<table>
<thead>
<tr>
<th>項目</th>
<th>内容</th>
</tr>
</thead>
<tbody>
<tr>
<td>タイトル</td>
<td>有限外ガロワ理論の非可換環について</td>
</tr>
<tr>
<td>著者</td>
<td>Miyashita, Yôichi</td>
</tr>
<tr>
<td>引用</td>
<td>Journal of the Faculty of Science Hokkaido University. Ser. 1 Mathematics = 北海道大学理学部紀要, 19(3-4): 114-134</td>
</tr>
<tr>
<td>発行年</td>
<td>1966</td>
</tr>
<tr>
<td>項目</td>
<td>File Information</td>
</tr>
<tr>
<td>項目</td>
<td>JFSHIU_19_N3-4_114-134.pdf</td>
</tr>
</tbody>
</table>

HOKKAIDO UNIVERSITY
FINITE OUTER GALOIS THEORY OF NON-COMMUTATIVE RINGS

By

Yôichi MIYASHITA

Contents

§ 0. Introduction .. 114
§ 1. Galois extension and normal basis 115
§ 2. The first characterization of fixed-subrings 118
§ 3. The second characterization of fixed-subrings 121
§ 4. Extension of isomorphisms 122
§ 5. Heredity of Galois extensions 123
§ 6. Completely outer case 126
§ 7. Several results .. 130

§ 0. Introduction. It is the purpose of this paper to extend the Galois theory of commutative rings given by S. U. Chase, D. K. Harrison and A. Rosenberg [4] to non-commutative case. In what follows, for the sake of simplicity, we shall state main results for directly indecomposable rings: Let A be a directly indecomposable ring, G a finite group of automorphisms of A, and $B = A^g = \{ x \in A ; \sigma(x) = x \}$ for all σ in G. We call A/B a G-Galois extension if there are elements $a_1, \ldots, a_n; a_1^*, \ldots, a_n^*$ in A such that $\sum_i a_i \cdot \sigma(a_i^*) = \delta_{1,\sigma}(\sigma \in G)$, where $\delta_{1,\sigma}$ means Kronecker’s delta. If $V_A(B) = C$ (the center of A), then A/B is a G-Galois extension if and only if the mapping $x \otimes y \rightarrow xy$ from $A \otimes B A$ to A splits as an A-A-homomorphism (Th. 1.5). Let A/B be a G-Galois extension, and A' a G-invariant subring of A, i.e., $\sigma(A') = A'$ for all σ in G, and put $B' = A'^G$. If A'/B' is a G-Galois extension and B'_B is a direct summand of A_B', then there hold the following: (1) For any subgroup H of G, $A'^H = B \otimes_B A'^H = A'^H \otimes_B B$. (2) Let $\{ T \}$ be the set of all G-invariant intermediate rings of A/A', and $\{ T \}$ the set of all intermediate rings of B/B' such that $A'T = TA'$. Then, $T \rightarrow T \cap B$ and $T
ightarrow A'T = TA'$ are mutually converse order isomorphisms between $\{ T \}$ and $\{ T \}$, and $T/(T \cap B)$ is a G-Galois extension (Th. 5.1). Let A/B be a G-Galois extension, $V_A(B) = C$, and B_B a direct summand of A_B. Then there hold the following: (1) G coincides with the set of all B-automorphisms of A (Th. 4.2). (2) For any subgroup H of G, $\{ \sigma \in G ; \sigma|A^H - 1 \} = H$. (3) If T is an intermediate ring of A/B, the following are
equivalent: (a) \(T = A^H \) for some subgroup \(H \) of \(G \). (b) The mapping \(x \otimes y \rightarrow xy \) from \(T \otimes_B A \) to \(A \) splits as a \(T \)-\(T \)-homomorphism (Th. 2.6). (c) \(A/T \) is a projective Frobenius extension (in the sense of Kasch), and \(T \) is a direct summand of \(A_T \) (Th. 3.2). In case \(_BA_B \) is a direct summand of \(_BA_B \), the next is also equivalent to (a). (b') The mapping \(x \otimes y \rightarrow xy \) from \(T \otimes_B T \) to \(T \) splits as a \(T \)-\(T \)-homomorphism (Th. 2.9). (4) For any subgroup \(H \) of \(G \), every \(B \)-isomorphism from \(A^H \) to \(A \) can be extended to a \(B \)-ring automorphism of \(A \) (Th. 4.2). (5) If \(A_B \) is finitely generated and free, and \(B \) is a semi-primary ring (i.e. \(B/\mathfrak{R}(B) \) satisfies the minimum condition for left ideals, where \(\mathfrak{R}(B) \) means the Jacobson radical of \(B \)), then \(A \) has a normal basis (Th. 1.7).

Let \(A = A(A,G) = \sum_{\sigma \in G} \oplus Au_{\sigma} \) be the trivial crossed product of \(A \) with \(G \). \(G \) is said to be completely outer if \(A^{\sigma}A \) and \(A^{\sigma}A^{\tau} \) have no isomorphic non-zero subquotients provided \(\sigma \neq \tau \). If \(G \) is completely outer, then \(A/B \) is a \(G \)-Galois extension and \(V_A(B) = C \) (Prop. 6.4). If \(A \) is commutative, then \(A/B \) is a \(G \)-Galois extension if and only if \(G \) is completely outer (Th. 6.6). In case \(A \) is two-sided simple, \(G \) is completely outer if and only if \(A/B \) is a \(G \)-Galois extension and \(V_A(B) = C \) (Cor. to Prop. 6.4).

The author wishes to express his best thanks to Dr. H. Tominaga for helpful suggestions.

§ 1. Galois extension and normal basis.

Throughout the present paper, all rings have identities, modules are unitary. A subring of a ring will mean one containing the same identity. By a ring homomorphism, we mean always a ring homomorphism such that the image of 1 is 1. Let \(A \) be a ring, \(C \) the center of \(A \), \(G \) a finite group of automorphisms of \(A \) which acts on the left side, and \(B = A^G = \{ x \in A ; \sigma(x) = x \) for all \(\sigma \) in \(G \} \). For any subgroup \(H \) of \(G \), \(\delta_{H,\sigma} \) means the mapping from \(G \) to \(\{1, 0\} \) (\(\subseteq A \)) such that \(\delta_{H,\sigma} = 1 \) if and only if \(\sigma \in H \).

Let \(B' \) and \(T \) be subrings of a ring \(A' \) such that \(B' \subseteq T \). \(A' \) is said to be \((B', T) \)-projective, if the mapping \(\sum_j x_j \otimes y_j \rightarrow \sum_j x_j y_j \) from \(T \otimes_{B'} A' \) to \(A' \) splits as a \(T \)-\(T \)-homomorphism. As is easily seen, \(A' \) is \((B', T) \)-projective if and only if there are elements \(t_i, \cdots, t_n \in T \) and \(a_i', \cdots, a_n' \in A' \) such that \(\sum_i x_i a_i' = 1 \) and \(\sum_i x_i t_i \otimes a_i' = \sum_i x_i \otimes a_i' x (\in T \otimes_{B'} A') \) for all \(x \in T \). When this is the case, \(\{ (t_i, a_i') ; i = 1, \cdots, n \} \) is called a \((B', T) \)-projective coordinate system for \(A' \). If \(A' \) is \((B', A') \)-projective, then we call \(A'/B' \) a separable extension.

Let \(f \) and \(g \) be ring homomorphisms from a ring \(A' \) to a ring \(A'' \). \(f \) and \(g \) are called strongly distinct if, for any non-zero central idempotent \(e \) of \(A'' \), there is an element \(x \) in \(A' \) such that \(f(x)e \neq g(x)e \). Let \(\mathcal{S} \) be a set of
ring homomorphisms from A' to A''. \mathcal{S} is called strongly distinct if any distinct f, g in \mathcal{S} are strongly distinct.

$A=A(A, G)$ denotes the trivial crossed product of A with G: $A=\sum_{\sigma\in G}Au_{\sigma}, \ u_{\sigma}u_{\tau}=u_{\sigma \tau} \ (\sigma, \tau \in G), \ u_{\sigma}x=\sigma(x)u_{\sigma} \ (x \in A)$. By j, we denote the ring homomorphism from A to Hom (A_{B}, A_{B}) defined by $j(xu_{\sigma})(y)=x\cdot \sigma(y)$ for x, y in A and σ in G.

A/B is called a G-Galois extension if there are elements a_{1}, \cdots, a_{n}; $a_{1}^{*}, \cdots, a_{n}^{*}$ in A such that $\sum_{i}a_{i}^{*}\sigma(a_{i}^{*})=\delta_{1, \sigma}$ for all σ in G. When this is the case, $\{a_{i}, a_{i}^{*} \}: 1=1, \cdots, n$ is called a G-Galois coordinate system for A/B. Then the following is known: A/B is a G-Galois extension if and only if A_{B} is finitely generated and projective and j is an onto isomorphism (cf. [6]). When this is the case we identify A with Hom (A_{B}, A_{B}): $A=A_{i}G=AG$, where A_{i} means the set of all left multiplications by elements of A. If A/B is G-Galois and $C=V_{A}(B)$ (the centralizer of B in A), it is called outer G-Galois. If A/B is G-Galois (resp. outer G-Galois) and H is a subgroup of G, then A/A^{H} is evidently H-Galois (resp. outer H-Galois).

Proposition 1.1. Let A' and A'' be rings, T a subring of A', f a ring homomorphism from T to A'', and g a ring homomorphism from A' to A''. If there are elements $t_{1}, \cdots, t_{n} \in T$ and $a_{1}, \cdots, a_{n} \in A'$ such that $\sum_{i}t_{i}a_{i}=1$ and $\sum_{i}f(t_{i})g(a_{i})=0$, then f and $g|T$ (the restriction of g to T) are strongly distinct.

Proof. Let e be a central idempotent of A'' such that $f(x)e=g(x)e$ for all x in T. Since $\sum_{i}t_{i}a_{i}=1$, we have $\sum_{i}g(t_{i})g(a_{i})=1$, and therefore $e=e_{1}=$ $\sum_{i}e\cdot g(t_{i})g(a_{i})=\sum_{i}e\cdot f(t_{i})g(a_{i})=0$. Thus, f and $g|T$ are strongly distinct.

Proposition 1.2. Let B' and T be subrings of a ring A' such that $B' \subseteq T$, and A'' an extension ring of B' such that $V_{A''}(B')=V_{A''}(A'')$, where $V_{A''}(B')$ means the centralizer of B' in A''. Let A' be (B', T)-projective, and $\{[t_{i}, a_{i}]: i=1, \cdots, n\}$ a (B', T)-projective coordinate system for A'. Let f be a B'-ring homomorphism from T to A'', g and g' B'-ring homomorphisms from A' to A''. We set $e=\sum_{i}f(t_{i})g(a_{i})$ and $e'=\sum_{i}f(t_{i})g'(a_{i})$. Then there hold the following:

1. e is a central idempotent in A''.
2. $f(x)e=g(x)e$ for all x in T.
3. $ee'=e\sum_{i}g(t_{i})g'(a_{i})$.
4. f and $g|T$ are strongly distinct if and only if $e=0$.
5. If $g|T$ and $g'|T$ are strongly distinct, then $ee'=0$.

Proof. Since $\sum_{i}xt_{i}a_{i}=\sum_{i}t_{i}a_{i}x$ ($\in T \otimes_{B'} A'$) for all x in T, $\sum_{i}f(xt_{i})g(a_{i})=\sum_{i}f(t_{i})g(a_{i}x)$ ($\in A'' \otimes_{B'} A''$) for all x in T. Therefore,
$f(x)e = g(x)f(x)$ for all x in T, in particular, $y = ey$ for all y in B'. Hence, by assumption, e is contained in the center of A''. Since $\sum f(t_i)(\sum g(a_i))g'(a_j) = (\sum f(t_i)g(a_i))\sum g(a_j)$, we obtain $e' = \sum f(t_i)e'g'(a_j) = e\sum g(t_j)g'(a_j)$.

If we put $g = g'$, then we have $e^2 = e$, and so e is a central idempotent of A'' such that $f(x)e = g(x)f(x)$ for all x in T. Therefore f and $g|T$ are strongly distinct if and only if $e = 0$ (Prop. 1.1). Now, it is left only to prove (5). If $g|T$ and $g'|T$ are strongly distinct, then $\sum f(t_j)g'(a_j) = 0$ by (4), and so $ee' = e\sum g(t_j)g'(a_j) = 0$.

Evidently, the mapping $x \otimes y \rightarrow x\sum\mu(y)y$ from $A \otimes_B A'$ to A' is an A-A'-homomorphism. We denote this homomorphism by h. One may remark here that h is a A-A'-homomorphism. In fact, $u, x\sum\mu(y)y = \tau(x)u, \sum\mu(y)y = \tau(x)\sum\mu(y)y$.

Proposition 1.3. Let A/B be a G-Galois extension, and let $\{(a_i, a_i^{*}); i = 1, \cdots, n\}$ be a G-Galois coordinate system for A/B. Then h is a A-A'-isomorphism, $h^{-1}(\sum x, \mu_i) = \sum x, \sigma(a_i) \otimes a_i^{*}$ for every $\sum x, \mu_i$ in A, and $\{(a_i, a_i^{*}); i = 1, \cdots, n\}$ is a (B, A)-projective coordinate system for A.

Proof. To be easily seen, $h(\sum x, \sigma(a_i) \otimes a_i^{*}) = \sum x, \mu_i$, and hence h is onto. Let x, y be in A. Then $\sum x, \sigma(y) \sigma(a_i) \otimes a_i^{*} = x \otimes \sum x, \sigma(y) \sigma(a_i) \otimes a_i^{*} = x \otimes y$, whence we can easily see that h is 1-1. Hence, h is a A-A'-isomorphism. Since $h(\sum a_i \otimes a_i^{*}) = u_i$ and h is an A-A'-isomorphism, $\sum a_i \otimes a_i^{*} = \sum a_i \otimes a_i^{*} x$ for any x in A.

Proposition 1.4. Assume $V_A(B) = C$ (the center of A), and let a_i, a_i^{*} (i = 1, ⋯, n) be elements of A. Then the following conditions are equivalent:

(i) $\{(a_i, a_i^{*}); i = 1, \cdots, n\}$ is a G-Galois coordinate system for A/B. (ii) $\{(a_i, a_i^{*}); i = 1, \cdots, n\}$ is (B, A)-projective coordinate system for A/B and G is strongly distinct.

Proof. (i) ⇒ (ii) follows from Prop. 1.3 and Prop. 1.1. (ii) ⇒ (i) follows from Prop. 1.2 (4).

Restating the above proposition we obtain the following theorem.

Theorem 1.5. (Cf. [4; Th. 1.3].) Let $V_A(B) = C$. Then following conditions are equivalent:

(i) A/B is a G-Galois extension.
(ii) A/B is a separable extension and G is strongly distinct.

Remark. To prove the part (i) ⇒ (ii) we do not need the condition $V_A(B) = C$.

Proposition 1.6. (Cf. [4; Th. 4.2].) If A/B is a G-Galois extension and $a A \cong B^m$ for some natural number m, then $BG^m \cong A^m$.

Proof. Let $A = \sum a_i \otimes a_i^{*}$ (i = 1, ⋯, n), and $a B \cong a B^m$ by the correspondence
$y \rightarrow yd_{i}(y \in B)$. Then $A = \sum_{a_{i}}u_{a}A = \sum_{a_{i}}u_{Bd_{i}} = \sum_{a_{i}}u_{Bd_{i}} = \sum_{a_{i}}(\sum_{Bd_{i}})d_{i}$ and $(\sum_{Bd_{i}})d_{i} = \sum_{a_{i}Bd_{i}}$ as $a_{i}Bd_{i}$-left modules. Hence, $\eta_{A}A = \eta_{BG}A$. On the other hand, $\Delta = \sum_{A \otimes B \Delta}A \otimes B \Delta = \sum_{A \otimes B \Delta}A \otimes B \Delta \cong A^{m}(\text{Prop. 1.3})$. We obtain therefore $\eta_{BG}A \cong \eta_{BA}A$.

Theorem 1.7. Let A/B be a G-Galois extension and $\eta_{A}A \cong \eta_{BG}A$ for some natural number m. If B is semi-primary (i.e., $B/\Re(B)$ satisfies the minimal condition for left ideals, where $\Re(B)$ means the Jacobson radical of B), then $\eta_{BG}A \cong \eta_{BA}A$, that is, A has a normal basis.

Proof. By Prop. 1.6, $\eta_{BG}A \cong \eta_{BA}A$. Since $\Re(B)A \cong \Re(B)G = \Re(B)A^{m}$ under the above isomorphism, $(BG/\Re(B)A)^{m} \cong (A/\Re(B)A)^{m}$ as $BG/\Re(B)A$-G-left modules. Since $BG/\Re(B)A$ is $B/\Re(B)A$-left finitely generated and B is semi-primary, $BG/\Re(B)A$ satisfies the minimal condition (and the maximal condition) for left ideals. Hence, by Krull-Remak-Schmidt’s theorem, we have $BG/\Re(B)A \cong A/\Re(B)A$ as BG-left modules. Since $\eta_{BG}A$ and $\eta_{BA}A$ are finitely generated and projective and $\Re(B)A \subseteq \Re(\eta_{BG}A)$ and $\Re(B)A \subseteq \Re(\eta_{BA}A)$, $BG \cong A$ as BG-left modules by the uniqueness of projective cover (cf. [11]).

§ 2. The first characterization of fixed-subrings.

For any subgroup H of G, the mapping $x \rightarrow \sum_{x \in H} \tau(x)$ from A to A^{μ} is evidently an A^{μ}-A-homomorphism. We denote this by t_{H}.

Let A/B be a G-Galois extension. Then $(\sum_{a}u_{a})A \cong \text{Hom}(A_{B}, B_{B})$ by j (cf. [6]). From this fact, one will easily see that B_{B} is a direct summand of A_{B} if and only if there exists an element c in A such that $t_{H}(c) = 1$. Further, since $j((\sum_{a}u_{a})V_{A}(B)) = \text{Hom}(\eta_{A_{B}}, \eta_{B_{B}})$, B_{B} is a direct summand of $\text{Hom}(\eta_{A_{B}}, \eta_{B_{B}})$ and only if there exists an element c in $V_{A}(B)$ such that $t_{H}(c) = 1$.

Let c be an element of A such that $t_{H}(c) = 1$, H a subgroup of G, and $G = H_{1} \cup \cdots \cup H_{r}$ the right coset decomposition of G. If we set $\sum_{a}a_{H}(c) = 1$, then $t_{H}(d) = 1$. Hence, if A/B is G-Galois and B_{B} is a direct summand of A_{B}, then A^{μ} is a direct summand of $A_{A^{H}}$.

For any G-left module M and any subgroup H of G, we denote by M^{a} \{u \in M; \tau(u) = u \text{ for all } \tau \in H\}. If A/B is a G-Galois extension, then $h: \otimes_{a}A_{B}A_{B} \cong \otimes_{a}A_{B}$ (Prop. 1.3), and evidently $(A \otimes A)^{\mu} \rightarrow A^{\mu}$ under h.

Proposition 2.1. Let A/B be a G-Galois extension. If H is a subgroup of G, then $A^{\mu} = \{\sum_{a}u_{a}x_{a}a_{a}; \text{ if } Ha = H_{a} \text{ then } x_{a} = x_{a}\}$ and $(A \otimes A)^{\mu} = A^{\mu} \otimes A$.

Proof. The first assertion is evident. We shall prove the second one. Evidently $A^{\mu} \otimes A \subseteq (A \otimes A)^{\mu}$. Let \{a_{i}, a_{i}^{*} ; i = 1, \cdots, n\} be a G-Galois coordinate system for A/B. If ρ is an element of G, then $\sum_{a \in H}u_{a} \in A^{\mu}$ and $h^{-1}(\sum_{a \in H}u_{a}) = \sum_{a \in H} \tau(a_{i}) \otimes a_{i}^{*} = \sum_{i}h(\sum_{a \in H} \tau(a_{i}) \otimes a_{i}^{*} \in A^{\mu} \otimes A$. Noting that h
is an A-right isomorphism, we have $(A \otimes A)^{H} \subseteq A^{H} \otimes A$. Thus $(A \otimes A)^{H} = A^{H} \otimes A$.

Proposition 2.2. Let A/B be G-Galois. If H is a subgroup of G, then there are elements $t_{1}, \ldots, t_{n} \in A^{H}$ and $a_{1}^{*}, \ldots, a_{n}^{*} \in A$ such that $\sum_{i} t_{i} \cdot \sigma(a_{i}^{*}) = \delta_{H, \sigma}$ for all $\sigma \in G$, and $\{ \sigma \in G \mid \sigma | A^{H} = 1_{A^{H}} \} = H$.

Proof. Let $\{(a_{i}, a_{i}^{*}) ; i = 1, \ldots, n\}$ be a G-Galois coordinate system for A/B. If we put $t_{i} = t_{H}(a_{i})$, then $t_{i} \in A^{H}$ and $\sum_{i} t_{i} \cdot \sigma(a_{i}^{*}) = \delta_{H, \sigma}$. If $\sigma | A^{H} = 1_{A^{H}}$, then $1 = \sum_{i} \sigma(t_{i}) \sigma(a_{i}^{*}) = \sum_{i} t_{i} \cdot \sigma(a_{i}^{*}) = \delta_{H, \sigma}$. Hence $\sigma \in H$.

Theorem 2.3. Let A/B be G-Galois, and B_{H} a direct summand of A_{H}. If H is a subgroup of G and T is an intermediate subring of A/B such that $T \subseteq A^{H}$, then the following conditions for T are equivalent.

(i) $T = A^{H}$.

(ii) There are elements $t_{1}, \ldots, t_{n} \in T$ and $a_{1}^{*}, \ldots, a_{n}^{*} \in A$ such that $\sum_{i} t_{i} \cdot \sigma(a_{i}^{*}) = \delta_{H, \sigma}$ for all $\sigma \in G$.

(iii) $T \otimes A = A^{H} \otimes A$ in $A \otimes_{B} A$.

Proof. (i) \Rightarrow (ii) follows from Prop. 2.2. (ii) \Rightarrow (iii) Evidently $T \otimes A \subseteq A^{H} \otimes A$ in $A \otimes_{B} A$. If ρ is in G, then $\sum_{i} t_{i} \otimes \rho^{-1}(a_{i}^{*}) \in T \otimes A$ and $h(\sum_{i} t_{i} \otimes \rho^{-1}(a_{i}^{*})) = \sum_{i} h_{\rho}(t_{i}) u_{i}$. Noting that h is an A-right homomorphism, we know that $h(T \otimes A) = A^{H}$, and hence $T \otimes A = A^{H} \otimes A$ (Prop. 2.1). (iii) \Rightarrow (i) There is an element c of A such that $t_{0}(c) = 1$. For any x in A^{H}, $x \otimes c \in A^{H} \otimes A = T \otimes A$. Therefore, there are elements $x_{j} \in T$, $y_{j} \in A$ such that $x \otimes c = \sum_{j} x_{j} \otimes y_{j}$. By making use of the mapping $1 \otimes t_{0}$, we can easily see $x = x \cdot t_{0}(c) = \sum_{j} x_{j} t_{0}(y_{j}) \in T \cdot B = T$. Hence $T = A^{H}$.

Proposition 2.4. Let A/B be a G-Galois extension. If H is a subgroup of G, then $G | A^{H}$ is strongly distinct and the mapping $x \otimes y \rightarrow xy$ from $A^{H} \otimes_{B} A$ to A splits as an $A^{H}-A^{H}$-homomorphism (i.e. A is (B, A^{H})-projective).

Proof. Let $\{(a_{i}, a_{i}^{*}) ; i = 1, \ldots, n\}$ be a G-Galois coordinate system for A/B. If we set $t_{i} = t_{H}(a_{i})$, then $t_{i} \in A^{H}$ and $\sum_{i} t_{i} \cdot \sigma(a_{i}^{*}) = \delta_{H, \sigma}$ for every σ in G. Therefore, by Prop. 1.1, $G | A^{H}$ is strongly distinct. Now, $t_{H} \otimes 1$ is an A^{H}-homomorphism from $A \otimes_{B} A$ to $A^{H} \otimes_{B} A$. Since $\sum_{i} x a_{i} \otimes a_{i}^{*} x = (\sum_{i} x a_{i} \otimes a_{i}^{*} x) (\in A \otimes_{B} A)$ for all x in A (Prop. 1.3), $\sum_{i} y t_{i} \otimes a_{i}^{*} x = \sum_{i} t_{i} \otimes a_{i}^{*} y$ (in $A^{H} \otimes_{B} A$) for all y in A^{H}. Hence the mapping $x \rightarrow \sum_{i} t_{i} \otimes a_{i}^{*} x$ from A to $A^{H} \otimes_{B} A$ is an A^{H}-homomorphism, and $\sum_{i} t_{i} a_{i}^{*} x = x$. Hence the mapping $x \otimes y \rightarrow xy$ from $A^{H} \otimes_{B} A$ to A splits as an A^{H}-homomorphism.

Proposition 2.5. Let A/B be outer G-Galois, and T an intermediate ring of A/B. If $G | T$ is strongly distinct, and A is (B, T)-projective then there are elements $t_{1}, \ldots, t_{n} \in T$ and $a_{1}^{*}, \ldots, a_{n}^{*} \in A$ such that $\sum_{i} t_{i} \cdot \sigma(a_{i}^{*}) = \delta_{H, \sigma}$.
for all \(\sigma\) in \(G\), where \(H = \{\sigma \in G; \sigma |T = 1_T\}\).

Proof. Let \(\{(t_i, a_i^*); i = 1, \cdots, n\}\) be a \((B, T)\)-projective coordinate system for \(A\). Then, by Prop. 1.2, \(\sum t_i \sigma(a_i^*) = 0\) for every \(\sigma \notin H\). Whereas, if \(\sigma \in H\), then \(1 = \sum t_i \sigma(t_i) \sigma(a_i^*) = \sum t_i \sigma(a_i^*)\).

Combining Props 2.4, 2.5 with Th. 2.3, we readily obtain the following:

Theorem 2.6. Let \(A/B\) be outer \(G\)-Galois, and \(B_B\) a direct summand of \(A_B\). If \(T\) is an intermediate ring of \(A/B\), then the following conditions are equivalent:

(i) There is a subgroup \(H\) of \(G\) such that \(T = A^H\).

(ii) \(A\) is \((B, T)\)-projective and \(G\mid T\) is strongly distinct.

Lemma 2.7. Let \(S\) and \(T\) be subrings of a ring \(R\) such that \(S \supseteq T\).

1. If \(R/T\) is separable, then so is \(R/S\).
2. If \(S/T\) is separable, then \(R\) is \((T, S)\)-projective.
3. If both \(R/S\) and \(S/T\) are separable, then so is \(R/T\).

Proof. (1) will be easily seen. (2) Since \(S \otimes_T S \cong S \otimes_R R\) and \(S \otimes_R R \cong R\), this is obvious. (3) Since the mapping \(s \otimes s' \rightarrow ss'\) from \(S \otimes_T S\) to \(S\) splits as an \(S\)-\(S\)-homomorphism, the mapping \(r \otimes r' \rightarrow r \otimes r'\) from \(R \otimes_T R\) to \(R \otimes_S R\) splits as an \(R\)-\(R\)-homomorphism. Since \(R/S\) is separable, the mapping \(r \otimes r' \rightarrow rr'\) from \(R \otimes_T R\) to \(R\) splits as an \(R\)-\(R\)-homomorphism.

Proposition 2.8. Let \(A/B\) be outer \(G\)-Galois, and \(B_B\) a direct summand of \(A_B\). If \(H\) is a subgroup of \(G\), then \(A^H\) is an \(A^B\)-\(A^B\)-direct summand of \(A\), and \(A^H/B\) is a separable extension.

Proof. Since \(B_B\) is a direct summand of \(A_B\), there is an element \(c\) of \(C\) such that \(t_0(c) = 1\). Let \(G = H_{a_1} \cup \cdots \cup H_{a_r}\) be the right coset decomposition of \(G\). If we set \(d = \sum_i s_i(c)\), then \(t_H(d) = 1\) and \(d \in C\). Hence \(A^H\) is an \(A^B\)-\(A^B\)-direct summand of \(A\). Let \(\{(a_i, a_i^*); i = 1, \cdots, n\}\) be a \((B, A)\)-projective coordinate system for \(A/B\). Then, \(\{(a_i, a_i^*); i = 1, \cdots, n\}\) is a \(G\)-Galois coordinate system for \(A/B\) (Prop. 1.4). The mapping \(x \rightarrow t_H(dx)\) from \(A\) to \(A^H\) is an \(A^B\)-\(A^B\)-homomorphism. We denote this by \(t'\). Then, the mapping \(t_H \otimes t'\) from \(A \otimes_B A\) to \(A^H \otimes_B A^H\) is evidently an \(A^B\)-\(A^B\)-homomorphy, and therefore the mapping \(y \rightarrow \sum t_H(ya_i) \otimes t'(a_i^*) = \sum t_H(a_i) \otimes t'(a_i^*)y\) from \(A^H\) to \(A^H \otimes_B A^H\) is an \(A^B\)-\(A^B\)-homomorphism. The mapping \(y \rightarrow \sum t_H(ya_i) \otimes t'(a_i^*)\tau(d)y = \sum t_H(ya_i) \otimes t'(a_i^*)\tau(d)\) from \(A^B\) to \(A^B \otimes_B A^B\) is a separable extension.

By Th. 2.6, Lemma 2.7 and Prop. 2.8, we obtain at once the following:

Theorem 2.9. (Cf. [4; Th. 2.2]). Let \(A/B\) be outer \(G\)-Galois, and \(B_B\) a direct summand of \(A_B\). If \(T\) is an intermediate ring of \(A/B\), then the
following conditions are equivalent:

(i) There is a subgroup H of G such that $T=A^H$.

(ii) T/B is a separable extension and $G|T$ is strongly distinct.

§ 3. The second characterization of fixed-subrings.

Let R be a ring, S a subring of R. R/S is called a projective Frobenius extension if R_S is finitely generated and projective and $sR_R \cong s\text{Hom}(R_S, S_S)_R$ (cf. [10]). If A/B is a G-Galois extension, then $(\mathcal{A}_A \cong t) \mathcal{A}(\sum u_\sigma)A_A \cong \mathcal{A}\text{Hom}(A_B, B_B)_A$ by j. Hence, A/B is a projective Frobenius extension. Now, we shall state the next lemma without proof.

Lemma 3.1. Let R/S be a projective Frobenius extension, and $1 \leftarrow t$ under an isomorphism $sR_R \cong s\text{Hom}(R_S, S_S)_R$. Then $t\text{Hom}(sR_S, S_S)_R$ and $\text{Hom}(R_S, S_S)_R = tR$.

Theorem 3.2. Let A/B be outer G-Galois, and B_B a direct summand of A_B. If T is an intermediate ring of A/B, then the following conditions are equivalent.

(i) There is a subgroup H of G such that $A^H = T$.

(ii) A/T is a projective Frobenius extension, T_T is a direct summand of A_T, and $G|T$ is strongly distinct.

Proof. It suffices to prove that (ii) \Rightarrow (i) (cf. § 2). We identify $\text{Hom}(A_B, A_B)$ with \mathcal{A}, and set $\mathcal{A}/A = \text{Hom}(A_T, A_T)$, which is a subring of \mathcal{A}. Let $t = \sum c_\sigma u_\sigma$ be the image of 1 under the isomorphism $sA_A \cong s\text{Hom}(A_T, T_T)_A$. Then, $tA = \text{Hom}(A_T, T_T)$, $AtA = \mathcal{A}/A$ and $t \in \text{Hom}(sA_T, sT_T)$ (Lemma 3.1). Since $xt = tx$ for all x in T, we have $x_c = c_\sigma \sigma(x)$ for all x in T and σ in G, in particular, $yc = c_\sigma y$ for y in B. Therefore, by assumption, each c_σ is an element of C. Since $AtA = \mathcal{A}/A$, there are elements $c_i's, d_i's$ in A such that $\sum c_i'td_i = u_1$. From this fact, c_1 is an invertible element of C. Now, the mapping $\alpha: \delta \rightarrow \delta c_1^{-1}$ is a \mathcal{A}_0-A-homomorphism from \mathcal{A}_0 to \mathcal{A}, and the mapping $\beta: \sum x_u \rightarrow \sum x_c u_\sigma$ is evidently an A-A-endomorphism of \mathcal{A}. For any y in A and z in T, we have $\sum x_c u_\sigma(yz) = \sum x_c u_\sigma(y) \sigma(z) = \sum x_c u_\sigma(y) c_\sigma(z) = \sum x_c u_\sigma(y) x_c = \sum x_c u_\sigma(y) z = \sum x_c u_\sigma(y) z$, which means $\beta(\mathcal{A}) \subseteq \mathcal{A}_0$. If $x \otimes y$ is in $A \otimes_B A$, then $\beta h(x \otimes y) = \beta(x(\sum u_\sigma) y) = \beta(\sum x \cdot \sigma(y) u_\sigma) = \sum x \cdot \sigma(y) c_\sigma u_\sigma = x \sum c_\sigma u_\sigma y = xty$. For any a_δ in \mathcal{A} and any z in A, we have $\delta_0 xty(a_\delta) = \delta_0(xt(yz)) = \delta_0(x)t(yz) = \delta_0(x)ty(z)$. Thus, βh is a \mathcal{A}_0-A-homomorphism from $A \otimes_B A$ to \mathcal{A}_0, and so β is a \mathcal{A}_0-A-homomorphism from A to \mathcal{A}_0. Since $\beta \alpha(u_i) = \beta(u_i c_1^{-1}) = u_i$, $\beta \alpha = 1_{\mathcal{A}_0}$. Thus, we have $\mathcal{A} = \text{Im} \alpha \otimes \text{Ker} \beta = \mathcal{A}_0 \otimes (\sum \Gamma \text{Ann}(c_i) \cdot u_\sigma)$, where $\text{Ann}(c_i) = \{x \in A; xc_\sigma = 0\}$. Now, let $\{a_i, a_i^*; i = 1, \ldots, n\}$ be a G-Galois coordinate system for A/B. If τ is in G, then $\delta_\tau = AtA \sum \tau(a_i) a_i^* = c_\tau u_\tau$, and so $\mathcal{A}_0 = \sum A c_\tau u_\tau$, whence it follows that $A = Ac_\tau \text{Ann}(c_i)$. Let $Ac_\tau = Ae_\tau$ with a
central idempotent \(e_\sigma \) in \(A \). Then, \(e_\sigma \cdot \sigma(y) = e_\sigma y \) for any \(y \) in \(T \). By assumption, if \(\sigma | T \neq 1_T \) then \(e_\sigma = 0 \), and so \(A_0 = \sum_{\sigma \in \mathcal{H}} A_{\sigma} \), where \(H = \{ \tau \in G \mid \tau | T = 1_T \} \). Since \(T_T \) is a direct summand of \(A_T \), \(\text{End} (A_T) = T_T \) the set of all right multiplications by elements of \(T \) (see [1; Th. A. 2]). On the other hand, since \(A_0 = \sum_{\sigma \in \mathcal{H}} A_{\sigma} \), \(\text{End} (A_T) = (A^H)_T \). Hence, \(T = A^H \).

§ 4. Extension of isomorphisms.

Theorem 4.1. Let \(A/B \) be \(G \)-Galois, and \(A' \) an extension ring of \(B \) such that \(V_{A'}(B) = V_{A'}(A') \). Assume that there exists at least one \(B \)-ring homomorphism from \(A \) to \(A' \).

1. If \(H \) is a subgroup of \(G \) such that \(A^H_A \) is a direct summand of \(A^H \). Then every \(B \)-ring homomorphism from \(A^H \) to \(A' \) can be extended to a \((B-) \)ring homomorphism from \(A \) to \(A' \).

2. If \(f \) and \(g \) are \(B \)-ring homomorphisms from \(A \) to \(A' \). Then \(A' \) contains orthogonal central idempotents \(e_\sigma (\sigma \in G) \) such that \(\sum e_\sigma = 1 \) and \(f(x) = \sum e_\sigma f(x) e_\sigma \) for all \(x \) in \(A \). (Cf. [4; Th. 3.1].)

Proof. There are elements \(a_i, a^*_i \) \((i=1, \ldots, n)\) in \(A \) such that \(\sum_\sigma a_\sigma \otimes a^*_\sigma = \sum_\sigma a_\sigma \otimes a^*_\sigma x (\in A \otimes_B A) \) for all \(x \) in \(A \) and \(\sum_\sigma a_\sigma = \delta_{1,\sigma} \) for all \(\sigma \) in \(G \) (Prop. 1.3). If we set \(t_i = t_i^H(a_i) \), then \(t_i \in A^H, \sum t_i \cdot \sigma(a^*_i) = \delta_{\alpha_i,\sigma} (\sigma \in G) \) and \(\sum_\sigma x t_i \otimes a^*_\sigma = \sum_\sigma t_i \otimes a^*_\sigma x = (\in A^H \otimes_B A) \) for all \(x \) in \(A^H \). Let \(f \) be a \(B \)-ring homomorphism from \(A^H \) to \(A' \), and \(g \) a \(B \)-ring homomorphism from \(A \) to \(A' \).

If we set \(e_\sigma = \sum \sigma f(t_i) g \sigma(a^*_i) \), then each \(e_\sigma \) is a central idempotent in \(A' \) (Prop. 1.2). By Prop. 1.2 (3), \(e_\sigma = e_\sigma f(\sum \sigma(t_i) \tau a^*_i) \) for any \(\sigma, \tau \) in \(G \). Therefore, if \(\sigma^{-1} \tau \notin H \) then \(e_\sigma = 0 \), and if \(\sigma^{-1} \tau \in H \) then \(e_\sigma = e_\tau \). Recalling that \(A^H_A \) is a direct summand of \(A_{A^H} \) there is an element \(d \) of \(A \) such that \(t^H(d) = 1 \). Since \(\sum_\sigma \sum_i t_i \otimes \sigma(a^*_i d) = \sum_\sigma t_i \otimes a^*_i d = \sum_\sigma t_i \otimes a^*_i = \sum_\sigma e_\sigma \cdot a^*_i d = 1 \) in \(A^H \otimes_B A \), we have \(\sum_\sigma \sum_i f(t_i) \otimes \sigma(a^*_i d) = 1 \otimes 1 \) \((\in A' \otimes A')\) and therefore \(\sum_\sigma \sum_i f(t_i) e_\sigma \otimes a^*_i d = 1 \) \((\in A')\). Let \(G = \sigma, H \cup \cdots \cup \sigma, H \) be the left coset decomposition of \(G \). Then, \(1 = \sum_\sigma \sum_i f(t_i) g \sigma(a^*_i d) = \sum_\sigma \sum_i e_\sigma \cdot g \sigma(a^*_i d) = \sum_\sigma e_\sigma \cdot t^H(d) \) \(= 1 \). Since \(f(x) e_\sigma = e_\sigma f(x) \) for all \(x \) in \(A^H \) (Prop. 1.2), we have \(f(x) = \sum_\sigma f(x) e_\sigma = \sum_\sigma g \sigma(x) e_\sigma \) for all \(x \) in \(A^H \). Evidently, the mapping \(z \rightarrow \sum_\sigma g \sigma(z) e_\sigma \) is a \(B \)-ring homomorphism from \(A \) to \(A' \), and an extension of \(f \).

Now, the following theorem will follow at once from Th. 4.1.

Theorem 4.2. Let \(A/B \) be an outer \(G \)-Galois extension, and let \(A \) be directly indecomposable. If \(H \) is a subgroup of \(G \) such that \(A^H_A \) is a direct summand of \(A^H \), then every \(B \)-ring homomorphism from \(A^H \) to \(A \) can be extended to an element of \(G \). In particular, \(G \) is the set of all \(B \)-ring automorphisms of \(A \).

Theorem 5.1. Let A/B be G-Galois, A' a G-invariant subring of A, and $B'=A''$. Assume that there are elements $a_1, \ldots, a_n; a_1^*, \ldots, a_n^*$ and c in A' such that $\sum_i a_i \sigma(a_i^*)=\delta_{1,n}$, and $t_0(c)=1$.

(1) $A'|B'$ is a G-Galois extension, and $A''=B\otimes_B A''=A''\otimes_B B$ for any subgroup H of G, in particular, $A=B\otimes_B A'=A'\otimes_B B$.

(2) Let $\{\overline{X}\}$ be the set of all A'-left submodules of A, and $\{X\}$ the set of all B'-left submodules of B. Then, $\overline{X} \rightarrow \overline{X} \cap B$ and $X \rightarrow A'X=A' \otimes_B X$ are mutually converse order isomorphisms between $\{\overline{X}\}$ and $\{X\}$.

(3) Let $\{\overline{Y}\}$ be the set of all G-invariant intermediate rings of A/A', and $\{Y\}$ the set of all intermediate rings of B/B' such that $A'Y=YA'$. Then, $\overline{Y}/(\overline{Y} \cap B)$ is G-Galois, and $\overline{Y} \rightarrow \overline{Y} \cap B$ and $Y \rightarrow A'Y=YA'$ are mutually converse order isomorphisms between $\{\overline{Y}\}$ and $\{Y\}$.

Proof. (1) Evidently, $G \cong G|A'$, and G may be regarded as a finite group of automorphisms of A'. Hence, $A'|B'$ is G-Galois. Let $G=H_{\alpha_1} \cup \cdots \cup H_{\alpha_r}$ be the right coset decomposition of G. If we put $d=\sum_i \sigma_i(c)$ and $t_0(a_i)$, then $t_0(d)=1$ and $\sum_i t_i \sigma(a_i^*)=\delta_{H,\sigma}$ ($\sigma \in G$). If x is in A'', then $A''\sim B \sum_i t_i \sigma_i(a_i^*dy)=\sum_i (\sum_i t_i \sigma(a_i^*) \sigma(dx)=t_0(dx)=t_0(d)x=x$. Thus, we obtain $A''=A''\sim B$. To be easily seen, the mapping $\sum_j x_j \otimes y_j \rightarrow \sum_j x_j y_j$ from $A''\sim B$ to $A''\sim B$ is well-defined and $\sum_i t_i \otimes t_i(a_i^*d \sum_j x_j y_j)=\sum_j x_j y_j$. Hence, $A''\sim B \cong A''\sim B=A''$ by the mapping $\sum_j x_j \otimes y_j \rightarrow \sum_j x_j y_j$. Symmetrically, it follows $A''=B\otimes_B A''$.

(2) Let X be an A'-left submodule of A. Evidently, $\overline{X} \cong A'(\overline{X} \cap B)$, and $\overline{X} \cap B$ is a B'-left submodule of B. If x is in \overline{X}, then $t_0(a_i^*x)$ is in $\overline{X} \cap B$, and hence $x=\sum_i a_i x \in A'(\overline{X} \cap B)$. Hence, $\overline{X} \cong A'(\overline{X} \cap B)$, and the mapping $\sum_j x_j \otimes y_j \rightarrow \sum_j x_j y_j$ from $A''\sim B(\overline{X} \cap B)$ to $A'(\overline{X} \cap B)=\overline{X}$ is onto. Moreover, it is easily seen, $\sum_i a_i x \otimes y_j=\sum_j x_j y_j$. Hence, $\overline{X} \cong A''\sim B(\overline{X} \cap B)$. Now, let X be a B'-left submodule of B. Then, $A'X$ is an A'-left submodule of A, and $A'X \cap B \supseteq X$. If $x \in A', y \in X$ is in $A'X \cap B$, then $\sum_j x_j y_j=t_0(c)(\sum_j x_j y_j)=\sum_i \sigma(c) \sum_j x_j y_j=t_0(\delta_{1,n})y_j \subseteq X$. Hence, $A'X \cap B \subseteq X$, namely, $A'X \cap B=X$.

(3) Evidently, $\overline{Y}/(\overline{Y} \cap B)$ is G-Galois. Hence $\overline{Y}=A'(\overline{Y} \cap B)=(\overline{Y} \cap B)A'$ by (1), and then our assertion is an easy consequence of (2).

Corollary. Let A/B be G-Galois, and $B'=V_B(B)$. Assume that there are elements a_1, a_1^* ($i=1, \cdots, n$) in $V_A(B)$ such that $\sum_i a_i \sigma(a_i^*)=\delta_{1,n}$.

(1) $V_A(B)/B'$ is G-Galois, $A''=B\otimes_B V_A(B)''$ for any subgroup H of G, and the center of A'' coincides with the center of $V_A(B)''$. In particular, $A=B\otimes_B V_A(B)$, and $B\subseteq C$.

(2) Let $\{\overline{Y}\}$ be the set of all G-invariant intermediate rings of $A/V_A(B)$,
and \{Y\} the set of all intermediate rings of \(B/B'\). Then \(Y\rightarrow \bar{Y}\cap B\) and \(Y\rightarrow V_{\alpha}(B)Y=V_{\alpha}(B)\otimes_{B'}Y\) are mutually converse order isomorphisms between \{\bar{Y}\} and \{Y\}.

(3) \(A/V_{\alpha}(B)\) is separable if and only if \(B\) is a separable \(B'\)-algebra.

Proof. If remains to prove (3). If \(B/B'\) is separable, then \(A/B'\) is separable, because both \(A/B\) and \(B/B'\) are separable (Lemma 2.7). Hence \(A/V_{\alpha}(B)\) is separable. Conversely, assume that \(A/V_{\alpha}(B)\) is separable. Then, since both \(A/V_{\alpha}(B)\) and \(V_{\alpha}(B)/B'\) are separable, or equivalently, \(A\) is a separable \(B'\)-algebra (Lemma 2.7). Since \(A=B\otimes_{B'}V_{\alpha}(B)\), by [2; Prop. 1.7 and its Remark], \(B\) is a separable \(B'\)-algebra.

Remark. The above corollary contains Kanzaki [8; Th. 5].

Let \(A\), \(A'\) be \(R\)-algebras over a commutative ring \(R\) such that \(A\otimes_{R}A'\neq 0\). Assume that \(A/B\) is a \(G\)-Galois extension such that \(R\cdot 1\subseteq B\) and \(B_{B}\) is a direct summand of \(A_{B}\), and assume that \(A'/B'\) is a \(G'\)-Galois extension such that \(R\cdot 1\subseteq B'\) and \(B'_{B'}\) is a direct summand of \(A'_{B'}\). Let \((a_{t}, a_{t}')\); \(i=1, \cdots, n\) and \((d_{j}, d_{j}')\); \(j=1, \cdots, m\) be a \(G\)-Galois coordinate system for \(A/B\) and a \(G'\)-Galois coordinate system for \(A'/B'\), respectively. For any \(\sigma\times\tau\) in \(G\times G'\), we can define \(\sigma\times\tau\cdot\sum_{j}x_{j}\otimes y_{j} = \sum_{j}x_{j}\otimes\tau(y_{j})\) \((x_{j}\in A, y_{j}\in A')\). Then, since \(\sum_{i,j}(a_{i}\otimes d_{j})\cdot(\sigma\times\tau)(a_{i}'\otimes d_{j}') = (\sum_{i}a_{i}\cdot\sigma(a_{i}'))\otimes(\sum_{j}d_{j}\cdot\tau(d_{j}'))\), \((A\otimes_{R}A')/(A\otimes A')^{G\times G'}\) is a \(G\times G'\)-Galois extension. Now, let \(H\) and \(H'\) be subgroups of \(G\) and \(G'\), respectively. Then, by assumption, there are elements \(c, c'\) in \(A\) and \(A'\), respectively such that \(\sum_{i\in H}\sigma(c)=1\) and \(\sum_{e\in H'}\tau(c')=1\). If \(\sum_{k}x_{k}\otimes y_{k}\) is in \((A\otimes A')^{H\times H'}\), then \(\sum_{k}x_{k}\otimes y_{k} = (\sum_{e\in H}\sigma(c))\otimes(\sum_{e\in H'}\tau(c'))\cdot\sum_{k}x_{k}\otimes y_{k} = \sum_{k}\sum_{e\in H}\sigma(c)\otimes\tau(c')\cdot(\sigma\times\tau)(\sum_{k}x_{k}\otimes y_{k}) = \sum_{k}(\sum_{e\in H}\sigma(c)\otimes(\sum_{e\in H'}\tau(c')y_{k})\in A\otimes A'.\) Hence, \((A\otimes A')^{H\times H'}=A\otimes A'.\) Thus, we have the following:

Theorem 5.2. Let \(A\) and \(A'\) be algebras over a commutative ring \(R\) such that \(A\otimes_{R}A'\neq 0\). If \(A/B\) is a \(G\)-Galois extension such that \(R\cdot 1\subseteq B\) and \(B_{B}\) is a direct summand of \(A_{B}\), and \(A'/B'\) a \(G'\)-Galois extension such that \(R\cdot 1\subseteq B'\) and \(B'_{B'}\) a direct summand of \(A'_{B'}\), then \((A\otimes_{R}A')/(B\otimes B')\) is a \(G\times G'\)-Galois extension, and \((A\otimes A')^{H\times H'}=A\otimes A'\) for any subgroup \(H\) of \(G\) and any subgroup \(H'\) of \(G'\) (cf. [2; Th. A. 8]).

Corollary. Let \(A/B\) be a \(G\)-Galois extension such that \(B\subseteq C\). If \(A'\) is a \(B\)-algebra, then \((A'\otimes_{R}A)/(A'\otimes 1)\) is a \(G\)-Galois extension, and \((A'\otimes A)^{H}=A'\otimes A^{H}\) for any subgroup \(H\) of \(G\).

Proposition 5.3. Let \(A/B\) be a \(G\)-Galois extension. If \(H, K\) are subgroups of \(G\), and \(A^{H\cap K}\) is an \(A^{H\cap K}\)-left direct summand of \(A\), then \(A^{H\cap K}=A^{K}\cdot A^{H}\).

Proof. By assumption, there is an element \(c\) in \(A\) such that \(t_{H\cap K}(c)=1\).
Evidently, \(A^{H \cap K} \supseteq A^{H} \cdot A^{K} \). Let \(\{a_i, a_i^*\}; i = 1, \cdots, n \) be a \(G \)-Galois coordinate system for \(A/B \). If \(x \) is in \(A^{H \cap K} \), then \(A^{H} \cdot A^{K} \supseteq \sum_{i} t_{i}(a_{i}) t_{i}(a_{i}^* cx) \) is a summand of \(A^{H} \cdot A^{K} \). Therefore we have \(A^{H \cap K} = A^{H} \cdot A^{K} \).

Corollary. Let \(A/B \) be a \(G \)-Galois extension. If \(H \) and \(K \) are subgroups of \(G \) such that \(H \cap K = \{1\} \), then \(A = A^{H} \cdot A^{K} = A^{K} \cdot A^{H} \).

Theorem 5.4. Let \(A/B \) be a \(G \)-Galois extension, and \(B \) a direct summand of \(A \). If \(G = KH \) and \(K \cap H = \{1\} \) for a normal subgroup \(K \) and a subgroup \(H \), then there hold the following:

1. \(A = A^{K} \otimes_{B} A^{H} = A^{H} \otimes_{B} A^{K} \).
2. \(A^{K}/B \) is an \(H \)-Galois extension.
3. For any subgroup \(H_{0} \) of \(H \) and any subgroup \(K_{0} \) of \(K \) such that \(N(K_{0}) \supseteq H \) (where \(N(K_{0}) \) means the normalizer of \(K_{0} \) in \(G \)), \(A^{K_{0}H_{0}} = A^{K_{0}B} \otimes_{B} A^{K_{0}H} \) and \(A^{K_{0}H_{0}} \) is an \(H \)-Galois extension.

Proof. Let \(\{a_{i}, a_{i}^{*}\}; i = 1, \cdots, n \) be a \(G \)-Galois coordinate system for \(A/B \). Since \(B \) is a direct summand of \(A \), there is an element \(c \) in \(A \) such that \(t_{c}(c) = 1 \). Put \(t_{c} = t_{K}(a_{c}) \), \(t_{c}^{*} = t_{K}(a_{c}^{*}) \), and \(d = t_{K}(c) \). Then, \(B = A^{K} \otimes_{B} A^{H} \) is an \(H \)-Galois extension. By Th. 5.1, \(A^{H} \otimes_{B} A^{K} \) is a summand of \(A \). If \(H_{0} \) is a subgroup of \(H \), then \(A^{K_{0}H_{0}} \supseteq A^{K_{0}H} \cdot A^{KH_{0}} \). Hence, by Th. 5.1, \(A^{K_{0}H_{0}} = A^{K_{0}B} \otimes_{B} A^{K_{0}H} \) and \(A^{K_{0}H_{0}} \) is an \(H \)-Galois extension.

Corollary. Let \(A/B \) be a \(G \)-Galois extension, \(B \) a direct summand of \(A \), and \(G = N_{1} \times \cdots \times N_{r} \). If \(H_{i} = N_{i} \times \cdots \times N_{i} \times N_{i} \times \cdots \times N_{r} \) (\(i = 1, \cdots, r \)), then \(A^{H_{i}B} = A^{H_{i}H} \cdot A^{KH_{i}} \cdot A^{K_{0}H_{0}} \cdot A^{KH_{0}} \cdot A^{K_{0}H_{0}} \) for each subgroup \(K_{i} \) of \(N_{i} \).

Proposition 5.5. Let \(A/B \) be outer \(G \)-Galois. \(B \) a direct summand of \(A \), and \(A \) directly indecomposable. Let \(T \) and \(T' \) be intermediate rings of \(A/B \) such that \(A = T \otimes_{B} T' \). If \(H = \{\sigma \in G; \delta|T = 1_{T}\} \) and \(H' = \{\sigma \in G; \sigma|T' = 1_{T'}\} \), then \(T = A^{H} \) and \(T' = A^{H'} \).

Proof. Since \(T \otimes_{B} T' = A \), we have \(\tau T \otimes_{B} A^{A} \equiv \tau A \otimes_{T} A_{A} \). Since \(A/T' \) is a separable extension, \(A \) is \((B, T)\)-projective. Hence, by Th. 2.6, \(T = A^{H} \). Symmetrically we have \(T' = A^{H'} \).

Let \(A/B \) be a \(G \)-Galois extension, \(B \) a direct summand of \(A \), and \(\mathfrak{A} \) a \(G \)-invariant proper ideal of \(A \). Let \(\{a_{i}, a_{i}^{*}\}; i = 1, \cdots, n \} \) be a \(G \)-Galois coordinate system for \(A/B \). For any \(x \) in \(A \) we denote \(x + \mathfrak{A} \) (\(\in A/\mathfrak{A} \)) by \(\overline{x} \). If we define \(\sigma(\overline{x}) = \sigma(\overline{x}) \), then \(\sum_{i} a_{i} \cdot \sigma(a_{i}^{*}) = \delta_{i, \sigma} \) for \(\sigma \in G \), and therefore
If \mathfrak{A} is a G-Galois extension. By assumption, for any subgroup H of G there is an element c in A such that $t_H(c) = 1$. If \bar{x} is in $(A/\mathfrak{A})^H$, then $\bar{x} = \bar{x} \sum_{e \in H} \tau(e) = \sum_{e \in H} \tau(\bar{x}e) = t_H(xc) \in (A^H + \mathfrak{A})/\mathfrak{A}$. Thus, we prove the following:

Theorem 5.6. Let A/B be a G-Galois extension, B_B a direct summand of A_B, and \mathfrak{A} a G-invariant proper ideal of A. Then $(A/\mathfrak{A})/(B + \mathfrak{A})/\mathfrak{A}$ is a G-Galois extension, and $(A/\mathfrak{A})^H = (A^H + \mathfrak{A})/\mathfrak{A}$ for any subgroup H of G.

Corollary. Let A/B be a G-Galois extension, and B_B a direct summand of A_B. If B contains a non-zero central idempotent e of A, then Ae/Be is a G-Galois extension, and $(Ae)^H = A^H \cdot e$ for any subgroup H of G.

Proposition 5.7. Let A/B be a G-Galois extension. If N is a normal subgroup of G such that A^N is an A^N-right direct summand of A, then A^N/B is a G/N-Galois extension.

Proof. Let $\{(a_i, a_i^*) ; i = 1, \cdots, n\}$ be a G-Galois coordinate system for A/B. By assumption, there is an element c of A such that $t_N(c) = 1$. If we put $t_N(a_i) = t_i$ and $t_N(a_i^* e) = t_i^*$, then t_i and t_i^* are A^N, and $\sum_i t_i \sigma(t_i^*) = \delta_{N, \sigma}$ for all σ in G. Hence, A^N/B is a G/N-Galois extension (Prop. 2.2).

Let A/B be a G-Galois extension, and m a natural number. Then, every σ in G induces a ring automorphism in the $m \times m$ complete matrix ring $(A)_m$. Accordingly, G may be regarded as a finite group of automorphisms of $(A)_m$ such that $((A)_m)^G = (B)_m$. Let E be the identity of $(A)_m$, and let $\{(a_i, a_i^*) ; i = 1, \cdots, n\}$ be a G-Galois coordinate system for A/B. Then $\sum_i a_i E \cdot \sigma(a_i^* E) = \delta_{1, \sigma}$ for all σ in G. Thus $(A)_m/(B)_m$ is a G-Galois extension. (Remark. This may be considered as a special case of Th. 5.2).

Theorem 5.8. Let A/B be a G-Galois extension, and $\{e_{ij} ; i, j = 1, \cdots, m\}$ a system of matrix units contained in B. If $A_0 = \bigvee_A \{e_{ij}\}$, then A_0/A_0^G is a G-Galois extension, and $B = \sum_{i, j} A_0^G e_{ij}$.

Proof. Obviously, G induces an automorphism group of A_0 and $B = \sum_{i, j} A_0^G e_{ij}$. Let $\{(A_i, A_i^*) ; i = 1, \cdots, n\}$ be a G-Galois coordinate system for A/B. Let $A_i = \sum_{j, k} a_{ijk} e_{jk}$, $A_i^* = \sum_{j, k} d_{ijk} e_{jk}$ $(a_{ijk}, d_{ijk} \in A_i)$. Then, $\sigma(A_i^*) = \sum_{j, k} \sigma(d_{ijk}) e_{jk}$ and therefore $\sum_{i, k} a_{ik} \cdot \sigma(d_{ik}) = \delta_{1, \sigma}$ for σ in G. Thus A_0/A_0^G is a G-Galois extension.

§ 6. Completely outer case.

Let R be a ring. If non-zero R-left modules M and N have no non-zero isomorphic subquotients, we say that $R M$ and $R N$ are unrelated.

Proposition 6.1. Let M be a non-zero R-left module, and $M = M_1 \oplus \cdots \oplus M_s$ with non-zero R-submodules M_i's of M.

1. If M_i's are unrelated to each other, then each M_i is $\text{End}_R(M)$-
admissible and $X=\sum_{i}(X\cap M_{i})$ for every submodule X of κM.

(2) If $X=\sum_{i}(X\cap M_{i})$ for every submodule X of κM, then M_{i}'s are unrelated to each other.

Proof. (1) will be rather familiar. We shall prove here (2). To our end, it suffices to prove that if $M=M_{1}\oplus M_{2}$ and $X=(X\cap M_{1})+(X\cap M_{2})$ for every submodule X of κM then M_{1} and M_{2} are unrelated. Let M_{i}/N_{i} and M_{j}/N_{j} be non-zero subquotients of M_{1} and M_{2}, respectively. If there exists an R-isomorphism $\alpha; M_{i}/N_{i}\cong M_{j}/N_{j}$, we can define an R-homomorphism $\varphi; M_{i}\oplus M_{j}\rightarrow M_{j}/N_{j}$ by the following rule: $(m_{i}+m_{j})\varphi=(m_{i}+N_{i})\alpha+(m_{j}+N_{j})$. Then, our assumption yields $\text{Ker}\varphi=(M_{i}\cap\text{Ker}\varphi)+(M_{j}\cap\text{Ker}\varphi)$, and so $(M_{i}+M_{j})\varphi=M_{i}\varphi\oplus M_{j}\varphi=M_{i}/N_{i}\oplus M_{j}/N_{j}$, which is a contradiction.

G is said to be completely outer, if each A-A-modules Au_{σ}, Au_{τ} ($\sigma\neq\tau$) are unrelated.

To be easily seen, Au_{σ} and Au_{τ} ($\sigma, \tau\in G$) are A-A-isomorphic if and only if σ^{-1} is an inner automorphism of A, and every A-A-submodule of Au_{σ} is written as $\mathfrak{A}u_{\sigma}$ with some ideal \mathfrak{A} of A. Therefore, if G is completely outer, then G contains no inner automorphism of A, and in case A is two-sided simple, the converse is true. Now, for σ in G we set $J_{\sigma}={a\in A; \sigma(x)a=ax}$ for all x in A. Then each J_{σ} is a C-submodule of A, and $J_{1}=C$. In his paper [9], T. Kanzaki proved the following: Let A/B be a G-Galois extension. Then $V_{A}(B)=\sum_{\sigma}J_{\sigma}$. Therefore, if A/B is G-Galois, then $V_{A}(B)=C$ if and only if $J_{\sigma}=0$ for all σ in G such that $\sigma\neq1$.

Proposition 6.2. $J_{\sigma}=0$ if and only if $\text{Hom}(A_{u_{\sigma}}, A_{A})=0$.

Proof. Assume $J_{\sigma}=0$. If f is in $\text{Hom}(A_{u_{\tau}}, A_{A})$, then $\sigma(x):f(u_{\sigma})=f(\sigma(x)u_{\sigma})=f(u_{\sigma})x$ for x in A. Hence $f(u_{\sigma})=0$, and so $f=0$. Conversely, assume that $\text{Hom}(A_{u_{\sigma}}, A_{A})=0$. If a is in J_{σ}, then we can easily see that the mapping $xu_{\tau}\rightarrow xa$ $(x\in A)$ is an A-A-homomorphism from Au_{σ} to A. Hence, by assumption, $a=0$.

Prop. 6.2 together with Kanzaki’s result cited above yields at once the following:

Proposition 6.3. If A/B is a G-Galois extension, then the following are equivalent. (i) $V_{A}(B)=C$. (ii) $\text{Hom}(A_{u_{\sigma}}, A_{A})=0$ for every $\sigma\neq1$ in G.

The following proposition will play a fundamental role in our study.

Proposition 6.4. If G is completely outer, then A/B is a G-Galois extension and $V_{A}(B)=C$.

Proof. At first, $V_{A}(B)=C$ is evident by Prop. 6.3. Since $u_{1}\in A(\sum_{*}u_{\tau})A$ (Prop. 6.1.), there are elements a_{i}, a_{i}^{*} $(i=1, \cdots, n)$ in A such that $u_{1}=$
\[\sum_{t}a_{t}(\sum_{u_{t}}a_{t}^{*})a_{t}^{*} = \sum_{\sigma}(\sum_{t}a_{t}^{*}\sigma(a_{t}^{*}))u_{t}. \] Hence \[\sum_{t}a_{t}^{*}\sigma(a_{t}^{*}) = \delta_{1,\sigma} \] for \(\sigma \) in \(G \).

Corollary. If \(A \) is two-sided simple, then the following conditions are equivalent: (i) \(G \) is completely outer. (ii) \(G \) contains no inner automorphisms. (iii) \(A/B \) is an outer \(G \)-Galois extension.

Proposition 6.5. If there are elements \(a, a' \) \((i=1, \cdots, n)\) in \(A \) such that \(\sum_{t}a_{t}x=\sigma(a't)\) for each \(x \) in \(A \) \((\sigma \in G)\), then \(G \) is completely outer.

Proof. Let \(X \) be any \(A \)-module of \(A \). If \(\sum_{t}a_{t}x_{u} \) is in \(X \), then \(X \ni \sum_{t}a_{t}(\sum_{x}x_{u})\tau^{-1}(a_{t}) = x_{u} \) for each \(\tau \) in \(G \). Hence, by Prop. 6.1, \(G \) is completely outer.

Combining Prop. 6.4 with Prop. 6.5, we readily obtain the following:

Theorem 6.6. Let \(A \) be a commutative ring. If \(A/B \) is \(G \)-Galois, then \(G \) is completely outer, and conversely.

Proposition 6.7. Let \(A/B \) be a \(G \)-Galois extension, \(H \) a subgroup of \(G \), and \(a \) an element of \(A \). If \(\sigma \in G \) is not contained in \(H \), and \(ax = a\cdot\sigma_{0}(x) \) for all \(x \) in \(A^{u} \), then \(a = 0 \).

Proof. There are elements \(t_{1}, \cdots, t_{n} \in A^{u} \) and \(a_{1}^{*}, \cdots, a_{n}^{*} \in A \) such that \(\sum_{t}t_{i}\cdot\sigma(a_{i}^{*}) = \delta_{1,\sigma} \) for any \(\sigma \) in \(G \) (Prop. 2.2). Hence, \[a = a\sum_{i}t_{i}a_{i}^{*} = \sum_{i}a\cdot\sigma_{0}(t_{i})a_{i}^{*} = \sigma_{0}(a^{-1}(a))\sum_{i}t_{i}\cdot\sigma_{0}^{-1}(a_{i}^{*}) = 0. \]

Lemma 6.8. Let \(S \) be a subring of a ring \(R \). If \(R/S \) is finitely generated and projective, then \(\text{End}(R/S) \) is an \(\text{End}(R/S) \)-left direct summand of \(\text{End}(R) \), where \(\text{End}(R/S) \) and \(\text{End}(R) \) act on the left side.

Proof. As is well known, there are elements \(a_{i} \in R, f_{i} \in \text{Hom}(R/S, S) \) \((i=1, \cdots, n)\) such that \(\sum_{i}a_{i}f_{i}(x) = x \) for every \(x \) in \(R \) (cf. [3]). If \(g \) is in \(\text{End}(R) \), then \(\sum_{i}g(a_{i})f_{i} \) is in \(\text{End}(R/S) \), and so the mapping \(g \rightarrow \sum_{i}g(a_{i})f_{i} \) is an \(\text{End}(R/S) \)-left homomorphism from \(\text{End}(R) \) to \(\text{End}(R/S) \). To be easily seen, if \(g \) is in \(\text{End}(R/S) \) then \(\sum_{i}g(a_{i})f_{i} = g \). This implies that \(\text{End}(R/S) \) is an \(\text{End}(R/S) \)-left direct summand of \(\text{End}(R) \).

Let \(T \) be an intermediate ring of \(A/B \). \(G/T \) is said to be \(* \)-strongly distinct if, for any non-zero idempotent \(e \) in \(A \) such that \(eA \subseteq Ae \) and any distinct \(\sigma, \tau \) in \(G \), there is at least an element \(x \) in \(T \) such that \(e\cdot\sigma(x) \neq e\cdot\tau(x) \). If \(A/B \) is a \(G \)-Galois extension, then \(G/A^{u} \) is \(* \)-strongly distinct for any subgroup \(H \) of \(G \) (Prop. 6.7).

Theorem 6.9. Let \(G \) be completely outer, \(B_{n} \) a direct summand of \(A_{n} \), and \(T \) an intermediate ring of \(A/B \). Then the following conditions are equivalent.

(i) \(T = A^{u} \) for some subgroup \(H \) of \(G \).

(ii) \(A^{u} \) is finitely generated and projective, and \(T/_{T} \) is a direct summand
of A_T, and $G|T$ is*-strongly distinct.

\textbf{Proof.} Since A/A^H is H-Galois, it remains to prove (ii) \Rightarrow (i). If we put $\mathcal{A}_0 = \text{End}(A_T)$, then \mathcal{A}_0 is a subring of \mathcal{A}. Since \mathcal{A}_0 is an A-A-submodule of \mathcal{A}, $\mathcal{A}_0 = \sum \mathfrak{A}_\sigma u_\sigma$ with some ideals \mathfrak{A}_σ of A. By Lemma 6.8, \mathcal{A}_0 is a direct summand of \mathcal{A}, so that each $\mathfrak{A}_\sigma u_\sigma$ is a direct summand of \mathcal{A}. Therefore each $\mathfrak{A}_\sigma u_\sigma$ is a direct summand of $A_T u_\sigma$. Hence \mathfrak{A}_σ is a direct summand of \mathcal{A}. Let $\mathfrak{A}_\sigma = A e_\sigma$ with an idempotent e_σ in A. Then, since $e_\sigma u_\sigma$ is in \mathcal{A}_0, $e_\sigma \sigma(x y) = e_\sigma \sigma(x) y$ for each x in A and y in T; in particular, $e_\sigma \sigma(y) = e_\sigma y$ for each y in T. Therefore, if we set $H = \{ \sigma \in G; \sigma|T = 1_T \}$, then $e_\sigma = 0$ for σ not contained in H. Evidently $\mathfrak{A}_\sigma = A$ for each σ in H. We obtain therefore $\mathcal{A}_0 = \sum e H \oplus A u_\sigma$, and hence $\text{End}(A) = (A^H)_T$. On the other hand, since T_T is a direct summand of A_T, $\text{End}(A) = T_T$ (cf. [1]). Hence we obtain $T = A^H$.

Now, if A is a semi-prime ring (i.e., A has no nilpotent ideals) and e is an idempotent in A such that $eA \subseteq Ae$, then $eA = Ae$ so that e is a central idempotent in A. Noting this fact, Th. 6.9 yields at once the following:

\textbf{Theorem 6.10.} Let A be a semi-prime ring. If G is completely outer, B a direct summand of A_B, and T an intermediate ring of $A|B$, then the following conditions are equivalent:

(i) $T = A^H$ for some subgroup H of G.

(ii) A_T is finitely generated and projective, and T_T is a direct summand of A_T, $G|T$ is strongly distinct.

\textbf{Proposition 6.11.} The following are equivalent:

(i) G is completely outer.

(ii) For any x, y in A and any σ in G such that $\sigma \neq 1$, there are elements a_i, a'_i $(i = 1, \ldots, n)$ in A such that $\sum_i a_i \cdot x a'_i = x$ and $\sum_i a_i y \cdot \sigma(a'_i) = 0$.

\textbf{Proof.} (i) \Rightarrow (ii) Let x, y be in A, and σ any element of G such that $\sigma \neq 1$. We set $X = A (x u_1 + y u_2) A$, which is an A-A-submodule of $Au_1 + Au_2$. By Prop. 6.1, $x u_1 \in A$, and hence there are elements a_i, a'_i $(i = 1, \ldots, n)$ in A such that $\sum_i a_i (x u_1 + y u_2) a'_i = x u_1$. Then, $\sum_i a_i x a'_i = x$ and $\sum_i a_i y \cdot \sigma(a'_i) = 0$.

(ii) \Rightarrow (i) Let σ, τ be distinct elements in G, and X any A-A-submodule of $Au_1 + Au_2$. Let $x u_1 + y u_2$ be any element of X. For $\sigma^{-1}(x)$ and $\sigma^{-1}(y)$, there are elements a_i, a'_i $(i = 1, \ldots, n)$ in A such that $\sum_i a_i \cdot x^{-1}(a'_i) = \sigma^{-1}(x)$ and $\sum_i a_i \cdot x^{-1}(y) \cdot \tau(a'_i) = 0$. Then, $\sum_i \sigma(a_i) \cdot x \cdot \sigma(a'_i) = x$ and $\sum_i \sigma(a_i) \cdot y \cdot \tau(a'_i) = 0$, and so $x \in \sum_i \sigma(a_i) (x u_1 + y u_2) a'_i = x u_1$. Thus, by Prop. 6.1, Au_1 and Au_2 are unrelated.

\textbf{Theorem 6.12.} Let G be completely outer, and N a proper normal subgroup of G such that A^N is an A^N-right direct summand of A. Then,
G/N is completely outer as an automorphism group of A^N.

Proof. Let x, y be in A^N. Since $xu_1 \in A(\sum_{i \in \mathcal{N}} xu_1 + \sum_{i \in \mathbb{N}} yu_1) A$ (Prop. 6.1), there are elements x_i, y_i ($i = 1, \ldots, n$) in A such that $\sum_i x_i (\sum_{\mathcal{N}} xu_1 + \sum_{\mathbb{N}} yu_1) y_i = xu_1$. Then $\sum_i x_i \cdot \tau(y_i) = \delta_1, x \ (\tau \in \mathcal{N})$ and $\sum_i x_i \cdot \sigma(y_i) = 0 \ (\sigma \in G \setminus N)$. By assumption, there is an element c in A such that $t_N(c) = 1$. We set $t_N(x_i) = x_i'$ and $t_N(y_i) = y_i'$, then $x_i', y_i' (i = 1, \ldots, n)$ are in A^N. To be easily seen, $\sum_i x_i' y_i' = x$ and $\sum_i x_i' \rho(y_i') = 0$ for any $\rho \in G \setminus N$. Thus, by Prop. 6.11, G/N is completely outer as an automorphism group of A^N.

§ 7. Several results.

The following lemma is well known.

Lemma 7.1. Let S be a subring of a ring R. If S_s is a direct summand of R_s, then $R \cap S = 1$ for any left ideal 1 of S.

Lemma 7.2. Let S be a subring of a ring R such that S_s is a direct summand of R_s and s_R is finitely generated. If R satisfies the minimal condition (resp. the maximal condition) for left ideals, then so does S, and conversely.

Proof. If R satisfies the minimal condition (resp. the maximal condition) for left ideals, then so does S (Lemma 7.1). Conversely, if S satisfies the minimal condition (resp. the maximal condition) for left ideals then s_R satisfies the minimal condition (resp. the maximal condition) for S-left submodules, so that R satisfies the minimal condition (resp. the maximal condition) for left ideals.

A ring R is called a semi-primary ring if $R/\Re(R)$ satisfies the minimal condition for left ideals, where $\Re(R)$ means the Jacobson radical of R. If R is semi-primary, then $(R)_n$ and eRe are semi-primary rings, where n is a natural number and e is a non-zero idempotent in R (cf. [7]). Therefore, in case R is semi-primary, if an R-right module M is finitely generated and projective then $\text{End}(M_R)$ is semi-primary. As to notations and terminologies used in below, we follows [11].

Proposition 7.3. (1) Let R be a semi-primary ring, and S a subring of R. If S_S is a direct summand of R_S, then S is a semi-primary ring.

(2) Let R be a ring, and S a subring of R such that R_S is finitely generated and projective. If S is semi-primary, then so is R.

Proof. (1) Let $\{I_i; i = 1, \ldots, n\}$ be a d-independent set of maximal left ideals of S (cf. [11]). Then, $\{RI_i; i = 1, \ldots, n\}$ is a d-independent set of proper left ideals of R (Lemma 7.1). Since each RI_i is contained in a maximal left ideals of R, $n \leq \text{max-dim}_R R =$ d-dim R (cf. [11]). Thus d-dim $S \leq$ d-dim $R < S_0$, and hence S is semi-primary ([11; Prop. 5.14]. (2) Since S
is semi-primary, \(\text{End}(R_S) \) is semi-primary. By Lemma 6.8, \(R_I R_I \) (the set of all left multiplications by elements of \(R \)) is a direct summand of \(R, \text{End}(R_S) \). Hence, by (1), \(R(\cong R_I) \) is semi-primary.

Remark. Let \(A/B \) be a \(G \)-Galois extension, and \(B_B \) a direct summand of \(A_B \). If \(A \) is a semi-primary ring, then so is \(B \), and conversely (cf. Th. 1.7).

Let \(R \) be a ring, and \(S \) a subring of \(R \). \(R/S \) is called a free Frobenius extension if \(R_S \) is finitely generated and free and \(s R_R \cong s \text{Hom}(R_S, S_R) \) (Kasch [10]).

Lemma 7.4. Let \(R/S \) be a free Frobenius extension.

1. \(\text{End}(R_S)/R_I \) is a free Frobenius extension.
2. If \(R_R \) is injective, then so is \(S_S \), and conversely.

Proof. (1) and the if part of (2) are given in [10]. Assume that \(R_R \) is injective. By (1) and the if part, we can easily see that \(\text{End}(R_S) \) is \(\text{End}(R_S) \)-right injective. Let \(R_S \cong S_S^m \). Then, \(\text{End}(R_S) \cong (S)_m \), and hence we readily see that \(S_S \) is injective (cf. [11]).

Proposition 7.5. Let \(R \) be a ring, and \(S \) a subring of \(R \). If \(S_S \) is a direct summand of \(R_S \), then \(\Re(R) \cap S \subseteq \Re(S) \).

Proof. If \(\Re(R) \cap S \not\subseteq \Re(S) \), then \(\Re(R) \cap S + 1 = S \) for some maximal left ideal \(I \) of \(S \). Since \(R(\Re(R) \cap S) + Rl = R \) and \(R(\Re(R) \cap S) \subseteq \Re(R) \), we have \(Rl = R \). If follows then a contradiction \(1 = Rl \cap S = S \) (Lemma 7.1).

Proposition 7.6. The set of all maximal \(\Delta \)-submodules of \(A \) coincides with \(\{ \cap \sigma(\mathfrak{P}) \mid \mathfrak{P} \text{ ranges over all maximal ideals of } A \} \).

Proof. Let \(X \) be a maximal \(\Delta \)-submodule of \(A \). Take a maximal ideal \(\mathfrak{P}_1 \) such that \(\mathfrak{P}_1 \supseteq X \). Then, \(\cap \sigma(\mathfrak{P}_1) \supseteq X \), and so \(\cap \sigma(\mathfrak{P}_1) = X \). Now, let \(\mathfrak{P} \) be a maximal ideal of \(A \), and \(Y \) a maximal \(\Delta \)-submodule of \(A \) such that \(Y \supseteq \cap \sigma(\mathfrak{P}) \). Then \(Y = \cap \sigma(\mathfrak{P}_2) \) for some maximal ideal \(\mathfrak{P}_2 \) of \(A \). If \(\cap \sigma(\mathfrak{P}_2) \supseteq \cap \sigma(\mathfrak{P}) \), then \(\mathfrak{P} \not\supseteq \cap \sigma(\mathfrak{P}_2) \), and so \(\mathfrak{P} + \cap \sigma(\mathfrak{P}_2) = A \), whence it follows a contradiction \(\cap \sigma(\mathfrak{P}) + \cap \sigma(\mathfrak{P}_2) = A \).

Proposition 7.7. Let \(A/B \) be a \(G \)-Galois extension, and \(B_B \) a direct summand of \(A_B \). Let \(\{ \overline{X} \} \) be the set of all \(\Delta \)-submodules of \(A \) and \(\{ X \} \) be the set of all left ideals of \(B \). Then \(\overline{X} \to \overline{X} \cap B \) and \(X \to AX = A \otimes_B X \) are mutually converse order isomorphisms between \(\{ \overline{X} \} \) and \(\{ X \} \).

Proof. This is a special case of Th. 5.1 (2).

Proposition 7.8. Let \(A/B \) be a \(G \)-Galois extension, and \(B_B \) a direct summand of \(A_B \). If \(A \cdot \Re(B) \) is an ideal of \(A \), then \(\Re(A) = A \cdot \Re(B) \).

Proof. By Prop. 7.7 and Prop. 7.5, \(\Re(A) = A(\Re(A) \cap B) \subseteq A \cdot \Re(B) \).
Since A_{S} is finitely generated, $A \cdot \mathfrak{R}(B)$ is d-dense in A_{B}, and so d-dense in A_{A} (cf. [11]). Hence $A \cdot \mathfrak{R}(B) \subseteq \mathfrak{R}(A)$.

Theorem 7.9. Let A/B be a G-Galois extension such that $B \subseteq C$. If A' is a B-algebra, then $\mathfrak{R}(A' \otimes_{B} A) = \mathfrak{R}(A') \otimes A$.

Proof. By Cor. to Th. 5.2, $(A' \otimes_{B} A)/(A' \otimes 1)$ is a G-Galois extension. Since $(A' \otimes A) (\mathfrak{R}(A') \otimes 1) = \mathfrak{R}(A') \otimes A$ is an ideal of $A' \otimes A$, $\mathfrak{R}(A' \otimes A) = \mathfrak{R}(A') \otimes A$ by Prop. 7.8.

Now, assume that G is completely outer and B_{B} is a direct summand of A_{B}. If A is an A-A-submodule (resp. A-A-submodule) of A, then $A = \sum_{u} \mathfrak{U}$, for some ideals \mathfrak{U}, of A (resp. $A = \sum_{u} \mathfrak{U}$ for some ideal \mathfrak{U} of A), and conversely. In particular, if A is an ideal of A, then $A = A \mathfrak{U} = \mathfrak{U} \mathfrak{A}$ for some G-invariant ideal \mathfrak{U} of A, and conversely (cf. § 6 and [13]). Now, let $\{A\}$ be the set of all ideals of A, $\{a\}$ the set of all ideals of B, and $\{\mathfrak{U}\}$ the set of all G-invariant ideals of A. Then, there exists an order isomorphism $\mathfrak{U} \leftrightarrow a$ between $\{A\}$ and $\{a\}$ such that $A(A) = Aa$ (cf. [1; Prop. A. 5]). Consequently, there exists an order isomorphism $\mathfrak{U} \leftrightarrow A \leftrightarrow a$ between $\{\mathfrak{U}\}$ and $\{a\}$ (cf. Th. 5.1 (2)). Accordingly, if A is semi-prime, (prime, two-sided simple) then so is B. Since $A \cdot \mathfrak{R}(B) = \mathfrak{R}(B) \cdot A$ is an ideal of A, Prop. 7.8 implies $\mathfrak{R}(A) = A \cdot \mathfrak{R}(B) = \mathfrak{R}(B) \cdot A$. Next, we shall consider $R(A)$. There exists $\mathfrak{W} \in \{\mathfrak{W}\}$ such that $R(A) = \mathfrak{W} \cdot A = \mathfrak{A} \cdot A$. Since $\mathfrak{W} = \mathfrak{W} \cdot A \subseteq \mathfrak{R}(\mathfrak{W}) = \mathfrak{W} \cdot A$ by Prop. 7.5, we obtain $R(A) = \mathfrak{W} \cdot A = \mathfrak{W} \cdot R(A) = \mathfrak{W} \cdot R(A) \cdot A$. On the other hand, noting that Δ_{A} is finitely generated and $A \cdot R(A)$ is an ideal of A, we see that $A \cdot R(A) \subseteq R(A)$ (cf. the proof of Prop. 7.8). Hence, we have $R(A) = A \cdot R(A) = A \cdot R(A) \cdot A$. Since $R(A) = A \cdot R(B) = A \cdot R(B) \cdot A$, $R(A) \cap B = R(B)$, $R(A) = A \cdot R(B) = A \cdot R(B) \cdot A$, $R(A) \cap B = R(B)$, $R(A) = A \cdot R(A) = A \cdot R(A) \cdot A$, and $R(A) = A \cdot R(A) = A \cdot R(A) \cdot A$.

Theorem 7.10. If G is completely outer and B a direct summand of A_{B}, then $R(A) = A \cdot R(B) = R(B) \cdot A$, $R(A) \cap B = R(B)$, $R(A) = R \cdot R(B) = R \cdot R(B) \cdot A$, $R(A) \cap B = R(B)$, $R(A) = A \cdot R(A) = R(A) \cdot A$, and $R(A) = A \cdot R(A) = A \cdot R(A) \cdot A$.

Proposition 7.11. Let B be directly indecomposable, and let $A = \mathfrak{U}_{1} \oplus \cdots \oplus \mathfrak{U}_{s}$ be a direct sum of minimal ideals. If \mathfrak{U} is a minimal ideal of A, then $\{ \sigma(\mathfrak{U}); \sigma \in G \} = \{ \mathfrak{U}_{1}, \ldots, \mathfrak{U}_{s} \}$, and n divides $\langle G : 1 \rangle$. If \mathfrak{B} is a maximal ideal of A, $\{ \sigma(\mathfrak{B}); \sigma \in G \}$ coincides with the set of all maximal ideals of A. For any \mathfrak{U}_{i}, we set $\sum_{i} \sigma(\mathfrak{U}_{i}) = \mathfrak{B}$. Then, $\mathfrak{B} = A e$ with some non-zero
central idempotent e of A. Since $\sigma(\mathfrak{B})=\mathfrak{B}$ for all σ in G, $\sigma(e)=e$ for all σ in G, so that $e\in B$, which means $e=1$. Hence $\mathfrak{B}=A$, which implies that

$$\left\{ \sigma(\mathfrak{U}_{i}); \sigma \in G \right\} = \left\{ \mathfrak{U}_{1}, \cdots, \mathfrak{U}_{8} \right\}.$$

If we set $H = \left\{ \sigma \in G ; \sigma(\mathfrak{U}_{i})=\mathfrak{U}_{i} \right\}$, then $\#\left\{ \sigma(\mathfrak{U}_{i}); \sigma \in G \right\} = (G : H)$, which divides $(G : 1)$. Let \mathfrak{P} and \mathfrak{P}' be maximal ideals of A. Then $A=\mathfrak{U}\oplus \mathfrak{P}=\mathfrak{U}'\oplus \mathfrak{P}'$ with some minimal ideals $\mathfrak{U}, \mathfrak{U}'$ of A. There is an element σ in G such that $\sigma(\mathfrak{U})=\mathfrak{U}'$. Then $A=\mathfrak{U}'\oplus \sigma(\mathfrak{P})=\mathfrak{U}'\oplus \mathfrak{P}'$, so that $\sigma(\mathfrak{P})=\mathfrak{P}'$.

Corollary 1. Let G be completely outer, and B_{n} a direct summand of A_{n}. If B is a two-sided simple rings, then A is a direct sum of isomorphic two-sided simple rings, and the number of components divides $(G : 1)$.

Proof. Let \mathfrak{P} be a maximal ideal of A. Then $\cap_{\sigma}\sigma(\mathfrak{P})$ is a Δ-A-submodule of \mathfrak{U}. As we remarked above, A is Δ-A-simple, and so we have $\cap_{\sigma}\sigma(\mathfrak{P})=0$. Hence A is a direct sum of two-sided simple rings.

Corollary 2. Let A/B be a G-Galois extension, and B a division ring. Then A is a direct sum of isomorphic (Artinian) simple rings.

Proof. Let \mathfrak{P} be a maximal left ideal of A. Then $\cap_{\sigma}\sigma(\mathfrak{P})$ is a Δ-submodule of A. Since ΔA is simple (Prop. 7.7), $\cap_{\sigma}\sigma(\mathfrak{P})=0$. Hence, as is easily seen, ΔA is completely reducible, so that A is a direct sum of simple rings.

Let A/B be a G-Galois extension, A a commutative ring, and A' a B-algebra. Then, by Prop. 6.5 and Th. 5.2, $(A'\otimes_{B}A)/{(A'\otimes 1)}$ is G-Galois and G is completely outer (as an automorphism group of $A'\otimes A$). Further, if A' is two-sided simple, then $A'\otimes_{B}A$ is a direct sum of isomorphic two-sided simple rings (Cor. 1. to Prop. 7.11). Thus we have the following:

Theorem 7.12. Let A/B be a G-Galois extension, A commutative, and A' a B-algebra. If A' is two-sided simple, then $A'\otimes_{B}A$ is a direct sum of isomorphic two-sided simple rings, and the number of components devides $(G : 1)$.

References

Department of Mathematics,
Hokkaido University

(Received June 10, 1966)