<table>
<thead>
<tr>
<th>Title</th>
<th>ON POLYNOMIAL EXTENSIONS OF SIMPLE RINGS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author(s)</td>
<td>Kishimoto, Kazuo</td>
</tr>
<tr>
<td>Citation</td>
<td>Journal of the Faculty of Science Hokkaido University. Ser. 1 Mathematics = 北海道大学理学部紀要, 19(3-4): 169-180</td>
</tr>
<tr>
<td>Issue Date</td>
<td>1966</td>
</tr>
<tr>
<td>Doc URL</td>
<td>http://hdl.handle.net/2115/56077</td>
</tr>
<tr>
<td>Type</td>
<td>bulletin (article)</td>
</tr>
<tr>
<td>File Information</td>
<td>JFSHIU_19_N3-4_169-180.pdf</td>
</tr>
</tbody>
</table>
ON POLYNOMIAL EXTENSIONS OF SIMPLE RINGS

By

Kazuo KISHIMOTO *

Introduction. Let S be a simple ring, and A an extension ring of S with the common identity. If $[A : S]_r = n (>1)$ and there exists some $y \in A$ such that $A = \sum_{i=0}^{n-1} y^i S$ and $Sy \subseteq yS + S$, then A/S is called an n dimensional right polynomial extension and \{ $y^i; i=0, 1, \cdots, n-1$ \} is called a right polynomial S-basis for A. Then, by $sy = ys^\prime + s^\prime$ ($s \in S$), we can define in S a monomorphism $\rho_y: s \rightarrow s^\prime$ and a (1, ρ_y)-derivation $^1) D_y: s \rightarrow s^\prime$. On the other hand, an extension ring A' of S (with the common identity) is called an m dimensional left polynomial extension over S if $[A' : S]_l = m (>1)$, $A' = \sum_{i=0}^{m-1} Sx^i$ and $xS \subseteq Sx + S$. Finally, a right polynomial extension is called a polynomial extension if it is a left polynomial extension at the same time. Any right quadratic extensions and cyclic extensions (Cf. [4]) are right polynomial extensions.

The purpose of the present paper is to give some information to the study of finite dimensional right polynomial simple ring extensions. In §1, we shall give a relation between the left dimension and the right dimension of a right polynomial extension and a necessary and sufficient condition for a simple ring to have a finite dimensional right polynomial extension. §2 is devoted to determine the structure of $V = V_R(S)$, the centralizer of S in R (R is a finite dimensional right polynomial simple ring extension), under the restriction that ρ is inner or D_y is ρ_y-inner $^2)$. As the result, we can see that V is a commutative semi-simple ring with minimum condition in the most of cases. In §3, we shall treat with a right polynomial simple ring extension that is Galois. Finally, in §4, a general description of right quadratic extensions of simple rings will be given, and it is closely related to that investigated in [1]. Throughout the present paper, we assume always R will mean an n dimensional right polynomial simple ring extension over S, and that $R = \sum_{i=0}^{n-1} y^i S = (\oplus_{i=0}^{n-1} y^i S^3)$ and $sy = y(s\rho_y) + sD_y$. By C and Z, we denote the respective centers of R and S, and other notations and terminologies used in this paper, we follow [4].

*) Domestic Fellow in the Mathematical Institute, Hokkaido University, on leave from Hokkaido Gakugei University.
2) Unless otherwise stated, a ρ-derivation means (1, ρ)-derivation.
3) \oplus means a direct sum.
§ 1. The left dimension and the construction of a right polynomial extension.

Throughout this section, we assume that A is an n dimensional (not necessary simple) right polynomial extension over S such that $A = \sum_{t=0}^{n-1} y^t S$, $sy = y(s\rho_y) + sD_y$ $(s \in S)$. By $P_{k,t}$, we denote the sum of all formally different products of consisting of $i\rho_y$'s and $k-iD_y$'s. (e.g. $P_{3,2} = \rho_s D_y + \rho_y D_y \rho_y + D_y \rho_s^2$, and we set $\rho_s^0 = \rho_s^{k-1} = 1$). Then,

Lemma 1.1. $sy^k = \sum_{t=0}^{k-1} y^t sP_{k,t}$ for each $s \in S$.

Proof. We prove the assertion by the induction on k. Obviously, $sy = y(s\rho_y) + sD_y = ysP_{1,1} + sP_{1,0}$. Assume that $sy^{k-1} = \sum_{t=0}^{k-1} y^t sP_{k-1,t}$. Then $sy^k = (\sum_{t=0}^{k-1} y^t sP_{k-1,t})y = \sum_{t=0}^{k-1} y^t(sP_{k-1,t})\rho_y + \sum_{t=0}^{k-1} y^t(sP_{k-1,t})D_y = (sP_{k-1,0})D_y + \sum_{t=0}^{k-1} y^t(sP_{k-1,t-1})\rho_y + y^k(sP_{k-1,1})\rho_y$. Noting here that the number of formally different terms of $P_{j,t}$ is \(\binom{j}{t} \), $P_{k-1,t}D_y + P_{k-1,t-1}\rho_y$ coincides with $P_{k,t}$ which completes our induction.

Corollary 1.1. Let \(\{x^i; i = 0, 1, \cdots, n-1\} \) be a right polynomial S-basis with $sx = x(s\rho_x) + sD_x$ $(s \in S)$. Then $\rho_s x_t = \rho_y x_t$, for some $t \in S$ and $0 < k < n$. In particular, if ρ_y is an automorphism or S is a division ring, then $\rho_x = \rho_y^{k-1}$ and $D_x = \sum_{t=0}^{k-1} P_{t,0} x_t - \rho_y t^{-1} s_{0l}$ for some $s_t \in S$ where t^{-1} is the inner automorphism generated by t^{-1}.

Proof. Let $x = y^k s_k + \sum_{j=0}^{k-1} y^j s_j$ $(k \geq 1, s_t \in S, s_k \neq 0)$. Then we have $y^k s_k (s\rho_x) + \sum_{j=0}^{k-1} y^j s_j (s\rho_x) + sD_x = x(s\rho_x) + sD_x = sx = s(y^k s_k + \sum_{j=0}^{k-1} y^j s_j) = y^k(s\rho_x)^k s_k + \sum_{j=0}^{k-1} y^j sP_{j,k}s_k + \sum_{j=0}^{k-1} (s\rho_x^j s_{j+1} s_k) s_j$. This show that $\rho_x x_t = \rho_y x_t$, where $t = s_k$ and $D_x = \sum_{t=0}^{k-1} P_{t,0} s_t x_t - \rho_y t^{-1} s_{0l}$. In particular, if ρ_y is an automorphism (or S is a division ring), $s_k \in S^{*}$ by $Ss_k = Sp_k s_k = s_k S\rho_x$. Hence we have $\rho_x = \rho_y^{k-1}$ and $D_x = \sum_{t=0}^{k-1} P_{t,0} s_t x_t - \rho_y^{k-1} s_{0l}$.

Corollary 1.2. Let R be an n dimensional right polynomial (simple ring) extension over S.

(a) If ρ_x is inner, then so is every $\rho_{x'}$, and there exists a right polynomial S-basis \(\{y^i; i = 0, 1, \cdots, n-1\} \) such that $\rho_y = 1$.

(b) If D_x is ρ_x-inner, then ρ_x is an automorphism, every D_x is ρ_x-inner, and then there exists a right polynomial S-basis \(\{y^i; i = 0, 1, \cdots, n-1\} \) such that $D_y = 0$ and $\rho_y = \rho_x$.

Proof. (a) Let $\rho_x = \tilde{u}$ for some $u \in S$. Then $\rho_{x'} = \rho_x^{k-1} = u t^{-1}$ for some $t \in S$. Further, $sx u = xus + E$ $(s \in S)$ where $E = D_x u_r$ is a derivation in S, and \(\{xu^i; i = 0, 1, \cdots, n-1\} \) is a requested right polynomial S-basis.

4) S^{*} means the multiplicative group consisting of the regular elements of S.
(b) Let D_x be ρ_x-inner generated by $u \in S$. Then $s(x-u)=(x-u)(s\rho_x)$ ($s \in S$) and $\{(x-u)^i; \; i=0,1,\ldots,n-1\}$ is a requested polynomial S-basis. Further, $D_x = \sum_{i=0}^n P_{t,i} s_t - \rho_x s_t$ where $P_{t,i}$ is defined by ρ_y and D_y (=0) and $y = x-u$. Hence $P_{t,i} = 0$ if $i \neq 0$. This means that D_x is an inner ρ_x-derivation generated by s_0. Now, let $\sum_t y^t t_t$ ($t_t \in S$) be an arbitrary element of R. Then $(\sum_t y^t t_t) y = y(\sum_t y^t t_t \rho_y)$ implies $R = y Ry = yR$. Thus y is a regular element of R, and hence $y^{-1}Sy = S \rho_y \subseteq S$.

On the other hand, since $R = \sum_{i=1}^{n-1} y^i S$, $R = y^{-1} R y = \sum_{i=0}^{n-1} y^i (y^{-1} S y)$ shows that $\rho_y = y^{-1}|S$ is an automorphism. The rest is clear from Corollary 1.1.

Theorem 1.1. $[A:S]_l = \sum_{i=1}^n ([S:SP_y]_l)^i + 1$.

Proof. Let $B_0 = \{1\}$, and B_i a left $S\rho_y$-basis for S ($i=1,2,\ldots$). Then one will easily see that $\#B_i = (\#B_j)^i$. Now, we shall prove that $Y = \{y'B_j; i=0,1,\ldots,n-1\}$ is a left S-basis for A. Since $y^i(s\rho_y^{-i}) - sy^i \in \sum_{j=-1}^{i-1} y^j S$ ($i = 1,2,\ldots,n-1$), we readily see that $y^i S \subseteq y^i S y'B_j$, whence it follows $y^i S = \sum_{j=-1}^{i-1} y^j S y'B_j$, namely, Y is a left generating system of A over S. At the same time, the linear independence of Y over S will easily seen.

Corollary 1.3. The following conditions are equivalent.

(a) $[A:S]_l = [A:S]_r$.

(b) There exists an element $x \in A \setminus S$ such that $xs = (s\tau)x + sE$ ($s \in S$) where τ is a monomorphism in S, E a $(\tau, 1)$-derivation in S.

(c) ρ_y is an automorphism.

Proof. (c) \rightarrow (a). This is direct consequence of Theorem 1.1.

(a) \rightarrow (b). By Theorem 1.1, ρ_y is an automorphism, and then, $sy = y(s\rho_y) + sD_y$ ($s \in S$) implies $ys = (s\rho_y^{-1})y + s(-\rho_y^{-1}D_y)$.

(b) \rightarrow (c). If $x = y^i s_k + \sum_{j=0}^{i-1} y^j s_j$ ($s_j \in S$), then $k \geq 1$ and $s_k \neq 0$. Hence, for each $u \in S$, $y^k s_k u + \sum_{j=0}^{k-1} y^j s_j u = xu = (u\tau)x + uE = (u\tau)(y^k s_k + \sum_{j=0}^{k-1} y^j s_j) + uE$. Therefore, we obtain $s_k u = (u\tau)P_{k,k}s_k = (u\tau \rho_y) s_k$, whence it follows $S = Ss_k S = Ss_k$, namely, $s_k \in S'$. Hence $\tau : \rho_y = \tilde{s}_k$, which means that ρ_y is an automorphism.

Combining Corollary 1.2 (b) with Corollary 1.3, we have

Corollary 1.4. If D_y is ρ_y-inner, then $[R:S]_l = [R:S]_r$.

Let ρ be a monomorphism in S and D a ρ-derivation in S. We consider the ring $\mathfrak{G} = S[X; \rho, D] = \{\sum_s X^s s_i; \; s_i \in S\}$, where the multiplication is defined by $sX = X(s\rho) + sD$. If S is a division ring or a simple ring (of the capacity

5) The converse is not true. For, as is shown in Theorem 4.2, a right quadratic extension R/S is Galois (and hence $[R:S]_l = [R:S]_r$) if and only if D_y is ρ_y-inner provided $\chi(S) \neq 2$. On the other hand, as was constructed in [2], there exists a non Galois quadratic extension R/S ($\chi(S) \neq 2$) such that $[R:S]_l = [R:S]_r$.

> 1) and ρ is an automorphism, then \mathfrak{S} is a right principal ideal ring, that is, each right ideal of \mathfrak{S} is generated by some monic polynomial f (i.e. the leading coefficient of f is 1). Let f be a monic polynomial of \mathfrak{S}. Then f is called ω-irreducible if f does not generate \mathfrak{S} but any monic proper left factor of f does \mathfrak{S}. By easy computations, we can see that an ideal M of \mathfrak{S} is maximal if and only if the monic generator6 of M is ω-irreducible.

Now, we shall give a necessary and sufficient condition for S to have an n dimensional right polynomial extension.

Theorem 1.2. (a) In order that S have an n dimensional right polynomial extension, it is necessary and sufficient that there exist a monomorphism ρ in S, a ρ-derivation D in S and a $1 \times n$ matrix $(u_0, u, \cdots, u_{n-1})$ with entries in S such that

1. $u_{i-1} - u_{i-1}\rho = u_i D + u_i(u_{n-1} - u_{n-1}\rho)$ $(i = 0, 1, \cdots, n-1$ where we set $u_{-1} = 1)$.

2. $P_{n,j} + \sum_{i=0}^{n-1}P_{i,j}u_{ir}$ is a (ρ^j, ρ^n)-inner derivation generated by $-u_j$ for each $j = 0, 1, \cdots, n-1$.

(b) In order that S have an n dimensional polynomial extension, it is necessary and sufficient that there exist an automorphism ρ in S, a ρ-derivation D in S and a $1 \times n$ matrix $(u_0, u, \cdots, u_{n-1})$ with entries in S satisfying (1), (2) stated above.

(c) In order that S have an n dimensional polynomial simple ring extension, it is necessary and sufficient that there exist an automorphism ρ in S, a ρ-derivation D in S and a $1 \times n$ matrix $(u_0, u, \cdots, u_{n-1})$ with entries in S satisfying (1), (2) stated above and

3. $X^n + \sum_{t=0}^{n-1}X^t u_t$ is ω-irreducible in $S[X; \rho, D]$.

Proof. (a) The conditions (1) and (2) are equivalent with the statement that the right ideal M of $S[X; \rho, D]$ generated by $f(X) = X^n + \sum_{t=0}^{n-1}X^t u_t$ is a two-sided ideal. In fact, M is a two-sided ideal if and only if $Xf(X) = f(X)(X + t)$ $(t \in S)$ and $sf(X) = f(X)s'$ $(s' \in S)$ for every $s \in S$. The former implies $X^{n+1} + \sum_{t=0}^{n-1}X^{t+1} u_t = (X^n + \sum_{t=0}^{n-1}X^t u_t)(X + t) = X^{n+1} + \sum_{t=0}^{n-1}X^{t+1} u_t \rho + X^n t + \sum_{t=0}^{n-1}X^t (u_tD + u_tD + u_tD + u_tD + u_tD)$ which means $t = u_{n-1} - u_{n-1}\rho$, $u_{i-1} = u_{i-1}\rho + u_i D + u_i t$, $i = 1, 2, \cdots, n$ and $u_0 D + u_0 t = 0$. Thus, we have $u_{i-1} - u_{i-1}\rho = u_i D + u_i(u_{n-1} - u_{n-1}\rho)$ for each $i = 0, 1, \cdots, n-1$.

Next, the latter implies $s(X^n + \sum_{t=0}^{n-1}X^t u_t) = \sum_{t=0}^{n-1}X^t sP_{n,t} + \sum_{j=0}^{n-1}(\sum_{t=j}^{n-1}X^t sP_{j,t}) u_t = X^n s\rho^n + \sum_{t=0}^{n-1}X^t sP_{n,t} + \sum_{j=0}^{n-1}(\sum_{t=j}^{n-1}X^t sP_{j,t}) u_t = X^n s\rho^n + \sum_{t=0}^{n-1}X^t sP_{n,t} + \sum_{j=0}^{n-1}(\sum_{t=j}^{n-1}X^t sP_{j,t}) u_t = X^n s\rho^n + \sum_{t=0}^{n-1}X^t sP_{n,t} + \sum_{j=0}^{n-1}(\sum_{t=j}^{n-1}X^t sP_{j,t}) u_t = X^n s\rho^n + \sum_{t=0}^{n-1}X^t sP_{n,t} + \sum_{j=0}^{n-1}(\sum_{t=j}^{n-1}X^t sP_{j,t}) u_t = X^n s\rho^n + \sum_{t=0}^{n-1}X^t sP_{n,t} + \sum_{j=0}^{n-1}(\sum_{t=j}^{n-1}X^t sP_{j,t}) u_t$. Hence $s\rho^n = s\rho^n$, $sP_{n,j} + \sum_{t=j}^{n-1}X^t sP_{j,t} u_t = sP_{n,j} + \sum_{t=j}^{n-1}X^t sP_{j,t} u_t$ which means $P_{n,j} + \sum_{t=j}^{n-1}X^t sP_{j,t}$ is a (ρ^j, ρ^n)-inner derivation
generated by $-u_j$ for each $j=0,1,\cdots,n-1$. Thus \(S[X; \rho, D]/M = A \cong \bigoplus_{i=0}^{n-1} y^i S \) where \(sy = y(s\rho) + sD \) \((s \in S)\), \(y \) is the residue class of \(X \) modulo \(M \), is a requested one. Conversely, let \(A = \bigoplus_{i=0}^{n-1} y^i S \) be an \(n \) dimensional right polynomial extension with \(sy = y(s\rho) + sD \) for each \(s \in S \). Then the mapping \(\varphi: \sum_i X^i s_i \to \sum_i y^i s_i \) is an \(S \) (ring) epimorphism of \(S[X; \rho, D] \) to \(A \). Let \(y^n + \sum_{i=0}^{n-1} y^i u_i = 0 \) for some \(u_i \in S \). Then \(N \), the kernel of \(\varphi \), contains \(M = (X^n + \sum_{i=0}^{n-1} X^i u_i) S[X; \rho, D] \). Now, we conclude that \(M \) coincides with \(N \). For, if \(g(X) = \sum_{i=0}^{m} X^i s_i \) \((s_i \in S)\) is a polynomial of \(N \) with \(m < n \), then \(\sum_{i=0}^{m} y^i s_i = 0 \) in \(A \), and hence \(g(X) = 0 \). Thus, each polynomial of \(N \) has \(X^n + \sum_{i=0}^{n-1} X^i u_i \) as its left factor. This means that \(N = M \). Consequently, \(\rho, D \) and \((u_0, u_1, \cdots, u_{n-1}) \) satisfy conditions (1) and (2).

(b) By Corollary 1.3, a finite dimensional right polynomial extension is a polynomial extension if and only if \(\rho \) is an automorphism. Hence the statement is clear from (a).

(c) Recalling that (3) is equivalent with the maximality of \(M = (X^n + \sum_{i=0}^{n-1} X^i u_i) S[X; \rho, D] \) by the remark stated just before our theorem the statement is clear from (a) and (b).

\section{The centralizer of \(S \) in \(R \).}

Let \(V = V_R(S) \) be the centralizer of \(S \) in \(R \). In this section, we shall investigate the relations between \(\{\rho, D\} \) and \(V \).

\begin{lemma}
If \(V \neq Z \), then \(\rho \) is an automorphism and \(m = (\rho) : (\rho)_{n} S \) \(< n \) where \(S \) is the set of all inner automorphisms determined by the elements of \(S \).
\end{lemma}

\begin{proof}
Since \(V \neq Z \), there exists an element \(v = y^i s_k + \sum_{j=0}^{i-1} y^j s_j \) \((s_i \in S)\) of \(V \) such that \(s_k \neq 0 \) \((0 < k < n)\). Then \(\sum_{j=0}^{i-1} y^j s_j P_k + s_k = s_k \rho \), \(s_k \in S \), which implies that \(s P_k = s \rho \). In particular, \(S = S S_k S = S s_k \), and \(s_k \in S \), and \(s_k = s_k \).

\begin{theorem}
Let \(D_\rho \) be an inner \(\rho \)-derivation.
\end{theorem}

(a) \(V \neq Z \) if and only if \(\rho \) is an automorphism and \(m = (\rho) : (\rho)_{n} S \) \(< n \), and when this is the case, \(m \) is a divisor of \(n \).

(b) \(V \) is a finite dimensional commutative algebra over \(Z \). Moreover, if \(\chi(S) \), the characteristic of \(S \), is 0 or relatively prime to \(n \), then \(V \) is a finite direct sum of fields.

\begin{proof}
Since \(D_\rho \) is \(\rho \)-inner, we may choose a right polynomial \(S \)-basis \(\{w_i \}; i = 0,1, \cdots, n-1 \) with \(D_\rho = 0 \) by Corollary 1.2 (b). Therefore we may assume from the beginning \(sy = y(s\rho) \). Thus as was shown in the proof of Corollary 1.2 (b), \(y \in R^* \) and \(\rho^{-1} S = \rho \). For the sake of simplicity, we set \(\rho = \rho \).
(a) The only case is shown in Lemma 2.1. Conversely, let \(\rho \) be an automorphism and \(\bar{m}=(\rho): (\rho)_{\bar{S}}<n \). Then \(\bar{y}^{m}|S=\bar{s} \) for some \(s \in S \). Therefore \(y^{m}s \) is not contained in \(Z \) but in \(V \). Let \(y^{n}+\sum_{i=0}^{n}y^{i}u_{i}=0 \) \((u_{i} \in S) \). Then
\[
(s(y^{n}+\sum_{i=0}^{n}y^{i}u_{i})-(y^{n}+\sum_{i=0}^{n}y^{i}u_{i})(s\rho^{m})=0 \quad (s \in S)
\]
yields at once \(su_{0}=u_{0}(s\rho^{m}) \). Since \(u_{0} \neq 0 \) by the regularity of \(y \), the last means that \(u_{0} \) is a regular element. Consequently we have \(\rho^{m}=\bar{u}_{0}^{-1} \), equivalently, \(m \) is a divisor of \(n \).

(b) It suffices to prove the case \(V \neq Z \). By (a), \(\rho \) is an automorphism and \(\bar{m}=(\rho): (\rho)_{\bar{S}} \) is a proper divisor of \(n: m'=n/m \). Let \(v=\sum_{i=0}^{n}y^{i}s_{i} \) \((s_{i} \in S) \) be an element of \(V \). Since \(\sum_{i=0}^{n}y^{i}(t^{\rho^{i}})s_{i}=tv=vt=\sum_{i=0}^{n}y^{i}s_{i} \) for each \(t \in S \), we see that \(ty^{i}s_{i}=y^{i}(t^{\rho^{i}})s^{i}=y^{i}s^{i}t \), namely, each \(y^{i}s^{i} \) \(\in V \). Moreover, if \(s_{i} \neq 0 \), then \(t^{\rho^{i}}s_{i}=s_{i}t \) proves \(s_{i} \in S' \) and \(\rho^{i}=\bar{s}_{i} \). Thus \(V=\{\sum_{i=0}^{n}y^{m}s^{i}z_{i}; z_{i} \in Z\} \), where \(\bar{s}=\rho^{m} \). The commutativity of \(V \) follows from the fact that \(y^{m}s^{i}z_{i} \) commutes with every element of \(V \). Thus \(V \) is an \(m' \) dimensional commutative algebra over \(Z \). Next, let us assume that \(\chi(S)=0 \) or \((\chi(S), n)=1 \). We shall denote the extension \(\bar{y}^{-1} \) of \(\rho \) again by \(\rho \). Let \(v \) an element of \(V \). Then \(T_{m}(v; \rho)=\sum_{i=0}^{m}v\rho^{i} \) is contained in \(C \), for \(T_{m}(v; \rho)=T_{m}(v; \rho)\rho \). If \(v \) is nilpotent, then so is \(v\rho \) \((v\rho \in V) \) and hence \(T_{m}(v; \rho) \) is nilpotent, and so 0. (Recall that \(\rho \) is an automorphism in \(S \) and \(T_{m}(v; \rho) \) is in \(C \).) Thus we have proved that if \(T_{m}(v; \rho) \neq 0 \) then \(v \) is non nilpotent. Now we shall show that each (non-zero) non regular element of \(V \) is non nilpotent. If \(v=\sum_{i=0}^{n}y^{i}s_{i} \) \((s_{i} \in S) \), \(s_{0}=1 \) (is non regular), then \(T_{m}(v; \rho)=T_{m}(v-1; \rho)+m \neq 0 \). For \(T_{m}(v-1; \rho) \) is either 0 or not contained in \(Z \). (Note that \(m \) is a divisor of \(n \).) In general, if \(v=y^{m}s^{j}z_{j}+\sum_{j>0}y^{m}s^{j}z_{j} \) \(v \in V \) \((z_{j} \neq 0) \) is non regular, \(u=(y^{m}s^{j}z_{j})^{-1}v \) \((v \in V) \) is non regular and its constant term is 1, and so, \(u \) is non nilpotent by the last remark. Hence \(u \) is non nilpotent in either case, which means the semi-simplicity of \(V \).

Theorem 2.2. Let \(\rho_{y} \) be an inner automorphism.

If \(\chi(S)=0 \) or \(\chi(S)>n \), then \(V \) coincides with either \(C \) or \(Z \), more precisely, if \(V \neq Z, R=S[C] \).

Proof: Since \(\rho_{y} \) is an inner automorphism, we may choose a right polynomial \(S \)-basis \(\{w^{i}; i=0, 1, \ldots, n-1\} \) with \(sw=ws+sD_{w} \) \((s \in S) \) by Corollary 1.2 (a). Therefore we may assume that from the beginning that \(sy=ys+sD_{y} \) \((s \in S) \). Assume \(V \neq Z \), and write \(D=D_{y} \). Then there exists an element \(v=y^{k}s_{k}+y^{k-1}s_{k-1}+\cdots+s_{0} \) \((k \geq 1, s_{k} \in S, s_{0} \neq 0) \) of \(V \), and \(\sum_{k=0}^{n}(y^{s}P_{k,k})s_{k}+\sum_{k=0}^{n}(y^{s}P_{k,k})s_{k}+\cdots+s_{0}=sv=vs=y^{k}s_{k}s+y^{k-1}s_{k-1}s+\cdots+s_{0}s \) implies \(s_{k} \in Z \).

Since \(\binom{k}{k-1}D_{k}s_{k}+s_{k}+s_{k-1}=s_{k}+s_{k-1}s_{k-1} \), \(D \) is an inner derivation generated by \(-(1/k)_{k}s_{k}s_{k}^{-1} \). Thus, by Corollary 1.2 (b), we can choose an \(S \)-basis \(\{c^{i}; i=0, 1, \ldots, n-1\} \) such that \(c \in C \).
Corollary 2.1. If \([S:Z]\) is finite, then \([R:Z]=\frac{[R:S]}{[R:S]_r}\).

Proof. By [5. Lemma], \([R:C]\) is finite. If \(V=Z\), then \(Z\supseteq C\), and hence \([R:S]_l=[R:C]=\frac{[R:S]}{[R:S]_r}\). On the other hand, if \(V\neq Z\), \(\rho_y\) is an automorphism by Lemma 2.1. Hence the assertion is a direct consequence of Corollary 1.3.

§ 3. Polynomial Galois extensions.

Throughout the present section, by \(\mathfrak{G}\), we denote the set of all \(S\)-automorphisms of \(R\).

If \(\sigma\) is an arbitrary element of \(\mathfrak{G}\) and \(u_\sigma=y\sigma-y\) then \(su_\sigma=u_\sigma(s\rho_y)\) \((s \in S)\). For, \(s(y\sigma)=(sy)\sigma=(y(s\rho_y))s\rho_y + sD_y(s \in S)\), we have \(s(y\sigma-y)=(y\sigma-s\rho_y).

Lemma 3.1. Let \(\mathfrak{G}\neq 1\) and \(\rho \neq 1\) be an arbitrary element of \(\mathfrak{G}\). Then, there exists a right polynomial \(S\)-basis \(\{y^i; i=0,1,\cdots,n-1\}\) such that \(y\sigma-y \in V\) if and only if some (and so every) \(\rho_x\) is inner.

Proof. Let \(v_\sigma=y\sigma-y\) be in \(V\). Then \(v_\sigma s=s v_\sigma=v_\sigma s\rho_y\). Hence \(v_\sigma (s-s\rho_y)\) =0. If we note that the right annihilator of \(v_\sigma(\neq 0)\in V\) in \(S\) is a two-sided ideal, we can readily obtain \(s\rho_y=s\), namely, \(\rho_y=1\). Thus each \(\rho_y\) is inner by Corollary 1.2 (a). Conversely, if each \(\rho_x\) is inner, there exists a right polynomial \(S\)-basis \(\{y^i; i=0,1,\cdots,n-1\}\) with \(\rho_y=1\) by Corollary 1.2 (a). Then \(y\sigma-y\) is in \(V\).

Corollary 3.1. Let \(R\) be an \(n\) dimensional right polynomial division ring extension over \(S\). If \(\mathfrak{G}\neq 1\), then \([R:S]_l=\frac{[R:S]}{[R:S]_r}\).

Proof. For any \(\sigma(\neq 1)\in \mathfrak{G}\), there exists a non zero \(u_\sigma \in R\) such that \(su_\sigma=u_\sigma(s\rho_y)\) for every right polynomial \(S\)-basis \(\{y^i; i=0,1,\cdots,n-1\}\). Hence \(\overline{u_\sigma}^{-1}S=\rho_y\), \(R=\overline{R\overline{u_\sigma}^{-1}}=\sum_{i=0}^{n-1}y^i\overline{u_\sigma}^{-1}(S\overline{u_\sigma}^{-1})=\sum_{i=0}^{n-1}y^i\overline{u_\sigma}^{-1}(S\rho_y)\) and \(\{y^i\overline{u_\sigma}^{-1}; i=0,1,\cdots,n-1\}\) is right linearly independent over \(S\rho_y\). This means that \(n=\frac{[R:S]}{[R:S]_r}\). Thus \(\rho_y\) is an automorphism in \(S\), and then \([R:S]_l=\frac{[R:S]}{[R:S]_r}\) by Corollary 1.3.

Corollary 3.2. Let \(\rho_y\) be an inner automorphism.

(a) Assume \(V=Z\). If \(\chi(S)\neq n\) or \(\chi(S)=0\), then \(\mathfrak{G}=1\).

(b) Assume \(\chi(S)=n\). If \(V=Z\neq C\) then \(R/S\) is an inner cyclic extension, and conversely.

Proof. (a) Suppose \(\mathfrak{G}\) contains an element \(\sigma \neq 1\). Then by Lemma 3.1, there exists a right polynomial \(S\)-basis \(\{y^i; i=0,1,\cdots,n-1\}\) with \(sy=ys+sD_y\) \((s \in S)\), and \(y\sigma=y+z_\sigma, z_\sigma(\neq 0)\in V=Z\). Thus we may assume further \(y\sigma=y+1\). Hence if \(y^n=\sum_{i=0}^{n-1}y^is_i\) \((s_i \in S)\), we have \(y^n\sigma=(y+1)^n=\sum_{i=0}^{n-1} \binom{n}{i} y^i\).
\[
y^n + \sum_{i=0}^{n-1} \binom{n}{i} y^i = \sum_{i=1}^{n-1} y^i \left(\binom{n}{i} + s_i \right) \text{ and } y^n = (\sum_{i=0}^{n-1} y^i s_i) \sigma = \sum_{i=0}^{n-1} (y + 1)^i s_i = \sum_{i=0}^{n-1} \left(\sum_{j=0}^{i} \binom{i}{j} y^j \right) s_i.
\]
From this, we see that \(\binom{n}{n-1} + s_{n-1} = s_{n-1} \), whence it follows a contradiction \(\binom{n}{n-1} = 0 \).

(b) If \(R/S \) is inner Galois, then \(V = Z \neq C \) by Theorem 2.2. Next, we shall prove the converse. Let \(z_0 \in Z \setminus C \). Then \(z_0 D_y = z_0 y - y z_0 \) is a non-zero element of \(Z \). If \(\sum_{i=0}^{n-1} y^i t_i \) \((t_i \in S) \) is in \(J(z_0, R) \), \(\sum_{i=0}^{n-1} y^i t_i = (\sum_{i=0}^{n-1} y^i y_i) z_0 = \sum_{i=0}^{n-1} y^i t_i z_0^{-1} = \sum_{i=0}^{n-1} \left(\sum_{j=0}^{i} \binom{i}{j} y^j z_0 D^{i-j} \right) t_i z_0^{-1} \). Hence, we obtain \(\binom{n-1}{n-2} z_0 D t_{n-1} z_0^{-1} = 0 \), and so \(t_{n-1} = 0 \). Repeating the same procedures, we have \(t_i = 0 \), \(i = 1, 2, \ldots, n - 1 \). Thus \(J(z_0, R) = S \). Furthermore, the fact that \(C \equiv \{ z \in Z; z D_y = 0 \} \) and \(z D_y = (k z^{x-1}) z D_y \) imply the order of \(z_0 \) is just \(n \).

Theorem 3.1. (a) Let \(\chi(S) = n \). In order that \(S \) have an \(n \) dimensional polynomial Galois extension \(R = \sum_{i=0}^{n-1} y^i S \) with \(sy = ys' + s'' \) such that \(s \rightarrow s' \) is an inner automorphism, it is necessary and sufficient that the following condition be satisfied:

1. There exist a derivation \(D \) in \(S \) and \(s \in S \) satisfying \(D^n - D = I_s \), \(s D = 0 \) and \(X^n - X - s \) is \(\psi \)-irreducible in \(S[X; D] \).

(b) Let \(\chi(S) > n \) or \(\chi(S) = 0 \). In order that \(S \) have an \(n \) dimensional polynomial Galois extension \(R = \sum_{i=0}^{n-1} y^i S \) with \(sy = ys' + s'' \) such that \(s \rightarrow s' \) is an inner automorphism, it is necessary and sufficient that the following condition be satisfied:

2. There exists an \(n \) dimensional Galois extension field of \(Z \).

Proof. (a) Let \(R/S \) be a Galois extension with the requested property. Then, by Theorem 2.2, \(V \) is either \(Z \) or \(C \). If \(V = C \), then \(R/S \) is obviously an \(n \) dimensional cyclic extension. On the other hand, if \(V = Z \neq C \) then \(R/S \) is still an \(n \) dimensional cyclic extension by Corollary 3.2 (b). Hence, there holds (1) by [4. Theorem 2.1]. Conversely, if there exist \(D, S \) satisfying (1), then, by [4. Theorem 2.1], there exists an \(n \) dimensional polynomial Galois extension \(R = \sum_{i=0}^{n-1} y^i S \) such that \(ty = yt + tD \) \((t \in S) \).

(b) Assume that there exists a Galois extension \(R/S \) with the requested property. Then \(V = C \subset S \) and \(R = S[C] \) by Theorem 2.2 and Corollary 3.2 (a). Thus the rest of the proof will be obvious.

Theorem 3.2. Let \(\rho \) be an automorphism in \(S \). In order that \(S \) have an \(n \) dimensional polynomial inner Galois extension \(R = \sum_{i=0}^{n-1} y^i S \) with \(sy = y(s \rho) + s'' \) such that \(s \rightarrow s'' \) is an inner \(\rho \)-derivation, it is necessary and sufficient that there exist \(s_0 \in S \), \(z \in Z \) satisfying the following conditions:
(1) $\rho^n = \tilde{\xi}_0$, $s_0\rho = s_0$.
(2) $z^\rho \neq z$ ($i = 1, \cdots, n - 1$).
(3) $X^n - s_0$ is w-irreducible in $S[X; \rho]$.

More precisely, when this is the case, R/S has a cyclic Galois group.

Proof. Assume that there exists a Galois extension R/S with the requested property. Since V is commutative by Theorem 2.1 (b), V has to coincide with Z. Further, by Corollary 1.2 (b), we may assume $s_0 = y(s\rho)$ ($s \in S$). One may remark here $\rho = y^{-1}|S$ (Cf. the proof of Corollary 1.2 (b)). If $y^n = \sum_{i=0}^{n-1} y'u_i$ ($u_i \in S$), then $y^n|S = \rho^n = \tilde{u}_0$. (By the regularity of y, $u_0 \neq 0$, and hence $u_0 \in S^*$). Hence $zy^n = y(z\rho^n)z^{-1} = y^n$ for each $z \in Z$, which implies $s_0 = y^n \in J(\tilde{Z}, R) = S$. (Obviously $s_0\rho = s_0$). Further, by the same way as in the proof of Theorem 1.2 (a), $R \cong S[X; \rho]/(X^n - s_0)S[X; \rho]$ and $X^n - s_0$ is w-irreducible in $S[X; \rho]$. Next, as $[R : S] = [V : C] = [Z : C]$ and $J(\rho|Z, Z) = C$, there exists an element $z \in Z$ such that $z\rho^i \neq z$ for $i = 1, \cdots, n - 1$. (Take, for instance, a normal basis element of Z/C). Then $J(\tilde{z}, R) = S$. In fact, $\sum_{i=0}^{n-1} y't_i \in J(\tilde{z}, R)$ ($t_i \in S$) shows that $\sum_{i=0}^{n-1} y't_i = z(\sum_{i=0}^{n-1} y't_i)z^{-1} = \sum_{i=0}^{n-1} y't_i(z\rho^i)z^{-1}$ and hence, $t_i = 0$ for $i = 1, 2, \cdots, n - 1$. Conversely, assume that there exist $s_0 \in S$, $z \in Z$ satisfying (1)-(3). Then (1) is equivalent with $M = (X^n - s_0)S[X; \rho]$ is a two-sided ideal, and hence $R = S[X; \rho]/M = \oplus_{i=0}^{n-1} y_i S$ is an n dimensional polynomial extension with $s_0 = y(s\rho)$ where y is the residue class of X modulo M. Now (3) is equivalent with the maximality of M. Hence R is simple. Finally by (2), we can use the above argument to prove $J(\tilde{z}, R) = S$ and then we have $V = J(\tilde{z}|V, V) = V_{\cap}S = Z$ (a field). Thus R/S is an inner Galois extension with respect to a cyclic Galois group \tilde{z}.

§ 4. Right quadratic extensions.

Let $R = \bigoplus_{i=0}^{n-1} y_i S$ be a right quadratic simple ring extension over S. Then, it is clear that $sy = y(s\rho_y) + sD_y$ ($s \in S$) where ρ_y is a monomorphism in S, D_y is a ρ_y-derivation in S.

Lemma 4.1. R is $R_1.S_r$-irreducible.

Proof. It suffices to prove $R = RxS$ for each $x \in R \setminus S$. Since $RxS + S$ is a subring of R properly containing S, $RxS + S = R = S \oplus yS$. Hence there exists $u \in S$ such that $y - u \in RxS$. Noting that $\{1, y-u\}$ is a right S-basis for R, $(R(y-u)S)R = (R(y-u)S) (S + (y-u)S) \subseteq R(y-u)S$, and hence $R = R(y-u)S = RxS$.

Lemma 4.2. Let ρ be an automorphism in S, and $f(X) = X^2 + Xu_1 + u_0$ ($u_0, u_1 \in S$) a polynomial of $S[X; \rho, D]$ where D is a ρ-derivation in S. Assume that $f(X)$ generates a proper ideal of $S[X; \rho, D]$. Then $f(X)$ is
w-irreducible if and only if S has no solution t satisfying the following conditions:

(i) $tD + t(u_t - t\rho) = u_0$.
(ii) $tD = t(t\rho - t)$.
(iii) $sD = t(s\rho) - st$ for each $s \in S$.

Moreover, $f(X)$ is irreducible if and only if S has no solution t satisfying (i).

Proof. Let t be an element of S. Then $I=(X+t)S[X; \rho, D]$ is a two-sided ideal if and only if $X(X+t)=(X+t)(X+t')$ ($t' \in S$) and $s(X+t)=(X+t)s'$ ($s' \in S$) for every $s \in S$. The former implies $t' = t - t\rho$, $tD + t\rho = 0$. The latter implies $sD = ts' - st$, $s' = s\rho$ for every $s \in S$. Hence I is a two-sided ideal if and only if t satisfies (ii) and (iii).

Let us assume that $f(X) = (X+t)(X+b) = X^2 + X(t\rho + b) + tD + tb$. Then $t\rho + b = u_t$, $tD + tb = u_0$, and so, we have $tD + t(u_t - t\rho) = u_0$. Thus $f(X)$ is irreducible if and only if S has no solution t satisfying (i). Next, we assume that $f(X) = (X+t)(X+b)$ is w-irreducible. If we note that the right ideal $I=(X+t)S[X; \rho, D]$ does not coincide with $S[X; \rho, D]$, I can not be a two-sided ideal. Thus t does not satisfy one of the conditions (ii) and (iii) but satisfies (i). Finally, we assume that $f(X)$ is not w-irreducible, then, there exists $t \in S$ such that $f(X) = (X+t)(X+b)$ and the two-sided ideal $(X+t)$ generated by $X+t$ is a proper ideal of $S[X; \rho, D]$. Since the monic generator of $(X+t)$ is $X+t$ itself, $(X+t) = (X+t)S[X; \rho, D]$. Hence t satisfies all the conditions (i)–(iii).

Now, we shall give a necessary and sufficient condition for S to have a right quadratic simple ring extension.

Theorem 4.1. (a) In order that S have a right quadratic simple ring extension, it is necessary and sufficient that there exist a monomorphism ρ in S, a ρ-derivation D in S and a 1×2 matrix (u_0, u_1) with entries in S satisfying (1), (2) of Theorem 1.2 (a) and the following condition:

(3) There exists a finite subset $\{s_t, t_i, v_i\}$ of S satisfying $\Sigma_i(-u_i(s_i\rho)a + s_iDa + s_i(b + t_i\rho)a)v_i = 0$, and $\Sigma_i(-u_i(s_i\rho)a + t_iDa + s_i\rho)v_i = 1$ for each pair (a, b) of $S \times S$ such that $a \neq 0$.

(b) In order that S have a quadratic simple ring extension, it is necessary and sufficient that there exist an automorphism ρ in S, a ρ-derivation D in S and a 1×2 matrix (u_0, u_1) with entries in S satisfying (1), (2) of Theorem 1.2 (a) and the following condition:

(3') S has no solution t satisfying (i), (ii) and (iii) of Lemma 4.2.

7) A polynomial $f(X)$ of $S[X; \rho, D]$ is called irreducible if $f(X)$ has no left monic factor $g(X)$ such that deg $g(X) <$ deg $f(X)$.

K. Kishimoto
Proof. (a) As was shown in the proof of Theorem 1.2 (a), the existence of \(\rho, D \) and \((u_0, u_1) \) satisfying (1), (2) are equivalent with the statement that \(S \) has a right quadratic (polynomial) extension \(R = S[X; \rho, D]/(X^2 + Xu_1 + u_0)S[X; \rho, D] \). Let \(R = S \oplus yS \) where \(y \) is the residue class of \(X \) modulo \((X^2 + Xu_1 + u_0)S[X; \rho, D] \). Then (3) yields the simplicity of \(R \). In fact, \(\sum_i (ys_i + t_i)(ya + b)v_i = \sum_i y^2s_iav_i + \sum_i y(s_i b + s_i Da + s_i b + t_i \rho a)v_i + \sum_i (t_i Da + t_i b)v_i = \sum_i y(-u_i(s_i \rho)a + s_i Da + t_i \rho a)v_i + \sum_i (s_i Da + t_i b)v_i = 1 \) for each \(ya + b \in R \) \((a, b \in S)\). Conversely, let \(R \) be simple. Then, \(R \) is \(R \cdot S \cdot \) irreducible by Lemma 4.1. Hence there exists a finite subset \(\{s_i, t_i, v_i\} \) of \(S \) satisfying (3).

(b) The assertion is almost evident from the proof of (a) and Lemma 4.2. The proof may be left to readers.

Lemma 4.3. Let \(R \) be a right quadratic simple ring extension over \(S \). Then,

(a) \(V \) is either \(Z \) or \(C \).

(b) If \(R/S \) is Galois, then either \(\rho_y \) is inner or \(D_y \) is \(\rho_y \)-inner.

Proof. (a) Let \(V \neq Z \). Then \(\rho_y \) is inner by Lemma 2.1, and hence \(V = C \) (and \(R = S[C] \)) by Theorem 2.2.

(b) Let \(\sigma(\neq 1) \) be in \(\mathfrak{S} \) and \(u_\sigma = y\sigma - y \). Then \(su_\sigma = u_\sigma(s\rho_y) \) \((s \in S)\). We set \(u_\sigma = ya + b \) \((a, b \in S)\). Then \(y(s\rho_y)a + sD_\sigma a + sb = u_\sigma = u_\sigma s\rho_y = ya(s\rho_y) + b(s\rho_y) \). Hence, we obtain \((s\rho_y)a = \sigma(s\rho_y) \) and \(sD_\sigma a = s(-b) - (-b)(s\rho_y) \). Since \(\rho_y \) is an automorphism (Corollary 1.3), the first relation implies \(a \in Z \). If \(a = 0 \), then \(b \neq 0 \) and \(sb = b(s\rho_y) \). Hence \(b \in S^* \) and \(\rho_y = b^{-1} \). On the other hand, if \(a \neq 0 \), then \(D_y \) is \(\rho_y \)-inner generated by \((-a^{-1}b) \).

Corollary 4.1. Let \(\chi(S) \neq 2 \). If \(Z \neq C \), then \(R/S \) is a Galois extension. If \([S : Z] < \infty \), then \(R/S \) is a Galois extension.

Proof. By the assumption \(Z \neq C \) and Lemma 4.3 (a), we have either \(V = Z \otimes C \) or \(V = C \otimes Z \) and \(R = S[C] = S \otimes yC \) (Theorem 2.2). The former implies \(J(\overline{Z}, R) = S \) and the latter implies \(C/Z \) is Galois, and hence \(R/S \) is Galois. The latter assertion is a consequence of the former. In fact, if \([S : Z] < \infty \) and \(Z = C \) then \([R : C] < \infty \) and \(V = C \) (Lemma 4.3 (a)), we have then a contradiction \(R = S \).

Theorem 4.2. Let \(\chi(S) \neq 2 \). If \(R/S \) is a Galois extension then \(D_y \) is \(\rho_y \)-inner, and conversely.

Proof. By Lemma 4.3 (a) and Corollary 4.1, it suffices to prove our theorem for the case \(V = Z \). Assume that \(R/S \) is Galois. Then \(\rho_y \) is an automorphism (Corollary 1.3) and either \(\rho_y \) is inner or \(D_y \) is \(\rho_y \)-inner by Lemma 4.3 (b). If \(\rho_y \) is inner, it contradicts Corollary 3.2 (a). Conversely, assume
D_{y} is ρ_{y}-inner. Then we may assume $D_{y}=0$, ρ_{y} is an automorphism. (Corollary 1.2 (b)). Let $y^2 + yu_1 + u_0 = 0$ ($u_i \in S$). Since $s(y^2 + yu_1 + u_0) - (y^2 + yu_1 + u_0)(s\rho_{y}) = 0$ ($s \in S$), we have $u_1 = 0$. Otherwise, $\rho_{y} = u_1^{-1}$ and it contradicts $V=Z$ (Theorem 2.1 (a)). Thus the map $\sigma : s + yt \rightarrow s - yt$ ($s, t \in S$) is an automorphism of R such that $J(\sigma, R) = S$.

References

Hokkaido Gakugei University

(Received July 22, 1966)