset\{1,2, \cdots,l\}$ such

that $\Vert(\sum_{k\epsilon J}x_{k}+\sum_{k\not\in J}y_{k})-\frac{x^{\prime}+y^{\prime}}{2}\Vert=\Vert\sum_{\kappa J}\frac{x_{k}-y_{k}}{2}+\sum_{k\not\in k}\frac{y_{k}-x_{k}}{2}\Vert<\epsilon$ , and hence a

Rieman sum $\sum_{k\epsilon J}x_{k}+\sum_{k\not\in J}y_{k}$ obtained by “mixing” the two Rieman sums $x^{\prime}$ and

$y^{\prime}$ lies at a distance less than $ 2\epsilon$ from $\frac{x+y}{2}$ . This shows that

$\frac{x+y}{2}\in R$ . L. $(f)$ .

Since $R.L.(f)$ is closd, it is convex.
In order that $E$ has the property $(^{*})$ , it is sufficient that $\delta$ exists for an

$\epsilon$ with $1>\epsilon>0$ , because then $\delta^{2}$ (we suppose $\delta<1$ ) satisfies the condition for
$\epsilon^{2}$ . (if $||x_{i}||\leqq\delta^{2}$ and $\sum_{i=1}^{n}\Vert x_{i}\Vert\leqq 1$ , then for a decomposition $\{1, 2, \cdots, n\}=$

$N_{1}^{\cup}N_{2}^{\cup}N_{m}$ such that $\sum_{i\in N_{k}}\Vert x_{l}\Vert\leqq\delta$
, there exists $M_{k}\subset N_{k}$ such that

$||\sum_{0\epsilon u_{i}}x_{i}-\sum_{\ell\epsilon N_{k}-M_{k}}x_{i}\Vert<\epsilon\sum_{i\in N_{k}}\Vert x_{i}\Vert$
and then, applying the condition to $\frac{1}{\epsilon}X_{k}$ where

$X_{k}=\sum x_{i}-\sum_{i\epsilon N_{k}- M_{k}}x_{i}$
, there exists $J\subset\{1,2, \cdots, n\}$ such that $||\sum_{k\epsilon J}X_{k}-\sum_{k\not\in J}X_{k}\Vert<\epsilon^{2}.$)

$i\in MBy^{k}$ virtue of the above remark, we can see easily that $E$ has the property
$(^{*})$ if $E$ satifies the condition:

$(^{**})$ there exists $\epsilon$ with $1>\epsilon>0$ such thatfor every $x,$ $y\in E$ with $||x\Vert$ ,
$\Vert y||\leqq 1$ , Min $\{\Vert x+y\Vert, \Vert x-y\Vert\}<2e$ .

It is obvious that if $E$ is uniformly convex, then $E$ has the property
$(^{**})$ . So our reesults generalize that of [3].

By the way, we will show that R.L. $(f)$ is not empty if $E$ is reflexive
and has the property $(^{*})$ . Let $B_{\delta}$ be the set of all Riemann sums
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$\sum_{i=1}^{n}f(\tau_{i})(t_{i}-t_{i-1})$

wite Max $(t_{i}-t_{i-1})\leqq\delta$ , then R.L. $(f)$ is the intersection of all the closure of
$B_{\delta}$ for $\delta>0$ . We have seen that for $\epsilon>0$ there sxists $\delta>0$ such that $x,$ $y\in B_{\delta}$

implies $\frac{x+y}{2}\in B_{\delta}+\epsilon U$ where $U$ is the unit ball of $E$ .

It is not difficult to see that, making $\delta$ smaller, if necessary, the convex
hull $\Gamma(B_{\delta})$ of $B_{\delta}$ is included in $B_{\delta}+\epsilon U$ . So R. L. $(f)$ is the intersection of the
closure of $\Gamma(B_{\dot{\theta}})$ and it is not empty since every closed convex bounded set
is weakly compact.

We remark that $R.L.(f)$ is convex whenever the range of $f$ is relatively
compact. This is an immediate consequence of the facts that the set of
Riemann limits is convex for finite dimensional spaces and that in the convex
hull of the range of $f$, the norm topology coincides with the weak topology.

The separability of the range of $f$, however, does not give such an
advantage; if R. L. $(f)$ is not convex, then we can find a countably valued
function $g$ (suitably modifying $f$) for which R.L. $(g)$ is also not convex.

2. Here we give an example of $f$ for which R. $L.(f)$ consists of exactly
two different elements.

Let $E$ be $l^{1}(R),$ $R$ being the set of all real numbers considered as a dis-
crete space; an element $x$ of $E$ is a function of $t\in R$ such that $\sum_{t\epsilon R}|x(t)|<+\infty$ ,

and the norm of $x$ is defined by this sum. $e(t)$ denotes the characteristic
function of the set consisting of one point $t$ .

We put

$x_{n}=\frac{1}{2_{n}}\sum_{k=1}^{2^{n}}e(\frac{k}{2^{n}})$

$y_{n}=\frac{1}{2^{n}}\sum_{k=1}^{2^{n}}e(\frac{k}{2^{n}}-\epsilon_{n})$

$z_{n}=\frac{1}{2_{n}}\sum_{k=1}^{2^{n}}e(\frac{k}{2^{n}}+\epsilon_{n})$

where $\epsilon_{n}$ are chosen so that $\frac{k}{2^{n}}$ $\frac{k}{2^{n}}-\epsilon,$ $\frac{k}{2^{n}}+\epsilon_{n}$ are all different for all

possible $n$ and $k,$
$\epsilon_{n}<\frac{1}{2_{n}}$ , and $\sum_{n}2^{n}\epsilon_{n}<+\infty$ . Let $S_{n}(n=1,2, \cdots)$ be mutually

disjoint subsets of $(1, 2$ ] such that every $S_{n}$ is dense in $(1, 2$] and $\cup S_{n}=(1,2$ ].
$n$

For an arbitrary element $a\in E$ , a function $f_{a}$ of $[0,2]$ into $E$ is defined
as follows:
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$f_{a}(t)=\left\{\begin{array}{ll}e(t) & if 0\leqq t\leqq 1\\-x_{n} & if t\in S_{2n}\\-\frac{y_{n}+z_{n}}{2}+a & if t\in S_{2n-1} .\end{array}\right.$

We claim that R.L. $(f_{a})=\{0, a\}$ .
Consider a sequence of Riemann sum of $f_{a}$ which converges to $b\in E$ and

for which the order of partitions tend to $0$ . Without loss of generality, we
can suppose that $t=1$ is one of the partition point for each of the Riemann
sum in the sequence. We denote by $s$ an arbitrary member of the sequence;
we can write

$s=s_{1}+s_{2}$

$s_{1}=\sum_{i=0}^{l}e(\tau_{l})(t_{i}-t_{i-I})$

$s_{2}=-\sum_{n=1}^{N}(\alpha_{n}x_{n}+\beta_{n}y_{n}+\gamma_{n^{Z}n})+\delta a$

Where $\{t_{i}\}$ is a partition of $[0,1],\alpha_{n},$ $\beta_{n},$ $\gamma_{n},$ $\delta\geqq 0,\sum_{n=1}^{N}(\alpha_{n}+\beta_{n}+\gamma_{n})=1,$ $\beta_{n}=\gamma_{n}$

and $\sum_{n=1}^{N}(\beta_{n}+\gamma_{n})=\delta$ .
Replacing the sequence by a suitable subsequence, we can suppose that $\delta$ con-
verges to $\lambda$ with $0\leqq\lambda\leqq 1$ according to the convergence of $s$ to $b$ . If we apply
the same formation of Riemann sums to $f_{0}$ in place of $f_{a}$ , we obtain a sequence
of Riemann sums of $f_{0}$ which converges to $b-\lambda a$ . So if we prove (i)

R.L. $(f_{0})=\{0\}$ and (ii) for a converging sequence of Riemann sums of $f_{0}$ , the

numbers corresponding to $\sum_{n=1}^{N}(\beta_{n}+\gamma_{n})$ in the above expression of $s$ converges

to either $0$ or 1, then we can conclude, from (i), that $R.L.(f_{a})\subset\{\lambda a;0\leqq\lambda\leqq 1)$

and, from (ii), that $\lambda$ with $\lambda a\in R.L.(f_{a})$ is either $0$ or 1.
We continue to make use of $s$ with the detailed expressions given before

(putting $a=0$ ) to denote any Riemann sum of $f_{0}$ which we are considering of.
If $s$ converges to $b$ with the orders of partition tending to $0$ , then $s_{1}$ , if con-
siderd as a function on $R$ , converges point-wise to $0$ , and $s_{2}$ converges point-
wise to $b;b$ must be non-positive as a function. If we define a linear functional
$L$ on $E$ as $L(x)=\sum_{t\epsilon R}x(t)$ , then we have $L(s)=0$ since $L(s_{1})=1$ and $L(s_{2})=-1$ ,

and hence $L(b)=0$ and, since $b$ is non-positive, $b=0$ . Thus we have proved
that R. L. $(f_{0})=\{0\}$ .

We make use of the following notations for
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$s_{1}=\sum_{i=1}^{l}e(\tau_{i})(t_{i}-t_{i-1})$ :

$M=\{\tau_{i} ; i=0,1,2, \cdots, l\}$ ;

$a_{n}=\frac{1}{2^{n}}\{the$ number of $k$ with $\frac{k}{2^{n}}\not\in M\}$ ,

$b_{n}=\frac{1}{2^{n}}\{the$ number of $k$ with $\frac{k}{2^{n}}-\epsilon_{n}\not\subset M\}$ ,

$c_{n}=\frac{1}{2^{n}}\{the$ number of $k$ with $\frac{k}{2^{n}}+\epsilon_{n}\not\subset M\}$ .

We can see easily, by the definition, that

(1) $a_{n}\leqq 2a_{n+1}$ , $b_{n}\leqq 2b_{n+1}$ and $c_{n}\leqq 2c_{n+1}$ .

If $\frac{k}{2^{n}}-\epsilon_{n},$ $\frac{k}{2^{n}}$ and $\frac{k}{2^{n}}+\epsilon_{n}$ are all in $M$ and $f(\tau_{i})=\frac{k}{2^{n}}$ , then we have obvi-

ously $t_{i}-t_{i-1}\leqq 2\epsilon_{n}$ . So the sum of $t_{i}-t_{i- 1}$ for all such $i$ does not exceeds

(2) $2^{m}\delta+\sum_{n>m}2^{n+1}\epsilon_{n}$

for every $m=0,1,2,$ $\cdots$ , where $\delta$ is the order of $s$ ; if $\delta$ is sufficiently small,
then (2) can be arbitrarily small, and hence we can modify the Riemann sum
$s$ to obtain $s^{\prime}$ which is arbitrarily close $\dot{t}os$ and satisfy the condition:

$(\#)$ One of $\{\frac{k}{2^{n}}-\epsilon_{n},$ $\frac{k}{2^{n}},$ $\frac{k}{2^{n}}+\epsilon_{n}\}$ does not belong to $M$ for every $n$ .

Hereafter we consider the Riemann sum $s$ with this property. By $(\#)$ we have

(3) $a_{n}+b_{n}+c_{n}\geqq 1$ .

For our purpose, it is sufficient to prove the following:
For every $s$ with the property $(\#)$ and for every integer $m$ ,

(4) Min $\{\sum_{n=1}^{N}\alpha_{n},\sum_{n=1}^{N}\beta_{n},\sum_{n=1}^{N}\gamma_{n}\}\leqq 2^{m+4}||s||+\frac{1}{2^{m}}$ .

Let $\sigma_{n}$ be the sum of $t_{i}-t_{i-1}$ for all $j$ such that $\tau_{i}=\frac{k}{2^{n}}$ for some $k=1,2,$ $\cdots,$
$2^{n}$

and suppose

$\sigma_{r-1}<2^{m}1$ nda $\sigma_{r}\geqq\frac{1}{2^{m}}$ .

If, for any interval $I$ of length $\lambda,$ $\frac{k}{2^{n}}\in I$ for just $p$ values of $k’ s$ , then we

have
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$(p+1)\frac{1}{2^{n}}\geqq\lambda$

or

$\frac{p}{2^{n}}\geqq\lambda-\frac{1}{2^{n}}$ .

Therefore if $A$ is the union of $q$ intervals, where the sum of their length is
$\lambda$ and $\frac{k}{2^{n}}\in I$ for just $p$ values of $k’ s$, then we have $\frac{p}{2^{n}}\geqq\lambda-\frac{q}{2^{n}}$ .

Applying this to the above set of the intervals $t_{i}-t_{i-1}$ for which $\tau_{i}=\frac{k}{2^{r}}$ ,

we have

$a_{n}\geqq\sigma_{r}-\frac{2^{r}}{2^{n}}\geqq\frac{1}{2^{m}}-\frac{2^{r}}{2^{n}}$

and hence $a_{n}\geqq\frac{1}{2^{m+1}}$ for every $n>r+m$ . By a similar argument, we have

also $b_{n},$ $c_{n}\geqq\frac{1}{2^{m+2}}$ for every $n>r+m+1$ . (Here the difference is due to the

fact that the distance of any subsequent $\frac{k}{z^{r}}-\epsilon_{r},$ $\frac{k+1}{2^{r}}-\epsilon_{r}$ is not necessarily

$\frac{1}{2^{r}}$ but only less than $\frac{1}{2^{r-1}}$ ).

Now if a linear functional $\varphi$ on $E$ is defined as $\varphi(x)=\sum_{t\not\in M}x(t)$ , then we
have

(5) $||s||\geqq|\varphi(s)|=|\varphi(s_{2})|=\sum_{n=1}^{N}(a_{n}\alpha_{n}+b_{n}\beta_{n}+c_{n}r_{n})$ ,

and hence

$||s||\geqq\sum_{n>r+m+1}(a_{n}\alpha_{n}+b_{n}\beta_{n}+c_{n}r_{n})\geqq\frac{1}{2^{m+2}}\sum(\alpha_{n}+\beta_{n}+\gamma_{n})n>r\cdot+m+1$

that is,

(6) $\dot{2}^{m+2}||s||\geqq\sum(\alpha_{n}+\beta_{n}+\gamma_{n})n>r+m+1$

Since, by (1), we have

$a_{r},$ $a_{r+1},$ $\cdots,a_{r+m+1}\geqq\frac{1}{2^{m+1}}a_{r}$

and the same inequality for $b$ and $c$, and, by (3), one of $a_{r},$ $b_{r}$ and $c_{r}$ , say
1

$a_{r}$ , is not less than – , we have, by (5),
$\overline{3}$
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$||s||\geqq\sum_{n=r}^{r+m+1}a_{n}\alpha_{n}\geqq\frac{1}{3\cdot 2^{m+1}}\sum_{n=r}^{r+m+1}\alpha_{n}$

and hence, by (6),

(7) $\sum_{n\geq\prime}.\alpha_{n}\leqq(2^{m+2}+3\cdot 2^{m+1})||s||=5\cdot 2^{m+1}||s||$ .

Finally we will estimate $\sum_{n=1}^{r-1}\alpha_{n}$ . Let $\psi$ be a linear functional on $E$ defined

as

$\psi(x)=\sum_{k=1}^{2^{r-1}}x(\frac{k}{2^{r-1}})$

then

$\psi(s_{1})=\sigma_{r-1}<\frac{1}{2^{m}}$

and hence

$||s||\geqq|\psi(s)|\geqq|\psi(s_{2})|-|\psi(s_{1})|\geqq\sum_{n=1}^{N}\alpha_{n}\psi(x_{n})-\frac{1}{2^{m}}$

Since

$\psi(x_{n})=\frac{1}{2^{n-r+1}}$ ,

We have

$||s||\geqq\sum_{n\Rightarrow 1}^{N}\frac{1}{2^{n-r+1}}\alpha_{n}-\frac{1}{2^{m}}\geqq\sum_{n=1}^{r-1}\alpha_{n}-\frac{1}{2^{m}}$ ,

that is,

$\sum_{n=1}^{r- 1}\alpha_{n}\leqq||s||+\frac{1}{2^{m}}$ ,

and hence, combining with (7),

$\sum_{n=1}^{N}\alpha_{n}\leqq(5\cdot 2^{m+1}+1)||s||+\frac{1}{2^{m}}$

Thus we have proved our final (4).
We remark that $P\circ f_{a}$ is an example of separable valued function with the

non convex set of Riemann limits, where $P$ is the projection of $E$ to the

closed subspace generated by $\{e(\frac{k}{2^{n}}-e_{n}),$ $e(\frac{k}{2^{n}}),$ $e(\frac{k}{2^{n}}+\epsilon_{n});n,$ $k=1,2,$ $\cdots\}$

and $a=e(1)$ . Here R.L. $(P\circ f_{a})$ contains elemnts other than $0$ and $a$ , but does
not contain $\lambda a$ for any $\lambda$ with $0<\lambda<1$ .

3. A class of spaces for which every $R.L.(f)$ is not empty was given
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in 1, that is, reflexive spaces with the property $(^{*})$ . On the other hand, an
example of $f$ with $ R.L.(f)=\phi$ is provided by the restrition of $f_{a}$ given in 2
to the interval $[0,1]$ , that is, the function defined by $f(t)=e(t)$ . Here we will
prove that R.L. $(f)$ is not empty, if the nnge of $f$ is separable.

Such an $f$ is the uniform limit of a sequence of countably valued functions
$f_{n}n=1,2,$ $\cdots$ . So it is sufficient to show
(i) The existence of Riemann limits of a certain type for countably valued
functions.
(ii) If $x$ is a Riemann limit of $f$ with the type refered in (i) and if another
countably valued function $q$ is given, then we can find a Riemann limit $y$ of
$g$ of the same type with

$||x-y||\leqq||f-g||$ ,

where the norm $||f||$ of $f$ is defined as

$||f||=\sup_{t\epsilon I}||f(t)||$ ,

$I$ being the interval for which Riemann sums are considered. In fact, if
countably valued $f_{n}$ converges uniformly to $f$ , then, by (ii), we can choose a
Riemann limit $x_{n}$ of $f_{n}$ successively so that we have

$||x_{n}-x_{n+1}||\leqq||f_{n}-f_{n+1}||$ $-$

for every $n=1,2,$ $\cdots$ , then $x_{n}$ form a Cauchy sequence and the limit $x$ of $x_{n}$

is obviously a Riemann limit of the limit function $f$ .
We need some preparations. For a subset $A$ of $R,$ $m^{+}(A)$ and $m^{-}(A)$

denote the (Lebesgue) outer measure and inner measure of $A$ respectively;
$m(A)$ denotes the Lebesgue measure of $A$ , in case $A$ is measureable.

For a mutually disjoint family of subsets. $A_{n}n=1,2,$ $\cdots$ , a mutually
disjoint family of measurable sets $B_{n}n=1,2,$ $\cdots$ , is said to be subordinate to
$\{A_{n}\}$ if $m^{-}(B_{n}-A_{n})=0$ and

$m(\bigcup_{n}B_{n})=m^{+}(\bigcup_{n}A_{n})$ .

The existence of a family $\{B_{n}\}$ subordinate to a given family $\{A_{n}\}$ can be
proved as follows:

Choose a measureable set $B_{1}$ , with
$B_{1}\supset A_{1}$ and $m(B_{1})=m^{+}(A_{1})$ ;

if $B_{1},$ $B_{2},$ $\cdots,B_{n}$ are mutually disjoint and
$m\{B_{1}B_{2}\cdots B_{n}\}=m^{+}\{A_{1}^{\cup}A_{2}\cdots\cup A_{n}\}$ ,

then $B_{n+1}$ can be given as
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$B_{n+1}=B-B_{1}B_{2}\cdots B_{n}$

where $B$ is a measurable set with
$B\supset A_{1}^{\cup}A_{2}\cdots\cup A_{n+1}$

and
$m(B)=m^{+}\{A_{1}A_{2}\cdots A_{n+1}\}$ .

Since
$m^{-}\{B_{1}^{\cup}B_{2}^{\cup}B_{n}-A_{1}^{\cup}A_{2}^{\cup}A_{n+1}\}=0$ ,

we have
$m^{-}\{B_{n\prec 1}-A_{n+1}\}\leqq m^{-}\{B-A_{1}^{\cup}A_{2}\cdots A_{n+1}\}=0$ .

We have also
$m\{B_{1}^{\cup}B_{2}^{\cup}\cdots B_{n\vdash 1}\}=m^{+}\{A_{1}^{\cup}A_{2}^{\cup}\cdots A_{n+1}\}$

and hence, for the fomily $\{B_{n}\}$ thus obtained,

$m(\bigcup_{n}B_{n})=m^{+}(\bigcup_{n}A_{n})$ .

If a function $f$ takes a constant value $a_{n}$ on $A_{n}$ for a decomposition $\{A_{n}\}$

of $I$, and if $\{B_{n}\}$ is a measurable decomposition subordinate to $\{A_{n}\}$ , then
$\sum_{n-1}^{\infty}m(B_{n})a_{n}$ belongs to $R.L.(f)$ , in other words, the usual Lebesgue intergral
$t_{I}f^{*}(t)dt$ where $f^{*}$ is the function taking constant values $a_{n}$ on $B_{n}$ is a Ri-
emann limit of $f$ . This can be seen if we show

(8) $\int_{I}f^{*}(t)dt\in R$ . L. $(f^{*})$ ,

because we can modify $B_{n}$ within the difference of measure $0$ so as to be
included in the closure of $A_{n}$ and, for $f^{*}$ defined by these $B_{n}$ , we have
R. L. $(f^{*})\subset R$ . L. $(f)$ .

On the other hand, (8) can be proved easily from the fact that for every
measurable set $B$ , there exist finite number of open intervals $I_{1},$ $I_{2},$ $\cdots,I_{m}$ such
that the measure of the symmetric difference of $B$ and $\bigcup_{i=1}^{m}I_{i}$ is arbitrarily small
and every $I_{i}$ contains a point in $B$ .

Thus we have proved (i), that is, the existence of a Riemann limit of
a countably valued function $f$ as the Lebesgue integral of a certain measurable
function obtained by modifying $f$ .

Let $f$ and $g$ be any two countably values functions. We can suppose,
without loss of generality, that $f$ takes constant values $a_{n}$ in $A_{n},$ $\{A_{n}\}$ being
a decomposition of $I$, and $g$ takes $a_{n,m}$ in $A_{n,m}$ where $\{A_{n,m} ; n,m=1,2, \cdots\}$
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is also a decomposition of $I$ satisfying $A_{n}=\bigcup_{m=1}^{\infty}A_{n,m}$ . Suppose a measurable

decomposition $\{B_{n}\}$ subordinate to $\{A_{n}\}$ is given. We will show that there
exists a measurable decomposition $\{B_{n,m}\}$ which is subordinate to $\{A_{n,m}\}$ and

satisfies $B_{n}=\bigcup_{m=1}^{\infty}B_{n,m}$ . This gives (ii) completing the rest of our proof, because

we have then

$\sum_{n}m(B_{n})a_{n}\in R$ . L. $(f)$ ,

$\sum_{n,m}m(B_{n,m})a_{n,m}\in R$ . L. $(g)$

and

$||\sum_{n}m(B_{m})a_{n}-\sum_{n,m}m(B_{n,m})a_{n,m}||$

$=||\sum_{n,m}m(B_{n,m})(a_{n}-a_{n,m})||\leqq\sup_{n,m}||a_{n}-a_{n,m}||\leqq||f-q||$ .

Now put
$A_{n,m}^{\prime}=B_{n\cap}A_{n,m}$ ,

and
$A_{n}^{\prime}=\bigcup_{m}A_{n,m}^{\prime}=B_{n\cap}A_{n}$ .

For a fixed $n$ , let $\{B_{n,m}^{\prime}\}$ be a measurable family subordinate to $\{A_{n,m}^{\prime}\}$ , then,
for $B_{n}^{\prime}=\bigcup_{m}B_{n,m}^{\prime}$ ,

We have

$m(B_{n}^{\prime})=m^{+}(\bigcup_{m}A_{n,m}^{\prime})=m^{+}(B_{n\leftrightarrow}A_{n})=m^{+}\{B_{n}-(B_{n}-A_{n})\}$

$=m(B_{n})-m^{-}(B_{n}-A_{n})=m(B_{n})$

and, since
$m(B_{n}^{\prime}-B_{n})\leqq m^{-}(B_{n}^{\prime}-A_{n}^{\prime})=0$ ,

the symmetric difference $B_{n}\Delta B_{n}^{\prime}$ of $B_{n}$ and $B_{n}^{\prime}$ is measure $0$ . Therefore we
can replace $B_{n,m}^{\prime}$ by a suitable $B_{n,m}$ for which we have

$m(B_{n,m}\Delta B_{n,m}^{\prime})=0$

and

$B_{n}=\bigcup_{m}B_{n,m}$ .

$\{B_{n,m}\}$ is obviously subordinate to $\{A_{n,m}\}$ .
Thus our proof is completed.
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