ON DIMENSIONS OF SIMPLE RING EXTENSIONS

By

Takasi NAGAHARA and Hisao TOMINAGA

Let A be a division ring, and B a division subring of A. If T is an intermediate ring of $A/V_A^2(B)$ then $[T : V_A(B)]_r = [V_A(B) : V_A(T)]_r$, provided we do not distinguish between two infinite dimensions ([8, Lemma 2]). If A/B is left locally finite then so is $A/V_A^2(B)$ ([8, Theorem 1]). Moreover, if A/B is Galois and $A/V_A^2(B)$ is left locally finite then for any intermediate ring B' of A/B left finite over B there holds $[B' : B]_r = [B' : B]$ ([7, Corollary 2]).

The purpose of the present paper is to extend those results stated above to simple ring extensions. As one will see later, our extension of [7, Corollary 2] is especially satisfactory (Theorem 3).

Throughout the present paper, we use the following conventions: A will represent a ring with 1, B a unital subring of A (i.e. a subring of A containing 1), V the centralizer $V_A(B)$ of B in A, and H the double centralizer $V_A^2(B) = V_A(V)$ of B in A. Moreover, \mathfrak{A} and \mathfrak{B} will denote the absolute endomorphism ring $\text{Hom}(A, A)$ of A and the group of all B-ring automorphisms of A, respectively. If X is a subset of A, then X_l, X_r, and \overline{X} will mean the sets of all left multiplications effected by elements of X, of all the right multiplications effected by elements of X and of all inner automorphisms effected by regular elements of A contained in X, respectively.

The following easy lemma will play an essential role in our subsequent consideration.

Lemma 1. Let A be a right Artinian ring, and \mathfrak{B} a subring of \mathfrak{A} such that A is $V_\mathfrak{A}(\mathfrak{B})$-$\mathfrak{B}$-irreducible. If $\mathfrak{B}A_r = \mathfrak{B}$ and A is \mathfrak{B}-unital (i.e. $x\mathfrak{B} \neq 0$ for every non-zero $x \in A$), then $V_\mathfrak{A}(\mathfrak{B})$ is an (Artinian) simple subring of A_r and $V_\mathfrak{B}(\mathfrak{B})$ is the closure of \mathfrak{B} (in the finite topology).

Proof. Noting that every $x\mathfrak{B}$ ($x \in A$) is a right A-submodule of A and A is \mathfrak{B}-unital, one will easily see that A contains a minimal \mathfrak{B}-submodule M. Since $A = MV_\mathfrak{A}(\mathfrak{B}) = \sum_{\alpha \in V_\mathfrak{A}(\mathfrak{B})} M\alpha$ and each $M\alpha$ is either \mathfrak{B}-isomorphic to M or 0, A is homogeneously \mathfrak{B}-completely reducible. Hence, $V_\mathfrak{A}(\mathfrak{B})$ is simple, and \mathfrak{B} is dense in $V_\mathfrak{B}(\mathfrak{B})$ ($\exists 1$) by [2, Theorem VI. 2.2]. Now, the rest of our assertion will be easily seen.

The converse of Lemma 1 will be rather familiar: Let B be a direct
summand of the left B-module A. If a subring \mathfrak{B} of \mathfrak{A} is dense in $V_\mathfrak{A}(B_i)$ then it is known that $B_i = V_\mathfrak{B}(\mathfrak{B})$. In particular, if $\mathfrak{B}'A_r$ is dense in $V_\mathfrak{A}(B_i)$ then $J(\mathfrak{B}', A) = \{a \in A; \sigma a = a \text{ for every } \sigma \in \mathfrak{B}'\}$ coincides with B, where \mathfrak{B}' is a group of B-ring automorphisms of A. Further, if B is a simple ring and a subring \mathfrak{B} of \mathfrak{A} is dense in $V_\mathfrak{A}(B_i)$ then it turns out that A is $V_\mathfrak{A}(\mathfrak{B})$-$\mathfrak{B}$-irreducible. Accordingly, combining the above with Lemma 1, we obtain the following:

Corollary 1. If A is a right Artinian ring, then $B' \to V_\mathfrak{A}(B_i)$ and $\mathfrak{B}' \to (1) V_\mathfrak{A}(\mathfrak{B}')$ are mutually converse $1-1$ dual correspondences between unital simple subrings B' of A and closed intermediate rings \mathfrak{B}' of \mathfrak{A}/A_r such that A is $V_\mathfrak{A}(\mathfrak{B}')$-$\mathfrak{B}'$-irreducible.

Remark 1. In Corollary 1, \mathfrak{B}' can be characterized as a closed subring of \mathfrak{A} such that $\mathfrak{B}'A_r = \mathfrak{B}'$ and that A is \mathfrak{B}'-unital and $V_\mathfrak{A}(\mathfrak{B}')$-$\mathfrak{B}'$-irreducible (Lemma 1). Moreover, in case A is a division ring, the $V_\mathfrak{A}(\mathfrak{B}')$-$\mathfrak{B}'$-irreducibility of A is an easy consequence of the assumption that $\mathfrak{B}'A_r = \mathfrak{B}'$ and A is \mathfrak{B}'-unital. Hence, Corollary 1 contains essentially [1, Satz V, 1].

The next lemma stated without proof is [3, Lemma 1], in particular, the first assertion is an immediate consequence of Lemma 1.

Lemma 2. Let A be a simple ring, W a unital subring of V, and let A be $B \cdot W$-A-irreducible.

(a) V and $V_\mathfrak{A}(W)$ are simple rings, and A is homogeneously completely irreducible as B-A-module and $[A|B_i \cdot A_r] = [V|V]^2$.

(b) If S is a unital simple subring of B such that $[B:S] < \infty$, then $[V_\mathfrak{A}(S): V] \leq [B:S]$. If moreover A/S is left locally finite, then $[V_\mathfrak{A}(S): V] \leq [B:S]$.

If A is right Artinian and $B \cdot V$-A-irreducible, then A is obviously a simple ring. In what follows, we shall often treat with a simple ring extension A/B such that A is $B \cdot V$-A-irreducible. Such an extension is, we believe, not so extraordinary. In fact, as was shown in [4] and [10], if A/B is q-Galois and left locally finite then A is $B \cdot V$-A-irreducible.

Corollary 2. Let a simple ring A be $B \cdot V$-A-irreducible.

(a) If \mathfrak{S} is a subset of \mathfrak{A} containing \mathfrak{V} such that $V_\mathfrak{A}(A_r[\mathfrak{S}]) = B_i$, then B is regular and $A_r[\mathfrak{S}]$ is dense in $V_\mathfrak{A}(B_i)$.

2) $[A|B_i \cdot A_r]$ means the length of the composition series of A as $B_i \cdot A_r$-module, and $[V|V]$ does the capacity of the simple ring V (= length of the composition series of V as one-sided V-module).
(b) If \(\mathcal{S} \) is a subgroup of \(\mathfrak{G} \) containing \(\tilde{V} \) and \(J(\mathcal{S}, A) = B \), then \(B \) is regular, \(\mathcal{S} A_r \) is dense in \(V_A(B_i) \) and \((\mathcal{S}|H)H_r \) is dense in \(\text{Hom}_{B_r}(H,H) \).

Proof. By Lemma 2 (a), \(V \) and \(H \) are simple rings.

(a) Since \(A_r[\mathcal{S}] \supseteq \tilde{V}A_r = V_I \cdot A_r \), \(A \) is \(V_A(\mathcal{S}) \cdot A_r \)-irreducible. Hence, the assertion is clear by Lemma 1.

(b) By the validity of (a), it suffices to prove the last assertion. Let \(h \) be an arbitrary non-zero element of \(H \). Then, \((Bh)\mathcal{S}H_r = eH \) with some non-zero idempotent \(e \). Since \(A = (Bh)\mathcal{S}A_r = ((Bh)\mathcal{S}H_r)A_r = eA \), \(e \) has to be 1. Hence, \(H \) is \(B_r \cdot (\mathcal{S}|H)H_r \)-irreducible. Consequently, again by Lemma 1, \((\mathcal{S}|H)H_r \) is dense in \(\text{Hom}_{B_r}(H,H) \).

Obviously, [8, Lemma 2] and [8, Theorem 1] are contained in the following theorem.

Theorem 1. Let a simple ring \(A \) be \(B \cdot V-A \)-irreducible.

(a) If \(T \) is an intermediate ring of \(A/H \) such that \(A \) is \(T-A \)-irreducible then \([V:V_A(T)]_r = [T:H]_r \), provided we do not distinguish between two infinite dimensions (cf. Lemma 2 (a)).

(b) Let \(B \) be simple. If \(B' \) is an intermediate ring of \(A/B \) left finite over \(B \) such that \(A \) is \(B'-A \)-irreducible, then \([V_2^2(\mathcal{S}B'):H]_r = [V : V_B(B')]_r < [V : V_B(B')]_l \) and \(V_2^2(B') = H[B'] \).

(c) Let \(B \) be simple. If \(B' \) is an intermediate ring of \(A/B \) right finite over \(B \) such that \(A \) is \(A-B' \)-irreducible, then \([V_2^2(\mathcal{S}B'):H]_r = [V : V_B(B')]_r < [V : V_B(B')]_l \) and \(V_2^2(B') = H[B'] \).

(d) Let \(B \) be simple. If \(A/B \) is left (or right) locally finite, then \(A \) is \(h \)-Galois and (two-sided) locally finite over \(H \) and then \(A/A' \) is inner Galois and \([V_2^2(\mathcal{S}B'):H]_r = [V : V_B(A')]_l = [V : V_B(A')]_r \) for every simple intermediate ring \(A' \) of \(A/H \) left (or right) finite over \(H \).

Proof. (a) Since \(V_I \cdot A_r \) is dense in \(\text{Hom}_{B_r}(A, A) \) by Lemma 1, one will easily see that \([(V_I[T]A_r:A_r]:A_r) = [T:H]_r \), provided we do not distinguish between two infinite dimensions (cf. [6, Lemma 1.4]). On the other hand, by [6, Lemma 1.4], \([(V_I[T]A_r:A_r):A_r] = [V : V_A(T)]_l \). Combining those, it follows at once our assertion.

(b) Obviously, \(H \subseteq H[B'] \subseteq V_2^2(B') \) and \(A \) is \(H[B']-A \)-irreducible. Since \(V_A(H[B']) = V_A(B') \) and \(\infty > [V : V_A(B')]_r \) by Lemma 2 (b), (a) implies that \([V_2^2(B'):H]_r = [V : V_A(B')]_r = [H[B']:H]_r \).

(c) By Lemma 2 (b), we obtain \(\infty > [B':B]_r > [V : V_A(B')]_r > [V_2^2(B'):H]_r > [H[B']:H]_r > [V : V_A(B')]_r \), namely, \([V : V_A(B')]_r = [H[B']:H]_r = [V_2^2(B'):H]_r \).

(d) By (b) (or (c)) and [3, Theorem 1], \(A/H \) is \(h \)-Galois and locally finite. Since \(\tilde{V} \cdot A_r = V_I \cdot A_r \) is dense in \(\text{Hom}_{B_r}(A, A) \) (Lemma 1), \(A/A' \) is inner Galois.
by [11, Proposition 4], and then \([A': H]_r = [A': H]_l = [V: V_A(A')]_r = [V: V_A(A')]_l\), by [3, Theorem 1] or [9, Theorem 8].

Now, let \(A/B\) be a left locally finite simple ring extension. We consider the following conditions:\(^3\):

(i) \(B\) is regular.

(ii) \(A\) is \(B\cdot V\cdot A\)-irreducible.

(iii) \(A\) is \(B\cdot V\cdot A\)-irreducible and \(\mathfrak{G}(A', A/B)|H = \mathfrak{G}(H, A/B)\) for every \(A'\in \mathcal{R}^0/H\) left finite over \(H\).

(iv) \(A\) is \(A\cdot B\cdot V\)-irreducible.

(v) \(A\) is \(A\cdot B\cdot V\)-irreducible and \(\mathfrak{G}(A', A/B)|H = \mathfrak{G}(H, A/B)\) for every \(A'\in \mathcal{R}^0/H\) left finite over \(H\).

(vi) \(\mathfrak{G}(B_1, A/B)|B_2 = \mathfrak{G}(B_2, A/B)\) for every \(B_1 \supseteq B_2\) in \(\mathcal{R}_{l.f}\).

(vii) \(H/B\) is Galois and \([V^2_A(T): H] = [V: V_A(T)]\), for every \(T\in \mathcal{R}^0_{l.f}\).

(viii) \((T\cap H)\mathfrak{G}(T, A/B)\subseteq H\) for every \(T\in \mathcal{R}^0_{l.f}\).

In [4, Theorems 3, 4 and 5], one of the present authors has given several useful conditions those which are equivalent to the condition that \(A/B\) be \(q\)-Galois. Now, we shall add other equivalent ones to those.

Theorem 2. Let a simple ring \(A\) be left locally finite over a simple ring \(B\). In order that \(A/B\) be \(q\)-Galois, it is necessary and sufficient that any of the following equivalent conditions be satisfied:

1. (i) + (vi) + (vii).
2. (iv) + (vi) + (vii).
3. (i) + (vi) + (viii).
4. (iii) + (vii) + (ix).
5. (v) + (vii) + (ix).

Proof. If \(A/B\) is \(q\)-Galois then (i)–(ix) are all satisfied ([4, Theorems 3, 4 and 5] and [9, Theorem 6]). Conversely, if one of the conditions (1), (2) and (3) is satisfied and if \(T\) is in \(\mathcal{R}^0_{l.f}\), then \(T\cap H\) is in \(\mathcal{R}_{l.f}\) ([6, Lemma 1.6] and [5 Theorem 1.1]) and \(J(\mathfrak{G}(T, A/B), T) = J(\mathfrak{G}(T, A/B), T) \cap J(\tilde{V}|T, T) = J(\mathfrak{G}(T, A/B)|H \cap T, H \cap T) = J(\mathfrak{G}(H/B)|H \cap T, H \cap T) = B\), where \(\mathfrak{G}(H/B)\) means the Galois group of \(H/B\). Hence, \(A/B\) is \(q\)-Galois by [4, Theorems 3 and 4]. Finally, assume (4) or (5). Then, \(A/H\) is locally finite by Theorem 1 (d). If \(T\in \mathcal{R}^0_{l.f}\), then \(J(\mathfrak{G}(T, A/B), T) \subseteq J(\mathfrak{G}(T[H], A/B)|H \cap T, H \cap T) \subseteq J(\mathfrak{G}(H/B)|H \cap T, H \cap T) = B\). Hence, \(A/B\) is \(q\)-Galois by [4, Theorem 5].

Finally, we shall extend [7, Corollary 2] to simple ring extensions. Let

3) As to notations, we follow [4] and [10].
\(\mathfrak{S} \) be a (multiplicative) sub-semigroup of \(\mathfrak{A} \). If \(\mathfrak{S} A_r \) and \(\mathfrak{S} A_t \) form subrings of \(\mathfrak{A} \) (or, \(A_r \mathfrak{S} \subseteq \mathfrak{S} A_r \) and \(A_t \mathfrak{S} \subseteq \mathfrak{S} A_t \)) and \(V_r(\mathfrak{S}) \cap A_r = B_r \) and \(V_r(\mathfrak{S}) \cap A_t = B_t \), then \(\mathfrak{S} \) is called a Galois semigroup of \(A/B \).

Lemma 3. Let a simple ring \(A \) be \(B \cdot V \cdot A \)-irreducible, and \(\mathfrak{S} \) a Galois semigroup of \(A/B \) containing \(\mathfrak{V} \). Let \(T \) be a \(B \cdot B \)-submodule of \(A \) possessing a linearly independent left \(B \)-basis.

(a) If \(T \) is left finite over \(B \) then \((\mathfrak{S}|T)V_r \) possesses a linearly independent \(V_r \)-basis that forms at the same time a linearly independent \(A_r \)-basis of \((\mathfrak{S}|T)A_r \).

(b) In order that \(T \) be left finite over \(B \), it is necessary and sufficient that \([(\mathfrak{S}|T)V_r|V_r] \) be finite.

Proof. By Corollary 2, \(B \) is regular and \(\mathfrak{S} A_r \) is dense in \(V_r(\mathfrak{B}) \).

(a) The proof will be completed in the same way as in [5, Lemma 1.2 (i)]. Let \(l' = \{g_{pq} ; p, q = 1, \cdots, u \} \) be a system of matrix units of \(V \) such that \(V_\nu(l') \) is a division ring. If \(g_r = g_{pp} \) then \(A = \oplus_i^u g_{p} A \) and \((g_{qp}) \) induces a \(B \cdot A \)-isomorphism of \(g_{p} A \) onto \(g_q A \). Since \(A \) is homogeneously \(B \cdot A \)-completely reducible and \([A|B \cdot A_r] = [V|V] = u \) (Lemma 2 (a)), \(g_p A \) is \(B \cdot A \)-irreducible, so that \((g_p A) \) is \(B_r \cdot A_r \)-irreducible. Accordingly, \((\sigma|T)(g_{p} A) \), being \(B_r \cdot A_r \)-isomorphic to \((g_p A) \), for every \(\sigma \in \mathfrak{S} \), \(\text{Hom}_{B_r}(T, A) = \sum_{\sigma \in \mathfrak{S}} \sum_{p}(\sigma|T)(g_{p} A) = \oplus_i^{|\mathfrak{S}|}(\sigma|T)(g_{p} A) \), with some \(\sigma \in \mathfrak{S} \) and some \(g_{p} \), where each \((\sigma|T)(g_{p} A) \), is \(B_r \cdot A_r \)-isomorphic to arbitrary fixed \((g_p A) \). Recalling here that \(A = \oplus_i^u g_{p} A \), the last relation yields \(s = u \cdot [T : B]_t \), and so \(\Sigma = \sum_{i} \sum_{p}(\sigma|T)(g_{p} V) = \oplus_i^{|\mathfrak{S}|}(\sigma|T)(g_{p} V) \), possesses a linearly independent \(V_r \)-basis \(\{\epsilon_1, \cdots, \epsilon_t \} \) and \([\Sigma : V_r] = [T : B]_t \). Since \((\mathfrak{S}|T)A_r = \Sigma A_r \) and \([(\mathfrak{S}|T)A_r : A_r]_r = [T : B]_t \), the \(V_r \)-basis \(\{\epsilon_1, \cdots, \epsilon_r \} \) is still a linearly independent \(A_r \)-basis of \((\mathfrak{S}|T)A_r \). Now, one will easily see that \(\Sigma = \text{Hom}_{B_r}(T, A) = (\mathfrak{S}|T)V_r \).

(b) In virtue of (a), it remains only to prove the sufficiency. If \([(\mathfrak{S}|T)V_r|V_r] \) is finite then \((\mathfrak{S}|T)V_r \) is finite over \(V_r \), and so \((\mathfrak{S}|T)A_r = ((\mathfrak{S}|T)V_r)A_r \) is finite over \(A_r \), too. Hence, our assertion is a consequence of the density of \(\mathfrak{S} A_r \) in \(V_r(\mathfrak{B}) \).

Proposition 1. Assume that a simple ring \(A \) is \(B \cdot V \cdot A \)-irreducible and \(A \cdot B \cdot V \)-irreducible. Let \(\mathfrak{S} \) be a Galois semigroup of \(A/B \) containing \(\mathfrak{V} \). Let \(T \) be a \(B \cdot B \)-submodule of \(A \) possessing a finite linearly independent left \(B \)-basis and a linearly independent right \(B \)-basis, and \(\{\epsilon_1, \cdots, \epsilon_r \} \) a linearly independent \(V_r \)-basis of \((\mathfrak{S}|T)V_r \) that forms at the same time a linearly independent \(A_r \)-basis of \((\mathfrak{S}|T)A_r \) (cf. Lemma 3 (a)). If \(V_r(A \cup (\cup_{i} T \epsilon_i)) \cap V \) contains a unital division subring \(U \) such that \([V : U] = [V : U]_r < \infty \), then \([T : B]_r \leq [T : B]_t \).
Proof. By Corollary 2, B is regular, \mathcal{G}_A, and \mathcal{G}_A are dense in $V_B(B)$ and $V_B(B)$, respectively. Hence, $\text{Hom}_{B_r}(T,A) = (\mathcal{G}|T)A_r = \oplus \{\varepsilon_i A_r \mid t = [T:B]_{l}\}$. Moreover, one will easily see that $\mathcal{X} = \oplus \{\varepsilon_i V_r = \text{Hom}_{B_r}(T,A) \supseteq (\mathcal{G}|T)V_l\}$. If $\{v_1, \cdots, v_m\}$ is a linearly independent left U-basis of V, then by the assumption we have $\mathcal{X} = \sum \{\mathcal{X}_i(\sum_{t=1}^m U_r v_{kr}) = \sum_{t,k} \varepsilon_i v_{kr} U_l\}$. Hence, $tm \geq [\mathcal{X}:U_l]_r$, so that $[(\mathcal{G}|T)V_l|V_l]$ is finite. Accordingly, by the proposition symmetric to Lemma 3, it follows $\infty \geq [T:B]_r = [\mathcal{G}|T)V_l|V_l]$. Then, noting that $[\mathcal{X}:U_l]_r = [\mathcal{X}_i|U_l] \cdot m/[V|V]$, we readily obtain $t \cdot [V|V] \geq [\mathcal{X}|V_l]_r \geq [(\mathcal{G}|T)V_l|V_l] = [T:B]_r \cdot [V|V]$. We have proved therefore $[T:B]_r \geq [T:B]_l$.

Now, we shall prove our last theorem.

Theorem 3. Let a simple ring A be B-V-A-irreducible and A-B-V-irreducible, and \mathcal{G} a Galois semigroup of A/B.

(a) Let T be a B-B-submodule of A possessing a linearly independent left B-basis and a linearly independent right B-basis. If A/H is left locally finite then $[T:B]_l = [T:B]_r$, provided we do not distinguish between two infinite dimensions.

(b) Let V be contained in B. If T is an intermediate ring of A/B then $[T:B]_l = [T:B]_r$, provided we do not distinguish between two infinite dimensions.

Proof. One may remark first that B and H are regular by Corollary 2 and Lemma 2 (a), and assume that \mathcal{G} contains \mathcal{V}.

(a) Since A is H-V-A-irreducible and left locally finite over $H = V_B(H)$, A/H is two-sided locally finite by Theorem 1 (d). Hence, by the symmetry of our assumption, it suffices to prove that if $[T:B]_l < \infty$ then $[T:B]_l \leq [T:B]_l$. Now, let $\{e_1, \cdots, e_t\}$ be a linearly independent V_r-basis of $(\mathcal{G}|T)V_r$ that forms at the same time a linearly independent A_r-basis of $(\mathcal{G}|T)A_r$ (Lemma 3). By Theorem 1 (d), there holds then $\infty > [H[E, U \{T_{e_i}\}] : H] = [V : V_A(H[E, U \{T_{e_i}\}])]_r$, where E is a system of matrix units such that $V_{A}(E)$ is a division ring. Hence, $[T:B]_l \geq [T:B]_l$ by Proposition 1.

(b) Again by the symmetry of our assumption, it suffices to prove that if $[T:B]_l < \infty$ then $[T:B]_l \leq [T:B]_l$. Since $U = V_A(T) = V_B(T) \subseteq V_A(T \text{Hom}_{A_r} (T, A)) \subseteq V$ (field) and $[V : U] \leq [T:B]_l < \infty$ by Lemma 2, our assertion is again a consequence of Proposition 1.

As a direct consequence of Theorem 3 (a), we obtain the following, that contains evidently [7, Corollary 2].

Corollary 3. Let a simple ring A be B-V-A-irreducible and A-B-V-irreducible, and T an intermediate ring of A/B. If $J(\mathcal{G}, A) = B$ and A/H
is left locally finite then \([T:B]_l = [T:B]_r\), provided we do not distinguish between two infinite dimensions.

Remark 2. Theorem 3 (a) may be regarded as an extension of [1, Folgerung zu Satz VII, 2]. However, [1] contains considerable errors: The definition of \(e\text{Hom}_{L}(M, N)\) is absurd, and Satz V, 1, Hilfssatz VI, 2 and Hilfssatz VI, 4 are open to doubt.

References

Okayama University
and
Hokkaido University

(Received July 21, 1966)