<table>
<thead>
<tr>
<th>Title</th>
<th>FINITE OUTER GALOIS THEORY OF NON-COMMUTATIVE RINGS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author(s)</td>
<td>Miyashita, Yôichi</td>
</tr>
<tr>
<td>Citation</td>
<td>Journal of the Faculty of Science Hokkaido University. Ser. 1 Mathematics, 19(3-4): 114-134</td>
</tr>
<tr>
<td>Issue Date</td>
<td>1966</td>
</tr>
<tr>
<td>Doc URL</td>
<td>http://hdl.handle.net/2115/56076</td>
</tr>
<tr>
<td>Type</td>
<td>bulletin (article)</td>
</tr>
<tr>
<td>File Information</td>
<td>JFSHIU_19_N3-4_114-134.pdf</td>
</tr>
</tbody>
</table>

Hokkaido University Collection of Scholarly and Academic Papers : HUSCAP
FINITE OUTER GALOIS THEORY OF NON-COMMUTATIVE RINGS

By

Yôichi MIYASHITA

Contents

§ 0. Introduction ... 114
§ 1. Galois extension and normal basis 115
§ 2. The first characterization of fixed-subrings 118
§ 3. The second characterization of fixed-subrings 121
§ 4. Extension of isomorphisms 122
§ 5. Heredity of Galois extensions 123
§ 6. Completely outer case 126
§ 7. Several results ... 130

§ 0. Introduction. It is the purpose of this paper to extend the Galois theory of commutative rings given by S. U. Chase, D. K. Harrison and A. Rosenberg [4] to non-commutative case. In what follows, for the sake of simplicity, we shall state main results for directly indecomposable rings: Let $A
\triangleright 1$ be a directly indecomposable ring, G a finite group of automorphisms of A, and $B=A^{G}=\{x\in A; \sigma(x)=x \text{ for all } \sigma \in G\}$. We call A/B a G-Galois extension if there are elements a_{1}, \ldots, a_{n}; $a_{1}^{*}, \ldots, a_{n}^{*}$ in A such that $\sum a_{t}\cdot \sigma(a_{i}^{*})=\delta_{1,\sigma}(\sigma \in G)$, where $\delta_{1,\sigma}$ means Kronecker’s delta. If $V_{A}(B)=C$ (the center of A), then A/B is a G-Galois extension if and only if the mapping $x\otimes y \rightarrow xy$ from $A\otimes_{B}A$ to A splits as an $A-A$-homomorphism (Th. 1.5). Let A/B be a G-Galois extension, and A' a G-invariant subring of A, i.e., $\sigma(A')=A'$ for all $\sigma \in G$, and put $B'=A'^{G}$. If A'/B' is a G-Galois extension and B'' is a direct summand of A'', then there hold the following: (1) For any subgroup H of G, $A''=B\otimes_{B'}A''=A''\otimes_{B'}B$. (2) Let $\{T\}$ be the set of all G-invariant intermediate rings of A/A', and $\{T\}$ the set of all intermediate rings of B/B' such that $A'T=TA'$. Then, $T\rightarrow T \cap B$ and $T\rightarrow A'T=TA'$ are mutually converse order isomorphisms between $\{T\}$ and $\{T\}$, and $T/(T \cap B)$ is a G-Galois extension (Th. 5.1).

Let A/B be a G-Galois extension, $V_{A}(B)=C$, and B_{B} a direct summand of A_{B}. Then there hold the following: (1) G coincides with the set of all B-automorphisms of A (Th. 4.2). (2) For any subgroup H of G, $\{\sigma \in G; \sigma|A''=A''\otimes_{B'}B\}$. (3) If T is an intermediate ring of A/B, the following are
equivalent: (a) $T=A^H$ for some subgroup H of G. (b) The mapping $x \otimes y \rightarrow xy$ from $T \otimes A$ to A splits as a T-T-homomorphism (Th. 2.6). (c) A/T is a projective Frobenius extension (in the sense of Kasch), and T_T is a direct summand of A_T (Th. 3.2). In case bB_B is a direct summand of bA_B, the next is also equivalent to (a). (b') The mapping $x \otimes y \rightarrow xy$ from $T \otimes bT$ to T splits as a T-T-homomorphism (Th. 2.9). (4) For any subgroup H of G, every B-isomorphism from A^H to A can be extended to a B-ring automorphism of A (Th. 4.2). (5) If A_B is finitely generated and free, and B is a semi-primary ring (i.e. $B/R(B)$ satisfies the minimum condition for left ideals, where $R(B)$ means the Jacobson radical of B), then A has a normal basis (Th. 1.7).

Let $A=\Delta(A, G)=\sum_{\sigma \in \theta} + Au_{\sigma}$ be the trivial crossed product of A with G. G is said to be completely outer if $\Delta A u_{\sigma}$ and $\Delta A u_{\tau}$ have no isomorphic non-zero subquotients provided $\sigma \neq \tau$. If G is completely outer, then A/B is a G-Galois extension and $V_A(B)=C$ (Prop. 6.4). If A is commutative, then A/B is a G-Galois extension if and only if G is completely outer (Th. 6.6). In case A is two-sided simple, G is completely outer if and only if A/B is a G-Galois extension and $V_A(B)=C$ (Cor. to Prop. 6.4).

The author wishes to express his best thanks to Dr. H. Tominaga for helpful suggestions.

§ 1. Galois extension and normal basis.

Throughout the present paper, all rings have identities, modules are unitary. A subring of a ring will mean one containing the same identity. By a ring homomorphism, we mean always a ring homomorphism such that the image of 1 is 1. Let A be a ring, C the center of A, G a finite group of automorphisms of A which acts on the left side, and $B=A^G=\{x \in A ; \sigma(x)=x \text{ for all } \sigma \text{ in } G\}$. For any subgroup H of G, $\delta_{H, \sigma}$ means the mapping from G to \{1, 0\} (\subseteq A) such that $\delta_{H, \sigma}=1$ if and only if $\sigma \in H$.

Let B' and T be subrings of a ring A' such that $B' \subseteq T$. A' is said to be (B', T)-projective, if the mapping $\sum_{j} x_{j} \otimes y_{j} \rightarrow \sum_{j} x_{j} y_{j}$ from $T \otimes A'$ to A' splits as a T-T-homomorphism. As is easily seen, A' is (B', T)-projective if and only if there are elements $t_{1}, \cdots, t_{n} \in T$ and $a_{1}', \cdots, a_{n}' \in A'$ such that $\sum_{i} t_{i} a_{i}'=1$ and $\sum_{i} x t_{i} \otimes a_{i}' = \sum_{i} x t_{i} \otimes a_{i}' x \ (\in T \otimes A')$ for all $x \in T$. When this is the case, \{(t_{i}, a_{i}') \}; i=1, \cdots, n\} is called a (B', T)-projective coordinate system for A'. If A' is (B', A')-projective, then we call A'/B' a separable extension.

Let f and g be ring homomorphisms from a ring A' to a ring A''. f and g are called strongly distinct if, for any non-zero central idempotent e of A'', there is an element x in A' such that $f(x)e \neq g(x)e$. Let Σ be a set of
ring homomorphisms from A' to A''. \mathcal{E} is called strongly distinct if any distinct f, g in \mathcal{E} are strongly distinct.

$\mathcal{A}=\mathcal{A}(A, G)$ denotes the trivial crossed product of A with G: $\mathcal{A} = \sum_{\sigma \in G} A u_{\sigma}, \ u_{\sigma} u_{\tau} = u_{\sigma \tau} (\sigma, \tau \in G), \ u_{\sigma} x = \sigma(x) u_{\sigma}$ ($x \in A$). By j, we denote the ring homomorphism from \mathcal{A} to $\text{Hom} (A_B, A_B)$ defined by $j(xu_{\sigma}) (y) = x \cdot \sigma(y)$ for x, y in A and σ in G.

A/B is called a G-Galois extension if there are elements a_1, \ldots, a_n; $a_1^* \ldots, a_n^*$ in A such that $\sum_i t_i a_i \sigma(a_i^*) = \delta_{1,i}$ for all σ in G. When this is the case, $\{ (a_i, a_i^*) : i = 1, \ldots, n \}$ is called a G-Galois coordinate system for A/B. Then the following is known: A/B is a G-Galois extension if and only if A_B is finitely generated and projective and j is an onto isomorphism (cf. [6]). When this is the case we identify \mathcal{A} with $\text{Hom} (A_B, A_B)$: $\mathcal{A} = A_B G = AG$, where A_t means the set of all left multiplications by elements of A. If A/B is G-Galois and $C = V_{A}(B)$ (the centralizer of B in A), it is called outer G-Galois. If A/B is G-Galois (resp. outer G-Galois) and H is a subgroup of G, then A/A^H is evidently H-Galois (resp. outer H-Galois).

Proposition 1.1. Let A' and A'' be rings, T a subring of A', f a ring homomorphism from T to A'', and g a ring homomorphism from A' to A''. If there are elements $t_1, \ldots, t_n \in T$ and $a_1, \ldots, a_n \in A'$ such that $\sum_i t_i a_i = 1$ and $\sum_i f(t_i) g(a_i) = 0$, then f and $g|T$ (the restriction of g to T) are strongly distinct.

Proof. Let e be a central idempotent of A'' such that $f(x)e = g(x)e$ for all x in T. Since $\sum_i t_i a_i = 1$, we have $\sum_i g(t_i) g(a_i) = 1$, and therefore $e = e_1 = \sum_i e g(t_i) g(a_i) = \sum_i e f(t_i) g(a_i) = 0$. Thus, f and $g|T$ are strongly distinct.

Proposition 1.2. Let B' and T be subrings of a ring A' such that $B' \subseteq T$, and A'' an extension ring of B' such that $V_{A''}(B') = V_{A''}(A'')$, where $V_{A''}(B')$ means the centralizer of B' in A''. Let A' be (B', T)-projective, and $\{(t_i, a_i) : i = 1, \ldots, n\}$ a (B', T)-projective coordinate system for A'. Let f be a B'-ring homomorphism from T to A'', and g and g' B'-ring homomorphisms from A' to A''. We set $e = \sum_i f(t_i) g(a_i)$ and $e' = \sum_i f(t_i) g'(a_i)$. Then there hold the following:

1. e is a central idempotent in A''.
2. $f(x)e = g(x)e$ for all x in T.
3. $ee' = e \sum_i g(t_i) g'(a_i)$.
4. f and $g|T$ are strongly distinct if and only if $e = 0$.
5. If $g|T$ and $g'|T$ are strongly distinct, then $ee' = 0$.

Proof. Since $\sum_i xt_i \otimes a_i = \sum_i t_i \otimes a_i x$ ($\in T \otimes_{B'} A'$) for all x in T, $\sum_i f(xt_i) \otimes g(a_i) = \sum_i f(t_i) \otimes g(a_i x)$ ($\in A'' \otimes_{B'} A''$) for all x in T. Therefore,
$f(x)e=e\cdot g(x)$ for all x in T, in particular, $ye=ey$ for all y in B'. Hence, by assumption, e is contained in the center of A''. Since $\sum f(t_j)(\sum f(t_i)\otimes g(a_i))g'(a_j) = (\sum f(t_i)g(a_i)) \sum f(t_j)g'(a_j)$, we obtain $ee' = \sum f(t_j)e\cdot g'(a_j) = e\sum f(t_j)g'(a_j)$.

If we put $g=g'$, then we have $e^2=e$, and so e is a central idempotent of A'' such that $f(x)e=e\cdot g(x)$ for all x in T. Therefore f and $g|T$ are strongly distinct if and only if $e=0$ (Prop. 1.1). Now, it is left only to prove (5). If $g|T$ and $g'|T$ are strongly distinct, then $\sum f(t_j)g'(a_j)=0$ by (4), and so $ee'=e\sum f(t_j)g'(a_j)=0$.

Evidently, the mapping $x\otimes y\rightarrow x\sum u_{\sigma}y$ from $A\otimes_{B}A$ to A is an A-A-homomorphism. We denote this homomorphism by h. One may remark here that h is a A-A-homomorphism. In fact, $u_{\sigma}x\sum u_{\sigma}y=\tau(x)u_{\sigma}\sum u_{\sigma}y=\tau(x)\sum u_{\sigma}y$.

Proposition 1.3. Let A/B be a G-Galois extension, and let $\{(a_i, a_i^\ast); i=1, \cdots, n\}$ be a G-Galois coordinate system for A/B. Then h is a A-A-isomorphism, $h^{-1}(\sum_{i}x_{i}u_{i})=\sum_{i}\sum_{j}x_{i}\sigma(a_i)\otimes a_j^\ast$ for every $\sum_{i}x_{i}u_{i}$ in A, and $\{(a_i, a_i^\ast); i=1, \cdots, n\}$ is a (B, A)-projective coordinate system for A.

Proof. To be easily seen, $h(\sum_{i}\sum_{j}x_{i}\sigma(a_i)\otimes a_j^\ast)=\sum_{i}x_{i}u_{i}$, and hence h is onto. Let x, y be in A. Then $\sum_{i}\sum_{j}x_{i}\sigma(y)\sigma(a_i)\otimes a_j^\ast=x\otimes\sum_{i}\sum_{j}\sigma(y)\sigma(a_i)a_j^\ast=x\otimes y$, whence we can easily see that h is 1-1. Hence, h is a A-A-isomorphism. Since $h(\sum_{i}a_i\otimes a_i^\ast)=u_i$ and h is an A-A-isomorphism, $\sum_{i}x_{i}a_i\otimes a_i^\ast=\sum_{i}a_i\otimes a_i^\ast x$ for any x in A.

Proposition 1.4. Assume $V_A(B)=C$ (the center of A), and let a_i, a_i^\ast $(i=1, \cdots, n)$ be elements of A. Then the following conditions are equivalent:

(i) $\{a_i, a_i^\ast\}; i=1, \cdots, n$ is a G-Galois coordinate system for A/B. (ii) $\{a_i, a_i^\ast\}; i=1, \cdots, n$ is (B, A)-projective coordinate system for A/B and G is strongly distinct.

Proof. (i)\Rightarrow(ii) follows from Prop. 1.3 and Prop. 1.1. (ii)\Rightarrow(i) follows from Prop. 1.2 (4).

Restating the above proposition we obtain the following theorem.

Theorem 1.5. (Cf. [4; Th. 1.3].) Let $V_A(B)=C$. Then following conditions are equivalent:

(i) A/B is a G-Galois extension.

(ii) A/B is a separable extension and G is strongly distinct.

Remark. To prove the part (i)\Rightarrow(ii) we do not need the condition $V_A(B)=C$.

Proposition 1.6. (Cf. [4; Th. 4.2].) If A/B is a G-Galois extension and $B\cong B^m$ for some natural number m, then $B\cong B^m$.

Proof. Let $A=\sum_i\oplus Bd_i$ $(i=1, \cdots, n)$, and $B\cong B^m$ by the correspondence
y \rightarrow yd_i \ (y \in B). \ Then \ \Delta = \sum_e \sum u_e A = \sum_e \sum u_e B d_i = \sum_e (\sum u_e) d_i \ and \ \sum_e (Bu_e) d_i = \sum_e Bu_e \ as \ \sum_e Bu_e \ - \ \text{left modules}. \ Hence, \ \Re(BA) \cong \Re(Be^A). \ On \ the \ other \ hand, \ \Delta \cong \Delta A \otimes \Delta B \cong \Delta \otimes \Delta (B^m) \cong \Delta A^m \ (\text{Prop. 1.3}). \ We \ obtain \ therefore \ \Re(BG) \cong \Re(BA).

Theorem 1.7. Let A/B be a G-Galois extension and $\Re(BA) \cong \Re(BA^m)$ for some natural number m. If B is semi-primary (i.e., $B/\Re(B)$ satisfies the minimal condition for left ideals, where $\Re(B)$ means the Jacobson radical of B), then $\Re(BG) \cong \Re(BA)$, that is, A has a normal basis.

Proof. By Prop. 1.6, $\Re(BG) \cong \Re(BA)$ since $\Re(BG) = (\Re(BA))^m$ under the above isomorphism, $BG/\Re(B)B \cong (A/\Re(BA))^m$ as $BG/\Re(B)B$-left modules. Since $BG/\Re(B)B$ is $B/\Re(B)$-left finitely generated and B is semi-primary, $BG/\Re(B)B$ satisfies the minimal condition (and the maximal condition) for left ideals. Hence, by Krull-Remak-Schmidt’s theorem, we have $BG/\Re(B)B \cong A/\Re(BA)$ as BG-left modules. Since $\Re(BG)$ and $\Re(BA)$ are finitely generated and projective and $\Re(BA) \subseteq \Re(BG)$ and $\Re(BA) \subseteq \Re(BG)$, $BG \cong A$ as BG-left modules by the uniqueness of projective cover (cf. [11]).

§ 2. The first characterization of fixed-subrings.

For any subgroup H of G, the mapping $x \rightarrow \sum_{e \in H} \tau(x)$ from A to A^H is evidently an A^H-A^H-homomorphism. We denote this by t_H.

Let A/B be a G-Galois extension. Then $(\sum_u u) A \cong \text{Hom} (A_B, B_B)$ by j (cf. [6]). From this fact, one will easily see that B_B is a direct summand of A_B if and only if there exists an element c in A such that $t_0(c) = 1$. Further, since $j((\sum_u u) V_A(B)) = \text{Hom} (B_B, B_B), B_B$ is a direct summand of B_B if and only if there exists an element c in $V_A(B)$ such that $t_0(c) = 1$.

Let c be an element of A such that $t_0(c) = 1$, H a subgroup of G, and $G = H \sigma_1 \cup \cdots \cup H \sigma_r$ the right coset decomposition of G. If we set $\sum \sigma_i(c) = d$, then $t_H(d) = 1$. Hence, if A/B is G-Galois and B_B is a direct summand of A_B, then A_B^H is a direct summand of A_A^H.

For any G-left module A and any subgroup H of G, we denote by M^H \{u \in M; \ \tau(u) = u \ for \ all \ \tau \ in H\}. \ If \ A/B$ is a G-Galois extension, then $h: A_B \otimes_{B_B} A_A \cong A_A$ (Prop. 1.3), and evidently $(A \otimes A)^H \cong A^H$ under h.

Proposition 2.1. Let A/B be a G-Galois extension. If H is a subgroup of G, then $A^H = \{ \sum_{e \in H} u_e x_e; \ if \ Ha = H \sigma \ then \ x_e = x_e \}$ and $(A \otimes A)^H = A^H \otimes A$.

Proof. The first assertion is evident. We shall prove the second one. Evidently $A^H \otimes A \subseteq (A \otimes A)^H$. Let \{(a_i, a^*_i); i = 1, \cdots, n\} be a G-Galois coordinate system for A/B. If ρ is an element of G, then $\sum_{e \in H} u_e \in A^H$ and $h^{-1}(\sum_{e \in H} u_e) = \sum_{e \in H} \sum \tau(\rho(a_i)) \otimes a^*_i = \sum_i (\sum_{e \in H} \tau(\rho(a_i)) \otimes a^*_i \in A^H \otimes A$. Noting that h
is an A-right isomorphism, we have $(A \otimes A)^u \subseteq A^u \otimes A$. Thus $(A \otimes A)^u = A^u \otimes A$.

Proposition 2.2. Let A/B be G-Galois. If H is a subgroup of G, then there are elements $t_1, \ldots, t_n \in A^u$ and $a_1^*, \ldots, a_n^* \in A$ such that $\sum_i t_i \cdot \sigma(a_i^*) = \delta_{H, \sigma}$ for all σ in G, and $\{\sigma \in G; \sigma|A^u = 1_{A^u}\} = H$.

Proof. Let $\{(a_i, a_i^*); i = 1, \ldots, n\}$ be a G-Galois coordinate system for A/B. If we put $t_i = t_{H}(a_i)$, then $t_i \in A^u$ and $\sum_i t_i \cdot \sigma(a_i^*) = \delta_{H, \sigma}$. If $\sigma|A^u = 1_{A^u}$, then $1 = \sum_i \sigma(t_i) \sigma(a_i^*) = \sum_i t_i \cdot \sigma(a_i^*) = \delta_{H, \sigma}$. Hence $\sigma \in H$.

Theorem 2.3. Let A/B be G-Galois, and B_0 a direct summand of A_B. If H is a subgroup of G and T is an intermediate subring of A/B such that $T \subseteq A^u$, then the following conditions for T are equivalent.

(i) $T = A^u$.

(ii) There are elements $t_1, \ldots, t_n \in T$ and $a^*_1, \ldots, a^*_n \in A$ such that $\sum_i t_i \cdot \sigma(a_i^*) = \delta_{H, \sigma}$ for all σ in G.

(iii) $T \otimes A = A^u \otimes A$ in $A \otimes_{B} A$.

Proof. (i) \Rightarrow (ii) follows from Prop. 2.2. (ii) \Rightarrow (iii) Evidently $T \otimes A \subseteq A^u \otimes A$ in $A \otimes_{B} A$. If ρ is in G, then $\sum_i t_i \otimes \rho^{-1}(a_i^*) \in T \otimes A$ and $h(\sum_i t_i \otimes \rho^{-1}(a_i^*)) = \sum_{\sigma \in H} u_{\sigma}$. Noting that h is an A-right homomorphism, we know that $h(T \otimes A) = A^u$, and hence $T \otimes A = A^u \otimes A$ (Prop. 2.1). (iii) \Rightarrow (i) There is an element c of A such that $t_0(c) = 1$. For any x in A^u, $x \otimes c \in A^u \otimes A = T \otimes A$. Therefore, there are elements $x'_j s \in T$, $y'_j s \in A$ such that $x \otimes c = \sum_j x'_j \otimes y'_j$. By making use of the mapping $1 \otimes t_0$, we can easily see $x = x \cdot t_0(c) = \sum_j x'_j \cdot t_0(y'_j) \in T \cdot B = T$. Hence $T = A^u$.

Proposition 2.4. Let A/B be a G-Galois extension. If H is a subgroup of G, then $G|A^u$ is strongly distinct and the mapping $x \otimes y \rightarrow xy$ from $A^u \otimes B$ to A splits as an A^u-A^u-homomorphism (i.e., A is (B, A^u)-projective).

Proof. Let $\{(a_i, a_i^*); i = 1, \ldots, n\}$ be a G-Galois coordinate system for A/B. If we set $t_i = t_{H}(a_i)$, then $t_i \in A^u$ and $\sum_i t_i \cdot \sigma(a_i^*) = \delta_{H, \sigma}$ for every σ in G. Therefore, by Prop. 1.1, $G|A^u$ is strongly distinct. Now, $t_{H} \otimes 1$ is an A^u-A^u-homomorphism from $A \otimes_{B} A$ to $A^u \otimes_{B} A$. Since $\sum_i x a_i \otimes a_i^* = \sum_i a_i \otimes a_i^* x$ ($\in A \otimes_{B} A$) for all x in A (Prop. 1.3), $\sum_i x t_i \otimes a_i^* = \sum_i t_i \otimes a_i^* x$ ($\in A^u \otimes_{B} A$) for all x in A^u. Hence the mapping $x \rightarrow \sum_i x t_i \otimes a_i^* x$ from A to $A^u \otimes_{B} A$ is an A^u-A^u-homomorphism, and $\sum_i t_i a_i^* x = x$. Hence the mapping $x \otimes y \rightarrow xy$ from $A^u \otimes_{B} A$ to A splits as an A^u-A^u-homomorphism.

Proposition 2.5. Let A/B be outer G-Galois, and T an intermediate ring of A/B. If $G|T$ is strongly distinct, and A is (B, T)-projective then there are elements $t_1, \ldots, t_n \in T$ and $a_1^*, \ldots, a_n^* \in A$ such that $\sum_i t_i \cdot \sigma(a_i^*) = \delta_{H, \sigma}$.
for all \(\sigma \) in \(G \), where \(H = \{ \sigma \in G; \sigma|T = 1_T \} \).

Proof. Let \(\{(t_i, a_i^*); i = 1, \cdots, n\} \) be a \((B, T)\)-projective coordinate system for \(A \). Then, by Prop. 1.2, \(\sum t_i \sigma(a_i^*) = 0 \) for every \(\sigma \notin H \). Whereas, if \(\sigma \in H \), then \(1 = \sum t_i \sigma(t_i) \sigma(a_i^*) = \sum t_i \sigma(a_i^*) \).

Combining Props 2.4, 2.5 with Th. 2.3, we readily obtain the following:

Theorem 2.6. Let \(A/B \) be outer \(G\)-Galois, and \(B_B \) a direct summand of \(A_B \). If \(T \) is an intermediate ring of \(A/B \), then the following conditions are equivalent:

(i) There is a subgroup \(H \) of \(G \) such that \(T = A^H \).

(ii) \(A \) is \((B, T)\)-projective and \(G|T \) is strongly distinct.

Lemma 2.7. Let \(S \) and \(T \) be subrings of a ring \(R \) such that \(S \supseteq T \).

1. If \(R/T \) is separable, then so is \(R/S \).
2. If \(S/T \) is separable, then \(R \) is \((T, S)\)-projective.
3. If both \(R/S \) and \(S/T \) are separable, then so is \(R/T \).

Proof. (1) will be easily seen. (2) Since \(S \otimes_T S \supseteq S \otimes_T R \) and \(S \otimes_T R \supseteq R \), this is obvious. (3) Since the mapping \(s \otimes s' \rightarrow ss' \) from \(S \otimes_T S \) to \(S \) splits as an \(S-S \)-homomorphism, the mapping \(r \otimes r' \rightarrow r \otimes r' \) from \(R \otimes_T R \) to \(R \otimes_S R \) splits as an \(R-R \)-homomorphism. Since \(R/S \) is separable, the mapping \(r \otimes r' \rightarrow rr' \) from \(R \otimes_T R \) to \(R \) splits as an \(R-R \)-homomorphism.

Proposition 2.8. Let \(A/B \) be outer \(G\)-Galois, and \(_BB \) a direct summand of \(_BA_B \). If \(H \) is a subgroup of \(G \), then \(A^H \) is an \(A^H-A^H \)-direct summand of \(A \), and \(A^H/B \) is a separable extension.

Proof. Since \(_BB \) is a direct summand of \(_BA_B \), there is an element \(c \) of \(C \) such that \(t_0(c) = 1 \). Let \(G = H \sigma_1 \cup \cdots \cup H \sigma_r \) be the right coset decomposition of \(G \). If we set \(d = \sum_k \sigma_k(c) \), then \(t_H(d) = 1 \) and \(d \in C \). Hence \(A^H \) is an \(A^H \)-direct summand of \(A \). Let \(\{(a_i, a_i^*); i = 1, \cdots, n\} \) be a \((B, A)\)-projective coordinate system for \(A/B \). Then, \(\{(a_i, a_i^*); i = 1, \cdots, n\} \) is a \(G \)-Galois coordinate system for \(A/B \) (Prop. 1.4). The mapping \(x \rightarrow t_H(dx) \) from \(A \) to \(A^H \) is an \(A^H-A^H \)-homomorphism. We denote this by \(t' \). Then, the mapping \(t_H \otimes t' \) from \(A \otimes_B A \) to \(A^H \otimes_B A^H \) is evidently an \(A^H-A^H \)-homomorphism, and therefore the mapping \(y \rightarrow \sum t_H(ya_i) \otimes t'(a_i^*) = \sum t_H(a_i) \otimes t'(a_i^*)y \) from \(A^H \) to \(A^H \otimes_B A^H \) is an \(A^H-A^H \)-homomorphism. Since \(\sum t_H(a_i) t'(a_i^*) = \Sigma \sum e_H \sigma(a_i) \tau(a_i^*) \tau(d)y = \sum e_H \Sigma \sigma(a_i) \tau(a_i^*) \tau(d)y = \sum e_H \tau(d)y \) for all \(y \) in \(A^H \), \(A^H/B \) is a separable extension.

By Th. 2.6, Lemma 2.7 and Prop. 2.8, we obtain at once the following:

Theorem 2.9. (Cf. [4; Th. 2.2]). Let \(A/B \) be outer \(G\)-Galois, and \(_BB \) a direct summand of \(_BA_B \). If \(T \) is an intermediate ring of \(A/B \), then the
following conditions are equivalent:

(i) There is a subgroup H of G such that $T = A^u$.

(ii) T/B is a separable extension and $G|T$ is strongly distinct.

§3. The second characterization of fixed-subrings.

Let R be a ring, S a subring of R. R/S is called a projective Frobenius extension if R_S is finitely generated and projective and $sR_S \cong \pi \Hom(R_S, S_S)_R$ (cf. [10]). If A/B is a G-Galois extension, then $(\pi_0A) \cong \pi \sum_i u_i A \cong \pi \Hom(A_B, B_B)_A$ by j. Hence, A/B is a projective Frobenius extension. Now, we shall state the next lemma without proof.

Lemma 3.1. Let R/S be a projective Frobenius extension, and $1 \leftarrow t$ under an isomorphism $sR_S \cong \pi \Hom(R_S, S_S)_R$. Then $t \in \Hom(sR_S, S_S)_R$ and $\Hom(R_S, S_S) = tR$ and $G|T$ is strongly distinct.

Theorem 3.2. Let A/B be outer G-Galois, and B_B a direct summand of A_B. If T is an intermediate ring of A/B, then the following conditions are equivalent.

(i) There is a subgroup H of G such that $A^u = T$.

(ii) A/T is a projective Frobenius extension, T_T is a direct summand of A_T, and $G|T$ is strongly distinct.

Proof. It suffices to prove that (ii) \Rightarrow (i) (cf. §2). We identify $\Hom(A_B, A_B)$ with \mathcal{A}, and set $\mathcal{A}_0 = \Hom(A_T, A_T)$, which is a subring of \mathcal{A}. Let $t = \sum_i c_i u_i$ be the image of 1 under the isomorphism $\pi \mathcal{A} \cong \pi \Hom(A_T, T_T)_A$. Then, $tA = \Hom(A_T, T_T)$. $A\otimes_\pi A = \mathcal{A}_0$ and $t \in \Hom(\pi A_T, T_T)$ (Lemma 3.1). Since $xt = tx$ for all x in T, we have $xc_i = c_i \sigma(x)$ for all x in T and σ in G, in particular, $yc_i = c_i y$ for y in B. Therefore, by assumption, each c_i is an element of C. Since $A\otimes_\pi A = \mathcal{A}_0$, there are elements c_i''s, d_i's in A such that $\sum_i c_i d_i = u_i$. From this fact, c_1 is an invertible element of C. Now, the mapping $\alpha: \delta \mapsto \delta c_i^{-1}$ is a A_0-A-homomorphism from A_0 to A, and the mapping $\beta: \sum_i x_i u_i \mapsto \sum_i x_i c_i u_i$ is evidently an A-A-endomorphism of \mathcal{A}. For any y in A and z in T, we have $\sum_i x_i c_i u_i (yz) = \sum_i x_i c_i \sigma(y) \sigma(z) = \sum_i x_i \sigma(y) c_i \sigma(z) = \sum_i x_i \sigma(y) z c_i = \sum_i x_i c_i \sigma(y) z$, which means $\beta(\mathcal{A}) \subseteq \mathcal{A}_0$. If $x \otimes y$ is in $A \otimes_B A$, then $\beta h(x \otimes y) = \beta(x(x \otimes u) y) = \beta(\sum_i x_i \sigma(y) u_i) = \sum_i x_i \sigma(y) c_i u_i = x \sum_i c_i u_i y = xty$. For any δ_0 in \mathcal{A}_0 and any z in A, we have $\delta_0 xty(z) = \delta_0(x(t(yz)) = \delta_0(x\cdot t(yz)) = \delta_0(x) t(yz)$. Thus, βh is a A_0-A-homomorphism from $A \otimes_B A$ to \mathcal{A}_0, and so is A_0-A-homomorphism from \mathcal{A} to \mathcal{A}_0. Since $\beta \alpha(u_i) = \beta(u_i c_i^{-1}) = u_i$, it holds that $\alpha = 1_{\mathcal{A}_0}$. Thus, we have $\mathcal{A} = \Im \alpha \oplus \Ker \beta = \mathcal{A}_0 \oplus (\sum_i \oplus \Ann_A(c_i) \cdot u_i)$, where $\Ann_A(c_i) = \{x \in A; xc_i = 0\}$. Now, let $\{(a_i, a_i^*)\}; i = 1, \ldots, n$ be a G-Galois coordinate system for A/B. If τ is in G, then $\mathcal{A}_0 = \mathcal{A} \oplus \sum_i \tau(a_i) a_i^* = c_i u_i$, and so $\delta_0 = \sum A \cdot c_i u_i$, whence it follows that $A = A \cdot c_i \oplus \Ann_A(c_i)$. Let $A \cdot c_i = A e_i$ with a
central idempotent e_σ in A. Then, $e_\sigma\cdot\sigma(y)=e_\sigma y$ for any y in T. By assumption, if $\sigma|T\neq 1_T$ then $e_\sigma=0$, and so $A_0=\sum_{\tau\in H}Au_\tau$, where $H=\{\tau\in G; \tau|T=1_T\}$. Since T_τ is a direct summand of A_T, $\text{End}\langle A_\tau \rangle=T_\tau$ the set of all right multiplications by elements of T (see [1; Th. A. 2]). On the other hand, since $A_0=\sum_{\tau\in H}Au_\tau$, $\text{End}\langle A_\tau \rangle=(A^H)_\tau$. Hence, $T=A^H$.

\section{Extension of isomorphisms.}

\textbf{Theorem 4.1.} Let A/B be G-Galois, and A' an extension ring of B such that $V_A(B)=V_{A'}(A')$. Assume that there exists at least one B-ring homomorphism from A to A'.

(1) If H is a subgroup of G such that A^H_H is a direct summand of A_{A^H}. Then every B-ring homomorphism from A^H to A' can be extended to a (B-)ring homomorphism from A to A'.

(2) If f and g are B-ring homomorphisms from A to A'. Then A' contains orthogonal central idempotents $e_\sigma(\sigma\in G)$ such that $\sum_\sigma e_\sigma=1$ and $f(x)=\sum_\sigma g\sigma(x)e_\sigma$ for all x in A. (Cf. [4; Th. 3.1].)

\textbf{Proof.} There are elements a_i, $a_i^* (i=1, \cdots, n)$ in A such that $\sum_i xa_i \otimes a_i^* = \sum_i a_i \otimes a_i^* x (\in A \otimes B A)$ for all x in A and $\sum_i a_i \cdot \sigma(a_i^*)=\delta_i, \sigma$ for all σ in G (Prop. 1.3). If we set $t_i=t_H(a_i)$, then $t_i \in A^H$, $\sum_i t_i \cdot \sigma(a_i^*)=\delta_{i, \sigma}$ (\sigma\in G$) and $\sum_i x t_i \otimes a_i^* = \sum_i t_i \otimes a_i^* x (\in A^H \otimes B A)$ for all x in A^H. Let f be a B-ring homomorphism from A^H to A', and g a B-ring homomorphism from A to A'. If we set $e_\sigma=\sum_i f(t_i) g\sigma(a_i^*)$, then each e_σ is a central idempotent in A' (Prop. 1.2). By Prop. 1.2 (3), $e_\sigma=e_\sigma g(\sum_i \sigma(t_i) \tau(a_i^*))$ for any σ, τ in G. Therefore, if $\sigma^{-1}\tau \in H$ then $e_\sigma=e_\tau$, and if $\sigma^{-1}\tau \notin H$ then $e_\sigma=e_\sigma$. Recalling that A^H_H is a direct summand of A_{A^H} there is an element d of A such that $t_H(d)=1$. Since $\sum_i \sum_j t_i \otimes \sigma(a_j^*)=\sum_i t_i \otimes \sigma(a_j^*)=\delta_i, \sigma$ for all σ in G (Prop. 1.3), and therefore $\sum_i f(t_i) g\sigma(a_j^*)=1 (\in A')$. Let $G=\sigma, H \cup \cdots \cup \sigma, H$ be the left coset decomposition of G. Then, $1=\sum_i \sum_j f(t_i) g\sigma(a_j^*)=\sum_k \sum_{\tau\in H} e_\tau g_k \sigma_\tau t_H(d)=\sum_k e_\tau g_k \sigma_\tau t_H(d)=\sum_k e_\tau g_k (x) e_\tau$ for all x in A^H (Prop. 1.2), we have $f(x)=\sum_k f(x) g_k (x) e_\tau$ for all x in A^H. Evidently, the mapping $x \mapsto \sum_k g_k (x) e_\tau$ is a B-ring homomorphism from A to A', and an extension of f.

Now, the following theorem will follow at once from Th. 4.1.

\textbf{Theorem 4.2.} Let A/B be an out G-Galois extension, and let A be directly indecomposable. If H is a subgroup of G such that A^H_H is a direct summand of A_{A^H}, then every B-ring homomorphism from A^H to A can be extended to an element of G. In particular, G is the set of all B-ring automorphisms of A.

Y. Miyashita

Theorem 5.1. Let $A|B$ be G-Galois, A' a G-invariant subring of A, and $B'=A'^m$. Assume that there are elements $a_1, \cdots, a_n; a_1^*, \cdots, a_n^*$ and c in A' such that $\sum_i a_i^* \sigma(a_i^*) = \delta_{1, a}$, and $t_0(c) = 1$.

1. $A'|B'$ is a G-Galois extension, and $A'' = B \otimes_B A'^m = A'^{m} \otimes_B B$ for any subgroup H of G, in particular, $A = B \otimes_B A' = A' \otimes_B B$.

2. Let $\{\overline{X}\}$ be the set of all $A'G$-left submodules of A, and $\{X\}$ the set of all B'-left submodules of B. Then, $\overline{X} \rightarrow \overline{X} \cap B$ and $X \rightarrow A'X = A' \otimes_B X$ are mutually converse order isomorphisms between $\{\overline{X}\}$ and $\{X\}$.

3. Let $\{\overline{Y}\}$ be the set of all G-invariant intermediate rings of $A|A'$, and $\{Y\}$ the set of all intermediate rings of $B|B'$ such that $A'Y = YA'$. Then, $\overline{Y}/(\overline{Y} \cap B)$ is G-Galois, and $\overline{Y} \rightarrow \overline{Y} \cap B$ and $Y \rightarrow A'Y = YA'$ are mutually converse order isomorphisms between $\{\overline{Y}\}$ and $\{Y\}$.

Proof. (1) Evidently, $G \cong G|A'$, and G may be regarded as a finite group of automorphisms of A'. Hence, $A'|B'$ is G-Galois. Let $G = H_0 \cup \cdots \cup H_r$ be the right coset decomposition of G. If we put $d = \sum_i a_i \sigma(c)$ and $t = t_0(a_1)$, then $t_0(d) = 1$ and $\sum_i t_i \sigma(a_i^*) = \delta_{H, a} (a \in G)$. If x is in A', then $A'' \cdot B \supseteq \sum_i t_i \sigma(a_i^*) \sigma(dx) = t_0(dx) = t_0(d)x = x$. Thus, we obtain $A'' = A'' \cdot B$. To be easily seen, the mapping $\sum_j x_j \otimes y_j \rightarrow \sum_j x_j y_j$ from $A'' \otimes_B B$ to $A'' \cdot B = A''$ is well-defined and $\sum_i t_i \otimes t_0(a_i^* d \sum_j x_j y_j) = \sum_j x_j \otimes y_j$. Hence, $A'' \otimes_B B \cong A''$ by the mapping $\sum_j x_j \otimes y_j \rightarrow \sum_j x_j y_j$. Symmetrically, it follows $A'' = B \otimes_B A''$. (2) Let X be an $A'G$-left submodule of A. Evidently, $\overline{X} \supseteq A'\overline{(X \cap B)}$, and $\overline{X} \cap B$ is a B'-left submodule of B. If x is in \overline{X}, then $t_0(a_1^* x)$ is in $\overline{X} \cap B$, and hence $x = \sum_i a_i \otimes t_0(a_i^* x) \in A'\overline{(X \cap B)}$. Hence, $\overline{X} = A'(\overline{X} \cap B)$, and the mapping $\sum_j x_j \otimes y_j \rightarrow \sum_j x_j y_j$ from $A' \otimes_B (\overline{X} \cap B)$ to $A' \overline{(X \cap B) = \overline{X}}$ is onto. Moreover, to be easily seen, $\sum_i a_i \otimes t_0(a_i^* \sum_j x_j y_j) = \sum_j x_j \otimes y_j$. Hence, $\overline{X} = A' \otimes_B (\overline{X} \cap B)$. Now, let X be a B'-left submodule of B. Then, $A'X$ is an G-left submodule of A, and $A'X \cap B \supseteq X$. If $\sum_j x_j y_j (x_j \in A', y_j \in X)$ is in $A'X \cap B$, then $\sum_j x_j y_j = t_0(c)(\sum_j x_j y_j) = \sigma(c) \sum_j \sigma(x_j) y_j = \sum_j t_0(c x_j) y_j \in X$. Hence, $A'X \cap B \subseteq X$, namely, $A'X \cap B = X$. (3) Evidently, $(\overline{Y}/\overline{Y} \cap B)$ is G-Galois. Hence $\overline{Y} = A'\overline{(Y \cap B)} = (\overline{Y} \cap B)A'$ by (1), and then our assertion is an easy consequence of (2).

Corollary. Let $A|B$ be G-Galois, and $B' = V_B(B)$. Assume that there are elements a_i, a_i^* $(i = 1, \cdots, n)$ in $V_A(B)$ such that $\sum_i a_i \sigma(a_i^*) = \delta_{1, a}$.

1. $V_A(B)|B'$ is G-Galois, $A'' = B \otimes_B V_A(B)|B''$ for any subgroup H of G, and the center of A'' coincides with the center of $V_A(B)|B''$. In particular, $A = B \otimes_B V_A(B)$, and $B' \subseteq C$.

2. Let $\{\overline{Y}\}$ be the set of all G-invariant intermediate rings of $A|V_A(B)$,
and \(\{ Y \} \) the set of all intermediate rings of \(B/B' \). Then \(Y \rightarrow Y \cap B \) and \(Y \rightarrow V_A(B)Y = V_A(B) \otimes_B Y \) are mutually converse order isomorphisms between \(\{ Y \} \) and \(\{ Y \} \).

(3) \(A/V_A(B) \) is separable if and only if \(B \) is a separable \(B' \)-algebra.

Proof. If remains to prove (3). If \(B/B' \) is separable, then \(A/B' \) is separable, because both \(A/B \) and \(B/B' \) are separable (Lemma 2.7). Hence \(A/V_A(B) \) is separable. Conversely, assume that \(A/V_A(B) \) is separable. Then, since both \(A/V_A(B) \) and \(V_A(B)/B' \) are separable, \(A/B' \) is separable, or equivalently, \(A \) is a separable \(B' \)-algebra (Lemma 2.7). Since \(A = B \otimes_B V_A(B) \), by [2; Prop. 1.7 and its Remark], \(B \) is a separable \(B' \)-algebra.

Remark. The above corollary contains Kanzaki [8; Th. 5].

Let \(A, A' \) be \(R \)-algebras over a commutative ring \(R \) such that \(A \otimes_R A' \neq 0 \). Assume that \(A/B \) is a \(G \)-Galois extension such that \(R \cdot 1 \subseteq B \) and \(B \) is a direct summand of \(A \), and assume that \(A'/B' \) is a \(G' \)-Galois extension such that \(R \cdot 1 \subseteq B' \) and \(B' \) is a direct summand of \(A' \). Let \(\{ a_i, a_i^* \}; i = 1, \ldots, n \) and \(\{ (d_j, d_j^*); j = 1, \ldots, m \} \) be a \(G \)-Galois coordinate system for \(A/B \) and a \(G' \)-Galois coordinate system for \(A'/B' \), respectively. For any \(\sigma \times \tau \) in \(G \times G' \), we can define \(\sigma \times \tau \cdot \sum_j x_j \otimes y_j = \sum_j \sigma(x_j) \otimes \tau(y_j) (x_j \in A, y_j \in A') \). Then, since \(\sum_i a_i \otimes d_i = (-1)^{\sigma} \sum_i a_i \otimes d_i \), \((A \otimes A')/(A \otimes A')^{G \times G'} \) is a \(G \times G' \)-Galois extension.

Proof. By assumption, there is an element \(c \) in \(A \) such that \(t_{H \cap K}(c) = 1 \).
Evidently, $A^{H_{i}K} \supseteq A^{H_{i}}A^{K}$. Let $\{(a_{i}, a_{i}^{*}) ; i=1, \cdots, n\}$ be a G-Galois coordinate system for A/B. If x is in $A^{H_{i}K}$, then $A^{H_{i}}A^{K} \ni \sum_{i} r_{i}(a_{i})t_{i}(a_{i}^{*}cx) = \sum_{i \in H} \sum_{j \in K} \sum_{i} r_{i}(a_{i}) \sigma(a_{i}^{*}) \sigma(cx) = t_{H_{i}K}(c)x = x$. Hence $A^{H_{i}K} = A^{H_{i}}A^{K}$. Symmetrically we have $A^{H_{i}K} = A^{H_{i}}A^{K}$.

Corollary. Let A/B be a G-Galois extension. If H and K are subgroups of G such that $H \cap K = \{1\}$, then $A = A^{H_{i}}A^{K} = A^{H_{i}}A^{K}$.

Theorem 5.4. Let A/B be a G-Galois extension, and B_{B} a direct summand of A_{B}. If $G = KH$ and $K \cap H = \{1\}$ for a normal subgroup K and a subgroup H, then there hold the following:

1. $A = A^{K} \otimes_{B} A^{H} = A^{H} \otimes_{B} A^{K}$.
2. A^{K}/B is an H-Galois extension.
3. For any subgroup H_{0} of H and any subgroup K_{0} of K such that $N(K_{0}) \supseteq H$ (where $N(K_{0})$ means the normalizer of K_{0} in G), $A^{K_{0}H} = A^{K_{0}} \otimes_{B} A^{K_{0}H_{0}} = A^{K_{0}H_{0}} \otimes_{B} A^{K_{0}H}$ and $A^{K_{0}H} \otimes_{B} A^{K_{0}H_{0}} = A^{H_{0}} \otimes_{B} A^{K_{0}H_{0}}$ is an H-Galois extension.

Proof. Let $\{(a_{i}, a_{i}^{*}) ; i=1, \cdots, n\}$ be a G-Galois coordinate system for A/B. Since B_{B} is a direct summand of A_{B}, there is an element c in A such that $t_{0}(c) = 1$. Put $t_{i} = t_{K}(a_{i})$, $t_{i}^{*} = t_{K}(a_{i}^{*})$, and $d = t_{K}(c)$. Then, $t_{0}(d) = 1$ and $\sum_{i} t_{i} \tau(t_{i}) = \delta_{1}$, for τ in H. $N(K_{0}) \supseteq H$ implies that $\tau(A^{K_{0}}) = A^{K_{0}}$ for all τ in H. Hence, by Th. 5.1, $A^{K_{0}H} = A^{K_{0}H_{0}} \otimes_{B} A^{K_{0}H}$ is an H-Galois extension. By Th. 5.1, $A^{H} = A^{K} \otimes_{B} A^{K_{0}H} = A^{K} \otimes_{B} A^{K_{0}H_{0}} \otimes_{B} A^{K_{0}H}$. Since $K_{0}H_{0} = K_{0}H \cap KH_{0}$, $A^{K_{0}H} = A^{K_{0}H_{0}} \otimes_{B} A^{K_{0}H_{0}} = A^{K_{0}H_{0}} \otimes_{B} A^{K_{0}H}$ (Prop. 5.3). Since $A^{H} \supseteq A^{K_{0}H}$ and $A^{K_{0}H}$ is an $A^{K_{0}H}$-right direct summand of A, and so of A, $A^{K_{0}H} = A^{K_{0}H} \otimes_{B} A^{K_{0}H_{0}}$. Similarly, we have $A^{K_{0}H} = A^{K_{0}H} \otimes_{B} A^{K_{0}H}$.

Corollary. Let A/B be a G-Galois extension, B_{B} a direct summand of A_{B}, and $G = N_{1} \times \cdots \times N_{r}$. If $H = N_{1} \times \cdots \times \check{N}_{i} \times \cdots \times N_{r} (i=1, \cdots, r)$, then A^{H}/B is N_{i}-Galois, $A = A^{H_{i}} \otimes_{B} \cdots \otimes_{B} A^{H_{r}}$, and $A^{K_{1}, \cdots, K_{r}} = A^{H_{1}} \otimes_{B} \cdots \otimes_{B} A^{H_{r}}$ for each subgroup K_{i} of N_{i}.

Proposition 5.5. Let A/B be outer G-Galois. B_{B} a direct summand of A_{B}, and A directly indecomposable. Let T and T' be intermediate rings of A/B such that $A = T \otimes_{B} T'$. If $H = \{\sigma \in G ; \delta|T = 1_{T}\}$ and $H' = \{\sigma \in G ; \sigma|T' = 1_{T'}\}$, then $T = A^{H}$ and $T' = A^{H'}$.

Proof. Since $T \otimes_{B} T' = A$, we have $T \otimes_{B} A^{H} \equiv T \otimes_{B} A_{A}$. Since A/T' is a separable extension, A is (B, T')-projective. Hence, by Th. 2.6, $T = A^{H}$. Symmetrically we have $T' = A^{H'}$.

Let A/B be a G-Galois extension, B_{B} a direct summand of A_{B}, and A a G-invariant proper ideal of A. Let $\{(a_{i}, a_{i}^{*}) ; i=1, \cdots, n\}$ be a G-Galois coordinate system for A/B. For any x in A we denote $x + A$ ($x + A$) by \bar{x}. If we define $\sigma(\bar{x}) = \bar{\sigma(x)}$, then $\sum_{i} a_{i} \sigma(a_{i}^{*}) = \delta_{1}$, for σ in G, and therefore
(A/\mathfrak{M})/(A/\mathfrak{M})g is a G-Galois extension. By assumption, for any subgroup H of G there is an element c in A such that $t^H(c)=1$. If \bar{x} is in $(A/\mathfrak{M})^H$, then $\bar{x}=x\Sigma_{\in H} \tau(\bar{c})=\Sigma_{\in H} \tau(\bar{x}c)\in (A^H+\mathfrak{M})/\mathfrak{M}$. Thus, we prove the following:

Theorem 5.6. Let A/B be a G-Galois extension, B_B a direct summand of A_B, and \mathfrak{M} a G-invariant proper ideal of A. Then $(A/\mathfrak{M})/(B+\mathfrak{M})/\mathfrak{M}$ is a G-Galois extension, and $(A/\mathfrak{M})^H=(A^H+\mathfrak{M})/\mathfrak{M}$ for any subgroup H of G.

Corollary. Let A/B be a G-Galois extension, and B_B a direct summand of A_B. If B contains a non-zero central idempotent e of A, then Ae/Be is a G-Galois extension, and $(Ae)^H=A^He$ for any subgroup H of G.

Proposition 5.7. Let A/B be a G-Galois extension. If N is a normal subgroup of G such that A^N is an A^N-right direct summand of A, then A^N/B is a G/N-Galois extension.

Proof. Let $\{(a_i, a_i^*); i=1, \ldots, n\}$ be a G-Galois coordinate system for A/B. By assumption, there is an element c in A such that $t^A(c)=1$. If we put $t_N(a_i)=t_i$ and $t_N(a_i^*c)=t_i^*$, then t_i and t_i^* are A^N, and $\Sigma_i t_i \sigma(t_i^*)=\delta_{N,s}$ for all σ in G. Hence, A^N/B is a G/N-Galois extension (Prop. 2.2).

Let A/B be a G-Galois extension, and m a natural number. Then, every σ in G induces a ring automorphism in the $m \times m$ complete matrix ring $(A)_m$. Accordingly, G may be regarded as a finite group of automorphisms of $(A)_m$ such that $((A)_m)^G=(B)_m$. Let E be the identity of $(A)_m$, and let $\{(a_i, a_i^*); i=1, \ldots, n\}$ be a G-Galois coordinate system for A/B. Then $\Sigma_i a_i E \sigma(a_i^* E) = \delta_{1,s}$ for all σ in G. Thus $(A)_m/(B)_m$ is a G-Galois extension. (Remark. This may be considered as a special case of Th. 5.2).

Theorem 5.8. Let A/B be a G-Galois extension, and $\{e_{ij}; i, j=1, \ldots, m\}$ a system of matrix units contained in B. If $A_0=V_A(\{e_{ij}\})$, then A_0/A_0^g is a G-Galois extension, and $B=\Sigma i \oplus A_0^g e_{ij}$.

Proof. Obviously, G induces an automorphism group of A_0 and $B=\Sigma i \oplus A_0^g e_{ij}$. Let $\{(A_i, A_i^*); i=1, \ldots, n\}$ be a G-Galois coordinate system for A/B. Let $A_i=\Sigma_{j,k} a_{ijk}^g e_{jk}$, $A_i^*=\Sigma_{j,k} d_{ijk} e_{jk}$ ($a_{ijk}, d_{ijk} \in A_0$). Then, $\sigma(A_i^*)=\Sigma_{j,k} \sigma(d_{ijk}) e_{jk}$ and therefore $\Sigma_i a_{ik} \sigma(d_{ik})=\delta_{1,s}$ for σ in G. Thus A_0/A_0^g is a G-Galois extension.

§ 6. Completely outer case.

Let R be a ring. If non-zero R-left modules M and N have no non-zero isomorphic subquotients, we say that $R M$ and $R N$ are unrelated.

Proposition 6.1. Let M be a non-zero R-left module, and $M=M_1 \oplus \cdots \oplus M_s$ with non-zero R-submodules M_i's of M.

1. If M_i's are unrelated to each other, then each M_i is $\text{End}(R M)$-
admissible and $X=\sum_{i}(X \cap M_{i})$ for every submodule X of $_{\kappa}M$.

(2) If $X=\sum_{i}(X \cap M_{i})$ for every submodule X of $_{\kappa}M$, then M_{i}'s are unrelated to each other.

Proof. (1) will be rather familiar. We shall prove here (2). To our end, it suffices to prove that if $M=M_{1}\oplus M_{2}$ and $X=(X \cap M_{1})+(X \cap M_{2})$ for every submodule X of $_{\kappa}M$ then M_{1} and M_{2} are unrelated. Let M_{i}/N_{i} and M_{j}/N_{j} be non-zero subquotients of M_{i} and M_{j}, respectively. If there exists an R-isomorphism α; $M_{i}/N_{i} \cong M_{j}/N_{j}$, we can define an R-homomorphism φ; $M_{i}\oplus M_{j} \rightarrow M_{j}/N_{j}$ by the following rule: $(m_{i}+m_{j})\varphi=(m_{i}+N_{i})\alpha+(m_{j}+N_{j})$. Then, our assumption yields $\text{Ker}\ \varphi=(M_{i}\cap \text{Ker}\ \varphi)+(M_{j}\cap \text{Ker}\ \varphi)$, and so $(M_{i}+M_{j})\varphi=M_{i}\varphi \oplus M_{j}\varphi=M_{i}/N_{i}\oplus M_{j}/N_{j}$, which is a contradiction.

G is said to be completely outer, if each A-A-modules Au_{σ}, Au_{τ} ($\sigma \neq \tau$) are unrelated.

To be easily seen, Au_{σ} and Au_{τ} ($\sigma, \tau \in G$) are A-A-isomorphic if and only if σ^{-1} is an inner automorphism of A, and every A-A-submodule of Au_{σ} is written as $\mathfrak{H}u_{\sigma}$, with some ideal \mathfrak{H} of A. Therefore, if G is completely outer, then G contains no inner automorphism of A, and in case A is two-sided simple, the converse is true. Now, for σ in G we set $J_{\sigma}=\{a \in A; \sigma(x)\alpha=ax \ \text{for all} \ \ x \in A\}$. Then each J_{σ} is a C-submodule of A, and $J_{1}=C$.

In his paper [9], T. Kanzaki proved the following: Let A/B be a G-Galois extension. Then $V_{A}(B)=\sum_{\sigma}J_{\sigma}$. Therefore, if A/B is G-Galois, then $V_{A}(B)=C$ if and only if $J_{\sigma}=0$ for all σ in G such that $\sigma \neq 1$.

Proposition 6.2. $J_{\sigma}=0$ if and only if $\text{Hom}(\mathfrak{A}u_{\sigma}, \mathfrak{A}u_{A})=0$.

Proof. Assume $J_{\sigma}=0$. If f is in $\text{Hom}(\mathfrak{A}u_{\sigma}, \mathfrak{A}u_{A})$, then $\sigma(x)f(u_{\sigma})=f(xu_{\sigma})=f(ux)=f(u_{\sigma})x$ for x in A. Hence $f(u_{\sigma})=0$, and so $f=0$. Conversely, assume that $\text{Hom}(\mathfrak{A}u_{\sigma}, \mathfrak{A}u_{A})=0$. If a is in J_{σ}, then we can easily see that the mapping $xu_{\sigma}\rightarrow xa$ ($x \in A$) is an A-A-homomorphism from Au_{σ} to A. Hence, by assumption, $a=0$.

Prop. 6.2 together with Kanzaki's result cited above yields at once the following:

Proposition 6.3. If A/B is a G-Galois extension, then the following are equivalent. (i) $V_{A}(B)=C$. (ii) $\text{Hom}(\mathfrak{A}u_{\sigma}, \mathfrak{A}u_{A})=0$ for every $\sigma \neq 1$ in G.

The following proposition will play a fundamental role in our study.

Proposition 6.4. If G is completely outer, then A/B is a G-Galois extension and $V_{A}(B)=C$.

Proof. At first, $V_{A}(B)=C$ is evident by Prop. 6.3. Since $u_{1} \in A(\sum_{\sigma}u_{\sigma})A$ (Prop. 6.1.), there are elements a_{i}, a_{i}^{*} ($i=1, \cdots, n$) in A such that $u_{1}=$
\[\sum_{t}a_{t}(\sum_{u}u_{t})a_{t}^{*} = \sum_{\sigma}(\sum_{t}a_{t}\sigma(a_{t}^{*}))u_{\tau}. \] Hence \(\sum_{t}a_{t}\sigma(a_{t}^{*}) = \delta_{1,\tau} \) for \(\sigma \) in \(G \).

Corollary. If \(A \) is two-sided simple, then the following conditions are equivalent: (i) \(G \) is completely outer. (ii) \(G \) contains no inner automorphisms. (iii) \(A/B \) is an outer \(G \)-Galois extension.

Proposition 6.5. If there are elements \(a_{i}, a_{i}' \) \((i=1, \cdots, n) \) in \(A \) such that \(\sum_{t}a_{t}x_{t}\sigma(a_{t}) = \delta_{1,\tau}x \) for each \(x \) in \(A \) \((\sigma \in G)\), then \(G \) is completely outer.

Proof. Let \(X \) be any \(A \)-submodule of \(A \). If \(\sum_{\tau}x_{\tau}u_{\tau} \in X \), then \(X \ni \sum_{\tau}a_{t}(\sum_{\tau}x_{\tau}u_{\tau})\tau^{-1}(a_{t}) = x_{\tau}u_{\tau} \) for each \(\tau \) in \(G \). Hence, by Prop. 6.1, \(G \) is completely outer.

Combining Prop. 6.4 with Prop. 6.5, we readily obtain the following:

Theorem 6.6. Let \(A \) be a commutative ring. If \(A/B \) is \(G \)-Galois, then \(G \) is completely outer, and conversely.

Proposition 6.7. Let \(A/B \) be a \(G \)-Galois extension, \(H \) a subgroup of \(G \), and \(a \) an element of \(A \). If \(\sigma_{0} \in G \) is not contained in \(H \), and \(ax = a\cdot\sigma_{0}(x) \) for all \(x \) in \(A^{H} \), then \(a=0 \).

Proof. There are elements \(t_{1}, \cdots, t_{n} \in A^{H} \) and \(a_{1}^{*}, \cdots, a_{n}^{*} \in A \) such that \(\sum_{t}t_{i}\cdot\sigma(a_{i}^{*}) = \delta_{1,\sigma} \) for any \(\sigma \) in \(G \) (Prop. 2.2). Hence, \(a = a\sum_{t}t_{i}a_{i}^{*} = \sum_{\ell}a\cdot\sigma_{0}(t_{\ell})a_{i}^{*} = \sigma_{0}(a^{-1}(a))\sum_{t}t_{i}\sigma(a_{i}^{*}) = 0 \).

Lemma 6.8. Let \(S \) be a subring of a ring \(R \). If \(R_{S} \) is finitely generated and projective, then \(\text{End}(R_{S}) \) is an \(\text{End}(R) \)-left direct summand of \(\text{End}(R) \), where \(\text{End}(R_{S}) \) and \(\text{End}(R) \) act on the left side.

Proof. As is well known, there are elements \(a_{i} \in R, f_{i} \in \text{Hom}(R_{S}, S_{S}) \) \((i=1, \cdots, n) \) such that \(\sum_{i}a_{i}f_{i}(x) = x \) for every \(x \) in \(R \) (cf. [3]). If \(g \) is in \(\text{End}(R) \), then \(\sum_{i}g(a_{i})f_{i} \) is in \(\text{End}(R_{S}) \), and so the mapping \(g \rightarrow \sum_{i}g(a_{i})f_{i} \) is an \(\text{End}(R) \)-left homomorphism from \(\text{End}(R) \) to \(\text{End}(R_{S}) \). To be easily seen, if \(g \) is in \(\text{End}(R_{S}) \) then \(\sum_{i}g(a_{i})f_{i} = g \). This implies that \(\text{End}(R_{S}) \) is an \(\text{End}(R) \)-left direct summand of \(\text{End}(R) \).

Let \(T \) be an intermediate ring of \(A/B \). \(G/T \) is said to be \(\ast \)-strongly distinct if, for any non-zero idempotent \(e \) in \(A \) such that \(eA \subseteq Ae \) and any distinct \(\sigma, \tau \) in \(G \), there is at least an element \(x \) in \(T \) such that \(e\cdot\sigma(x) \neq e\cdot\tau(x) \).

If \(A/B \) is a \(G \)-Galois extension, then \(G/A^{H} \) is \(\ast \)-strongly distinct for any subgroup \(H \) of \(G \) (Prop. 6.7).

Theorem 6.9. Let \(G \) be completely outer, \(B_{n} \) a direct summand of \(A_{n} \), and \(T \) an intermediate ring of \(A/B \). Then the following conditions are equivalent.

(i) \(T = A^{H} \) for some subgroup \(H \) of \(G \).

(ii) \(A_{T} \) is finitely generated and projective, and \(T_{\sigma} \) is a direct summand
of A_T, and $G | T$ is* strongly distinct.

Proof. Since $A | A^\pi$ is H-Galois, it remains to prove $(ii) \Rightarrow (i)$. If we put $A_0 = \text{End}(A_T)$, then A_0 is a subring of A. Since A_0 is an A-A-submodule of A, $A_0 = \sum \oplus \mathfrak{U}_s u_s$ with some ideals \mathfrak{U}_s of A. By Lemma 6.8, A_0 is a direct summand of A, so that each $\mathfrak{U}_s u_s$ is a direct summand of A. Therefore each $\mathfrak{U}_s u_s$ is a direct summand of $A_A u_s$. Hence \mathfrak{U}_s is a direct summand of A. Let $\mathfrak{U}_s = A e_s$ with an idempotent e_s in A. Then, since $e_s u_s$ is in A_0, $e_s \cdot \sigma(x y) = e_s \cdot \sigma(x) y$ for each x in A and y in T; in particular, $e_s \cdot \sigma(y) = e_s y$ for each y in T. Therefore, if we set $H = \{ \sigma \in G ; \sigma | T = 1_T \}$, then $e_s = 0$ for σ not contained in H. Evidently $\mathfrak{U}_s = A$ for each σ in H. We obtain therefore $A_0 = \sum e_s u_s$, and hence $\text{End}_{(A, A)}(A^\pi)$. On the other hand, since T_T is a direct summand of A_T, $\text{End}_{(A, A)}(A^\pi) = T_T$ (cf. [1]). Hence we obtain $T = A^\pi$.

Now, if A is a semi-prime ring (i.e., A has no nilpotent ideals) and e is an idempotent in A such that $e A \subseteq A e$, then $e A = A e$ so that e is a central idempotent in A. Noting this fact, Th. 6.9 yields at once the following:

Theorem 6.10. Let A be a semi-prime ring. If G is completely outer, B_b a direct summand of A_B, and T an intermediate ring of $A | B$, then the following conditions are equivalent:

(i) $T = A^\pi$ for some subgroup H of G.

(ii) A_T is finitely generated and projective, and T_T is a direct summand of A_T, $G | T$ is strongly distinct.

Proposition 6.11. The following are equivalent:

(i) G is completely outer.

(ii) For any x, y in A and any σ in G such that $\sigma \neq 1$, there are elements $a_i, a'_i \ (i = 1, \cdots, n)$ in A such that $\sum_i a_i x a'_i = x$ and $\sum_i a_i y \cdot \sigma(a'_i) = 0$.

Proof. (i) \Rightarrow (ii) Let x, y be in A, and σ any element of G such that $\sigma \neq 1$. We set $X = A(x u_1 + y u_1)A$, which is an A-A-submodule of $A u_1 + A u_1$. By Prop. 6.1, $x u_1 \in X$, and hence there are elements $a_i, a'_i \ (i = 1, \cdots, n)$ in A such that $\sum_i a_i(x u_1 + y u_1) a'_i = x u_1$. Then, $\sum_i a_i x a'_i = x$ and $\sum_i a_i y \cdot \sigma(a'_i) = 0$.

(ii) \Rightarrow (i) Let σ, τ be distinct elements in G, and X any A-A-submodule of $A u_1 + A u_1$. Let $x u_1 + y u_1$ be any element of X. For $\sigma^{-1}(x)$ and $\sigma^{-1}(y)$, there are elements $a_i, a'_i \ (i = 1, \cdots, n)$ in A such that $\sum_i a_i \cdot \sigma^{-1}(x) a'_i = \sigma^{-1}(x)$ and $\sum_i a_i \cdot \sigma^{-1}(y) \cdot \sigma^{-1}(a'_i) = 0$. Then, $\sum_i \sigma(a_i) x \cdot \sigma(a'_i) = x$ and $\sum_i \sigma(a_i) y \cdot \tau(a'_i) = 0$, and so $X \ni \sum_i \sigma(a_i)(x u_1 + y u_1) a'_i = x u_1$. Thus, by Prop. 6.1, $A u_1$ and $A u_1$ are unrelated.

Theorem 6.12. Let G be completely outer, and N a proper normal subgroup of G such that A^π is an A^π-right direct summand of A. Then,
G/N is completely outer as an automorphism group of A^N.

Proof. Let x, y be in A^N. Since xu_1 \in A(\sum_{\tau \in N}xu_\tau + \sum_{\tau \in G \backslash N}yu_\tau)A (Prop. 6.1), there are elements x_i, y_i (i = 1, \cdots, n) in A such that \sum_i x_i(\sum_{\tau \in N}xu_\tau + \sum_{\tau \in G \backslash N}yu_\tau)y_i = xu_1. Then \sum_i x_i x \cdot \tau(y_i) = \delta_{i,1}x (\tau \in N) and \sum_i x_i y \cdot \sigma(y_i) = 0 \sigma \in G \backslash N). By assumption, there is an element c in A such that t_N(c) = 1. We set t_N(x_i) = x'_i and t_N(y_i) = y'_i, then x'_i, y'_i (i = 1, \cdots, n) are in A^N. To be easily seen, \sum_i x'_i x'_i = x and \sum_i x'_i y'_i = 0 for any \rho \in G \backslash N. Thus, by Prop. 6.11, G/N is completely outer as an automorphism group of A^N.

§ 7. Several results.

The following lemma is well known.

Lemma 7.1. Let S be a subring of a ring R. If S is a direct summand of R, then R \cap S = 1 for any left ideal I of S.

Lemma 7.2. Let S be a subring of a ring R such that S is a direct summand of R and sR is finitely generated. If R satisfies the minimal condition (resp. the maximal condition) for left ideals, then so does S, and conversely.

Proof. If R satisfies the minimal condition (resp. the maximal condition) for left ideals, then so does S (Lemma 7.1). Conversely, if S satisfies the minimal condition (resp. the maximal condition) for left ideals then sR satisfies the minimal condition (resp. the maximal condition) for S-left submodules, so that R satisfies the minimal condition (resp. the maximal condition) for left ideals.

A ring R is called a semi-primary ring if R/\Re(R) satisfies the minimal condition for left ideals, where \Re(R) means the Jacobson radical of R. If R is semi-primary, then (R)_n and eRe are semi-primary rings, where n is a natural number and e is a non-zero idempotent in R (cf. [7]). Therefore, in case R is semi-primary, if an R-right module M is finitely generated and projective then \End(M_R) is semi-primary. As to notations and terminologies used in below, we follows [11].

Proposition 7.3. (1) Let R be a semi-primary ring, and S a subring of R. If S is a direct summand of R, then S is a semi-primary ring.

(2) Let R be a ring, and S a subring of R such that R is finitely generated and projective. If S is semi-primary, then so is R.

Proof. (1) Let \{I_i; i = 1, \cdots, n\} be a d-independent set of maximal left ideals of S (cf. [11]). Then, \{RI_i; i = 1, \cdots, n\} is a d-independent set of proper left ideals of R (Lemma 7.1). Since each RI_i is contained in a maximal left ideals of R, \leq \max \dim R = \max \dim sR (cf. [11]). Thus d-dim sS \leq d-dim sR < \aleph_0, and hence S is semi-primary ([11; Prop. 5.14]. (2) Since S
is semi-primary, \(\text{End}(R_S) \) is semi-primary. By Lemma 6.8, \(R'_i R_l \) (the set of all left multiplications by elements of \(R \)) is a direct summand of \(R'_i \text{End}(R_S) \). Hence, by (1), \(R \cong R_i \) is semi-primary.

Remark. Let \(A/B \) be a \(G \)-Galois extension, and \(B_B \) a direct summand of \(A_B \). If \(A \) is a semi-primary ring, then so is \(B \), and conversely (cf. Th. 1.7).

Let \(R \) be a ring, and \(S \) a subring of \(R \). \(R/S \) is called a free Frobenius extension if \(R_S \) is finitely generated and free and \(R^R_S \cong S_{S} \text{Hom}(R_S, S_R) \) (Kasch [10]).

Lemma 7.4. Let \(R/S \) be a free Frobenius extension.

1. \(\text{End}(R_S)/R_i \) is a free Frobenius extension.
2. If \(R_R \) is injective, then so is \(S_S \), and conversely.

Proof. (1) and the if part of (2) are given in [10]. Assume that \(R_R \) is injective. By (1) and the if part, we can easily see that \(\text{End}(R_S) \) is \(\text{End}(R_S) \)-right injective. Let \(R_S \cong R_S^S \). Then, \(\text{End}(R_S) \cong (S)_m \), and hence we readily see that \(S_S \) is injective (cf. [11]).

Proposition 7.5. Let \(R \) be a ring, and \(S \) a subbing of \(R \). If \(S_S \) is a direct summand of \(R_S \), then \(\Re(R) \cap S \subseteq \Re(S) \).

Proof. If \(\Re(R) \cap S \not\subseteq \Re(S) \), then \(\Re(R) \cap S + I = S \) for some maximal left ideal \(I \) of \(S \). Since \(R(\Re(R) \cap S) + RI = R \) and \(R(\Re(R) \cap S) \subseteq \Re(R) \), we have \(RI = R \). If follows then a contradiction \(I = R \cap S = S \) (Lemma 7.1).

Proposition 7.6. The set of all maximal \(A \)-submodules of \(A \) coincides with \(\{ \cap x(\mathfrak{P}) ; \mathfrak{P} \text{ ranges over all maximal ideals of } A \} \).

Proof. Let \(X \) be a maximal \(A \)-submodule of \(A \). Take a maximal ideal \(\mathfrak{P}_1 \) such that \(\mathfrak{P}_1 \supseteq X \). Then, \(\cap x(\mathfrak{P}_1) \supseteq X \), and so \(\cap x(\mathfrak{P}_1) = X \). Now, let \(\mathfrak{P} \) be a maximal ideal of \(A \), and \(Y \) a maximal \(A \)-submodule of \(A \) such that \(Y \supseteq \cap x(\mathfrak{P}) \). Then \(Y = \cap x(\mathfrak{P}_2) \) for some maximal ideal \(\mathfrak{P}_2 \) of \(A \). If \(\cap x(\mathfrak{P}_2) \supseteq \cap x(\mathfrak{P}_1) \), then \(\mathfrak{P} \not\subseteq \cap x(\mathfrak{P}_2) \), and so \(\mathfrak{P} + \cap x(\mathfrak{P}_2) = A \), whence it follows a contradiction \(\cap x(\mathfrak{P}) + \cap x(\mathfrak{P}_2) = A \).

Proposition 7.7. Let \(A/B \) be a \(G \)-Galois extension, and \(B_B \) a direct summand of \(A_B \). Let \(\{ X \} \) be the set of all \(A \)-submodules of \(A \) and \(\{ X \} \) be the set of all left ideals of \(B \). Then \(X \to X \cap B \) and \(X \to AX = A \otimes_B X \) are mutually converse order isomorphisms between \(\{ X \} \) and \(\{ X \} \).

Proof. This is a special case of Th. 5.1 (2).

Proposition 7.8. Let \(A/B \) be a \(G \)-Galois extension, and \(B_B \) a direct summand of \(A_B \). If \(A \cdot \Re(B) \) is an ideal of \(A \), then \(\Re(A) = A \cdot \Re(B) \).

Proof. By Prop. 7.7 and Prop. 7.5, \(\Re(A) = A(\Re(A) \cap B) \subseteq A \cdot \Re(B) \).
Since $A_{\mathcal{B}}$ is finitely generated, $A \cdot \Re(B)$ is d-dense in $A_{\mathcal{B}}$, and so d-dense in A_{A} (cf. [11]). Hence $A \cdot \Re(B) \subseteq \Re(A)$.

Theorem 7.9. Let A/B be a G-Galois extension such that $B \subseteq C$. If A' is a B-algebra, then $\Re(A' \otimes_{B} A) = \Re(A') \otimes A$.

Proof. By Cor. to Th. 5.2, $(A' \otimes_{B} A)/(A' \otimes 1)$ is a G-Galois extension. Since $(A' \otimes A) (\Re(A') \otimes 1) = \Re(A') \otimes A$ is an ideal of $A' \otimes A$, $\Re(A' \otimes A) = \Re(A') \otimes A$ by Prop. 7.8.

Now, assume that G is completely outer and $B_{\mathcal{B}}$ is a direct summand of $A_{\mathcal{B}}$. If A is an A'-A-submodule (resp. A'-A-submodule) of Δ, then $A = \sum u_{\mathcal{A}} \mathcal{A}$, for some ideals \mathcal{A} of A (resp. $A = \sum u_{\mathcal{A}} \mathcal{A}$ for some ideal \mathcal{A} of A), and conversely. In particular, if A is an ideal of Δ, then $A = \Delta \mathcal{A} = \mathcal{A} \Delta$ for some G-invariant ideal \mathcal{A} of A, and conversely (cf. §6 and [13]). Now, let $\{\Delta\}$ be the set of all ideals of Δ, $\{a\}$ the set of all ideals of B, and $\{\mathcal{A}\}$ the set of all G-invariant ideals of A. Then, there exists an order isomorphism $\Delta \rightarrow a$ between $\{\Delta\}$ and $\{a\}$ such that $\Delta(A) = aA$ (cf. [1; Prop. A. 5]). Consequently, there exists an order isomorphism $\mathcal{A} \rightarrow \Delta$ between $\{\mathcal{A}\}$ and $\{\Delta\}$ (cf. Th. 5.1 (2)). Accordingly, if A is semi-prime, (prime, two-sided simple) then so is B. Since $A \cdot \Re(B) = \Re(B) A$ is an ideal of A, Prop. 7.8 implies $\Re(A) = A \cdot \Re(B) = \Re(B) A$. Next, we shall consider $\Re(\Delta)$. There exists $\mathcal{A}' \in \{\mathcal{A}\}$ such that $\Re(\Delta) = \mathcal{A}' \Delta = \Delta \mathcal{A}'$. Since $\mathcal{A}' u_{\mathcal{A}} = \Re(\Delta) \cap A u_{\mathcal{A}} \subseteq \Re(A) u_{\mathcal{A}} = \Re(A) u_{\mathcal{A}}$ by Prop. 7.5, we obtain $\Re(\Delta) = \sum \mathcal{A}' \Re(A) = \Re(A) \Delta$. On the other hand, noting that $\Delta_{\mathcal{A}}$ is finitely generated and $A \cdot \Re(A)$ is an ideal of Δ, we see that $\Delta \cdot A \Re(A) \subseteq \Re(\Delta)$ (cf. the proof of Prop. 7.8). Hence, we have $\Re(\Delta) = \Delta \Re(A) = \Re(A) \Delta$. Since $\Re(\Delta A_{\mathcal{A}}) = \Re(\Delta A_{\mathcal{A}}) = (\Re(\Delta A_{\mathcal{A}}) \Delta) (A) = \Re(\Delta) (A) = A \cdot \Re(B_{\mathcal{B}})$ by Prop. 7.6, we have $\Re(\Delta A_{\mathcal{A}}) = A \cdot \Re(B_{\mathcal{B}}) = \Re(B_{\mathcal{B}}) A$ and $\Re(A A_{\mathcal{A}}) \cap B = \Re(B_{\mathcal{B}})$. Summarizing the above, we state the following theorem.

Theorem 7.10. If G is completely outer and $B_{\mathcal{B}}$ a direct summand of $A_{\mathcal{B}}$, then $\Re(A) = A \cdot \Re(B) = \Re(B) A$, $\Re(A) \cap B = \Re(B)$, $\Re(\Delta A_{\mathcal{A}}) = \Re(B_{\mathcal{B}}) A$, $\Re(\Delta A_{\mathcal{A}}) \cap B = \Re(B_{\mathcal{B}})$, $\Re(\Delta) = \Delta \cdot \Re(A) = \Re(A) \Delta$, and $\Re(\Delta A_{\mathcal{A}}) = \Delta \cdot \Re(A_{\mathcal{A}})$ = $\Re(\Delta A_{\mathcal{A}}) \Delta$.

Proposition 7.11. Let B be directly indecomposable, and let $A = \mathcal{A}_{1} \oplus \cdots \oplus \mathcal{A}_{n}$ be a direct sum of minimal ideals. If \mathcal{A} is a minimal ideal of A, then $\{\mathcal{A} \sigma(\mathcal{A}); \sigma \in G\} = \{\mathcal{A}_{1}, \cdots, \mathcal{A}_{n}\}$, and n divides $(G : 1)$. If \mathcal{B} is a maximal ideal of A, $\{\mathcal{B} \sigma(\mathcal{B}); \sigma \in G\}$ coincides with the set of all maximal ideals of A. For any $\mathcal{A}_{\mathcal{L}}$, we set $\sum \mathcal{A}_{\mathcal{L}} = \mathcal{B}$. Then, $\mathcal{B} = A \mathcal{L}$ with some non-zero
central idempotent e of A. Since $\sigma(\mathfrak{B})=\mathfrak{B}$ for all σ in G, $\sigma(e)=e$ for all σ in G, so that $e \in B$, which means $e=1$. Hence $\mathfrak{B}=A$, which implies that
$
\{\sigma(\mathfrak{U}_i); \sigma \in G\} = \{\mathfrak{U}_1, \ldots, \mathfrak{U}_n\}.
$
If we set $H = \{\sigma \in G; \sigma(\mathfrak{U}_i) = \mathfrak{U}_i\}$, then $\#\{\sigma(\mathfrak{U}_i); \sigma \in G\} = (G: H)$, which divides $(G: 1)$. Let \mathfrak{P} and \mathfrak{P}' be maximal ideals of A. Then $A = \mathfrak{A} \oplus \mathfrak{P} = \mathfrak{A}' \oplus \mathfrak{P}'$ with some minimal ideals $\mathfrak{A}, \mathfrak{A}'$ of A. There is an element σ in G such that $\sigma(\mathfrak{A}) = \mathfrak{A}'$. Then $A = \mathfrak{A}' \oplus \sigma(\mathfrak{P}) = \mathfrak{A}' \oplus \mathfrak{P}'$, so that $\sigma(\mathfrak{P}) = \mathfrak{P}'$.

Corollary 1. Let G be completely outer, and $B_\mathfrak{U}$ a direct summand of $A_\mathfrak{U}$. If B is a two-sided simple rings, then A is a direct sum of isomorphic two-sided simple rings, and the number of components divides $(G: 1)$.

Proof. Let \mathfrak{P} be a maximal ideal of A. Then $\cap_\sigma \sigma(\mathfrak{P})$ is a Δ-A-submodule of \mathfrak{A}. As we remarked above, A is Δ-A-simple, and so we have $\cap_\sigma \sigma(\mathfrak{P}) = 0$. Hence A is a direct sum of two-sided simple rings.

Corollary 2. Let A/B be a G-Galois extension, and B a division ring. Then A is a direct sum of isomorphic (Artinian) simple rings.

Proof. Let \mathfrak{P} be a maximal left ideal of A. Then $\cap_\sigma \sigma(\mathfrak{P})$ is a Δ-submodule of A. Since ΔA is simple (Prop. 7.7), $\cap_\sigma \sigma(\mathfrak{P}) = 0$. Hence, as is easily seen, ΔA is completely reducible, so that A is a direct sum of simple rings.

Let A/B be a G-Galois extension, A a commutative ring, and A' a B-algebra. Then, by Prop. 6.5 and Th. 5.2, $(A' \otimes_B A)/(A' \otimes 1)$ is G-Galois and G is completely outer (as an automorphism group of $A' \otimes A$). Further, if A' is two-sided simple, then $A' \otimes_B A$ is a direct sum of isomorphic two-sided simple rings (Cor. 1. to Prop. 7.11). Thus we have the following:

Theorem 7.12. Let A/B be a G-Galois extension, A commutative, and A' a B-algebra. If A' is two-sided simple, then $A' \otimes_B A$ is a direct sum of isomorphic two-sided simple rings, and the number of components divides $(G: 1)$.

References

Y. Miyashita

Department of Mathematics,
Hokkaido University

(Received June 10, 1966)