FINITE OUTER GALOIS THEORY OF NON-COMMUTATIVE RINGS

By

Yôichi MIYASHITA

Contents

§ 0. Introduction. .. 114
§ 1. Galois extension and normal basis. 115
§ 2. The first characterization of fixed-subrings. 118
§ 3. The second characterization of fixed-subrings. 121
§ 4. Extension of isomorphisms. 122
§ 5. Heredity of Galois extensions. 123
§ 6. Completely outer case. 126
§ 7. Several results. ... 130

§ 0. Introduction. It is the purpose of this paper to extend the Galois theory of commutative rings given by S. U. Chase, D. K. Harrison and A. Rosenberg [4] to non-commutative case. In what follows, for the sake of simplicity, we shall state main results for directly indecomposable rings: Let \(A \ni 1 \) be a directly indecomposable ring, \(G \) a finite group of automorphisms of \(A \), and \(B = A^G = \{ x \in A ; \sigma(x) = x \text{ for all } \sigma \in G \} \). We call \(A/B \) a \(G \)-Galois extension if there are elements \(a_1, \cdots, a_n; a_1^*, \cdots, a_n^* \) in \(A \) such that \(\sum a_i \cdot \sigma(a_i^*) = \delta_{1,\sigma} \text{ (} \sigma \in G \text{)} \), where \(\delta_{1,\sigma} \) means Kronecker's delta. If \(V_A(B) = C \) (the center of \(A \)), then \(A/B \) is a \(G \)-Galois extension if and only if the mapping \(x \otimes y \rightarrow xy \) from \(A \otimes_A A \) to \(A \) splits as an \(A \)-\(A \)-homomorphism (Th. 1.5). Let \(A/B \) be a \(G \)-Galois extension, and \(A' \) a \(G \)-invariant subring of \(A \), i.e., \(\sigma(A') = A' \) for all \(\sigma \) in \(G \), and put \(B' = A'^G \). If \(A'/B' \) is a \(G \)-Galois extension and \(B''_B \) is a direct summand of \(A''_B \), then there hold the following: (1) For any subgroup \(H \) of \(G \), \(A''_H = B \otimes_B A'' = A'' \otimes_B B \). (2) Let \(\{ T \} \) be the set of all \(G \)-invariant intermediate rings of \(A/A' \), and \(\{ T \} \) the set of all intermediate rings of \(B/B' \) such that \(A'T = TA' \). Then, \(T \rightarrow T \cap B \) and \(T \rightarrow A'T = TA' \) are mutually converse order isomorphisms between \(\{ T \} \) and \(\{ T \} \), and \(T/(T \cap B) \) is a \(G \)-Galois extension (Th. 5.1).

Let \(A/B \) be a \(G \)-Galois extension, \(V_A(B) = C \), and \(B_B \) a direct summand of \(A_B \). Then there hold the following: (1) \(G \) coincides with the set of all \(B \)-automorphisms of \(A \) (Th. 4.2). (2) For any subgroup \(H \) of \(G \), \(\{ \sigma \in G ; \sigma|A'' = 1_{A''} \} = H \). (3) If \(T \) is an intermediate ring of \(A/B \), the following are
equivalent: (a) $T = A^H$ for some subgroup H of G. (b) The mapping $x \otimes y \rightarrow xy$ from $T \otimes_B A$ to A splits as a T-T-homomorphism (Th. 2.6). (c) A/T is a projective Frobenius extension (in the sense of Kasch), and T_T is a direct summand of A_T (Th. 3.2). In case $_B \Re(B)$ is a direct summand of $_BA_B$, the next is also equivalent to (a). (b') The mapping $x \otimes y \rightarrow xy$ from $T \otimes_B T$ to T splits as a T-T-homomorphism (Th. 2.9). (4) For any subgroup H of G, every B-isomorphism from A^H to A can be extended to a B-ring automorphism of A (Th. 4.2). (5) If A_B is finitely generated and free, and B is a semi-primary ring (i.e. $B/\Re(B)$ satisfies the minimum condition for left ideals, where $\Re(B)$ means the Jacobson radical of B), then A has a normal basis (Th. 1.7).

Let $\Delta = \Delta(A, G) = \sum_{\sigma \in \theta} Au_\sigma$ be the trivial crossed product of A with G. G is said to be completely outer if A^Δ and $A^\Delta u_\sigma$ have no isomorphic non-zero subquotients provided $\sigma \neq \tau$. If G is completely outer, then A/B is a G-Galois extension and $V_A(B) = C$ (Prop. 6.4). If A is commutative, then A/B is a G-Galois extension if and only if G is completely outer (Th. 6.6). In case A is two-sided simple, G is completely outer if and only if A/B is a G-Galois extension and $V_A(B) = C$ (Cor. to Prop. 6.4).

The author wishes to express his best thanks to Dr. H. Tominaga for helpful suggestions.

\section{Galois extension and normal basis.}

Throughout the present paper, all rings have identities, modules are unitary. A subring of a ring will mean one containing the same identity. By a ring homomorphism, we mean always a ring homomorphism such that the image of 1 is 1. Let A be a ring, C the center of A, G a finite group of automorphisms of A which acts on the left side, and $B = A^G = \{x \in A; \sigma(x) = x \text{ for all } \sigma \in G\}$. For any subgroup H of G, $\delta_{H, \sigma}$ means the mapping from G to $\{1, 0\}$ (\$A\$) such that $\delta_{H, \sigma} = 1$ if and only if $\sigma \in H$.

Let B' and T be subrings of a ring A' such that $B' \subseteq T$. A' is said to be (B', T)-projective, if the mapping $\sum_j x_j \otimes y_j \rightarrow \sum_j x_j y_j$ from $T \otimes_{B'} A'$ to A' splits as a T-T-homomorphism. As is easily seen, A' is (B', T)-projective if and only if there are elements $t_1, \cdots, t_n \in T$ and $a_1', \cdots, a_n' \in A'$ such that $\sum t_i a_i' = 1$ and $\sum i t_i \otimes a_i' = \sum t_i \otimes a_i' x (\in T \otimes_{B'} A')$ for all x in T. When this is the case, $\{(t_i, a_i') \}; i = 1, \cdots, n$ is called a (B', T)-projective coordinate system for A'. If A' is (B', A')-projective, then we call A'/B' a separable extension.

Let f and g be ring homomorphisms from a ring A' to a ring A''. f and g are called strongly distinct if, for any non-zero central idempotent e of A'', there is an element x in A' such that $f(x)e \neq g(x)e$. Let \emptyset be a set of
ring homomorphisms from A' to A''. \mathcal{S} is called \textit{strongly distinct} if any distinct f, g in \mathcal{S} are strongly distinct.

$A=\Delta(A, G)$ denotes the trivial crossed product of A with G: $A=\sum_{\sigma \in \mathcal{S}} A u_{\sigma}, \ u_{\sigma}u_{\tau}=u_{\sigma \tau} (\sigma, \tau \in G), \ u_{\sigma}x=\sigma(x)u_{\sigma} (x \in A)$. By j, we denote the ring homomorphism from Δ to $\text{Hom} (A_B, A_B)$ defined by $j(\xi u_{\sigma})(y)=x \cdot \sigma(y)$ for x, y in A and σ in G.

A/B is called a \textit{G-Galois extension} if there are elements a_1, \ldots, a_n; a_1^*, \ldots, a_n^* in A such that $\sum_i a_i \sigma(a_i^*)=\delta_{1, \sigma}$ for all σ in G. When this is the case, \{(a_i, a_i^*): $i=1, \ldots, n$\} is called a \textit{G-Galois coordinate system} for A/B. Then the following is known: A/B is a G-Galois extension if and only if A_B is finitely generated and projective and j is an onto homomorphism (cf. [6]). When this is the case we identify Δ with $\text{Hom} (A_B, A_B)$: $\Delta=A_G=AG$, where A_i means the set of all left multiplications by elements of A. If A/B is G-Galois and $C=V_A(B)$ (the centralizer of B in A), it is called \textit{outer G-Galois}. If A/B is G-Galois (resp. outer G-Galois) and H is a subgroup of G, then A/A^H is evidently H-Galois (resp. outer H-Galois).

\textbf{Proposition 1.1.} Let A' and A'' be rings, T a subring of A', f a ring homomorphism from T to A'', and g a ring homomorphism from A' to A''. If there are elements $t_1, \ldots, t_n \in T$ and $a_1, \ldots, a_n \in A'$ such that $\sum_i t_ia_i=1$ and $\sum_i f(t_i)g(a_i)=0$, then f and $g|T$ (the restriction of g to T) are strongly distinct.

\textit{Proof.} Let e be a central idempotent of A'' such that $f(x)e=g(x)e$ for all $x \in T$. Since $\sum_i t_ia_i=1$, we have $\sum_i g(t_i)g(a_i)=1$, and therefore $e=e1=\sum_i e\cdot g(t_i)g(a_i)=\sum_i e\cdot f(t_i)g(a_i)=0$. Thus, f and $g|T$ are strongly distinct.

\textbf{Proposition 1.2.} Let B' and T be subrings of a ring A' such that $B' \subseteq T$, and A'' an extension ring of B' such that $V_{A''}(B')=V_{A''}(A'')$, where $V_{A''}(B')$ means the centralizer of B' in A''. Let A' be (B', T)-projective, and \{$(t_i, a_i); i=1, \ldots, n$\} a (B', T)-projective coordinate system for A'. Let f be a B'-ring homomorphism from T to A'', g and g' B'-ring homomorphisms from A' to A''. We set $e=\sum_i f(t_i)g(a_i)$ and $e'=\sum_i f(t_i)g'(a_i)$. Then there hold the following:

(1) e is a central idempotent in A''.
(2) $f(x)e=g(x)e$ for all $x \in T$.
(3) $ee'=e \sum_i g(t_i)g'(a_i)$.
(4) f and $g'|T$ are strongly distinct if and only if $e=0$.
(5) If $g|T$ and $g'|T$ are strongly distinct, then $ee'=0$.

\textit{Proof.} Since $\sum_i x_t \otimes a_i = \sum_i t_i \otimes a_i x$ ($\in T \otimes_{B'} A'$) for all x in T, $\sum_i f(x_t) \otimes g(a_i) = \sum_i f(t_i) \otimes g(a_i x)$ ($\in A'' \otimes_{B'} A''$) for all x in T. Therefore,
Finite Outer Galois Theory of Non-Commutative Rings

\[f(x)e = e \cdot g(x) \] for all \(x \) in \(T \), in particular, \(ye = ey \) for all \(y \) in \(B' \). Hence, by assumption, \(e \) is contained in the center of \(A'' \). Since \(\sum_j f(t_j)(\sum_i f(t_i) \otimes g(a_i))g'(a_j) = (\sum_i f(t_i) \otimes g(a_i)) \sum_j g(t_j)g'(a_j) \), we obtain \(ee' = \sum_j f(t_j)e \cdot g'(a_j) = e \sum_j g(t_j)g'(a_j) \).

If we put \(g = g' \), then we have \(e^2 = e \), and so \(e \) is a central idempotent of \(A'' \) such that \(f(x)e = e \cdot g(x) \) for all \(x \) in \(T \). Therefore \(f \) and \(g \) are strongly distinct if and only if \(e = 0 \) (Prop. 1.1). Now, it is left only to prove (5). If \(g \) and \(g' \) are strongly distinct, then \(\sum_j g(t_j)g'(a_j) = 0 \) by (4), and so \(ee' = e \sum_j g(t_j)g'(a_j) = 0 \).

Evidently, the mapping \(x \otimes y \rightarrow x \sum \mu_x y \) from \(A \otimes_B A \) to \(A \) is an \(A \cdot A \)-homomorphism. We denote this homomorphism by \(h \). One may remark here that \(h \) is a \(A \cdot A \)-homomorphism. In fact, \(u, x \sum \mu_x y = \tau(x)u, \sum \mu_x y = \tau(x) \sum \mu_x y \).

Proposition 1.3. Let \(A/B \) be a \(G \)-Galois extension, and let \(\{(a_i, a_i^*); i = 1, \cdots, n\} \) be a \(G \)-Galois coordinate system for \(A/B \). Then \(h \) is a \(A \)-isomorphism, \(h^{-1}(\sum \sigma x \mu_x) = \sum \sigma \sum \sigma x \sigma(a_i) \otimes a_i^* \) for every \(\sum \sigma x \mu_x \) in \(A \), and \(\{(a_i, a_i^*); i = 1, \cdots, n\} \) is a \((B, A) \)-projective coordinate system for \(A \).

Proof. To be easily seen, \(h(\sum \sigma \sum \sigma x \sigma(a_i) \otimes a_i^*) = \sum \sigma x \mu_x \), and hence \(h \) is onto. Let \(x, y \) be in \(A \). Then \(\sum \sigma \sum \sigma x \sigma(y) \sigma(a_i) \otimes a_i^* = x \otimes \sum \sigma \sum \sigma(y) \sigma(a_i) a_i^* = x \otimes y \), whence we can easily see that \(h \) is \(1-1 \). Hence, \(h \) is a \(A \)-isomorphism. Since \(h(\sum \sigma a_i \otimes a_i^*) = u \), and \(h \) is an \(A \)-isomorphism, \(\sum \sigma a_i \otimes a_i^* = \sum \sigma a_i \otimes a_i^* x \) for any \(x \) in \(A \).

Proposition 1.4. Assume \(V_A(B) = C \) (the center of \(A \)), and let \(a_i, a_i^* \) (\(i = 1, \cdots, n \)) be elements of \(A \). Then the following conditions are equivalent:

(i) \(\{(a_i, a_i^*); i = 1, \cdots, n\} \) is a \(G \)-Galois coordinate system for \(A/B \). (ii) \(\{(a_i, a_i^*); i = 1, \cdots, n\} \) is \((B, A) \)-projective coordinate system for \(A/B \) and \(G \) is strongly distinct.

Proof. (i) \(\Rightarrow \) (ii) follows from Prop. 1.3 and Prop. 1.1. (ii) \(\Rightarrow \) (i) follows from Prop. 1.2 (4).

Restating the above proposition we obtain the following theorem.

Theorem 1.5. (Cf. [4; Th. 1.3].) Let \(V_A(B) = C \). Then following conditions are equivalent:

(i) \(A/B \) is a \(G \)-Galois extension.
(ii) \(A/B \) is a separable extension and \(G \) is strongly distinct.

Remark. To prove the part (i) \(\Rightarrow \) (ii) we do not need the condition \(V_A(B) = C \).

Proposition 1.6. (Cf. [4; Th. 4.2].) If \(A/B \) is a \(G \)-Galois extension and \(B \cong B^n \) for some natural number \(m \), then \(B \cong B^n \).

Proof. Let \(A = \sum \sigma Bi \) (\(i = 1, \cdots, n \)), and \(B \cong B^n \) by the correspondence
$y\rightarrow yd_i \ (y \in B)$. Then $A = \sum_i \oplus u_i A = \sum_i \oplus u_i B d_i = \sum_i \oplus (\sum_i u_i d_i)$ and $(\sum_i B d_i) d_i \cong \sum_i B d_i$ as $\sum_i B d_i$-left modules. Hence, $\mathfrak{m}_G A \cong _\mathfrak{m}BG^m$. On the other hand, $A \cong _A \otimes A \cong _A \otimes (B^m) \cong _A \Delta A^m$ (Prop. 1.3). We obtain therefore $\mathfrak{m}_G BG^m \cong _\mathfrak{m}BG^m$.

Theorem 1.7. Let A/B be a G-Galois extension and $_B A \cong _B A^m$ for some natural number m. If B is semi-primary (i.e., $B/\mathfrak{R}(B)$ satisfies the minimal condition for left ideals, where $\mathfrak{R}(B)$ means the Jacobson radical of B), then $\mathfrak{m}_G BG \cong _\mathfrak{m}BG^m$, that is, A has a normal basis.

Proof. By Prop. 1.6, $\mathfrak{m}_G BG^m \cong _\mathfrak{m}BG^m$. Since $\mathfrak{R}(B)G \cdot BG^m = \mathfrak{R}(B)G^m \hookrightarrow (\mathfrak{R}(B)A)^m$ under the above isomorphism, $(BG/\mathfrak{R}(B)G)^m \cong (A/\mathfrak{R}(B)A)^m$ as $BG/\mathfrak{R}(B)G$-left modules. Since $BG/\mathfrak{R}(B)G$ is $B/\mathfrak{R}(B)$-left finitely generated and B is semi-primary, $BG/\mathfrak{R}(B)G$ satisfies the minimal condition (and the maximal condition) for left ideals. Hence, by Krull-Remak-Schmidt's theorem, we have $BG/\mathfrak{R}(B)G \cong A/\mathfrak{R}(B)A$ as BG-left modules. Since $\mathfrak{m}_G BG$ and $\mathfrak{m}_G A$ are finitely generated and projective and $\mathfrak{R}(B)G \subseteq \mathfrak{R}(\mathfrak{m}_G BG)$ and $\mathfrak{R}(B)A \subseteq \mathfrak{R}(\mathfrak{m}_G A)$, $BG \cong A$ as BG-left modules by the uniqueness of projective cover (cf. [11]).

§ 2. The first characterization of fixed-subrings. For any subgroup H of G, the mapping $x \rightarrow \sum_{\sigma \in H} \tau(x)$ from A to A^H is evidently an A^H-A^H-homomorphism. We denote this by t_H.

Let A/B be a G-Galois extension. Then $(\sum_i u_i) A \cong \text{Hom} (A_B, B_B)$ by j (cf. [6]). From this fact, one will easily see that B_B is a direct summand of A_B if and only if there exists an element c in A such that $t_\emptyset (c) = 1$. Further, since $j((\sum_i u_i) V_A (B)) = \text{Hom} (\emptyset_A B_B, \emptyset_B B_B)$, $\emptyset_B B_B$ is a direct summand of $\emptyset_A B_B$ if and only if there exists an element c in $V_A (B)$ such that $t_\emptyset (c) = 1$.

Let c be an element of A such that $t_\emptyset (c) = 1$, H a subgroup of G, and $G = H_1 \cup \cdots \cup H_r$ the right coset decomposition of G. If we set $\sum_\emptyset (x) c = d$, then $t_H (d) = 1$. Hence, if A/B is G-Galois and B_B is a direct summand of A_B, then A_B^H is a direct summand of A_A^H.

For any G-left module M and any subgroup H of G, we denote by $M^H\{u \in M; \tau (u) = u \text{ for all } \tau \in H\}$. If A/B is a G-Galois extension, then $h: \sigma_A \otimes_B A_B \cong \sigma A_B$ (Prop. 1.3), and evidently $(A \otimes_A) \cong \Delta A^\mu$ under h.

Proposition 2.1. Let A/B be a G-Galois extension. If H is a subgroup of G, then $A^H = \{\sum_i u_i x_i; \text{ if } H\sigma = H\tau \text{ then } x_i = x_i\}$ and $(A \otimes_A)^H = A^H \otimes A$.

Proof. The first assertion is evident. We shall prove the second one. Evidently $A^H \otimes A \cong (A \otimes A)^H$. Let $\{a_i, a_i^*; i = 1, \cdots, n\}$ be a G-Galois coordinate system for A/B. If ρ is an element of G, then $\sum_i \epsilon H u_i \in A^H$ and $h^{-1}(\sum_i \epsilon H u_i) = \sum_i \epsilon H \sum_i \tau (a_i) \otimes a_i^* = \sum_i (\sum_{\epsilon H} \tau (a_i)) \otimes a_i^* \in A^H \otimes A$. Noting that h
is an A-right isomorphism, we have $(A\otimes A)^{H} \subseteq A^{H} \otimes A$. Thus $(A\otimes A)^{H} = A^{H} \otimes A$.

Proposition 2.2. Let A/B be G-Galois. If H is a subgroup of G, then there are elements $t_{1}, \cdots, t_{n} \in A^{H}$ and $a_{1}^{*}, \cdots, a_{n}^{*} \in A$ such that $\sum t_{i} \sigma(a_{i}^{*}) = \delta_{H, \sigma}$ for all σ in G, and $\{\sigma \in G; \sigma | A^{H} = 1_{A^{H}}\} = H$.

Proof. Let $\{(a_{i}, a_{i}^{*}); i=1, \cdots, n\}$ be a G-Galois coordinate system for A/B. If we put $t_{i} = t_{H}(a_{i})$, then $t_{i} \in A^{H}$ and $\sum t_{i} \sigma(a_{i}^{*}) = \delta_{H, \sigma}$. If $\sigma | A^{H} = 1_{A^{H}}$, then $1 = \sum t_{i} \sigma(a_{i}^{*}) = \sum_{\sigma \in H} \sigma \delta_{H, \sigma}$. Hence $\sigma \in H$.

Theorem 2.3. Let A/B be G-Galois, and B_{n} a direct summand of A_{n}. If H is a subgroup of G and T is an intermediate subring of A/B such that $T \subseteq A^{H}$, then the following conditions for T are equivalent.

(i) $T = A^{H}$.

(ii) There are elements $t_{1}, \cdots, t_{n} \in T$ and $a_{1}^{*}, \cdots, a_{n}^{*} \in A$ such that $\sum t_{i} \sigma(a_{i}^{*}) = \delta_{H, \sigma}$ for all σ in G.

(iii) $T \otimes A = A^{H} \otimes A$ in $A \otimes_{B} A$.

Proof. (i) \Rightarrow (ii) follows from Prop. 2.2. (ii) \Rightarrow (iii) Evidently $T \otimes A \subseteq A^{H} \otimes A$ in $A \otimes_{B} A$. If ρ is in G, then $\sum t_{i} \otimes \rho^{-1}(a_{i}^{*}) \in T \otimes A$ and

$$h\left(\sum t_{i} \otimes \rho^{-1}(a_{i}^{*})\right) = \sum_{\sigma \in H} u_{\sigma}.$$

Noting that h is an A-right homomorphism, we know that $h(T \otimes A) = A^{H}$, and hence $T \otimes A = A^{H} \otimes A$ (Prop. 2.1). (iii) \Rightarrow (i) There is an element c of A such that $t_{0}(c) = 1$. For any x in A^{H}, $x \otimes c \in A^{H} \otimes A = T \otimes A$. Therefore, there are elements $x_{j}'s \in T$, $y_{j}'s \in A$ such that $x \otimes c = \sum_{j} x_{j} \otimes y_{j}$. By making use of the mapping $1 \otimes t_{0}$, we can easily see $x = x_{1} \otimes t_{0}(c) = \sum_{j} x_{j} \otimes t_{0}(y_{j}) \in T \cdot B = T$. Hence $T = A^{H}$.

Proposition 2.4. Let A/B be a G-Galois extension. If H is a subgroup of G, then $G|A^{H}$ is strongly distinct and the mapping $x \otimes y \rightarrow xy$ from $A^{H} \otimes_{B} A$ to A splits as an A^{H}-A^{H}-homomorphism (i.e. A is (B, A^{H})-projective).

Proof. Let $\{(a_{i}, a_{i}^{*}); i=1, \cdots, n\}$ be a G-Galois coordinate system for A/B. If we set $t_{i} = t_{H}(a_{i})$, then $t_{i} \in A^{H}$ and $\sum t_{i} \sigma(a_{i}^{*}) = \delta_{H, \sigma}$ for every σ in G. Therefore, by Prop. 1.1, $G|A^{H}$ is strongly distinct. Now, $t_{H} \otimes 1$ is an A^{H}-A^{H}-homomorphism from $A \otimes_{B} A$ to $A^{H} \otimes_{B} A$. Since $\sum_{x} x a_{i} \otimes a_{i}^{*} = \sum_{x} a_{i} \otimes a_{i}^{*} x (\in A \otimes_{B} A)$ for all x in A (Prop. 1.3), $\sum_{x} y t_{i} \otimes a_{i}^{*} = \sum_{x} t_{i} \otimes a_{i}^{*} y (\in A^{H} \otimes_{B} A)$ for all y in A^{H}. Hence the mapping $x \rightarrow \sum t_{i} \otimes a_{i}^{*} x$ from A to $A^{H} \otimes_{B} A$ is an A^{H}-A^{H}-homomorphism, and $\sum t_{i} \otimes a_{i}^{*} = x$. Hence the mapping $x \otimes y \rightarrow xy$ from $A^{H} \otimes_{B} A$ to A splits as an A^{H}-A^{H}-homomorphism.

Proposition 2.5. Let A/B be outer G-Galois, and T an intermediate ring of A/B. If $G|T$ is strongly distinct, and A is (B, T)-projective then there are elements $t_{1}, \cdots, t_{n} \in T$ and $a_{1}^{*}, \cdots, a_{n}^{*} \in A$ such that $\sum t_{i} \sigma(a_{i}^{*}) = \delta_{H, \sigma}$
for all \(\sigma \) in \(G \), where \(H = \{ \sigma \in G; \sigma|T = 1_{T} \} \).

Proof. Let \(\{(t_{i}, a_{i}^{*}); i=1, \cdots; n\} \) be a \((B, T)\)-projective coordinate system for \(A \). Then, by Prop. 1.2, \(\sum_{i}t_{i}\sigma(a_{i}^{*}) = 0 \) for every \(\sigma \notin H \). Whereas, if \(\sigma \in H \), then \(1 = \sum_{i}\sigma(t_{i})\sigma(a_{i}^{*}) = \sum_{i}t_{i}\sigma(a_{i}^{*}) \).

Combining Props 2.4, 2.5 with Th. 2.3, we readily obtain the following:

Theorem 2.6. Let \(A/B \) be outer \(G\)-Galois, and \(B_{B} \) a direct summand of \(A_{B} \). If \(T \) is an intermediate ring of \(A/B \), then the following conditions are equivalent:

(i) There is a subgroup \(H \) of \(G \) such that \(T = A^{H} \).

(ii) \(A \) is \((B, T)\)-projective and \(G\midT \) is strongly distinct.

Lemma 2.7. Let \(S \) and \(T \) be subrings of a ring \(R \) such that \(S \supseteq T \).

1. If \(R\midT \) is separable, then so is \(R\midS \).
2. If \(S\midT \) is separable, then \(R \) is \((T, S)\)-projective.
3. If both \(R\midS \) and \(S\midT \) are separable, then so is \(R\midT \).

Proof. (1) will be easily seen. (2) Since \(S \otimes_{T}S \otimes_{R}R \cong S \otimes_{T}R \) and \(S \otimes_{S}R \cong R \), this is obvious. (3) Since the mapping \(s \otimes s' \rightarrow ss' \) from \(S \otimes_{T}S \) to \(S \) splits as an \(S\midS \)-homomorphism, the mapping \(r \otimes r' \rightarrow r \otimes r' \) from \(R \otimes_{T}R \) to \(R \otimes_{S}R \) splits as an \(R\midR \)-homomorphism. Since \(R\midS \) is separable, the mapping \(r \otimes r' \rightarrow rr' \) from \(R \otimes_{S}R \) to \(R \) splits as an \(R\midR \)-homomorphism.

Proposition 2.8. Let \(A/B \) be outer \(G\)-Galois, and \(B_{B} \) a direct summand of \(A_{B} \). If \(H \) is a subgroup of \(G \), then \(A^{H} \) is an \(A^{H} \)-\(A^{H} \)-direct summand of \(A \), and \(A^{H}/B \) is a separable extension.

Proof. Since \(B_{B} \) is a direct summand of \(A_{B} \), there is an element \(c \) of \(C \) such that \(t_{0}(c) = 1 \). Let \(G = Ha_{1} \cup \cdots \cup Ha_{r} \) be the right coset decomposition of \(G \). If we set \(d = \sum_{k}a_{k}(c) \), then \(t_{B}(d) = 1 \) and \(d \subseteq C \). Hence \(A^{H} \) is an \(A^{H} \)-\(A^{H} \)-direct summand of \(A \). Let \(\{(a_{i}, a_{i}^{*}); i=1, \cdots, n\} \) be a \((B, A)\)-projective coordinate system for \(A/B \). Then, \(\{(a_{i}, a_{i}^{*}); i=1, \cdots, n\} \) is a \(G\)-Galois coordinate system for \(A/B \) (Prop. 1.4). The mapping \(x \rightarrow t_{B}(dx) \) from \(A \) to \(A^{H} \) is an \(A^{H} \)-\(A^{H} \)-homomorphism. We denote this by \(t' \). Then, the mapping \(t_{H} \otimes t' \) from \(A \otimes_{B}A \) to \(A^{H} \otimes_{B}A^{H} \) is evidently an \(A^{H} \)-\(A^{H} \)-homomorphism, and therefore the mapping \(y \rightarrow \sum_{i}t_{H}(ya_{i}) \otimes t'(a_{i}^{*}) = \sum_{i}t_{H}(a_{i}) \otimes t'(a_{i}^{*}y) \) from \(A^{H} \) to \(A^{H} \otimes_{B}A^{H} \) is an \(A^{H} \)-\(A^{H} \)-homomorphism. Since \(\sum_{i}t_{H}(a_{i})t'(a_{i}^{*}y) = \sum_{i}t_{H}(a_{i}) \otimes t'(a_{i}^{*}) \tau(d)y = \sum_{i, \epsilon \in H}t_{H}(a_{i})^{*} \tau(d)y = \sum_{i, \epsilon \in H}t_{H}(a_{i})^{*} \tau(d)y = y \) for all \(y \) in \(A^{H} \), \(A^{H}/B \) is a separable extension.

By Th. 2.6, Lemma 2.7 and Prop. 2.8, we obtain at once the following:

Theorem 2.9. (Cf. [4; Th. 2.2]). Let \(A/B \) be outer \(G\)-Galois, and \(B_{B} \) a direct summand of \(A_{B} \). If \(T \) is an intermediate ring of \(A/B \), then the
following conditions are equivalent:

(i) There is a subgroup \(H \) of \(G \) such that \(T = A^H \).

(ii) \(T/B \) is a separable extension and \(G|T \) is strongly distinct.

§ 3. The second characterization of fixed-subrings.

Let \(R \) be a ring, \(S \) a subring of \(R \). \(R/S \) is called a projective Frobenius extension if \(R_S \) is finitely generated and projective and \(_sR_R \cong _s\text{Hom}(R_S, S_R) \) (cf. [10]). If \(A/B \) is a \(G \)-Galois extension, then \((\sigma \sum \alpha)A_A \cong _s\text{Hom}(A_B, B_A) \) by \(j \). Hence, \(A/B \) is a projective Frobenius extension. Now, we shall state the next lemma without proof.

Lemma 3.1. Let \(R/S \) be a projective Frobenius extension, and \(1 \to t \) under an isomorphism \(_sR_R \cong _s\text{Hom}(R_S, S_R) \). Then \(\text{teHom}(sR_S, sS_R) \), \(\text{Hom}(R_S, S_S)_t = tR \) and \(\text{Hom}(R_S, R_S)_t = R_tR \).

Theorem 3.2. Let \(A/B \) be outer \(G \)-Galois, and \(B_B \) a direct summand of \(A_B \). If \(T \) is an intermediate ring of \(A/B \), then the following conditions are equivalent.

(i) There is a subgroup \(H \) of \(G \) such that \(A^H = T \).

(ii) \(A/T \) is a projective Frobenius extension, \(T_T \) is a direct summand of \(A_T \), and \(G|T \) is strongly distinct.

Proof. It suffices to prove that (ii) \(\Rightarrow \) (i) (cf. § 2). We identify \(\text{Hom}(A_B, A_B) \) with \(\Delta \), and set \(\Delta_B = \text{Hom}(A_T, A_T) \), which is a subring of \(\Delta \). Let \(t = \sum c_i u_i \) be the image of 1 under the isomorphism \(_A \Delta_A \cong _A \text{Hom}(A_T, T_T)_A \). Then \(tA = \text{Hom}(A_T, T_T), \ A_T = \Delta_B \) and \(t \in \text{Hom}(sA_T, sT_T) \) (Lemma 3.1). Since \(xt = tx \) for all \(x \) in \(T \), we have \(x_{c_i} = c_i \alpha(x) \) for all \(x \) in \(T \) and \(\alpha \) in \(G \), in particular, \(y_{c_i} = c_i y \) for \(y \) in \(B \). Therefore, by assumption, each \(c_i \) is an element of \(C \). Since \(A_T = A_B \), there are elements \(c_i \)'s, \(d_i \)'s in \(A \) such that \(\sum c_i d_i = u_i \). From this fact, \(c_1 \) is an invertible element of \(C \). Now, the mapping \(\alpha : \delta \to \delta c_1^{-1} \) is a \(\Delta \)-\(A \)-homomorphism from \(\Delta_B \) to \(\Delta \), and the mapping \(\beta : \sum x_{c_i} u_i \to \sum x_{c_i} c_i u_i \), is evidently an \(A \)-\(A \)-endomorphism of \(\Delta \). For any \(y \) in \(A \) and \(z \) in \(T \), we have \(\sum x_{c_i} u_i \to \sum x_{c_i} c_i u_i \) is evidently a \(A \)-\(A \)-endomorphism of \(\Delta \). For any \(y \) in \(A \) and \(z \) in \(T \), we have \(\delta(xyt) = \delta(xt(yz)) = \delta(x) \cdot t(yz) = \delta_0(x) \cdot ty(z) \). Thus, \(\beta \) is a \(\Delta \)-\(A \)-homomorphism from \(A \otimes_B A \to \Delta_B \), and so \(\beta \) is a \(\Delta \)-\(A \)-homomorphism from \(A \) to \(\Delta_B \). Since \(\beta \alpha(u_i) = \beta(u_i c_i^{-1}) = u_1, \ \beta \alpha = 1_{\Delta} \). Thus, we have \(\Delta = \text{Im} \alpha \oplus \ker \beta = \Delta \oplus (\sum c_i \text{Ann}_A(c_i) u_i) \), where \(\text{Ann}_A(c_i) = \{ x \in A; xc_i = 0 \} \). Now, let \(\{ (a_i, a_i^*) ; i = 1, \ldots, n \} \) be a \(G \)-Galois coordinate system for \(A/B \). If \(\tau \) is in \(G \), then \(\Delta_B = A \oplus \sum \tau(a_i) ta_i^* = c_i u_i \), and so \(\Delta_B = \sum A c_i u_i \), whence it follows that \(A = A c_i \oplus \text{Ann}_A(c_i) \). Let \(A c_i = A e_i \), with a
central idempotent e_{r} in A. Then, $e_{r} \cdot \sigma(y) = e_{r} y$ for any y in T. By assumption, if $|T| \neq 1_{T}$ then $e_{r} = 0$, and so $A_{0} = \sum_{r \in H} \mathbb{C} e_{r}$, where $H = \{ \tau \in G ; |\tau| = 1_{T} \}$.

Since T_{τ} is a direct summand of A_{τ}, $\text{End} (t_{\tau} A) = T_{\tau}$, the set of all right multiplications by elements of T (see [1; Th. A. 2]). On the other hand, since $A_{0} = \sum_{r \in H} \mathbb{C} e_{r}$, $\text{End} (t_{\tau} A) = (A^{H})_{\tau}$. Hence, $T = A^{H}$.

§ 4. Extension of isomorphisms.

Theorem 4.1. Let A/B be G-Galois, and A' an extension ring of B such that $V_{A'}(b) = V_{A'}(A')$. Assume that there exists at least one B-ring homomorphism from A to A'.

(1) If H is a subgroup of G such that $A_{A^{H}}^{H}$ is a direct summand of $A_{A^{H}}$. Then every B-ring homomorphism from A^{H} to A' can be extended to a (B-)ring homomorphism from A to A'.

(2) If f and g are B-ring homomorphisms from A to A'. Then A' contains orthogonal central idempotents $e_{\sigma}(\sigma \in G)$ such that $\sum_{e} e_{r} = 1$ and $f(x) = \sum_{e} e_{\sigma} g(x) e_{r}$ for all x in A. (Cf. [4; Th. 3.1].)

Proof. There are elements a_{i}, $a_{i}^{*} (i = 1, \ldots, n)$ in A such that $\sum_{i} x a_{i} \otimes a_{i}^{*} = \sum_{i} a_{i} \otimes a_{i}^{*} x (\in A \otimes_{B} A)$ for all x in A and $\sum_{i} a_{i} \cdot \sigma(a_{i}^{*}) = \delta_{i, r}$ for all σ in G (Prop. 1.3). If we set $t_{i} = t_{H}(a_{i})$, then $t_{i} \in A^{H}$, $\sum_{i} t_{i} \cdot \sigma(a_{i}^{*}) = \delta_{i, r}$, for all σ in G and $\sum_{i} x t_{i} \otimes a_{i}^{*} = \sum_{i} x t_{i} \otimes a_{i}^{*} x (\in A^{H} \otimes_{B} A)$ for all x in A^{H}. Let f be a B-ring homomorphism from A^{H} to A', and g a B-ring homomorphism from A to A'. If we set $e_{r} = \sum_{i} f(t_{i}) g_{\sigma}(a_{i}^{*})$, then each e_{r} is a central idempotent in A' (Prop. 1.2). By Prop. 1.2 (3), $e_{r} = e_{\sigma} g(\sum_{\tau} \sigma(t_{i}) \tau a_{i}^{*})$ for any σ, τ in G. Therefore, if $\sigma^{-1} \tau \not\in H$ then $e_{\sigma r} = 0$, and if $\sigma^{-1} \tau \in H$ then $e_{\sigma r} = e_{r}$. Recalling that $A_{A^{H}}^{H}$ is a direct summand of $A_{A^{H}}$ there is an element d of A such that $t_{H}(d) = 1$. Since $\sum_{i} \sum_{t_{i} \cdot \sigma(a_{i}^{*})} x (\in A \otimes_{B} A)$, $\sum_{i} a_{i} \cdot \sigma(a_{i}^{*}) = \delta_{i, r}$, for all σ in G (Prop. 1.3). If we set $t_{i} = t_{H}(a_{i})$, then $t_{i} \in A^{H}$, $\sum_{i} t_{i} \cdot \sigma(a_{i}^{*}) = \delta_{i, r}$, for all σ in G and $\sum_{i} x t_{i} \otimes a_{i}^{*} = \sum_{i} x t_{i} \otimes a_{i}^{*} x (\in A^{H} \otimes_{B} A)$ for all x in A^{H}. Let f be a B-ring homomorphism from A^{H} to A', and g a B-ring homomorphism from A to A'. If we set $e_{r} = \sum_{i} f(t_{i}) g_{\sigma}(a_{i}^{*})$, then each e_{r} is a central idempotent in A' (Prop. 1.2). By Prop. 1.2 (3), $e_{r} = e_{\sigma} g(\sum_{\tau} \sigma(t_{i}) \tau a_{i}^{*})$ for any σ, τ in G. Therefore, if $\sigma^{-1} \tau \not\in H$ then $e_{\sigma r} = 0$, and if $\sigma^{-1} \tau \in H$ then $e_{\sigma r} = e_{r}$. Recalling that $A_{A^{H}}^{H}$ is a direct summand of $A_{A^{H}}$ there is an element d of A such that $t_{H}(d) = 1$. Since $\sum_{i} \sum_{t_{i} \cdot \sigma(a_{i}^{*})} x (\in A \otimes_{B} A)$, $\sum_{i} a_{i} \cdot \sigma(a_{i}^{*}) = \delta_{i, r}$, for all σ in G (Prop. 1.3). If we set $t_{i} = t_{H}(a_{i})$, then $t_{i} \in A^{H}$, $\sum_{i} t_{i} \cdot \sigma(a_{i}^{*}) = \delta_{i, r}$, for all σ in G and $\sum_{i} x t_{i} \otimes a_{i}^{*} = \sum_{i} x t_{i} \otimes a_{i}^{*} x (\in A^{H} \otimes_{B} A)$ for all x in A^{H}. Let $G = \sigma H \cup \cdots \cup \sigma H$ be the left coset decomposition of G. Then, $1 = \sum_{s} \sum_{t} f(t_{i}) g_{\sigma}(a_{i}^{*}) = \sum_{k} \sum_{x e_{r}} g_{e_{r}} t_{H}(d) = \sum_{k} e_{r} \cdot g_{e_{r}} t_{H}(d) = \sum_{k} e_{r} \cdot g_{e_{r}} x (\in A^{H} \otimes_{B} A)$ for all x in $A^{H} (\text{Prop. 1.2})$, we have $f(x) e_{r} = e_{r} \cdot g_{\sigma}(x)$ for all x in $A^{H} (\text{Prop. 1.2})$, we have $f(x) e_{r} = e_{r} \cdot g_{\sigma}(x)$ for all x in A^{H}. Evidently, the mapping $z \mapsto \sum_{k} e_{r} \cdot g_{e_{r}} z$ is a B-ring homomorphism from A to A', and an extension of f.

Now, the following theorem will follow at once from Th. 4.1.

Theorem 4.2. Let A/B be an outer G-Galois extension, and let A be directly indecomposable. If H is a subgroup of G such that $A_{A^{H}}^{H}$ is a direct summand of $A_{A^{H}}$, then every B-ring homomorphism from A^{H} to A can be extended to an element of G. In particular, G is the set of all B-ring automorphisms of A.

Y. Miyashita

Theorem 5.1. Let A/B be G-Galois, A' a G-invariant subring of A, and $B' = A''$. Assume that there are elements a_i, a_i^*, $i = 1, \ldots, n$ and c in A' such that $\sum t_{l} a_t \sigma(a_{t}^*) = \delta_{1,n}$, and $t_0(c) = 1$.

1. Let A'/B' be a G-Galois extension, and $A'' = B \otimes_B A'' = A'' \otimes_B B$ for any subgroup H of G, in particular, $A = B \otimes_B A' = A' \otimes_B A'$.

2. Let $\{ \overline{X} \}$ be the set of all A'-left submodules of A, and $\{ X \}$ the set of all B'-left submodules of B. Then, $\overline{X} \rightarrow \overline{X} \cap B$ and $X \rightarrow A'X = A' \otimes_B X$ are mutually converse order isomorphisms between $\{ \overline{X} \}$ and $\{ X \}$.

3. Let $\{ \overline{Y} \}$ be the set of all G-invariant intermediate rings of A'/A', and $\{ Y \}$ the set of all intermediate rings of B'/B' such that $A'Y = YA'$. Then, $\overline{Y}/(\overline{Y} \cap B)$ is G-Galois, and $\overline{Y} \rightarrow \overline{Y} \cap B$ and $Y \rightarrow A'Y = YA'$ are mutually converse order isomorphisms between $\{ \overline{Y} \}$ and $\{ Y \}$.

Proof. (1) Evidently, $G \cong G|A'$, and G may be regarded as a finite group of automorphisms of A'. Hence, A'/B' is G-Galois. Let $G = H_1 \cup \cdots \cup H_r$, be the right coset decomposition of G. If we put $d = \sum t_i \sigma(a_i^*)$ and $t_0 = t_0(a_i^*)$, then $t_0(d) = 1$ and $\sum t_i \sigma(a_i^*) = \delta_{H_i}$. If x is in A'', then $A''B \ni \sum t_i t_0(a_i^* dy) = \sum (\sum t_i \sigma(a_i^*)) \sigma(dx) = t_0(dx) = t_0(d)x = x$. Thus, we obtain $A'' = A''B$. To be easily seen, the mapping $\sum_j x_j \otimes y_j \rightarrow \sum_j x_j y_j$ from $A'' \otimes B'$ to $A''B = A''$ is well-defined and $\sum_j x_j \otimes t_0(a_i^* d \sum_j x_j y_j) = \sum_j x_j \otimes y_j$. Hence, $A'' \otimes B' = A''B = A''$ by the mapping $\sum_j x_j \otimes y_j \rightarrow \sum_j x_j y_j$. Symmetrically, it follows $A'' = B \otimes_B A''$. (2) Let X be an A'-left submodule of A. Evidently, $\overline{X} \supseteq A'(\overline{X} \cap B)$, and $\overline{X} \cap B$ is a B'-left submodule of B. If x is in \overline{X}, then $t_0(a_i^* x)$ is in $\overline{X} \cap B$, and hence $x = \sum_i a_i t_0(a_i^* x) \in A'(\overline{X} \cap B)$. Hence, $\overline{X} = A'(\overline{X} \cap B)$, and the mapping $\sum_j x_j \otimes y_j \rightarrow \sum_j x_j y_j$ from $A' \otimes_B (\overline{X} \cap B)$ to $A'(\overline{X} \cap B) = \overline{X}$ is onto. Moreover, to be easily seen, $\sum_i a_i \otimes t_0(a_i^* \sum_j x_j y_j) = \sum_j x_j \otimes y_j$. Hence, $\overline{X} = A' \otimes_B (\overline{X} \cap B)$. Now, let X be a B'-left submodule of B. Then, $A'X$ is an A'-left submodule of A, and $A'X \cap B \supset X$. If $\sum_j x_j y_j (x_j \in A', y_j \in X)$ is in $A'X \cap B$, then $\sum_j x_j y_j = t_0(c)(\sum_j x_j y_j) = \sum \sigma(c) \sum_j x_j y_j = \sum_j t_0(c x_j) y_j \in X$. Hence, $A'X \cap B \subseteq X$, namely, $A'X \cap B = X$. (3) Evidently, $(\overline{Y}/\overline{Y} \cap B)$ is G-Galois. Hence $\overline{Y} = A'((\overline{Y} \cap B)) = (\overline{Y} \cap B)A'$ by (1), and then our assertion is an easy consequence of (2).

Corollary. Let A/B be G-Galois, and $B' = V_B(B)$. Assume that there are elements a_i, a_i^*, $i = 1, \ldots, n$ in $V_A(B)$ such that $\sum t_i a_t \sigma(a_{t}^*) = \delta_{1,n}$.

1. $V_A(B)/B'$ is G-Galois, $A'' = B \otimes_B V_A(B)''$ for any subgroup H of G, and the center of A'' coincides with the center of $V_A(B)''$. In particular, $A = B \otimes_B V_A(B)$, and $B' \subseteq C$.

2. Let $\{ \overline{Y} \}$ be the set of all G-invariant intermediate rings of $A/V_A(B)$,
and \(\{Y\} \) the set of all intermediate rings of \(B/B' \). Then \(\overline{Y} \to \overline{Y} \cap B \) and \(Y \to V_A(B) \) \(Y = V_A(B) \times B \cdot A \) are mutually converse order isomorphisms between \(\{\overline{Y}\} \) and \(\{Y\} \).

(3) \(A/V_A(B) \) is separable if and only if \(B \) is a separable \(B' \)-algebra.

Proof. If remains to prove (3). If \(B/B' \) is separable, then \(A/B' \) is separable, because both \(A/B \) and \(B/B' \) are separable (Lemma 2.7). Hence \(A/V_A(B) \) is separable. Conversely, assume that \(A/V_A(B) \) is separable. Then, since both \(A/V_A(B) \) and \(V_A(B)/B' \) are separable, \(A/B' \) is separable, or equivalently, \(A \) is a separable \(B' \)-algebra (Lemma 2.7). Since \(A = B \times B', V_A(B) \), by [2; Prop. 1.7 and its Remark], \(B \) is a separable \(B' \)-algebra.

Remark. The above corollary contains Kanzaki [8; Th. 5].

Let \(A, A' \) be \(R \)-algebras over a commutative ring \(R \) such that \(A \times_R A' \neq 0 \). Assume that \(A/B \) is a \(G \)-Galois extension such that \(R \cdot 1 \subseteq B \) and \(B_B \) is a direct summand of \(A_B \), and assume that \(A/B' \) is a \(G' \)-Galois extension such that \(R \cdot 1 \subseteq B' \) and \(B'_{B'} \) is a direct summand of \(A'_{B'} \). Let \(\{(a_i, a_i^*) ; i = 1, \cdots, n\} \) and \(\{(d_j, d_j^*) ; j = 1, \cdots, m\} \) be a \(G \)-Galois coordinate system for \(A/B \) and a \(G' \)-Galois coordinate system for \(A'/B' \), respectively. For any \(\sigma \times \tau \in G \times G' \), we can define \(\sigma \times \tau \cdot \sum_j x_j \otimes y_j = \sum_j \sigma(x_j) \otimes \tau(y_j) \) \((x_j \in A, y_j \in A') \). Then, since \(\sum_i (a_i \otimes d_j) \cdot (\sigma \times \tau)(a_i^* \otimes d_j^*) = (\sum_i a_i \sigma(a_i^*)) \otimes (\sum_j d_j \tau(d_j^*)) \), \((A \otimes_R A')/(A \otimes A')^{\sigma \times \tau} \) is a \(G \times G' \)-Galois extension. Now, let \(H \) and \(H' \) be subgroups of \(G \) and \(G' \), respectively. Then, by assumption, there are elements \(c, c' \) in \(A \) and \(A' \), respectively such that \(\sum_{c \in H} c = 1 \) and \(\sum_{c' \in H'} c' = 1 \). If \(\sum_k x_k \otimes y_k \) is in \((A \otimes A')^{H \times H'} \), then \(\sum_k x_k \otimes y_k = (\sum_{c \in H} c) \otimes (\sum_{c' \in H'} c') \). \(\sum_k x_k \otimes y_k = \sum_{c \in H} \sum_{c' \in H'} c \otimes c' \cdot (\sigma \times \tau)(\sum_k x_k \otimes y_k) = \sum_{c \in H} (\sum_{c' \in H'} c x_k) \otimes \sum_{c' \in H'} c' y_k) \in A^H \otimes A^H \). Hence, \((A \otimes A')^{H \times H'} = A^H \otimes A^H \). Thus, we have the following:

Theorem 5.2. Let \(A \) and \(A' \) be algebras over a commutative ring \(R \) such that \(A \otimes_R A' \neq 0 \). If \(A/B \) is a \(G \)-Galois extension such that \(R \cdot 1 \subseteq B \) and \(B_B \) is a direct summand of \(A_B \), and \(A'/B' \) a \(G' \)-Galois extension such that \(R \cdot 1 \subseteq B' \) and \(B'_{B'} \) is a direct summand of \(A'_{B'} \), then \((A \otimes_R A')/(B \otimes B') \) is a \(G \times G' \)-Galois extension, and \((A \otimes A')^{H \times H'} = A^H \otimes A^{H'} \) for any subgroup \(H \) of \(G \) and any subgroup \(H' \) of \(G' \) (cf. [2; Th. A. 8]).

Corollary. Let \(A/B \) be a \(G \)-Galois extension such that \(B \subseteq C \). If \(A' \) is a \(B \)-algebra, then \((A' \otimes_R A)/(A' \otimes 1) \) is a \(G \)-Galois extension, and \((A' \otimes A)^H = A' \otimes A^H \) for any subgroup \(H \) of \(G \).

Proposition 5.3. Let \(A/B \) be a \(G \)-Galois extension. If \(H, K \) are subgroups of \(G \), and \(A^{H \cap K} \) is an \(A^{H \cap K} \)-left direct summand of \(A \), then \(A^{H \cap K} = A^H \cdot A^K = A^K \cdot A^H \).

Proof. By assumption, there is an element \(c \) in \(A \) such that \(t_{H \cap K}(c) = 1 \).
Evidently, $A^{H\cap K} \supseteq A^{H}. A^{K}$. Let $\{(a_{i}, a_{i}^*) ; i = 1, \cdots, n\}$ be a G-Galois coordinate system for A/B. If x is in $A^{H\cap K}$, then $A^{H} \cdot A^{K} \ni \sum_{i} t_{H}(a_{i}) t_{K}(a_{i}^{*}cx) = \sum_{i\in H} \sum_{j\in K} \rho(a_{i}) \sigma(a_{i}^*) \sigma(cx) = t_{H\cap K}(c)x = x$. Hence $A^{H\cap K} = A^{K}. A^{H}$. Symmetrically we have $A^{H\cap K} = A^{H}. A^{K}$.

Corollary. Let A/B be a G-Galois extension. If H and K are subgroups of G such that $H \cap K = \{1\}$, then $A = A^{H}. A^{K} = A^{K}. A^{H}$.

Theorem 5.4. Let A/B be a G-Galois extension, and B a direct summand of A. If $G = KH$ and $K \cap H = \{1\}$ for a normal subgroup K and a subgroup H, then there hold the following:

1. $A = A^{K} \otimes_{B} A^{H} = A^{H} \otimes_{B} A^{K}$.
2. A^{K}/B is an H-Galois extension.
3. For any subgroup H_0 of H and any subgroup K_0 of K such that $N(K_0) \supseteq H$ (where $N(K_0)$ means the normalizer of K_0 in G), $A^{K_0} = A^{K_0} \otimes_{B} A^{K_0} = A^{K_0} \otimes_{B} A^{K_0}$ and $A^{K_0} \otimes_{B} A^{K_0}$ is an H-Galois extension.

Proof. Let $\{(a_{i}, a_{i}^*) ; i = 1, \cdots, n\}$ be a G-Galois coordinate system for A/B. Since B is a direct summand of A, there is an element c in A such that $t_{0}(c) = 1$. Put $t_{e} = t_{H}(a_{e})$, $t_{e}^{*} = t_{K}(a_{e}^{*})$, and $d = t_{K}(c)$. Then, $t_{H}(d) = 1$ and $\sum_{\tau} t_{\tau}(t_{e}^{*}) = \delta_{1, e}$, for τ in H. $N(K_0) \supseteq H$ implies that $\tau(A^{K_0}) = A^{K_0}$ for all τ in H. Hence, by Th. 5.1, A^{K}/A^{H} is an H-Galois extension. By Th. 5.1, $A^{B} = A^{H} \otimes_{B} A^{K_0} = A^{K_0} \otimes_{B} A^{H}$. Since $K_0 \cap H = K_0 \cap H$, $A^{K_0} = A^{K_0} \otimes_{B} A^{K_0}$ (Prop. 5.3). Since $A^{B} \supseteq A^{K_0}$ and A^{K_0} is a right direct summand of A, $A^{K_0} = A^{K_0} \otimes_{B} A^{K_0}$. Similarly, we have $A^{K_0} \otimes_{B} A^{K_0}$.

Corollary. Let A/B be a G-Galois extension, B a direct summand of A, and $G = N_1 \times \cdots \times N_r$. If $H = N_1 \times \cdots \times N_{i} \times \cdots \times N_r (i = 1, \cdots, r)$, then A^{B}/B is N-Galois, $A = A^{H} \otimes_{B} \cdots \otimes_{B} A^{H_r}$, and $A^{K_1} \cdots A^{K_r} = A^{H_1} \otimes_{B} \cdots \otimes_{B} A^{H_r}$ for each subgroup K_i of N_i.

Proposition 5.5. Let A/B be outer G-Galois. B a direct summand of A, and A directly indecomposable. Let T and T' be intermediate rings of A/B such that $A = T \otimes_{B} T'$. If $H = \{a \in G ; \delta|T = 1_T\}$ and $H' = \{a \in G ; \delta|T' = 1_{T'}\}$, then $T = A^{H}$ and $T' = A^{H'}$.

Proof. Since $T \otimes_{B} T' = A$, we have $T \otimes_{B} A^{A} \equiv T \otimes_{B} A_{A}$. Since A/T' is a separable extension, A is (B, T')-projective. Hence, by Th. 2.6, $T = A^{H}$. Symmetrically we have $T' = A^{H'}$.

Let A/B be a G-Galois extension, B a direct summand of A, and \mathfrak{N} a G-invariant proper ideal of A. Let $\{(a_{i}, a_{i}^*) ; i = 1, \cdots, n\}$ be a G-Galois coordinate system for A/B. For any x in A we denote $x + \mathfrak{N}$ (in A/\mathfrak{N}) by \bar{x}. If we define $\sigma(\bar{x}) = \bar{\sigma(x)}$, then $\sum_{i} a_{i} \cdot \sigma(a_{i}^*) = \delta_{1, *}$ for σ in G, and therefore
\[(A/\mathfrak{M})(A/\mathfrak{M})^g\] is a G-Galois extension. By assumption, for any subgroup \(H\) of \(G\) there is an element \(c\) in \(A\) such that \(t_H(c)=1\). If \(\bar{x}\) is in \((A/\mathfrak{M})^g\), then
\[\bar{x}=\bar{x}\sum e_H\tau(\bar{e})=\sum e_H\tau(\bar{x}\bar{e})=t_H(xc)\in(A^H+\mathfrak{M})/\mathfrak{M}.\] Thus, we prove the following:

Theorem 5.6. Let \(A/B\) be a G-Galois extension, \(B_0\) a direct summand of \(A_0\), and \(\mathfrak{M}\) a G-invariant proper ideal of \(A\). Then \((A/\mathfrak{M})/(B+\mathfrak{M})/\mathfrak{M}\) is a G-Galois extension, and \((A/\mathfrak{M})^g=(A^H+\mathfrak{M})/\mathfrak{M}\) for any subgroup \(H\) of \(G\).

Corollary. Let \(A/B\) be a G-Galois extension, and \(B_0\) a direct summand of \(A_0\). If \(B\) contains a non-zero central idempotent \(e\) of \(A\), then \(Ae/Be\) is a G-Galois extension, and \((Ae)^g=A^g.e\) for any subgroup \(H\) of \(G\).

Proposition 5.7. Let \(A/B\) be a G-Galois extension. If \(N\) is a normal subgroup of \(G\) such that \(A^N\) is an \(A^N\)-right direct summand of \(A\), then \(A^N/B\) is a G/N-Galois extension.

Proof. Let \(\{(a_i, a_i^\ast)\}; i=1, \ldots, n\) be a G-Galois coordinate system for \(A/B\). By assumption, there is an element \(c\) of \(A\) such that \(t^N(c)=1\). If we put \(t_N(a_i)=t_i\) and \(t_N(a_i^\ast c)=t_i^\ast\), then \(t_i\) and \(t_i^\ast\) are \(A^N\), and \(\sum t_i\cdot t_i^\ast=\delta_{N,*}\) for all \(\sigma\) in \(G\). Hence, \(A^N/B\) is a G/N-Galois extension (Prop. 2.2).

Let \(A/B\) be a G-Galois extension, and \(m\) a natural number. Then, every \(\sigma\) in \(G\) induces a ring automorphism in the \(m \times m\) complex matrix ring \((A)_m\).

Accordingly, \(G\) may be regarded as a finite group of automorphisms of \((A)_m\) such that \((A)_m^g=(B)_m\). Let \(E\) be the identity of \((A)_m\), and let \(\{(a_i, a_i^\ast)\}; i=1, \ldots, n\) be a G-Galois coordinate system for \(A/B\). Then \(\sum a_iE\cdot \sigma(a_i^\ast E)=\delta_{1,*}\) for all \(\sigma\) in \(G\). Thus \((A)_m/(B)_m\) is a G-Galois extension. (Remark. This may be considered as a special case of Th. 5.2).

Theorem 5.8. Let \(A/B\) be a G-Galois extension, and \(\{e_{ij}; i, j=1, \ldots, m\}\) a system of matrix units contained in \(B\). If \(A_0=\sum\{e_{ij}\}\), then \(A_0/A_0^g\) is a G-Galois extension, and \(B=\sum A_0^g e_{ij}\).

Proof. Obviously, \(G\) induces an automorphism group of \(A_0\) and \(B=\sum A_0^g e_{ij}\). Let \(\{(A_i, A_i^\ast)\}; i=1, \ldots, n\) be a G-Galois coordinate system for \(A/B\). Let \(A_i=\sum d_{ijk} e_{jk}\), \(A_i^\ast=\sum d_{ijk}^* e_{jk}\) \((a_{ijk}, d_{ijk} \in A_0)\). Then, \(\sigma(A_i^\ast)=\sum d_{ijk}^* \sigma(d_{ijk}) e_{jk}\) and therefore \(\sum a_{i1k}\cdot \sigma(d_{ikk})=\delta_{1,*}\) for \(\sigma\) in \(G\). Thus \(A_0/A_0^g\) is a G-Galois extension.

§ 6. Completely outer case.

Let \(R\) be a ring. If non-zero \(R\)-left modules \(M\) and \(N\) have no non-zero isomorphic subquotients, we say that \(____M\) and \(____N\) are unrelated.

Proposition 6.1. Let \(M\) be a non-zero \(R\)-left module, and \(M=M_1 \oplus \cdots \oplus M_s\) with non-zero \(R\)-submodules \(M_i\)'s of \(M\).

(1) If \(M_i\)'s are unrelated to each other, then each \(M_i\) is \(\text{End}(____M)\)-
admissible and $X=\sum_{i}(X\cap M_{i})$ for every submodule X of $\mathfrak{U}M$.

(2) If $X=\sum_{i}(X\cap M_{i})$ for every submodule X of $\mathfrak{U}M$, then M_{i}'s are unrelated to each other.

Proof. (1) will be rather familiar. We shall prove here (2). To our end, it suffices to prove that if $M=M_{1}\oplus M_{2}$ and $X=(X\cap M_{1})+(X\cap M_{2})$ for every submodule X of $\mathfrak{U}M$ then M_{1} and M_{2} are unrelated. Let M_{i}/N_{i} and M_{j}/N_{j} be non-zero subquotients of M_{1} and M_{2}, respectively. If there exists an R-isomorphism $\alpha; M_{i}/N_{i}\cong M_{j}/N_{j}$, we can define an R-homomorphism $\varphi; M_{i}\oplus M_{2}\rightarrow M_{2}/N_{2}$ by the following rule: $(m_{i}'+m_{2}')\varphi=(m_{i}'+N_{i})\alpha+(m_{2}'+N_{2})$. Then, our assumption yields $\text{Ker}\varphi=(M_{1}\cap\text{Ker}\varphi)+(M_{2}\cap\text{Ker}\varphi)$, and so $(M_{1}+M_{2})\varphi=M_{1}\varphi\oplus M_{2}\varphi=M_{2}/N_{2}\oplus M_{2}/N_{2}$, which is a contradiction.

G is said to be completely outer, if each A-A-modules Au_{σ}, Au_{τ} $(\sigma\neq\tau)$ are unrelated.

To be easily seen, Au_{σ} and Au_{τ} $(\sigma, \tau\in G)$ are A-A-isomorphic if and only if σ^{-1} is an inner automorphism of A, and every A-A-submodule of Au_{σ} is written as $\mathfrak{U}u_{\sigma}$ with some ideal \mathfrak{U} of A. Therefore, if G is completely outer, then G contains no inner automorphism of A, and in case A is two-sided simple, the converse is true. Now, for σ in G we set $J_{\sigma}={a\in A; \sigma(x)a=ax \text{ for all } x \in A}$. Then each J_{σ} is a C-submodule of A, and $J_{1}=C$. In his paper [9], T. Kanzaki proved the following: Let A/B be a G-Galois extension. Then $V_{A}(B)=\sum_{\sigma}J_{\sigma}$. Therefore, if A/B is G-Galois, then $V_{A}(B)=C$ if and only if $J_{\sigma}=0$ for all σ in G such that $\sigma\neq1$.

Proposition 6.2. $J_{\sigma}=0$ if and only if $\text{Hom} (_Au_{\sigma}, A)\cong A=0$.

Proof. Assume $J_{\sigma}=0$. If f is in $\text{Hom} (_Au_{\sigma}, A)$, then $\sigma(x)f(u_{\sigma})=f(\sigma(x)u_{\sigma})=f(u_{\sigma})x$ for x in A. Hence $f(u_{\sigma})=0$, and so $f=0$. Conversely, assume that $\text{Hom} (_Au_{\sigma}, A)=0$. If a is in J_{σ}, then we can easily see that the mapping $xu_{\sigma}\rightarrow xa$ $(x\in A)$ is an A-A-homomorphism from Au_{σ} to A. Hence, by assumption, $a=0$.

Prop. 6.2 together with Kanzaki's result cited above yields at once the following:

Proposition 6.3. If A/B is a G-Galois extension, then the following are equivalent. (i) $V_{A}(B)=C$. (ii) $\text{Hom} (_Au_{\sigma}, A)=0$ for every $\sigma\neq1$ in G.

The following proposition will play a fundamental role in our study.

Proposition 6.4. If G is completely outer, then A/B is a G-Galois extension and $V_{A}(B)=C$.

Proof. At first, $V_{A}(B)=C$ is evident by Prop. 6.3. Since $u_{i}\in A(\sum_{\sigma}u_{\sigma})A$ (Prop. 6.1.), there are elements a_{i}, a_{i}^{*} $(i=1, \cdots, n)$ in A such that $u_{i}=$
\[\sum_i a_i (\sum_u a^*_i) = \sum_i (\sum_i a_i \cdot \sigma(a^*_i)) u_i. \] Hence \(\sum_i a_i \cdot \sigma(a^*_i) = \delta_{1,i} \) for \(\sigma \) in \(G \).

Corollary. If \(A \) is two-sided simple, then the following conditions are equivalent: (i) \(G \) is completely outer. (ii) \(G \) contains no inner automorphisms. (iii) \(A/B \) is an outer \(G \)-Galois extension.

Proposition 6.5. If there are elements \(a_i, a'_i \) \((i=1, \ldots, n) \) in \(A \) such that \(\sum_i a_i x \cdot \sigma(a'_i) = \delta_{1,i} x \) for each \(x \) in \(A \) \((\sigma \in G) \), then \(G \) is completely outer.

Proof. Let \(X \) be any \(A\)-\(A \)-submodule of \(A \). If \(\sum_i x_u \) is in \(X \), then \(X \ni \sum_i a_i (\sum_u a^*_i) \tau^{-1}(a'_i) = x_u \) for each \(\tau \) in \(G \). Hence, by Prop. 6.1, \(G \) is completely outer.

Combining Prop. 6.4 with Prop. 6.5, we readily obtain the following:

Theorem 6.6. Let \(A \) be a commutative ring. If \(A/B \) is \(G \)-Galois, then \(G \) is completely outer, and conversely.

Proposition 6.7. Let \(A/B \) be a \(G \)-Galois extension, \(H \) a subgroup of \(G \), and \(a \) an element of \(A \). If \(\sigma \in G \) is not contained in \(H \), and \(ax = a \cdot \sigma(a_0) x \) for all \(x \) in \(A^H \), then \(a = 0 \).

Proof. There are elements \(t_i, \ldots, t_n \in A^H \) and \(a^*_1, \ldots, a^*_n \in A \) such that \(\sum_i t_i \cdot \sigma(a^*_i) = \delta_{1,i} \) for any \(\sigma \) in \(G \) (Prop. 2.2). Hence, \(a = a \sum_i t_i a^*_i = \sum_i a \cdot \sigma_0(t_i) a^*_i = \sigma_0(a^{-1}(a)) \sum_i t_i \sigma_0^{-1}(a^*_i) = 0 \).

Lemma 6.8. Let \(S \) be a subring of a ring \(R \). If \(R_S \) is finitely generated and projective, then \(\text{End}(R_S) \) is an \(\text{End}(R_S) \)-left direct summand of \(\text{End}(R) \), where \(\text{End}(R_S) \) and \(\text{End}(R) \) act on the left side.

Proof. As is well known, there are elements \(a_i \in R \), \(f_i \in \text{Hom}(R_S, S_S) \) \((i=1, \ldots, n) \) such that \(\sum_i a_i f_i(x) = x \) for every \(x \) in \(R \) (cf. [3]). If \(g \) is in \(\text{End}(R) \), then \(\sum_i g(a_i) f_i \) is in \(\text{End}(R_S) \), and so the mapping \(g \rightarrow \sum_i g(a_i) f_i \) is an \(\text{End}(R_S) \)-left homomorphism from \(\text{End}(R) \) to \(\text{End}(R_S) \). To be easily seen, if \(g \) is in \(\text{End}(R_S) \) then \(\sum_i g(a_i) f_i = g \). This implies that \(\text{End}(R_S) \) is an \(\text{End}(R_S) \)-left direct summand of \(\text{End}(R) \).

Let \(T \) be an intermediate ring of \(A/B \). \(G|T \) is said to be \(\ast \)-strongly distinct if, for any non-zero idempotent \(e \) in \(A \) such that \(eA \subseteq Ae \) and any distinct \(\sigma, \tau \) in \(G \), there is at least an element \(x \) in \(T \) such that \(e \cdot \sigma(x) \neq e \cdot \tau(x) \).

If \(A/B \) is a \(G \)-Galois extension, then \(G|A^\pi \) is \(\ast \)-strongly distinct for any subgroup \(H \) of \(G \) (Prop. 6.7).

Theorem 6.9. Let \(G \) be completely outer, \(B_\pi \) a direct summand of \(A_\pi \), and \(T \) an intermediate ring of \(A/B \). Then the following conditions are equivalent.

(i) \(T = A^\pi \) for some subgroup \(H \) of \(G \).
(ii) \(A^\pi \) is finitely generated and projective, and \(T \) is a direct summand
of A_T, and $G|T$ is*-strongly distinct.

Proof. Since A/A^H is H-Galois, it remains to prove $(ii) \Rightarrow (i)$. If we put $A_0=\text{End}(A_T)$, then A_0 is a subring of A. Since A_0 is an A-A-submodule of A, $A_0=\sum_+ \mathfrak{U} u_\sigma$ with some ideals \mathfrak{U}_σ of A. By Lemma. 6.8, A_0 is a direct summand of A, so that each $\mathfrak{U}_\sigma u_\sigma$ is a direct summand of A. Therefore each $\mathfrak{U}_\sigma u_\sigma$ is a direct summand of $A u_\sigma$. Hence \mathfrak{U}_σ is a direct summand of A. Let $\mathfrak{U}_\sigma=A e_\sigma$ with an idempotent e_σ in A. Then, since $e_\sigma u_\sigma$ is in A_0, $e_\sigma \sigma(x)=e_\sigma \sigma(x)y$ for each x in A and y in T, in particular, $e_\sigma \sigma(y)=e_\sigma y$ for each y in T. Therefore, if we set $H=\{\sigma \in G; \sigma | T=1_T\}$, then $e_\sigma=0$ for σ not contained in H. Evidently $\mathfrak{U}_\sigma=A$ for each σ in H. We obtain therefore $A_0=\sum_+ e \mathfrak{U} A u_\sigma$, and hence $\text{End}(A)=\text{End}(A^H)$. On the other hand, since T_τ is a direct summand of A_T, $\text{End}(A)=(A^H)_\tau$. Hence we obtain $T=A^H$.

Now, if A is a semi-prime ring (i.e., A has no nilpotent ideals) and e is an idempotent in A such that $eA \subseteq Ae$, then $eA=Ae$ so that e is a central idempotent in A. Noting this fact, Th. 6.9 yields at once the following:

Theorem 6.10. Let A be a semi-prime ring. If G is completely outer, B a direct summand of A_B, and T an intermediate ring of A/B, then the following conditions are equivalent:

(i) $T=A^H$ for some subgroup H of G.
(ii) A_T is finitely generated and projective, and T_τ is a direct summand of A_T, $G|T$ is strongly distinct.

Proposition 6.11. The following are equivalent:

(i) G is completely outer.
(ii) For any x, y in A and any σ in G such that $\sigma \neq 1$, there are elements a_i, a'_i $(i=1, \cdots, n)$ in A such that $\sum_i a_i x a'_i = x$ and $\sum_i a_i y \sigma(a'_i) = 0$.

Proof. $(i) \Rightarrow (ii)$ Let x, y be in A, and σ any element of G such that $\sigma \neq 1$. We set $X=A(xu_1+yu_2)A$, which is an A-A-submodule of Au_1+Au_2. By Prop. 6.1, $xu_1 \in X$, and hence there are elements a_i, a'_i $(i=1, \cdots, n)$ in A such that $\sum_i a_i(xu_1+yu_2)a'_i = xu_1$. Then, $\sum_i a_i x a'_i = x$ and $\sum_i a_i y \sigma(a'_i) = 0$.

$(ii) \Rightarrow (i)$ Let σ, τ be distinct elements in G, and X any A-A-submodule of Au_1+Au_2. Let xu_1+yu_2 be any element of X. For $\sigma^{-1}(x)$ and $\sigma^{-1}(y)$, there are elements a_i, a'_i $(i=1, \cdots, n)$ in A such that $\sum_i a_i(xu_1+yu_2)a'_i = xu_1$ and $\sum_i a_i y \sigma^{-1}\tau(a'_i) = 0$. Then, $\sum_i a_i(xu_1+yu_2)a'_i = xu_1$ and $\sum_i a_i y \sigma^{-1}\tau(a'_i) = 0$, and so $X \ni \sum_i a_i(xu_1+yu_2)a'_i = xu_1$. Thus, by Prop. 6.1, Au_1 and Au_2 are unrelated.

Theorem 6.12. Let G be completely outer, and N a proper normal subgroup of G such that A^N is an A^N-right direct summand of A. Then,
G/N is completely outer as an automorphism group of A^n.

Proof. Let x, y be in A^n. Since $xu_i \in A(\sum_{\tau \in N} xu_i + \sum_{\tau \in \Theta} yu_i) A$ (Prop. 6.1), there are elements x_i, y_i $(i = 1, \cdots, n)$ in A such that $\sum_{\tau \in N} x_i (\sum_{\tau \in N} xu_i + \sum_{\tau \in \Theta} yu_i) y_i = xu_1$. Then $\sum_{\tau \in N} x_i x_\tau y_i = \delta_{1, \tau} x \ (\tau \in N)$ and $\sum_{\tau \in N} x_i y_i - \sigma(y_i) = 0 \ s \in G \setminus N$. By assumption, there is an element c in A such that $t_N(c) = 1$. We set $t_N(x_i) = x_i'$ and $t_N(y_i) = y_i'$, then $x_i', y_i' \ (i = 1, \cdots, n)$ are in A^n. To be easily seen, $\sum_{\tau} x_i x_\tau y_i = x$ and $\sum_{\tau} x_i y_i - \rho(y_i) = 0$ for any $\rho \in G \setminus N$. Thus, by Prop. 6.11, G/N is completely outer as an automorphism group of A^n.

§ 7. Several results.

The following lemma is well known.

Lemma 7.1. Let S be a subring of a ring R. If S_S is a direct summand of R_S, then $R_S \cap S = 1$ for any left ideal 1 of S.

Lemma 7.2. Let S be a subring of a ring R such that S_S is a direct summand of R_S and $S R$ is finitely generated. If R satisfies the minimal condition (resp. the maximal condition) for left ideals, then so does S, and conversely.

Proof. If R satisfies the minimal condition (resp. the maximal condition) for left ideals, then so does S (Lemma 7.1). Conversely, if S satisfies the minimal condition (resp. the maximal condition) for left ideals then $S R$ satisfies the minimal condition (resp. the maximal condition) for S-left submodules, so that R satisfies the minimal condition (resp. the maximal condition) for left ideals.

A ring R is called a semi-primary ring if $R/\Re(R)$ satisfies the minimal condition for left ideals, where $\Re(R)$ means the Jacobson radical of R. If R is semi-primary, then $(R)_n$ and eRe are semi-primary rings, where e is a natural number and e is a non-zero idempotent in R (cf. [7]). Therefore, in case R is semi-primary, if an R-right module M is finitely generated and projective then $\text{End}(M_R)$ is semi-primary. As to notations and terminologies used in below, we follows [11].

Proposition 7.3. (1) Let R be a semi-primary ring, and S a subring of R. If S_S is a direct summand of R_S, then S is a semi-primary ring.

(2) Let R be a ring, and S a subring of R such that S_S is finitely generated and projective. If S is semi-primary, then so is R.

Proof. (1) Let $\{I_i; i = 1, \cdots, n\}$ be a d-independent set of maximal left ideals of S (cf. [11]). Then, $\{RL_i; i = 1, \cdots, n\}$ is a d-independent set of proper left ideals of R (Lemma 7.1). Since each RL_i is contained in a maximal left ideals of R, $n \leq \max \dim_R d-dim \ nR = d-dim R$ (cf. [11]). Thus $d-dim S \leq d-dim R < S_0$, and hence S is semi-primary ([11; Prop. 5.14]. (2) Since S
is semi-primary, End \((R_S)\) is semi-primary. By Lemma 6.8, \(R_i R_R\) (the set of all left multiplications by elements of \(R\)) is a direct summand of \(R_i \text{End} (R_S)\). Hence, by (1), \(R (\cong R_i)\) is semi-primary.

Remark. Let \(A/B\) be a \(G\)-Galois extension, and \(B_B\) a direct summand of \(A_B\). If \(A\) is a semi-primary ring, then so is \(B\), and conversely (cf. Th. 1.7).

Let \(R\) be a ring, and \(S\) a subring of \(R\). \(R/S\) is called a free Frobenius extension if \(R_S\) is finitely generated and free and \(_sR_R \cong _s\text{Hom} (R_S, S_S)\) (Kasch [10]).

Lemma 7.4. Let \(R/S\) be a free Frobenius extension.

1. End \((R_S)/R_i\) is a free Frobenius extension.
2. If \(R_R\) is injective, then so is \(S_S\), and conversely.

Proof. (1) and the if part of (2) are given in [10]. Assume that \(R_R\) is injective. By (1) and the if part, we can easily see that End \((R_S)\) is End \((R_S)\)-right injective. Let \(R_S \cong S_S^m\). Then, End \((R_S)\) \(\cong (S)_m\), and hence we readily see that \(S_S\) is injective (cf. [11]).

Proposition 7.5. Let \(R\) be a ring, and \(S\) a subring of \(R\). If \(S_S\) is a direct summand of \(R_S\), then \(\Re(R) \cap S \subseteq \Re(S)\).

Proof. If \(\Re(R) \cap S \not\subseteq \Re(S)\), then \(\Re(R) \cap S + I = S\) for some maximal left ideal \(I\) of \(S\). Since \(R(\Re(R) \cap S) + RI = R\) and \(R(\Re(R) \cap S) \subseteq \Re(R)\), we have \(RI = R\). If follows then a contradiction \(I = RI \cap S = S\) (Lemma 7.1).

Proposition 7.6. The set of all maximal \(A\)-A-submodules of \(A\) coincides with \(\{\bigcap \sigma(\mathfrak{P}); \mathfrak{P} \text{ ranges over all maximal ideals of } A\}\).

Proof. Let \(X\) be a maximal \(A\)-A-submodule of \(A\). Take a maximal ideal \(\mathfrak{P}_1\) such that \(\mathfrak{P}_1 \supseteq X\). Then, \(\cap \sigma(\mathfrak{P}_1) \supseteq X\), and so \(\cap \sigma(\mathfrak{P}_1) = X\). Now, let \(\mathfrak{P}\) be a maximal ideal of \(A\), and \(Y\) a maximal \(A\)-A-submodule of \(A\) such that \(Y \supseteq \cap \sigma(\mathfrak{P})\). Then \(Y = \cap \sigma(\mathfrak{P})\) for some maximal ideal \(\mathfrak{P}_2\) of \(A\). If \(\cap \sigma(\mathfrak{P}_2) \supseteq \cap \sigma(\mathfrak{P})\), then \(\mathfrak{P}_2 \supseteq \cap \sigma(\mathfrak{P}_2)\), and so \(\mathfrak{P} + \cap \sigma(\mathfrak{P}_2) = A\), whence it follows a contradiction \(\cap \sigma(\mathfrak{P}) + \cap \sigma(\mathfrak{P}_2) = A\).

Proposition 7.7. Let \(A/B\) be a \(G\)-Galois extension, and \(B_B\) a direct summand of \(A_B\). Let \(\{\overline{X}\}\) be the set of all \(A\)-submodules of \(A\) and \(\{X\}\) be the set of all left ideals of \(B\). Then \(\overline{X} \rightarrow \overline{X} \cap B\) and \(X \rightarrow AX = A \otimes_B X\) are mutually converse order isomorphisms between \(\{\overline{X}\}\) and \(\{X\}\).

Proof. This is a special case of Th. 5.1 (2).

Proposition 7.8. Let \(A/B\) be a \(G\)-Galois extension, and \(B_B\) a direct summand of \(A_B\). If \(A \cdot \Re(B)\) is an ideal of \(A\), then \(\Re(A) = A \cdot \Re(B)\).

Proof. By Prop. 7.7 and Prop. 7.5, \(\Re(A) = A(\Re(A) \cap B) \subseteq A \cdot \Re(B)\).
Since A_B is finitely generated, $A \cdot \Re(B)$ is d-dense in A_B, and so d-dense in A_A (cf. [11]). Hence $A \cdot \Re(B) \subseteq \Re(A)$.

Theorem 7.9. Let A/B be a G-Galois extension such that $B \subseteq C$. If A' is a B-algebra, then $\Re(A' \otimes_B A) = \Re(A') \otimes A$.

Proof. By Cor. to Th. 5.2, $(A' \otimes_B A)/(A' \otimes 1)$ is a G-Galois extension. Since $(A' \otimes A) (\Re(A') \otimes 1) = \Re(A') \otimes A$ is an ideal of $A' \otimes A$, $\Re(A' \otimes A) = \Re(A') \otimes A$ by Prop. 7.8.

Now, assume that G is completely outer and B_B is a direct summand of A_B. If A is an A-A-submodule (resp. A-A-submodule) of A, then $A = \sum u_i \mathfrak{A}$, for some ideals \mathfrak{A} of A (resp. $A = \mathfrak{A} = \sum u_i \mathfrak{A}$ for some ideal \mathfrak{A} of A), and conversely. In particular, if A is an ideal of A, then $A = \mathfrak{A} = \mathfrak{A} = \mathfrak{A}$ for some G-invariant ideal \mathfrak{A} of A, and conversely (cf. §6 and [13]). Now, let $\{a\}$ be the set of all ideals of A, $\{a\}$ the set of all ideals of B, and $\{\mathfrak{A}\}$ the set of all G-invariant ideals of A. Then, there exists an order isomorphism $A \rightarrow a$ between $\{A\}$ and $\{a\}$ such that $A(\Lambda) = Aa$ (cf. [1; Prop. A. 5]). Consequently, there exists an order isomorphism $\mathfrak{A} \rightarrow Aa$ between $\{\mathfrak{A}\}$ and $\{a\}$ (cf. Th. 5.1 (2)). Accordingly, if A is semi-prime, (prime, two-sided simple) then so is B. Since $A \cdot \Re(B) = \Re(B)A$ is an ideal of A, Prop. 7.8 implies $\Re(A) = A \cdot \Re(B) = \Re(B)A$. Next, we shall consider $\Re(\Lambda)$. There exists $\mathfrak{A} \in \{\mathfrak{A}\}$ such that $\Re(\Lambda) = \mathfrak{A} = \mathfrak{A}$. Since $\mathfrak{A} u_i = \Re(\Lambda) \cap A u_i \subseteq \Re(A u_i) = \Re(A) u_i$ by Prop. 7.5, we obtain $\Re(\Lambda) = \Re(\Lambda \cap A \mathfrak{A}) = \Re(A \mathfrak{A})$. On the other hand, noting that $A = \mathfrak{A}$ is finitely generated and $A \cdot \Re(A)$ is an ideal of A, we see that $A \cdot \Re(A) \subseteq \Re(\Lambda)$ (cf. the proof of Prop. 7.8). Hence, we have $\Re(\Lambda) = A \cdot \Re(A) = A \cdot \Re(A)$. Since $\Re(\mathfrak{A} A) = \Re(\mathfrak{A} A) = \Re(\mathfrak{A} A)$, $A \cdot \Re(B_B) = \Re(B_B)A$, $\Re(\mathfrak{A} A) \cap B = \Re(B_B)B$, $\Re(\Lambda) = A \cdot \Re(B_B)$, and $\Re(\mathfrak{A} A) \cap B = \Re(B_B)$, $\Re(\Lambda) = A \cdot \Re(B_B)$, $\Re(\Lambda) = A \cdot \Re(B_B)$, and $\Re(\mathfrak{A} A) \cap B = \Re(B_B)$. Summarizing the above, we state the following theorem.

Theorem 7.10. If G is completely outer and B_B a direct summand of A_B, then $\Re(A) = A \cdot \Re(B) = \Re(B)A$, $\Re(A) \cap B = \Re(B)$, $\Re(\mathfrak{A} A) = \Re(B_B)A$, $\Re(\mathfrak{A} A) \cap B = \Re(B_B)$, $\Re(\Lambda) = A \cdot \Re(B_B)$, and $\Re(\mathfrak{A} A) \cap B = \Re(B_B)$.

Proposition 7.11. Let B be directly indecomposable, and let $A = \mathfrak{A}_1 \oplus \cdots \oplus \mathfrak{A}_r$ be a direct sum of minimal ideals. If \mathfrak{A} is a minimal ideal of A, then $\{\sigma(\mathfrak{A}); \sigma \in G\} = \{\mathfrak{A}_1, \ldots, \mathfrak{A}_r\}$, and n divides $|G : 1|$. If \mathfrak{P} is a maximal ideal of A, $\{\sigma(\mathfrak{P}); \sigma \in G\}$ coincides with the set of all maximal ideals of A.

Proof. Note that $\{\mathfrak{A}_1, \ldots, \mathfrak{A}_r\}$ coincides with the set of all minimal ideals of A. For any \mathfrak{A}_i, we set $\sum \sigma(\mathfrak{A}_i) = \mathfrak{B}$. Then, $\mathfrak{B} = A \alpha$ with some non-zero
central idempotent \(e \) of \(A \). Since \(\sigma(\mathfrak{B})=\mathfrak{B} \) for all \(\sigma \) in \(G \), \(\sigma(e)=e \) for all \(\sigma \) in \(G \), so that \(e \in B \), which means \(e=1 \). Hence \(\mathfrak{B}=A \), which implies that \(\{\sigma(\mathfrak{U}_{i});\sigma\in G\} = \{\mathfrak{U}_{1}, \cdots, \mathfrak{U}_{8}\} \). If we set \(H=\{\sigma\in G; \sigma(\mathfrak{U}_{i})=\mathfrak{U}_{i}\} \), then \(\#\{\sigma(\mathfrak{U}_{i}); \sigma\in G\} = (G:H) \), which divides \((G:1)\). Let \(\mathfrak{P} \) and \(\mathfrak{P}' \) be maximal ideals of \(A \). Then \(A=\mathfrak{U}\oplus \mathfrak{P}=\mathfrak{U}'\oplus \mathfrak{P}' \) with some minimal ideals \(\mathfrak{U}, \mathfrak{U}' \) of \(A \). There is an element \(\sigma \) in \(G \) such that \(\sigma(\mathfrak{U})=\mathfrak{U}' \). Then \(A=\mathfrak{U}'\oplus \sigma(\mathfrak{P})=\mathfrak{U}'\oplus \mathfrak{P}' \), so that \(\sigma(\mathfrak{P})=\mathfrak{P}' \).

Corollary 1. Let \(G \) be completely outer, and \(B_{h} \) a direct summand of \(A_{B} \). If \(B \) is a two-sided simple rings, then \(A \) is a direct sum of isomorphic two-sided simple rings, and the number of components divides \((G:1)\).

Proof. Let \(\mathfrak{P} \) be a maximal ideal of \(A \). Then \(\cap_{\sigma}\sigma(\mathfrak{P}) \) is a \(\Delta \)-\(A \)-submodule of \(\mathfrak{P} \). As we remarked above, \(A \) is \(\Delta \)-\(A \)-simple, and so we have \(\cap_{\sigma}\sigma(\mathfrak{P})=0 \). Hence \(A \) is a direct sum of two-sided simple rings.

Corollary 2. Let \(A/B \) be a \(G \)-Galois extension, and \(B \) a division ring. Then \(A \) is a direct sum of isomorphic (Artinian) simple rings.

Proof. Let \(\mathfrak{P} \) be a maximal left ideal of \(A \). Then \(\cap_{\sigma}\sigma(\mathfrak{P}) \) is a \(\Delta \)-submodule of \(A \). Since \(\Delta A \) is simple (Prop. 7.7), \(\cap_{\sigma}\sigma(\mathfrak{P})=0 \). Hence, as is easily seen, \(\Delta A \) is completely reducible, so that \(A \) is a direct sum of simple rings. Let \(A/B \) be a \(G \)-Galois extension, \(A \) a commutative ring, and \(A' \) a \(B \)-algebra. Then, by Prop. 6.5 and Th. 5.2, \((A'\otimes_{B}A)/(A'\otimes 1) \) is \(G \)-Galois and \(G \) is completely outer (as an automorphism group of \(A'\otimes A \)). Further, if \(A' \) is two-sided simple, then \(A'\otimes_{B}A \) is a direct sum of isomorphic two-sided simple rings (Cor. 1. to Prop. 7.11). Thus we have the following:

Theorem 7.12. Let \(A/B \) be a \(G \)-Galois extension, \(A \) commutative, and \(A' \) a \(B \)-algebra. If \(A' \) is two-sided simple, then \(A'\otimes_{B}A \) is a direct sum of isomorphic two-sided simple rings, and the number of components devides \((G:1)\).

References

Y. Miyashita

Department of Mathematics,
Hokkaido University

(Received June 10, 1966)