<table>
<thead>
<tr>
<th>Title</th>
<th>LOCALLY FINITE OUTER GALOIS THEORY</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author(s)</td>
<td>Miyashita, Yôichi</td>
</tr>
<tr>
<td>Citation</td>
<td>Journal of the Faculty of Science Hokkaido University. Ser. 1 Mathematics, 20(1-2), 001-026</td>
</tr>
<tr>
<td>Issue Date</td>
<td>1967</td>
</tr>
<tr>
<td>Doc URL</td>
<td>http://hdl.handle.net/2115/56082</td>
</tr>
<tr>
<td>Type</td>
<td>bulletin (article)</td>
</tr>
<tr>
<td>File Information</td>
<td>JFSHIU_20_N1-2_001-026.pdf</td>
</tr>
</tbody>
</table>

Hokkaido University Collection of Scholarly and Academic Papers: HUSCAP
LOCALLY FINITE OUTER GALOIS THEORY

By

Yôichi MIYASHITA

Introduction.

This paper is the continuation of the preceding paper [22]. In §1 and §2, locally finite (outer) Galois extensions are treated. The main results are parallel to those of the finite case. In these studies, Nagahara [12] is our guide. Further several results for finite Galois extensions are added (Th. 1.18). In §3, we give a normal basis theorem for a finite Galois extension.

§1. As to notations and terminologies we follow [22]. Let A be a ring with 1 ($\neq 0$), C the center of A, G a (finite or infinite) group of automorphisms of A, $B=A^\sigma=\{x\in A; \sigma(x)=x$ for all σ in $G\}$, and \hat{G} the group of all B-automorphisms of A. \hat{G} is then a topological group in finite topology (cf. Jacobson [7]). We denote the closure of G in \hat{G} by G^*. Δ means the trivial crossed product of A with G: $\Delta=\sum_{\sigma\in G}\Delta u_{\sigma}$, $u_{\sigma}u_{\tau}=u_{\sigma\tau}$ ($\sigma, \tau\in G$), $u_{\sigma}x=\sigma(x)u_{\sigma}$ ($x\in A$). Then there is a canonical ring homomorphism j from Δ to End (A_B) defined by $j(\sum_{\sigma}x_{\sigma}u_{\sigma})(y)=\sum_{\sigma}x_{\sigma}\sigma(y)$ ($\sum_{\sigma}x_{\sigma}u_{\sigma}\in \Delta$, $y\in A$). For any intermediate ring T of A/B, $G^T=\{\sigma\in G; \sigma|T=1_T\}$ is a subgroup of G, where $\sigma|T$ means the restriction of σ to T. We call it a fixed subgroup of G. For any subgroup H of G, $A^H=\{x\in A; \sigma(x)=x$ for all σ in $H\}$ is an intermediate ring of A/B. We call it a fixed subring of A (with respect to G). Then, as is well known, the set of all fixed subgroups of G and the set of all fixed subrings of A are anti-order-isomorphic in the usual sense of Galois theory. A subring T of A is called a G-invariant subring of A if $\sigma(T)=T$ for all σ in G (or equivalently, $\sigma(T)\subseteq T$ for all σ in G). Let N be a fixed subgroup of G. Then, A^N is G-invariant if and only if N is a normal subgroup of G: $N\lhd G$. Let T be an intermediate ring of A/B, and put $H=G^T$. Then, for σ, τ in G, $\sigma|T=\tau|T$ if and only if $\sigma H=\tau H$. Let H and K be subgroups of G such that $H\supseteq K$ and $(H:K)<\infty$, and let $H=\sigma_1K\cup\cdots\cup\sigma_rK$ be the left coset decomposition. For any x in A^K we put $t_{H,K}(x)=\sum_{i}t_{H}(\sigma_i(x))$. Then $t_{H,K}$ is an A^K-A^H-homomorphism from A^K to A^H, and is independent of the choice of $\sigma_1, \cdots, \sigma_r$. If $K=1$, we write simply t_H instead of $t_{H,1}$.

Here we present several fundamental facts, which are essential throughout the present study. Let rM_r and rN_r be T-left, U-right modules. If rM_r is
isomorphic to a direct summand of τN^r_U for some natural number r, then we write $\tau M_U|\tau N_U$, where τN^r_U means the direct sum of r copies of τN_U. If $\tau M_U|\tau N_U$ and $\tau N^r_U|\tau M_U$ we write $\tau M_U\sim \tau N_U$ (similar) (cf. Morita [21]). To be easily seen, $\tau M_U|\tau N_U$ if and only if there are $T-U$-homomorphisms f_1, \cdots, f_r in $\text{Hom}(\tau M_U, \tau N_U)$ and g_1, \cdots, g_r in $\text{Hom}(\tau N_U, \tau M_U)$ such that $\sum f_i g_i=$ the identity of M, or equivalently, $\text{Hom}(\tau M_U, \tau N_U).\text{Hom}(\tau N_U, \tau M_U)=\text{Hom}(\tau M_U, \tau M_U)$, where homomorphisms act on the right side.

Let T be a ring with 1, M a unital T-left module, and $T^*=\text{End}(\tau M)$.

S. 1. If $\tau T|\tau M$ then $M_T|T^*$, (i.e. M_T is finitely generated and projective) and $T=\text{End}(M_T)$. (Morita)

S. 2. If $\tau M|\tau T$ then $T^*=M_T$. (Morita)

S. 3. Let T be commutative. If $\tau M|\tau T$ and τM is faithful, then $\tau T|\tau M$. (Auslander-Buchsbaum-Goldman)

S. 4. Let \hat{T} be an extension ring of T. If $\tau T|\tau \hat{T}$ then τT is a direct summand of $\tau \hat{T}$ (and conversely). (Müller)

S. 5. Let \hat{T} be an extension ring of T. If $\tau T|\tau \hat{T}$ then τT_T is a direct summand of $\tau \hat{T}_T$. (The proof is similar to the one of S.4.)

In [22], A/B was called a G-Galois extension if G is finite and there are elements a_1, \cdots, a_n; a_1^*, \cdots, a_n^* in A such that $\sum a_i \sigma(a_i^*)=\delta_{i,s} (\sigma \in G)$. In this paper, A/B is called a finite G-Galois extension if A/B is G-Galois and $t_0(c)=1$ for some c in A. Then, the following are equivalent:

(a) A/B is finite G-Galois.

(b) G is finite, $A_B\sim B_B$ and $j: A\simeq \text{End}(A_B)$.

(c) G is finite and $A\sim \text{End}(A)$.

(Cf. S.1, S.2, [6] and [21]).

A/B is called a locally finite G-Galois extension if there are fixed normal subgroups $N_\lambda (\lambda \in A)$ of G which satisfy the following conditions: (1) $(G:N_\lambda)<\infty$, and A/N_λ is a finite G/N_λ-Galois extension. (2) $A=\bigcup\lambda A^{N_\lambda}$, and $\{A^{N_\lambda}: \lambda \in A\}$ is a directed set with respect to the inclusion relation (abbr. $A=\bigcup\lambda A^{N_\lambda}$ is a directed union). Then we call $A=\bigcup\lambda A^{N_\lambda}$ a representation of the locally finite G-Galois extension A/B. If $V_A(B)=C$, an extension A/B is said to be outer.

Now we shall prove first the following

Proposition 1.1. Let $G=G^*$ (i.e. G is closed in \hat{G}). Then the following are equivalent:

(i) $\{\sigma(x); \sigma \in G\}$ is finite for any x in A.

(ii) G is compact.

(iii) Every directed union of fixed subrings of A with respect to G is also a fixed subring of A with respect to G, and $\cap H=1$, where H ranges
over all fixed subgroups of G such that $(G : H) < \infty$.

Proof. (i) \Rightarrow (ii) If we put $\prod_{x \in A} \{\sigma(x) : \sigma \in G\} = D$, then $G \subseteq D$ and D is compact. Therefore it is sufficient to prove that G is closed in D. Let ρ be any element of the closure of G in D. Then, as is easily seen, ρ is a B-ring isomorphism from A into A. Let a be in A, and put $F = \{\sigma(a) : \sigma \in G\}$. Then, by assumption, F is a finite subset of A, so that there is an element τ in G such that $\rho|F = \tau|F$. Then, in particular, $\rho(\tau^{-1}(a)) = \tau(\tau^{-1}(a)) = a$. Thus ρ is a B-automorphism of A. Hence the closure of G in D is contained in \hat{G}. Since G is closed in \hat{G}, G is closed in D, as desired. (ii) \Rightarrow (iii) For any x in G, we put $H_x = \{\sigma \in G : \sigma(x) = x\}$. Then H_x is open in G, and therefore σH_x is open in G for any σ in G. Then, since G is compact, we have $(G : H_x) < \infty$. Evidently $\bigcap_{x \in A} H_x = 1$. This proves the second assertion. Let $(A \neq T) T = \bigcup_{i \in A} T_i$ be a directed union of fixed subrings of A with respect to G, and let $K_i = G^{\tau_i}$. Then each K_i is a closed subgroup of G, and $A^{K_i} = T_i$. Let a be an element of $A - T$, and put $U = \{\sigma \in G : \sigma(a) = a\}$. Then U is open in G, so that each $K_i - U$ is closed in G. Since $a \not\in T_i$ and $A^{K_i} = T_i$, we have $K_i - U \neq \emptyset$. For any finite subset $\{\lambda_1, \cdots, \lambda_n\}$ of A, there is an element λ_0 of A such that $T_{\lambda_0} \supseteq \bigcup_i T_{\lambda_i}$. Then $K_{\lambda_0} \subseteq \bigcap_i K_{\lambda_i}$, and so $0 \neq K_{\lambda_0} - U \subseteq \bigcap_i K_{\lambda_i} - U = \bigcap_i (K_{\lambda_i} - U)$. Thus $\{K_{\lambda_0} - U ; \lambda \in A\}$ has finite intersection property. Since G is compact, we have $\bigcap_i (K_{\lambda_i} - U) \neq \emptyset$. If ρ is in $\bigcap_i (K_{\lambda_i} - U)$ then $\rho \in G^{\tau}$ and $\rho(a) \neq a$. Therefore $a \not\in A^{K_i}$, where $K = G^{\tau}$. Thus $A^{K_i} = T$. Hence T is a fixed subring of A with respect to G. (iii) \Rightarrow (i) Let H and K be fixed subgroups of G such that $(G : H) < \infty$ and $(G : K) < \infty$. Then $H \cap K$ is also a fixed subgroup of G with $(G : H \cap K) < \infty$. Therefore $\bigcup A^H$ is a directed union of fixed subrings of A, where H ranges over all fixed subgroups of G with $(G : H) < \infty$. Then, by assumption, $\bigcup A^H$ is a fixed subring of A with respect to G. Since $\bigcap H = 1$, we have $A = \bigcup A^H$. For any x in A, there is an A^H such that $x \in A^H$. Therefore if we put $L = \{\sigma \in G : \sigma(x) = x\}$ then $(G : L) < \infty$. This implies that $\{\sigma(x) : \sigma \in G\}$ is finite.

Remark. For any x in A, $\{\sigma(x) : \sigma \in G\} = \{\sigma(x) : \sigma \in G^*\}$.

Proposition 1.2. Let N be a fixed normal subgroup of G such that $(G : N) < \infty$ and A^N/B is finite G/N-Galois, and G_1 a subgroup of G^* containing G. Then A^N/B is finite G_1/N_1-Galois, where $N_1 = \{\sigma \in G_1 : \sigma|A^N = 1_{A^N}\}$.

Proof. Put $T = A^N$. Evidently $A^N = T$. Since G is dense in G_1 and T_B is finitely generated, there holds $G|T = G_1|T$. Therefore T is G_1-invariant, $N_1 \triangleleft G_1$, and $(G_1 : N_1) < \infty$. There are elements $a_1, \cdots, a_n; a_1^*, \cdots, a_n^*$ in T such that $\sum_i a_i \cdot \sigma(a_i^*) = \delta_{N_1, \sigma}$ for all σ in G. If τ is in $G_1 - N_1$ then $\tau|T = \rho|T$ for
some ρ in $G-N$, and $\sum a_i^* \tau(a_i^*) = \sum a_i^* \rho(a_i^*) = 0$. Thus $\sum a_i^* \sigma(a_i^*) = \delta_{N,*}$ for σ in G_1.

Corollary. Let A/B be locally finite G-Galois, and G_1 a subgroup of G^* containing G. Then A/B is locally finite G_1-Galois.

Proposition 1.3. Let $H_i (i \in \Lambda)$ be fixed subgroups of G such that $A = \bigcup_{\lambda \in \Lambda} A_{\lambda}$ is a directed union.

1. If H is a subgroup of G such that $(G:H) < \infty$ then $A_H \subseteq A_{\lambda}$ for some λ in Λ.

2. If K is a subgroup of G such that $(K:1) < \infty$ then $K \cap H_\mu = 1$ for some μ in Λ.

Proof. (1) Let $[H_i \cup H]$ be the subgroup of G generated by $H_i \cup H$. Since $G \supseteq [H_i \cup H] \supseteq H$, we have $(G:[H_i \cup H]) \leq (G:H)$ for all λ in Λ. Let $(G:[H_i \cup H])$ be maximum. We shall prove that $A_{\mu} \subseteq A_{\lambda}$. For any H_i there is an H_μ such that $A_{\mu} \supseteq A_{\mu} \cap A_{\lambda}$. Then $H_\mu \subseteq H_i \cap H_\mu$, and so $[H_\mu \cup H] \subseteq [H_i \cup H] \cap [H_\mu \cup H]$. Since $(G:[H_i \cup H])$ is maximum, we have $([H_i \cup H] \supseteq [H_\mu \cup H]) = [H_i \cup H]$. Hence $[H_i \cup H] \subseteq [H_i \cup H]$ for all λ in Λ. Then $A_H = \bigcup (A_{\mu} \cap A_{\lambda}) = \bigcup A_{[H_i \cup H]} = A_{[H_i \cup H]} = A_{[H_i \cup H]} \cap A_H$, which means $A_H \subseteq A_{H_\mu}$. (2) Since $A = \bigcup_{\lambda} A_{\lambda}$, we have $1 = G^A = \cap_i H_i$. Let $K = \{\sigma_1 = 1, \sigma_2, \ldots, \sigma_r\}$. Then, for any $\sigma_i (i \neq 1)$, there is an H_μ such that $\sigma_i H_i$. By assumption there is a μ such that $H_\mu \subseteq \cap_{i=1, \ldots, r} H_i$. Then $H \cap H_\mu \subseteq H \cap (\cap_{i=1, \ldots, r} H_i) = 1$.

Remark. Let A/B be locally finite G-Galois, and $A = \bigcup_{\lambda \in \Lambda} A_{\lambda}$ its representation. If G is finite then $A = A_{\lambda}$ for some λ.

Proposition 1.4. Let T be an intermediate ring of A/B such that $G|T$ is finite, and let $H = G^T$, and $G = \sigma_1 H \cup \cdots \cup \sigma_r H$ a left coset decomposition of G. If there are elements $t_1, \ldots, t_n; t_1^*, \ldots, t_n^*$ in T such that $\sum t_i \sigma(t_i^*) = \delta_{k,*}$ for all σ in G, then there hold the following.

1. $T = A_H^\alpha$, and T_B is finitely generated and projective.

2. $j^*: A(\sum_s u_s) T = \sum_s A u_s \simeq Hom(T_B, A_B)$, where $j^*(\sum_s x_s u_s)(t) = \sum_s x_s \sigma(t)$, and this induces the $B-T$-isomorphism $(B_B T \simeq) (\sum_s u_s) T \simeq Hom(T_B, A_B)$.

3. The following are equivalent: (i) $B_B \mid T_B$. (ii) $B_B \mid T_B$. (iii) $t_{\theta:B}(c) = 1$ for some c in T.

Proof. (1) $t_{\theta:B}$ is a $B-B$-homomorphism from A_H^α to B. For any y in A_H^α, $T \ni \sum_i t_i \cdot t_{\theta:B} t_i^* y = \sum_i t_i \sum_k \sigma_k(t_i^*) y = \sum_i \sum_k t_i \cdot \sigma_k(t_i^*) \sigma_k(y) = y$. Hence $A_H^\alpha = T$, and T_B is finitely generated and projective (cf. [3]). (2) j^*^{-1} is the mapping such that $j^*^{-1}(f) = \sum_i f(t_i)(\sum_k u_{\sigma_k}) t_i^*$ (cf. Hom(T_B, A_B)). The second part will be easily seen. (3) The equivalence (i) \iff (iii) is easy from (2).
Therefore (i) and (ii) are equivalent, because the situation is right-left symmetric.

Proposition 1.5. Let A/B be locally finite G-Galois. Then there hold the following:

1. G^* is compact.
2. By j, Δ is isomorphic to a dense subring of $\text{Hom}(A_B, A_B)$.
3. A subgroup H of G is a closed subgroup of G if and only if H is a fixed subgroup of G.

Proof. Let $A = \bigcup \lambda A^{N_\lambda}$ be a representation of the locally finite G-Galois extension A/B. (1) If x is in A then $x \in A^{N_\nu}$ for some ν in A. Then $(G:N_\nu)<\infty$ implies that $\{\{\sigma(x); \sigma \in G\} = \}$ $\{\sigma(x); \sigma \in G^*\}$ is finite. Hence, by Prop. 1.1, G^* is compact. (2) By Prop. 1.4 (2), $\text{Im} j$ is dense in $\text{Hom}(A_B, A_B)$. Therefore it suffices to prove that j is $1-1$. Let $\sigma_1, \cdots, \sigma_r$ be different elements in G. Then there is a finite subset F of A such that $\sigma_i[F \neq \sigma_j[F$ provided $i \neq k$. From this fact and Prop. 1.4, we can easily see that j is $1-1$. (3) Evidently, a fixed subgroup is a closed subgroup. Let H be any subgroup of G, and put $H' = G^*$, where $T = A^H$. Then $T = A^{H'}$. It suffices to prove that H is dense in H'. To prove this, we take any finite subset F of A. Then $F \subseteq A^{N_\nu}$ for some N_ν. Put $N = N_\nu$. Then, by finite Galois theory, we obtain $(G/N)^{T_1} = HN/N$ and $(A/N)^{T_1} = H'N/N$, where $T_1 = A^{HN}$ and $T_1' = A^{H'N}$ (cf. [22; Prop. 2.2]). Since $A^{HN} = A^H \cap A^N = A^{H'} \cap A^N = A^{H'N}$, we have $HN/N = H'N/N$, that is, $HN = H'N$. Hence $H|A^N = H'|A^N$, and so $H|F = H'|F$. Since F is arbitrary, this implies that H is dense in H'. This completes the proof.

Theorem 1.6. Let A/B be locally finite G-Galois, $G = G^*$, and H a subgroup of G, and let A' be an indecomposable extension ring of B such that $V_{A'}(B) = V_{A'}(A')$. Assume that there is a B-ring homomorphism g from A to A'. Then, for any B-ring homomorphism f from A^H to A', there is an element σ in G such that $f = g\sigma|A^H$.

Proof. Let $A = \bigcup \lambda \lambda A^{N_\lambda}$ be a representation. For each N_λ, there is an element σ in G such that $f|A^{HN_\lambda} = g\sigma|A^{HN_\lambda}$ ([22; Th. 4.1]). For each λ, we put $K_\lambda = \{\sigma \in G ; f|A^{HN_\lambda} = g\sigma|A^{HN_\lambda}\}$. Then $K_\lambda \neq \emptyset$, and $\{K_\lambda ; \lambda \in A\}$ has finite intersection property. Let τ be in the closure of K_λ in G. Since $(A^{N_\lambda})_B$ is finitely generated, $\tau|A^{N_\lambda} = \alpha|A^{N_\lambda}$ for some α in K_λ. Then $\tau|A^{HN_\lambda} = \alpha|A^{HN_\lambda}$, and so $f|A^{HN_\lambda} = g\tau|A^{HN_\lambda}$. Hence $\tau \in K_\lambda$, and therefore K_λ is closed in G. Since G is compact (Prop. 1.5), we have $\bigcap_\lambda K_\lambda \neq \emptyset$. If ρ is in $\bigcap_\lambda K_\lambda$, then $f|A^{HN_\lambda} = g\rho|A^{HN_\lambda}$ for all λ in A. Since $A^H = \bigcup_\lambda A^{HN_\lambda}$, we know $f = g\rho|A^H$.

The following theorem will follow at once from Th. 1.6 and Cor. to Prop. 1.2.

Theorem 1.7. Let A/B be locally finite outer G-Galois, and A an
indecomposable ring. Then $G^* = \hat{G}$, that is, G is dense in \hat{G}.

Proposition 1.8. Let A/B be locally finite G-Galois, and $G = G^*$ (cf. Cor. to Prop. 1.2). Then there hold the following.

1. For an intermediate ring T of A/B the following are equivalent.
 (i) $T = A^H$ for some subgroup H of G. (ii) There are subgroups H_t ($t \in \Gamma$) of G such that $T = \bigcup t_A^H$, $(G: H_t) < \infty$ and $\{A^H_t ; t \in \Gamma\}$ is a directed set with respect to the inclusion relation.

2. If H is a subgroup of G such that $(G : H) < \infty$ then $(A^H)_B$ is finitely generated.

Proof. Let $A = \bigcup_{\lambda \in A} A^{N_\lambda}$ be a representation of the locally finite G-Galois extension A/B. (1) (i) \Rightarrow (ii) $T = A^H = \bigcup_t (A^H \cap A^{N_\lambda}) = \bigcup_t A^{N_\lambda}$ is a directed union, and $(G : H N_t) < \infty$. (ii) \Rightarrow (i) follows from Prop. 1.1. (2) By Prop. 1.3, $A^H \subseteq A^{N_\nu}$ for some ν in A. Then, $A^H = A^{H'}$ is a fixed subring of the finite G/N, Galois extension $A^{H'}/B$, and therefore $(A^{H'})_B | (A^{N_\nu})_B$ (cf. [22; §2. p. 118]). Since $(A^{N_\lambda})_B$ is finitely generated, $(A^H)_B$ is finitely generated.

Let T be an intermediate ring of A/B, and S a subset of A. T is called a G-separable cover of S if T satisfies the following conditions:

1. T/B is a separable extension, and $T \supseteq S$.
2. $G|T$ is finite.
3. $G|T$ is strongly distinct (i.e. if $\sigma|T \neq \tau|T$ for σ, τ in G then $\sigma|T$ and $\tau|T$ are strongly distinct).

Theorem 1.9. Let A/B be locally finite outer G-Galois, and T an intermediate ring of A/B. Then the following are equivalent:

1. $T = A^H$ for some subgroup H of G such that $(G : H) < \infty$.
2. T/B is a separable extension, T_B is finitely generated, and $G|T$ is strongly distinct.
3. T is a G-separable cover of B.

Proof. Let $A = \bigcup_{\lambda \in A} A^{N_\lambda}$ be a representation. (i) \Rightarrow (ii) By Prop. 1.3, $T = A^H \subseteq A^{N_\nu}$ for some ν in A. Then T is a fixed subring of the finite G/N, Galois extension A^{N_ν}/B. Then, by [19; Prop. 3.4], T/B is a separable extension. By Prop. 1.8 (2) (cf. Cor. to Prop. 1.2), T_B is finitely generated. By [22; Th. 2.6], $G|T$ is strongly distinct. (ii) \Rightarrow (iii) This follows from the fact that $\{\sigma(x) ; \sigma \in G\}$ is finite for any x in A. (iii) \Rightarrow (i) Let $\{(t_i, t^*_i)$; $i = 1, \cdots, n\}$ be a (B, T)-projective coordinate system of T/B. Then, by [22; Prop. 1.2], $\sum_i t_i \cdot \sigma(t^*_i) = \delta_{H, \sigma}$ for σ in G, where $H = G^T$. $(G|T) < \infty$ implies $(G : H) < \infty$. By Prop. 1.4, $A^H = T$.

Combining Th. 1.9 with Prop. 1.8, we obtain the following theorem (cf. [12; Th. 3], [28; Theorem]).
Theorem 1.10. Let \(A/B \) be locally finite outer \(G \)-Galois, and \(G=G^* \). Then, for an intermediate ring \(T \) of \(A/B \), the following are equivalent.

(i) \(T=A^H \) for some subgroup \(H \) of \(G \).

(ii) For any finite subset \(F \) of \(T \) there is an intermediate ring \(T_0 \) of \(T/B \) such that \(T_0 \supseteq F \), \(T_0/B \) is separable, \(T_0/B \) is finitely generated, and \(G|T_0 \) is strongly distinct.

(iii) Any finite subset of \(T \) has a \(G \)-separable cover which is contained in \(T \).

Next we shall proceed to the characterization of locally finite outer Galois extensions.

Proposition 1.11. Let \(V_A(B)=C \), \(T \) a \(G \)-separable cover of \(B \), and \(\{(t_i, t_i^*)\}; i=1,\cdots,n \) a \((B, T)\)-projective coordinate system for \(T/B \), and put \(H=G^r \). Then there hold the following.

1. \(\sum_i t_i^* \sigma(t_i^*)=\delta_{H,\sigma} \) for all \(\sigma \) in \(G \).

2. \(A^H=T \), \((G:H)<\infty \), and \(T/B \) is a projective Frobenius extension.

3. Let \(K \) be a subgroup of \(G \) containing \(H \). Then, \(\sum_i t_{K:H}(t_i)\sigma(t_i^*)=\delta_{K,\sigma} \) for all \(\sigma \) in \(G \), \(T \) is \((B, A^K)\)-projective, \(T|A^K \) is a projective Frobenius extension, and \(G|A^K \) is strongly distinct. Further the following are equivalent. (a) \((A^K)_K|T_{A^K} \). (b) \((A^K)_{\delta}(A^K)|\Omega_{(A^K)T} \). (c) \(t_{K:H}(c)=1 \) for some \(c \) in \(T \).

Proof. (1) follows from [22; Prop. 1.2], and (2) is obvious by (1) and Prop. 1.4. (3) It will be easily seen that \(\sum_i t_{K:H}(t_i)\sigma(t_i^*)=\delta_{K,\sigma} \) for all \(\sigma \) in \(G \). Since \(\sum_i t_i t_j^*=\sum_i t_i^* t_j^* t \) \((t_i, t_j, t \in T) \) for \(t \) in \(T \), \(\sum_i y \cdot t_{K:H}(t_i)\otimes t_i^* y \) \((y \in A^K) \) for all \(y \) in \(A^K \). Hence the mapping \(x\mapsto\sum_i t_{K:H}(t_i)\otimes t_i^* x \) from \(T \) to \(A^K \otimes_B T \) is an \(A^K \)-homomorphism. Since \(\sum_i t_{K:H}(t_i)\otimes t_i^* x = x \), it follows that \(T \) is \((B, A^K)\)-projective. Let \(\rho|A^K \neq \tau|A^K \) for \(\rho, \tau \) in \(G \). Then \(\tau^{-1}\rho \notin K \), and so \(0=\tau(\sum_i t_{K:H}(t_i)\rho(t_i^*))=\sum_i t_{K:H}(t_i)|\rho(t_i^*) \) for all \(\rho \) and \(\tau \) in \(G \). Thus, by [22; Prop. 1.1], \(\rho|A^K \) and \(\tau|A^K \) are strongly distinct. If we set \(G=K \) in Prop. 1.4, the remainder follows from Prop. 1.4.

Theorem 1.12. Let \(V_A(B)=C \). Then the following statements are equivalent.

(i) \(A/B \) is locally finite outer \((G)\)-Galois.

(ii) For any finite subset \(F \) of \(A \) there is a \(G \)-invariant \(G \)-separable cover \(T \) of \(F \) such that \(H\times B|_F \).

(iii) For any finite subset \(F \) of \(A \) there is a \(G \)-separable cover \(T \) of \(F \) which satisfies the following: If \(T_0 \) is an intermediate ring of \(T/B \) such that \(\alpha \) \(T \) is \((B, T_0)\)-projective, \(\beta \) \(T/T_0 \) is a projective Frobenius extension, \(\gamma \) \(G|T_0 \) is strongly distinct, then \(\tau_{r_0T_0\tau_0T} \).

(iv) For any finite subset \(F \) of \(A \) there is a \(G \)-separable cover \(T \) of \(F \)
which satisfies the following: If T_0 is an intermediate ring of T/B such that (α) T is (B, T_0)-projective, (β) T/T_0 is a projective Frobenius extension, (γ) $G|T_0$ is strongly distinct, (δ) T_0 is a G-invariant fixed subring (with respect to G), then $\tau_0 T_0|\tau_0 T$.

Proof. (i) \Rightarrow (ii), (iii) Let $A = \bigcup_{\mu} A^N_{\mu}$ be a representation of the locally finite G-Galois extension A/B. Then any finite subset F of A is contained in some A^N_{μ} ($\mu \in \Lambda$). By [22; Th. 1.5], A^N_{μ} is a G-invariant G-separable cover of F such that $p B|p A^N_{\mu}$. Let T_0 be an intermediate ring of A^N_{μ}/B such that A^N_{μ} is (B, T_0)-projective and that $G|T_0$ is strongly distinct. Then, by [22; Th. 2.6], T_0 is a fixed subring of the finite outer G/N_{μ}-Galois extension A^N_{μ}/B, whence $\tau_0 T_0|\tau_0 T$ by [22; §2. p. 118]. (ii) \Rightarrow (i) Let F be a finite subset of A, and T a G-invariant G-separable cover of F such that $p B|p T$. If we put $N = G^r$, then $A^N = T, N \triangleleft G$ and $(G:N) < \infty$. By Prop. 1.11, A^N/B is a finite G/N-Galois extension. Noting that $(A^N)^F$ is finitely generated, A/B is a locally finite G-Galois extension. (iii) \Rightarrow (iv) is trivial. (iv) \Rightarrow (i) Let T_1 be a separable cover of an element $x \in A$. Put $G_T = H_1$. Then $\#(G|T_1) < \infty$ implies $(G:H_1) < \infty$ and $\# \{ \sigma(x); \sigma \in G \} < \infty$. Thus any finite subset of A is contained in a G-invariant finite subset of A. Let F be a G-invariant finite subset of A, and T a G-separable cover of F as that in (iv), and let $\{(t_i, t_i^*); i = 1, \ldots, n\}$ be a (B, T)-projective coordinate system of T/B, and $H = G^r$. Then, by Prop. 1.11, $A^N = T, (G:H) < \infty$, and $\sum_i t_i \sigma(t_i^*) = \delta_{N, \sigma}$ for all σ in G. Set $N = G^r$. Then $H \subset N \triangleleft G$, and $F \subset A^N \subset A^N$. By Prop. 1.11, T is (B, A^N)-projective, T/A^N is a projective Frobenius extension, and G/A^N is strongly distinct. Then, by the assumption for T, $(A_N^N(A^N)|A^N), T$, so that $t_{N:B}(c) = 1$ for some $c \in T$ (Prop. 1.11 (3)). Put $t_i^* = t_{N:B}(t_i)$ and $t_i^* = t_{N:B}(t_i^*)$. Then, $t_i, t_i^* \in A^N$, and $\sum_i t_i \sigma(t_i^*) = \delta_{N, \sigma}$ for all σ in G (Prop. 1.11 (3)). Further, as is easily seen, $\sum_i t_i \sigma(t_i^*) = \delta_{N, \sigma}$ for all σ in G. Since $p B|p T$ (Prop. 1.11 (3)), we have $p B|p A^N$. Thus A^N/B is a finite G/N-Galois extension. Noting that $(A^N)^F$ is finitely generated, we conclude that A/B is a locally finite G-Galois extension.

Proposition 1.13. Let $A^* \supseteq T \supseteq B^*$ be rings such that A^* is (B^*, T)-projective, A' an extension ring of B^* such that $V_{A'}(B^*) = V_{A'}(A')$, and f_1, \ldots, f_s, B^*-ring homomorphisms from A^* to A' such that $f_i|T$ and $f_k|T$ $(i \neq k)$ are strongly distinct. If $(B^*)_{B^*} \rightarrow T_{B^*}$ then $(A')_{A'} \rightarrow (A')_{A'}$.

Proof. Let $\{(t_i, a_i^*); i = 1, \ldots, n\}$ be a (B^*, T)-projective coordinate system for A^*. Then, by [22; Prop. 1.2], $\sum f_{a_i^*}(t_i) f_k(a_i^*) = \delta_{h, k}$ for all h, k. Let ϕ be an A'-right homomorphism from $T \otimes B^* A'$ to $(A')_{A'}$ defined by $\phi(t \otimes a') = (f_i(t)a'), \ldots, f_s(t)a')$. Since $\sum f_{a_i^*}(t_i) f_k(a_i^*) = \delta_{h, k}$, ϕ is an epimorphism. $(B^*)_{B^*} \rightarrow T_{B^*}$ implies that $(A')_{A'} \rightarrow T \otimes B^* A'$. Hence we have $(A')_{A'} \rightarrow (A')_{A'}$, as
Locally Finite Outer Galois Theory

desired.

Concerning Prop. 1.13, we consider the following condition.

Condition (F): If \(A^r \rightarrow A^s \) for positive integers \(r, s \), then \(r \geq s \).

Remark. Let \(A^r \rightarrow A^s \) for positive integers \(r, s \). Then, since \(A^s \) is projective, \(A^s \) is isomorphic to an \(A \)-direct summand of \(A^r \).

(1) If \(A \) is finite dimensional, then \(r \cdot \dim A \geq s \cdot \dim A \), and so \(r \geq s \) (cf. [11]).

(2) Assume that there is a proper ideal \(\mathfrak{U} \) of \(A \) such that \(A \mathfrak{U} / \mathfrak{U} \) is finite dimensional. Then, since \(A^r / \mathfrak{U}^r \rightarrow A^s / \mathfrak{U}^s \), the above (1) yields \(r \geq s \), because \(A^r / \mathfrak{U}^r \cong (A / \mathfrak{U})^r \) and \(A^s / \mathfrak{U}^s \cong (A / \mathfrak{U})^s \).

(3) If \(A \) is commutative, then \(r \geq s \) by (2).

Proposition 1.14. Let \(V_\mathfrak{A}(B)=C \), and \(A \) an indecomposable ring satisfying (F), and let \(T \) be an intermediate ring of \(A / B \), and \(S \) a subset of \(A \). Then the following are equivalent:

(i) \(T \) is a \(G \)-separable cover of \(S \).

(ii) \(T \supseteq S \), \(T / B \) is a separable extension, and \(T_B \) is finitely generated.

Proof. (i) \(\Rightarrow \) (ii) is evident by Prop. 1.11. (ii) \(\Rightarrow \) (i) By [22; Lemma 2.7], \(A \) is \((B, T) \)-projective. Then, by Prop. 1.13, we have \#(\(G | T \))<\(\infty \), and hence \(T \) is a \(G \)-separable cover of \(S \).

If \(A \) is commutative, then \(A \) satisfies (F). Therefore, by Th. 1.12, S. 3 and Prop. 1.14, we have the following

Theorem 1.15 (Nagahara [12]). Let \(A \) be an indecomposable commutative ring. Then the following are equivalent.

(i) \(A / B \) is locally finite \(G \)-Galois.

(ii) For any finite subset \(F \) of \(A \) there is an intermediate ring \(T \) of \(A / B \) such that (a) \(T / B \) is a separable extension, and \(T_B \) is finitely generated, (b) \(T \supseteq F \).

Proposition 1.16. Let \(A / B \) be locally finite \(G \)-Galois, and \(H \) a subgroup of \(G \). Then \(G \mid A^H \) is strongly distinct.

Proof. Let \(\sigma, \tau \) be in \(G \), and \(e \) a central idempotent of \(A \) such that \(\sigma(x)e=\tau(x)e \) for all \(x \) in \(A^\sigma \). Let \(A=\bigcup_{N\lambda} A_{N\lambda} \) be a representation of the locally finite \(G \)-Galois extension \(A / B \). We may assume that \(e \in A_{N\lambda} \) for all \(\lambda \) in \(\Lambda \). Suppose that \(\sigma \mid A^\sigma \neq \tau \mid A^\tau \). Since \(A^\mu=\bigcup_{N\lambda} A_{N\lambda}^\mu, \sigma \mid A_{N\mu}^\mu \neq \tau \mid A_{N\mu}^\mu \) for some \(\mu \) in \(\Lambda \). Then, by [22; Prop. 2.4], \((G / N_p) \mid A_{Np}^\mu \) is strongly distinct. Therefore we have \(e=0 \). Thus \(G \mid A^\mu \) is strongly distinct.

Theorem 1.17. Let \(A / B \) be locally finite outer \(G \)-Galois, and \(T \) an intermediate ring of \(A / B \). Then the following are equivalent.

(i) \(T=A^H \) for some subgroup \(H \) of \(G \), and \(A_T \) is finitely generated.
(ii) $T=A^r$ for some subgroup H of G such that $(H:1)<\infty$.

(iii) A/T is a projective Frobenius extension, Hom$(A_T, A_T) \subseteq \Delta$, and $G|T$ is strongly distinct.

When any of the above conditions is satisfied A/A^r is finite H-Galois.

Proof. Let $A=\bigcup_{n=1}^{\infty} A^N_n$ be a representation of the locally finite outer G-Galois extension A/B. (i) \Rightarrow (ii) Let $A=x_1T+\cdots+x_rT$. Then $x_1,\ldots,x_r \in A^N_r$ for some $\mu \in A$, so that $A=A^N_r\cdot T=A^N_r\cdot A^r$. Hence $N_r \cap H=1$. Since $(G:N_r)<\infty$ we have $(H:1)<\infty$. (ii) \Rightarrow (iii) By Prop. 1.3, $H \cap N_r=1$ for some $\mu \in A$. There are elements $a_1,\ldots,a_n; a_1,\ldots,a_n$ in A^N_r such that $\sum_i a_i \cdot \sigma(a_i^\sigma)=\delta_{N_r,\sigma}$ for all σ in G. Then $\sum_i a_i \cdot \sigma(a_i^\sigma)=\delta_{r,\sigma}$ for all σ in H. Hence A/A^r is H-Galois. Therefore A/A^r is a projective Frobenius extension (cf. [22; p. 121]), and Hom$(A_T, A_T)=\sum_{\tau \in H} Au, \subseteq \Delta$. By Prop. 1.16, $G|T$ is strongly distinct. (iii) \Rightarrow (i) Let $h=\sum_{\tau \in H} a_{\mu}u_{\tau}$ be a Frobenius homomorphism of A/T, where H is a finite subset of G and $a_{\mu} \neq 0$ for all τ in H. Then, since $th=ht$ for all t in T, we have $ta_{\tau}=\sigma(t)$ for all t in T, in particular, $ba_{\tau}=ab$ for all b in B. Hence $a_{\tau} \in V(A_B)=C$ for all τ in H. There are elements r_i, l_i in A such that $x=\sum_i h(xr_i)l_i=\sum_i r_i h(l_i x)$ for all x in A (cf. [27]). Then $u_1=\sum_i r_i h l_i=\sum_i \tau a_i \cdot \gamma(l_i)u_i=\sum_{\tau \in H} \sum_i \tau a_i \cdot \gamma(l_i)u_i$, and so $=\sum_i r_i a_i l_i=\sum_i \tau a_i l_i$. Thus a_1 is an invertible element in C, and $a_1^{-1}=\sum_i r_i l_i$. Since H is finite there is an N_r such that $\tau \mid A^N_r \neq \rho \mid A^N_r$ provided $\tau \neq \rho$ ($\tau, \rho \in H$). Since A^N_r/B is finite G/N_r-Galois, there are elements d_k, e_k in A^N_r such that $\sum_k d_k \cdot \sigma(e_k)=\delta_{N_r,\sigma}$ for all σ in G. Put $D_0=\text{Hom}(A_T, A_T)$. Then $D_0=AhA$, and $D_0 \ni \sum_k \tau(d_k)he_k=\sum_{\tau \in H} \sum_k \tau(d_k) a_i \cdot \sigma(e_k)u_i=a_i u_\tau$ for τ in H. Thus $D_0=AhA=\sum_{\tau \in H} \Delta_{\tau} A a_{\mu} u_{\tau}$. Since A/T is a projective Frobenius extension with Frobenius homomorphism $h\cdot A \otimes \tau A_\mu \simeq \Delta_\mu A_\mu$ by the correspondence $x \otimes y \rightarrow xy$. Let φ be the A-left homomorphism from A to D_0 defined by $\varphi(\sum_{\tau} x_{\tau}u_{\tau})=\sum_{\tau \in H} x_{\tau} \cdot \tau(a_{\mu}u_{\tau})$, and ψ be the A-left homomorphism from D_0 to A defined by $\psi(xhy)=\sum_{\tau \in H} x \cdot \tau(h(yr_i)u_i)$, where $\nu=\sum_{\tau \in H} u_{\tau}$. Then, as $h(tr_i)a_{\tau}=\tau(h(yr_i)u_{\tau})$ ($\tau \in H$), $\varphi=1$. Since $a_{\mu} u_{\tau}=\sum_k \tau(d_k) he_k$, we have $\varphi(a_{\mu} u_{\tau})=\sum_k \tau d_k h(e_k r_i)u_i=\sum_{\tau \in H} \sum_k \tau(d_k) a_i \cdot \sigma(e_k)u_i$, and so $\varphi(a_{\mu} u_{\tau})=\sum_{\tau \in H} \sum_k \tau(d_k) a_i \cdot \sigma(e_k)u_i$. On the other hand, $\varphi(a_{\mu} u_{\tau})=a_{\mu} u_{\tau}$, and hence $a_{\mu} u_{\tau}=a_{\mu} u_{\tau}$. Therefore $A_{\mu} u_{\tau} \in \Delta_\mu A_{\mu}$. Noting that $a_{\mu} u_{\tau}$ is an invertible element of C, $Aa_{\mu} a_{\tau} A \cdot \tau(a_{\mu} u_{\tau})=A a_{\tau}$, and so $A=A a_{\tau} + \text{Ann}_A(a_{\mu})$, where $\text{Ann}_A(a_{\mu})=\{x \in A; xa_{\mu}=0\}$. If $xa_{\mu} \in \text{Ann}_A(a_{\mu})$, then $0=xa_{\mu}=xa_{\mu} \cdot \tau(a_{\mu})$, so that $xa_{\mu}=0$. Thus $A=A a_{\tau} + \text{Ann}_A(a_{\mu})$. Therefore $A a_{\tau}$ is written as Ag, with a central idempotent g. As $Aa_{\mu} u_{\tau} \subseteq D_0$, we have $g u_{\tau} \in D_0$, and so $g \cdot t=g \cdot \tau(t)$ for all t in T. Consequently, $D_0=\sum_{\tau \in H} A a_{\mu} u_{\tau}$, and $H=G^T$. Hence $\text{End}(\sigma A) \subseteq (A^r)_{\sigma}$ the right multiplications of elements of A. Since $a_{\mu} u_{\tau} \in D_0=\text{End}(A_T)$, we have $a_{\mu} u_{\tau} \in \text{End}(A_T)$. Noting that a_{μ} is in C, we
can easily seen that \(a_u \in \text{Hom}(A^{(A_u)} - A^{(A_u)}) \). Thus \(h = \sum_{\sigma \in G} a_u \in \text{Hom}(A^{(A_u)} - A^{(A_u)}) \). Then, by [27; Cor. 1], \(A^{A_u} \) is also a projective Frobenius extension with a Frobenius homomorphism \(h \). Since \((H:1) < \infty \), there is an \(N \) such that \(H \cap N = 1 \) (Prop. 1.3 (2)). Then \(A^{HN} \subseteq A^{N} \), and \(H \cong HN/N \) canonically. Therefore there is an element \(c \) in \(A^{N} \) such that \(t_{H}(c) = 1 \) (cf. [22; §2. p. 118]), which implies \((A^{u})_{(A_u)}|A^{(A_u)} \), because the \(A^{u} \)-right homomorphism \(x \rightarrow t_{H}(cx) \) \((x \in A) \) from \(A \) to \(A^{u} \) splits. Therefore there is an element \(d \) in \(A \) such that \(h(d) = 1 \). Then, for any \(x \) in \(A^{u} \), \(T \ni h(dx) = h(d)x = x \). Thus we obtain \(T = A^{u} \), as desired.

Theorem 1.18. Let \(A/B \) be finite outer \(G \)-Galois, and \(T \) an intermediate ring of \(A/B \). Then the following are equivalent.

(i) \(T = A^{u} \) for some subgroup \(H \) of \(G \).

(ii) \(A/T \) is a projective Frobenius extension, and \(G \mid T \) is strongly distinct.

(iii) \(T/B \) is a separable extension, and \(G \mid T \) is strongly distinct.

Proof. (i) \(\iff \) (ii) is evident from Th. 1.17. (i) \(\implies \) (iii) follows from [22; Th. 2.6] and [19; Prop. 3.4]. (iii) \(\implies \) (i) follows from [22; Th. 2.6 and Lemma 2.7].

§2. Heredity of locally finite Galois extensions.

Let \(A_0 \) be a \(G \)-invariant subring of \(A \) such that the mapping \(\sigma \rightarrow \sigma|A_0 \) \((\sigma \in G) \) is one-to-one and such that \(A_0/A_0^{G} \) is a locally finite \(G \)-Galois extension, and let \(G \) be compact (as an automorphism group of \(A \)). Put \(B_0 = A_0^{G} \), and let \(A_0 = \bigcup_{\lambda \in A} A_0^{N_{\lambda}} \) be a representation of the locally finite \(G \)-Galois extension \(A_0/B_0 \). Then \(G/N_{\lambda} \) may be considered as a finite group of automorphisms of \(A^{N_{\lambda}} \). And, by [22; Th. 5.1 and §2. p. 118], \(A^{N_{\lambda}} = A_0^{N_{\lambda}} \otimes_{B_0} B, A^{N_{\lambda}}/B \) is finite \(G/N_{\lambda}, \text{-Galois} \). Since \(\bigcup_{\lambda \in A} A^{N_{\lambda}} \) is a directed union, the compactness of \(G \) implies that \(\bigcup_{\lambda \in A} A^{N_{\lambda}} \) is a fixed subring of \(A \) with respect to \(G \) (Prop. 1.1), so that \(A = \bigcup_{\lambda \in A} A^{N_{\lambda}} \), because \(\sigma \rightarrow \sigma|A_0 \) \((\sigma \in G) \) is 1–1. Thus \(A/B \) is locally finite \(G \)-Galois. Let \(H \) be any subgroup of \(G \). Then, \(A^{u} = \bigcup_{\lambda \in A} (A^{H \cap A^{N_{\lambda}}}) = \bigcup_{\lambda \in A} A^{H^{N_{\lambda}}} \). By [22; Th. 5.1], \(A^{HN_{\lambda}} = (A_0^{N_{\lambda}})^{H_{N_{\lambda}}} \otimes_{B_0} B = A_0^{HN_{\lambda}} \otimes_{B_0} B \). Hence \(A^{H} = \bigcup_{\lambda \in A} (A^{H \cap A^{N_{\lambda}}}) = \bigcup_{\lambda \in A} A^{H^{N_{\lambda}}} \). By [22; Th. 5.1], \(A^{H} = \bigcup_{\lambda \in A} (A_0^{H^{N_{\lambda}}}) = \bigcup_{\lambda \in A} A^{H^{N_{\lambda}}} \). Next we consider the set of all \(A_0 \)-left submodules of \(A \) and the set of all \(B_0 \)-left submodules of \(B \). Let \(\overline{X} \) be any \(A_0 \)-left submodule of \(A \). Then \(\overline{X} \cap A^{N_{\lambda}} \) is an \(A_0^{N_{\lambda}} \)-left submodule of \(A^{N_{\lambda}} \). Therefore, by [22; Th. 5.1], we have \(\overline{X} \cap A^{N_{\lambda}} = A_0^{N_{\lambda}}((\overline{X} \cap A^{N_{\lambda}}) \cap B) = A_0^{N_{\lambda}} \otimes_{B_0} (\overline{X} \cap B) \), so that \(\overline{X} = \bigcup_{\lambda \in A} (\overline{X} \cap A^{N_{\lambda}}) = \bigcup_{\lambda \in A} (A_0^{N_{\lambda}}(\overline{X} \cap B)) = A_0(\overline{X} \cap B) \). Since \(A_0^{N_{\lambda}} \otimes_{B_0} (\overline{X} \cap B) \cong A_0^{N_{\lambda}}(\overline{X} \cap B) \), for any \(\overline{X} \cap A^{N_{\lambda}} \).
of of of of [22; Th. 5.1], $A^\mathfrak{x}_\lambda X \cap B = X$ for all λ in A, so that $A_0 X \cap B = \cup_1 (A_{0}^{\mathfrak{x}_\lambda} X \cap B) = X$. If \bar{Y} is a G-invariant intermediate ring of A/A_0, then $\bar{Y} \cap B$ is an intermediate ring of B/B_0, and $\bar{Y} = A_0(\bar{Y} \cap B)$. Symmetrically we have $\bar{Y} = (\bar{Y} \cap B) A_0$. If Y is an intermediate ring of B/B_0 such that $A_0 Y = YA_0$, then $A_0 Y$ is a G-invariant intermediate ring of A/A_0. Since $A = \cup_1 A_{0}^{\mathfrak{x}_\lambda}$, we have $\bar{Y} = \cup_1 (\bar{Y} \cap A_{0}^{\mathfrak{x}_\lambda}) = \cup_1 \bar{Y}_{\mathfrak{x}_\lambda}$, and $\bar{Y}_{\mathfrak{x}_\lambda}(\bar{Y} \cap B)$ is finite G/N_a-Galois ([22; Th. 5.1]. Hence $\bar{Y}(\bar{Y} \cap B)$ is locally finite G-Galois. Thus we have obtained the following.

Theorem 2.1. Let A_0 be a G^*-invariant subring of A such that $\sigma \rightarrow \sigma|A_0$ ($\sigma \in G^*$) is 1–1 and such that A_0/B_0 is locally finite G-Galois where $B_0 = A_0^H$, and let G^* be compact. Then there hold the following:

1. A/B is locally finite G-Galois.
2. $A^H = B \otimes_{B_0} A_0^H = A_0^H \otimes_{B_0} B$ for any subgroup H of G. In particular, $A = B \otimes_{B_0} A_0 = A_0 \otimes_{B_0} B$.
3. Let $\{\bar{X}\}$ and $\{X\}$ be the set of all A_0-G-left submodules of A and the set of all B_0-B-left submodules of B, respectively. Then, $\bar{X} \rightarrow \bar{X} \cap B$ and $X \rightarrow A_0 X = A_0 \otimes_{B_0} X$ are mutually converse order isomorphisms between $\{\bar{X}\}$ and X.
4. Let $\{\bar{Y}\}$ and $\{Y\}$ be the set of all G-invariant intermediate rings of A/A_0 and the set of all intermediate rings of B/B_0 such that $A_0 Y = YA_0$, respectively. Then $\bar{Y}(\bar{Y} \cap B)$ is locally finite G-Galois, and $\bar{Y} \rightarrow \bar{Y} \cap B$ and $Y \rightarrow A_0 Y = YA_0$ are mutually converse order isomorphisms between $\{\bar{Y}\}$ and $\{Y\}$.

Let A, A' be R-algebras such that $A \otimes_R A' \neq 0$. Assume that A/B is a locally finite G-Galois extension such that $R \cdot 1 \subseteq B$, and assume that A' is a locally finite G'-Galois extension such that $R \cdot 1 \subseteq B'$. Then each $\sigma \times \tau$ in $G \times G'$ induces an automorphism of $A \otimes_R A'$. Let $A = \bigcup A^{N_{\lambda}}$ and $A' = \bigcup A^{N_{\lambda}}$ be representations of A/B and A'/B' respectively. Then, by [22; Th. 5.2], $(A^{N_{\alpha}} \otimes_{R} A^{N_{\lambda}})(B \otimes B')$ is a finite $(G/N_{\alpha}) \times (G'/N_{\lambda})$-Galois extension. Let $\varphi_{a^{\beta}}$ be the canonical R-algebra homomorphism from $A^{N_{\alpha}} \otimes_{R} A^{N_{\lambda}}$ to $A^{N_{\alpha}N_{\beta}} \subseteq A \otimes_R A'$. We put $(A \otimes_R A' \supseteq) A^{N_{\alpha}} \otimes A^{N_{\beta}} = A_{\alpha}^{\beta}$ and $(A \otimes_R A' \subseteq) B \otimes B' = B^*$. To be easily seen, Ker $\varphi_{a^{\beta}}$ is a $(G/N_{\alpha}) \times (G'/N_{\lambda})$-invariant ideal of $A^{N_{\alpha}} \otimes_{R} A^{N_{\lambda}}$. Hence A_{α}^{β}/B^* is $(G/N_{\alpha}) \times (G'/N_{\lambda})$-Galois ([22; Th. 5.6]). There are elements c and c' in $A^{N_{\alpha}}$ and $A^{N_{\beta}}$ respectively such that $t_{(\alpha)/N_{\alpha}}(c) = 1$ and $t_{(\alpha)/N_{\alpha}}(c') = 1$. Then $c \otimes c' \in A_{\alpha}^{\beta}$ and $t_{(\alpha)/N_{\alpha}}(c \otimes c') = 1 \otimes 1$. Hence A_{α}^{β}/B^* is a finite $(G/N_{\alpha}) \times (G'/N_{\lambda})$-Galois extension, and $\{\sigma \times \tau \in G \times G'; \sigma \times \tau \mid A_{\alpha}^{\beta} = 1_{A_{\alpha}^{\beta}}\} = N_{\alpha} \times N_{\lambda}$. Since $\cap_{\alpha} (N_{\alpha} \times N_{\lambda}) = (\cap_{\alpha} N_{\alpha}) \times (\cap_{\beta} N_{\lambda}) = 1$, $G \times G'$ may be considered
as a group of automorphisms of $A \otimes_R A'$. Let H and H' be subgroups of G and G', respectively. Then,
$(A \otimes_R A')^{H \times H'} = \cup_{\alpha, \beta} A_{\alpha \beta}^{H \times H'} = \cup_{\alpha, \beta} (A^N_{\alpha} \otimes A'_{\beta N'}) = (\cup_{\alpha} A_{\alpha}^{N_{\alpha}})^{(\cup_{\beta} A_{\beta}^{N_{\beta}})} = A^{H} \otimes A^{H'}$ by [22; Th. 5.2]. In particular $(A \otimes_R A')^{N_{\alpha} \times N_{\beta}} = A_{\alpha \beta}^{N_{\alpha} \otimes A'_{\beta N'}}$, and evidently $(G \times G': N_{\alpha} \times N_{\beta}) < \infty$. Since $A \otimes_R A' = \cup_{\alpha, \beta} A_{\alpha \beta}^{N_{\alpha} \otimes A'_{\beta N'}}$ is a directed union, $A \otimes_R A'/B \otimes B'$ is a locally finite $G \times G'$-Galois extension. Let $a \in A$ and $a' \in A'$. Then it is evident that \{ $\sigma \times \tau \in G \times G'$; $\sigma(a) \otimes \tau(a') = a \otimes a'$ \} $\supseteq \{ \sigma \in G; \sigma(a) = a \} \times \{ \tau \in G'; \tau(a') = a' \}$. Put \{ $\sigma \in G$; $\sigma(a) = a = K$ and \{ $\tau \in G'$; $\tau(a') = a' = K'$ \}. Then $A^K \subseteq A^N_{\alpha}$ and $A^{'K'} \subseteq A^{N_{\beta}}_{\beta}$ for some α, β (Prop. 1.3), so that $N_{\alpha} \subseteq K$ and $N_{\beta} \subseteq K'$. By [22; Th. 5.2], $(G/N_{\alpha} \times G'/N_{\beta})^{A_{\alpha}^{K} \otimes A'_{\beta}^{K'}} = K/N_{\alpha} \times K'/N_{\beta}$, and hence $(G \times G')^{A_{\alpha}^{K} \otimes A'_{\beta}^{K'}} = K \times K'$. Since $(A^K)_{B}$ and $(A'_{K'})_{B}$, are finitely generated, $(A^{K} \otimes A'_{K'})_{B \otimes B'}$ is finitely generated. Hence the finite topology of $G \times G'$ with respect to $A \otimes_R A'$ is the product topology of the finite topology of G with respect to A and the finite topology of G' with respect to A'. Thus we have proved the following

Theorem 2.2. Let A and A' be R-algebras such that $A \otimes_R A' \neq 0$. If A/B is a locally finite G-Galois extension such that $B \subseteq C$, and A' a B-algebra such that $A \otimes_R A' \neq 0$. Then $(A \otimes_R A')/(B \otimes B')$ is a locally finite $G \times G'$-Galois extension, and $(A \otimes_R A')^{H \times H'} = A^{H} \otimes A'^{H'}$ for any subgroup H of G and any subgroup H' of G'. The finite topology of $G \times G'$ with respect to $A \otimes_R A'$ is the product topology of the finite topology of G with respect to A and the finite topology of G' with respect to A'.

Corollary. Let A/B be a locally finite G-Galois extension such that $B \subseteq C$, and A' a B-algebra such that $A \otimes_R A' \neq 0$. Then $(A \otimes_R A')/(1 \otimes A')$ is a locally finite G-Galois extension, and $(A \otimes_R A')^{H} = A^{H} \otimes A'$ for any subgroup H of G.

Proposition 2.3. Let A/B be locally finite G-Galois, and $G = G^*$. If H and K are closed subgroups of G, then $A^{H \cap K} = A^{H} \cdot A^{K}$. In particular, if $H \cap K = 1$ then $A = A^{H} \cdot A^{K} = A^{K} \cdot A^{H}$.

Proof. Let $A = \cup_{\mu \in \Lambda} A^{N_{\mu}}$ be a representation of the locally finite G-Galois extension A/B. First we assume that $(G : K) < \infty$. Then, by Prop. 1.3, $A^{K} \subseteq A^{N_{\mu}}$ for some $\mu \in \Lambda$. Since $(A^{N_{\mu}})_{B}$ is finitely generated and $(A^{K})_{A^{K}}$ is a direct summand of $(A^{N_{\mu}})_{A^{K}}$ ([22; § 2. p. 118]), $(A^{K})_{B}$ is finitely generated. Therefore we may assume that $A^{K} \subseteq A^{N_{\lambda}}$ for all $\lambda \in \Lambda$. Then $N_{\lambda} \subseteq K$ for $\lambda \in \Lambda$, and $A^{H} \cdot A^{K} = \cup_{\lambda \in \Lambda} A^{N_{\lambda}} \cup_{\mu \in \Lambda} A^{N_{\mu} \cap K} = \cup_{\lambda} A^{N_{\lambda} \cap K} = \cup_{\lambda} A^{N_{\lambda} K}$ by [22; Prop. 5.3]. Since $N_{\lambda} H \cap K = N_{\lambda} (H \cap K)$ for all λ, we have $A^{H} \cdot A^{K} = \cup_{\lambda} A^{N_{\lambda} \cap K}$. Next we return to general case. For any finite subset F of A^{K}, we put $K_{F} = \{ \sigma \in G; \sigma | F = 1 \}$. Then $(G : K_{F}) < \infty$, $A^{K_{F}} \subseteq A^{K}$, and $(A^{K_{F}})_{B}$ is finitely generated. Therefore $A^{K} = \cup_{F} A^{K_{F}}$ is a directed union, and
hence $A^H.A^K = A^H(\bigcup_{\gamma} A^{|H_{\gamma}}}) = \bigcup_{\gamma}(A^H.A^{|H_{\gamma}})$ is also a directed union. Since each $A^H.A^K (= A^{H\cap K})$ is a fixed subring of A, $A^H.A^K$ is a fixed subring of A (Prop. 1.1). Hence, as is easily seen, $A^H.A^K = A^{H\cap K}$. Symmetrically we have $A^{H\cap K} = A^K.A^H$.

Corollary. Let A/B be locally finite G-Galois, $G = G^*$, and $H, (\gamma \in \Gamma)$ be closed subgroups of G. Then, $[\bigcup_{\gamma} A^H] = A^\cap$, where $[\bigcup_{\gamma} A^H]$ means the subring of A generated by $\cup_{\gamma} A^\cap$.

Proof. Evidently $[\bigcup_{\gamma} A^H] = \bigcup [A^{H_1} \cup \cdots \cup A^{H_n}]$, where $\{H_1, \cdots, H_n\}$ ranges over all finite subsets of Γ. By Prop. 2.3, $A^{H_1 \cap \cdots \cap H_n} = A^{H_1} \cdots A^{H_n}$, and therefore $[\bigcup_{\gamma} A^H]$ is a directed union of fixed subrings of A. Hence, by Prop. 1.1, $[\bigcup_{\gamma} A^H]$ is a fixed subring. Since $\{\sigma \in G; \sigma [\bigcup_{\gamma} A^H] = 1\} = \cap_{\gamma} H$, we obtain $[\bigcup_{\gamma} A^H] = A^\cap$, as desired.

Proposition 2.4. Let A/B be locally finite G-Galois, \mathfrak{A} a G-invariant proper ideal of A, K a closed subgroup of G, and N a closed normal subgroup of G such that $(G : N) < \infty$. Then there hold the following:

1. $A^{K\cap N}/A^K$ is finite $K/(K\cap N)$-Galois. In particular, A^N/B is finite G/N-Galois.

2. $(A^N + \mathfrak{A})/(B + \mathfrak{A})$ is finite G/N-Galois, and $(A^N + \mathfrak{A})/\mathfrak{A} = (A^N + \mathfrak{A})/\mathfrak{A}$ for any subgroup H of G.

Proof. Let $A = \bigcup_{\mu \in A} A^{N_\mu}$ be a representation of the locally finite G-Galois extension A/B. (1) By Prop. 1.3, $A^N \subseteq A^{N_\mu}$, for some $\mu \in A$, and then $N_\mu \subseteq N$, $A^N = (A^{N_\mu})^{K\cap N_\mu}$. Therefore, by [22; Prop. 5.7], A^N/B is finite $(G/N)/(N/N_{K\cap N})$-Galois, or equivalently, finite G/N-Galois. Accordingly, $A^N/A^{NK} = A^N/A^{NK}$ is finite NK/N-Galois, or equivalently, finite $K/(K\cap N)$-Galois. $K/(K\cap N)$ may be considered as a finite group of automorphisms of $A^{K\cap N}$, because $K\cap N \subseteq K$. Then $A^{K\cap N}/A^K$ is finite $K/(K\cap N)$-Galois. (2) By (1), A^N/B is finite G/N-Galois. If $t_0/c = 1$ for c in A^N, then $t_0/c = 1 + \mathfrak{A}$. Then, by [22; Th. 5.6], $(A^N + \mathfrak{A})/(B + \mathfrak{A})/\mathfrak{A}$ is finite G/N-Galois, and $(A^N + \mathfrak{A})/\mathfrak{A} = (A^N + \mathfrak{A})/\mathfrak{A}$ for any subgroup H of G.

Let A/B be locally finite G-Galois, K a closed subgroup of G, N a closed normal subgroup of G, and \mathfrak{A} a G-invariant proper ideal of A. Let $A = \bigcup_{\mu \in A} A^{N_\mu}$ be a representation of the locally finite G-Galois extension A/B. Then $A^N = \bigcup_{\mu} (A^N \cap A^{N_\mu}) = \bigcup_{\mu} A^{NN_\mu}$ is a directed union, and each NN_μ is a closed normal subgroup of G, because $(G : N_\mu) < \infty$. Then, by Prop. 2.4 (1), A^{NN_μ}/B is finite G/NN_μ-Galois. Therefore there are elements $a_1, \cdots, a_m; b_1, \cdots, b_m$ in A^{NN_μ} such that $\sum_{i} a_i \cdot \sigma(b_i) = b_{NN_\mu}$, for σ in G. Hence A^{NN_μ}/B is finite $(G/N)/(NN_\mu/N)$-Galois. Hence A^N/B is locally finite G/N-Galois. Next we consider K. $A = \bigcup_{\mu} A^{N_\mu}$ is a directed union, and each $N_\mu \cap K$ is a fixed
normal subgroup of K such that $(K : N_i \cap K) < \infty$. By Prop. 2.4 (1), each $A^{\mathcal{N} \cap K}/A^K$ is finite $K/(N_i \cap K)$-Galois. Hence A/A^K is locally finite K-Galois. Finally we consider \mathfrak{A}. Evidently, $A/\mathfrak{A} = \bigcup_{i}(A^{\mathcal{N}_i} + \mathfrak{A})/\mathfrak{A}$. By Prop. 2.4 (2), $((A^{\mathcal{N}_i} + \mathfrak{A})/\mathfrak{A})/((B + \mathfrak{A})/\mathfrak{A})$ is finite G/N_i-Galois, and $((A^{\mathcal{V}_i} + \mathfrak{A})/\mathfrak{A})^\mathfrak{A} = (A^{\mathcal{V}_i} + \mathfrak{A})/\mathfrak{A}$ for any subgroup H of G. Therefore $(A/\mathfrak{A})^\mathfrak{A} = \bigcup_i((A^{\mathcal{N}_i} + \mathfrak{A})/\mathfrak{A})^\mathfrak{A} = \bigcup_i(A^{\mathcal{V}_i} + \mathfrak{A})/\mathfrak{A}$ for any subgroup H of G. Hence $(A + \mathfrak{A})/((B + \mathfrak{A})/\mathfrak{A})$ is locally finite G-Galois. Thus we have proved the following

Theorem 2.5. Let $A|B$ be locally finite G-Galois, N a closed normal subgroup of G, K a closed subgroup of G, and \mathfrak{A} a G-invariant proper ideal of A. Then there hold the following:

1. $A^{\mathcal{N}}/B$ is locally finite G/N-Galois.
2. $A/A^{\mathcal{V}}$ is locally finite K-Galois.
3. $((A + \mathfrak{A})/\mathfrak{A})/((B + \mathfrak{A})/\mathfrak{A})$ is locally finite G-Galois, and $((A + \mathfrak{A})/\mathfrak{A})^\mathfrak{A} = (A^{\mathcal{V}} + \mathfrak{A})/\mathfrak{A}$ for any subgroup H of G.

Corollary. Let $A|B$ be locally finite G-Galois, and e a non-zero idempotent in $B \cap C$. Then $Ae|Be$ is locally finite G-Galois, and $(Ae)^H = A^H \cdot e$ for any subgroup H of G.

Let $A|B$ be locally finite G-Galois, n a positive integer, and J the ring of rational integers. Then, $(J)_n$ is a J-algebra, and $(J)_n \otimes A \simeq (A)_n \neq 0$. If we define $\sigma((a_{ik})) = \sigma(a_{ik})$ for any σ in G and any (a_{ik}) in $(J)_n$, then $(A)_n/((B)_n$ is locally finite G-Galois and $((A)_n)^J = (A^J)_n$ for any subgroup H of G (Th. 2.2). Now, let $\{e_{ik}; i, k = 1, \ldots, m\}$ a system of matrix units contained in B, and $A = \bigcup_{\lambda < \lambda}$ a representation of $A|B$. Put $A_0 = V_A(\{e_{ik}\})$ and $B_0 = B \cap A_0$. Then, as is well known, $A = \sum_{i,k} A^{\mathcal{N}_i} e_{ik}$, $A_0 \simeq A_0 e_{ik}$ by the right multiplication of e_{ik}. To be easily seen, $A^{\mathcal{N}_i} = \sum_{i,k} A_0^{\mathcal{N}_i} e_{ik}$, and $A^{\mathcal{N}_i}_0 = V_J(\{e_{ik}\})$. There is an element c in $A^{\mathcal{N}_i}$ such that $t_{\mathcal{N}_i,c} = 1$. Let $c = \sum_{i,k} x_{ik} e_{ik}$ $(x_{ik} \in A^{\mathcal{N}_i}_0)$. Then $1 = t_{\mathcal{N}_i,c} = \sum_{i,k} t_{\mathcal{N}_i,c} x_{ik} e_{ik}$, and so $t_{\mathcal{N}_i,c} = 1$. Thus, by [22; Th. 5.8], $A^{\mathcal{N}_i}/B_0$ is finite G/N_i-Galois. Since $A_0 = \bigcup_{\lambda < \lambda} A^{\mathcal{N}_i}_0$ is a directed union, A_0/B_0 is locally finite G-Galois. Therefore, by Th. 2.1, $A/A_0 \otimes B$. Thus we have obtained the following

Theorem 2.6. Let $A|B$ be locally finite G-Galois.

1. For any positive integer n, $(A)_n/((B)_n$ is locally finite G-Galois, and $((A)_n)^J = (A^J)_n$ for any subgroup H of G.

2. If $\{e_{ik}; i, k = 1, \ldots, m\}$ is a system of matrix units contained in B, $A_0 = V_A(\{e_{ik}\})$, and $B_0 = B \cap A_0$, then A_0/B_0 is locally finite G-Galois, and $A = A_0 \otimes B$. Let $A|B$ be finite G-Galois, and M a A-left module. For any subgroup H of G, we put $M^H = \{m \in M; u \cdot m = m \text{ for all } u \in H\}$, which is an A^H-module.
submodule of M. Evidently $M^H \supseteq A^H \cdot M^\alpha$, and the mapping $\varphi : A^H \otimes_B M^\alpha \rightarrow M^H$ defined by $a \otimes m \rightarrow am \ (a \in A, m \in M^\alpha)$ is an A^H-left homomorphism. By assumption there are elements $a_1, \ldots, a_n; a_1^*, \ldots, a_n^*$ in A such that $\sum t_i a_i \cdot \sigma(a_i^*) = \delta_{i*} \ (\sigma \in G)$, $t_H(d) = 1$. Put $t_i = t_H(a_i)$. Then, $t_i \in A^H$ and $\sum t_i \cdot \sigma(a_i^*) = \delta_{ii} \sigma$ for σ in G. If m is in M^α, then $A^H \cdot M^\alpha \ni t_i \sum_{\sigma \in \Delta} u_\sigma(a_i^* \sigma m) = \sum t_i \cdot \sigma(a_i^* \sigma m)$ $= t_H(d)m = m$. Hence φ is an epimorphism. If $a \in A^H$ and $m_0 \in M^\alpha$, then $\sum t_i \otimes m_0 \cdot (a_i^* \sigma m_0) = \sum t_i \otimes \sum_{\sigma \in \Delta} \sigma(a_i^* \sigma m_0) = \sum t_i \cdot \sum_{\sigma \in \Delta} \sigma(a_i^* \sigma m_0) \otimes m_0 = t_H(da) \otimes m_0 = a \otimes m_0$. From this fact, as is easily seen, φ is 1-1. Thus we have $M^H = A^H \otimes_B M^\alpha$. Next we proceed to more general case.

Let A/B be locally finite G-Galois, $A = \bigcup_{i \in I} A^{N_i}$ its representation, and M a Δ-left module. Let $G = \sigma_1 N_i \cup \cdots \cup \sigma_r N_i$ be the coset decomposition of G, and let A_i be the trivial crossed product of A^{N_i} with G/N_i: $A_i = \sum t_i A^{N_1} v_{\sigma} = v_{\sigma_1}, v_{\sigma_1} = a_1, a_1 = a_1 \cdot \sigma(a_1) \cdot \sigma(a_1^*) = \delta_{1, \sigma}$, $\sigma \in G$, $a_1 \cdot \sigma(a_1^*) = \delta_{1, \sigma} \sigma$. If m in M^{N_i}, then $A^{N_1} \otimes_B M^{e} = A^{N_1} \cdot M^{e}$ is a A^{N_2}-module. Since A^{N_1}/B is finite G/N_1-Galois, we obtain that $M^{N_1} = A^{N_1} \otimes_B M^\alpha$ and $\Delta_{N_1} = M^{N_1} \supseteq A^{N_1} \cdot M^{\alpha}$ for any subgroup H of G. Since $A = \bigcup_{i \in I} A^{N_i}$ is a directed union, so is $\bigcup_{i \in I} M^{N_i}$. For any subgroup H of G, $(\bigcup_{i \in I} M^{N_i})^H = \bigcup_{i \in I} M^{N_i} \cdot M^\alpha = A^H \cdot M^\alpha$, and $A^H \otimes_B M^\alpha \simeq A^H \cdot M^\alpha$ canonically. The last isomorphism may be considered as $A^H \otimes_B M^\alpha \supseteq A^H \otimes_B M^\alpha$, and hence we see that $(\bigcup_{i \in I} M^{N_i})^H = A^H \otimes_B M^\alpha$. For any m in M we put $m_H = \{ \sigma \in G; u \cdot m = m \}$, which is a subgroup of G. Assume that $(G:H_m) < \infty$ and that H_m is closed in G. Then, by Prop. 1.3, $H_m \supseteq N_\nu$ for some $\nu \in \Delta$, so that $m \in M^{N_\nu}$. Conversely, if m is in $\bigcup_{i \in I} M^{N_i}$, then $m \in M^{N_\nu}$ for some N_ν, so that $H_m \supseteq N_\nu$. Then, since $(G:N_\nu) < \infty$ and N_ν is closed in G, $(G:H_m) < \infty$ and H_m is closed in G. Thus we have proved the following

Theorem 2.7. Let A/B be locally finite G-Galois, and M a Δ-left module. Then there hold the following:

1. $A \cdot M^\alpha$ is a Δ-submodule of M, and $(A \cdot M^\alpha)^H = A^H \otimes_B M^\alpha$ for any subgroup H of G.

2. $A \cdot M^\alpha = \{ m \in M; (G:H_m) < \infty$ and H_m is closed in $G \}$, where $H_m = \{ \sigma \in G; u \cdot m = m \}$.

Corollary. Let A/B be finite G-Galois, and M a Δ-left module. Then, $M^H = A^H \otimes_B M^\alpha$ for any subgroup H of G, in particular, $M = A \otimes_B M^\alpha$ (cf. [4; Th. 1.3] and [22; Th. 5.1 (2)]).

Proposition 2.8. Let A/B be finite G-Galois. Then the following are equivalent.

1. There are elements $a_1, \ldots, a_n; a_1^*, \ldots, a_n^*$ in $V_A(B)$ such that $\sum t_i \cdot a_i \cdot \sigma(a_i^*) = \delta_{i*, \sigma} \ (\sigma \in G)$ (cf. [22; Cor. to Th. 5.1]).
(ii) \(bA_B|_B B_B \).

Proof. Since \((A \supseteq (\sum u_i) A \cong \text{Hom}(A_B, B_B) \) by \(j \), it follows that \((\sum u_i) V_A(B) \cong \text{Hom}(bA_B, bB_B) \), and it is evident that \(V_A(B) \cong \text{Hom}(bB_B, bA_B) \) canonically. To be easily seen, \(bA_B|_B B_B \) if and only if there are elements \(f_1, \cdots, f_n \) in \(\text{Hom}(bA_B, bB_B) \) and \(g_1, \cdots, g_n \) in \(\text{Hom}(bB_B, bA_B) \) such that \(\sum_i g_i f_i(x) = x \) for all \(x \) in \(A \). Consequently (ii) is equivalent to that \(u_i = \sum a_i (\sum u_i a_i^*) \)

\[= \sum \sum a_i \sigma(a_i^*) u_i \] for some \(a_1, \cdots, a_n ; a_1^*, \cdots, a_n^* \) in \(V_A(B) \). Hence (i) and (ii) are equivalent.

Corollary. Let \(G \) be finite. Then the following are equivalent.

(i) \(A/B \) is outer \(G \)-Galois, and \(bA_B|_B B_B \).

(ii) There are elements \(a_1, \cdots, a_n ; a_1^*, \cdots, a_n^* \) in \(C \) such that \(\sum a_i \sigma(a_i^*) \)

\[= \delta_{1, \sigma} (\sigma \in G). \]

Proof. This follows from [22; Prop. 6.4 and Prop. 6.5] and Prop. 2.8. \(A/B \) is called a completely outer \(G \)-Galois extension if \(G \) is finite and completely outer (cf. [22]).

Theorem 2.9. Let \(B' \) be a ring with identity, \(Z \) its center, and \(G' \) a finite group.

1. If \(A'/B' \) is completely outer \(G'-\text{Galois} \) and \(bA'_{B'}|_{B'_{B'}} \), then \(A' = B' \otimes_{z} C' \), where \(C' \) is the center of \(A' \), and \(C'/Z \) is \(G'-\text{Galois} \).

2. If \(C'/Z \) is \(G'-\text{Galois} \) and \(C' \) is commutative, then \(A' = B' \otimes_{z} C' \) is a completely outer \(G'-\text{Galois} \) extension over \(B', bA'_{B'}|_{B'_{B'}} \) and \(1 \otimes C' \) is the center of \(A' \).

Proof. (1) By [22; Prop. 6.4], \(A'/B' \) is outer \(G'-\text{Galois} \) and \(V_{A'}(B') = C' \), where \(C' \) is the center of \(A' \). Then, by Cor. to Prop. 2.8 and [22; Th. 5.1], \(C'/Z \) is \(G'-\text{Galois} \) and \(A' = B' \otimes_{z} C' \). (2) By [22; Th. 5.2 and Prop. 6.5], \(A'/B'(\otimes 1) \) is completely outer \(G'-\text{Galois} \). Since \(zZ \) is a direct summand of \(zC' \), \(B' \simeq B' \otimes 1 \) canonically, and \(bA'_{B'}|_{B'_{B'}} \), because \(zC'|z \). Then, by Cor. to Prop. 2.8, \(C'/Z \) is \(C'-\text{Galois} \), where \(C' \) is the center of \(A' \). Since \(C' \supseteq 1 \otimes C' \supseteq Z \) and \((1 \otimes C')/Z \) is \(G'-\text{Galois} \) ([22; Th. 5.1 or Th. 5.6]), we have \(C' = Z \cdot (1 \otimes C') = 1 \otimes C' \) ([22; Th. 5.1]).

Lemma 2.10. Let \(T \) be a ring, and \(U \) a subring of \(T \).

1. Let \(T/U \) be a separable extension. If a \(T \)-left module \(M \) is \(U \)-projective, then \(M \) is \(T \)-projective.

2. If \(\gamma T \otimes_{\gamma} T \gamma|_{\gamma} T \gamma \) and \(\gamma U|_{\gamma} M \) for a \(T \)-left module \(M \), then \(\gamma T|_{\gamma} M \).

3. Let \(T_0 \) be an intermediate ring of \(T/U \). If \(T \) is \((U, T_0) \)-projective and \(T_0 \) is a \(T_0 \)-\(T_0 \)-direct summand of \(T \), then \(T_0/U \) is a separable extension.

Proof. (1) Since the mapping \(x \otimes y \rightarrow xy \) form \(T \otimes_{\gamma} T \) to \(T \) splits as a \(T-T \)-homomorphism, the mapping \(x \otimes m \rightarrow xm \) from \(T \otimes_{\gamma} M \) to \(M \) splits as
a T-left homomorphism. Since νM is projective, so is $T \otimes \nu M$. Therefore M is T-projective. (2) Since $\nu U|_0 M$, $T \otimes T \otimes V_M$. Since $\tau T \otimes V_T$, we have $\tau T \otimes \nu M|_0 M$. Hence we have $\tau T|_0 M$. (3) Let φ be the canonical homomorphism from $T_0 \otimes \sigma T$ to T defined by $\varphi(t_0 \otimes t)=t_0t$, and let ψ be a T_0-T_0-homomorphism from T to $T_0 \otimes \sigma T$ such that $\varphi(x)=x$ for all x in T. If $\psi(1)=\sum a_i \otimes b_i \ (a_i \in T_0, b_i \in T)$, then $\sum_i a_i b_i = 1$ and $\sum_i y a_i \otimes b_i = \sum_i a_i \otimes b_i y \ (t_0 \otimes T)$ for all y in T_0. Let π be a T_0-T_0-homomorphism from T to T_0 such that $\pi(T_0)=1$. Then, since $\sum_i y a_i \otimes b_i = \sum_i a_i \otimes b_i y \ (t_0 \otimes T)$ for all y in T_0, we have $\sum_i a_i \otimes \pi(b_i)=1$ and $\sum_i y a_i \otimes \pi(b_i)=\sum_i a_i \otimes \pi(b_i) y \ (t_0 \otimes T)$ for y in T_0. Then the mapping $y \mapsto \sum_i a_i \otimes \pi(b_i) y$ from T_0 to $T \otimes \sigma T$ is a T_0-T_0-homomorphism, and $\sum_i a_i \otimes \pi(b_i) y = y$. Hence T_0/U is a separable extension.

Proposition 2.11. Let A/B be finite G-Galois, and Z the center of B. If B is a separable Z-algebra and $Z \subseteq C$, then $V_A(B)/Z$ is finite G-Galois.

Proof. By [2; Prop. 1.5], $B \otimes B^\circ$ is a central separable Z-algebra, where B° is the opposite ring of B. Since νA and νB are finitely generated and projective, so is νA. Then, by Lemma 2.10 (1), $\nu \otimes B^\circ|_Z A$ is finitely generated and projective. By [2; Th. 2.1], $\nu \otimes B^\circ|_Z B^\circ B$, and hence $\nu A|_B B^\circ B$. Then, by Prop. 2.8, $V_A(B)/Z$ is finite G-Galois (cf. S. 3).

Theorem 2.12. Let G be finite, π the group homomorphism defined by $\pi(a)=a|_C (a \in G)$, Z the center of B, and $Z_0=C^0$, and assume that A is indecomposable. Then the following statements are equivalent.

1. A/Z_0 is separable, and π is 1-1.
2. $V_A(B)=C$, A/Z is separable, and $\nu A_B|_B B^\circ B$.
3. $V_A(B)=C$, and both B/Z and C/Z are separable.
4. Both B/Z and C/Z_0 are separable, and π is 1-1.
5. $V_A(B)=C$, A/B is separable, A is (Z, B)-projective, and $\nu B_B|_B A_B$.
6. $A=B \cdot C$, and A/Z is separable.
7. $A \otimes Z_0 A \otimes Z_0 A^0 \otimes A^0 A^0 \otimes A^0 A^0$, and $\text{Hom}(A \otimes A, A \otimes A)=0$ for any σ in G such that $\sigma \neq 1$.

Proof. (i)\implies(ii) By [2; Th. 2.3], A/C and C/Z_0 are separable. Therefore, by [4; Th. 1.3], C/Z_0 is G-Galois. Then, by [22; Th. 5.1], $A=B \otimes Z_0 C$. Hence $V_A(B)=C$, and $Z=Z_0$. Since Z is finitely generated and projective, $A_B|_B B^\circ B$. (ii)\implies(iii) $V_A(B)=C$ implies $Z=Z_0 \subseteq C$. By [22; Lemma 2.7], A/C and A/B are separable, so that A/B is outer G-Galois ([22; Th. 1.5]). Then, by Prop. 2.8, C/Z is G-Galois, so that C/Z is separable. Since A/C is separable, B/Z is separable ([22; Cor. to Th. 5.1]). (iii)\implies(iv) In this case, $Z=Z_0$. By [2; Th. 3.1], $A=B\cdot C$, whence π is 1-1. (iv)\implies(v) By
[4; Th. 1.3], C/Z_0 is G-Galois. Hence, by [22; Th. 5.1], A/B is G-Galois, and $A=B·C$. Then A/B is separable, $V_A(B)=C$, and $Z=Z_0$. Since Z is commutative, Z is a direct summand of ZC (S. 3), so that $t_0(c)=1$ for some c in C. Then B is a B-B-direct summand of A (cf. [22; § 2. p. 118]). Since B/Z is separable, A is $(Z, B$)-projective ([22; Lemma 2.7]). (v) \Rightarrow (vi) By Lemma 2.10 (3), B/Z is separable. Then, by [2; Th. 3.1], $A=B\otimes_{B}C$. Since both A/B and B/Z are separable, A/Z is separable ([22; Lemma 2.7]).

(vi) \Rightarrow (i) As $A=B·C$, $V_A(B)=C$, $Z=Z_0$, and π is 1–1. Thus we know that (i) \sim (vi) are equivalent. (i) \Rightarrow (vii) In this case, $V_A(B)=C$, $Z=Z_0$, and B/Z is separable. Then, by [2; Th. 2.1], $B\otimes_B\otimes B|_{B}$, and then $A\otimes_B A|_{A} A\otimes_B A$. By [22; Prop. 1.3], $A\otimes_B A\simeq A\otimes_B A$. Hence $A\otimes A\otimes A\otimes A|_{A\otimes A\otimes A\otimes A}$. The second assertion follows from [22; Prop. 6.3]. (vii) \Rightarrow (i) By assumption, $End(\otimes_{A\otimes A\otimes A\otimes A}A)\simeq \oplus_{\sigma \in G} End(\otimes_{A\otimes A\otimes A\otimes A}A)\otimes (external\ direct\ sum\ as\ rings)$. To be easily seen, $End(\otimes_{A\otimes A\otimes A\otimes A}A)$ is a commutative ring. Then, by S. 1 and S. 3, $A\otimes A\otimes A\otimes A$ is finitely generated and projective. Hence $A\otimes A\otimes A\otimes A$ is finitely generated and projective, that is, A/Z_0 is separable. Let f be the projection from A to Au_1 with respect to the decomposition $A=\sum_{\sigma}Au_{\sigma}$. Then, since $End(\otimes_{A\otimes A\otimes A\otimes A}A)$ is commutative, f is in the center of $A\otimes A\otimes A\otimes A$ (cf. S. 1). By [2; Prop. 1.5], the center of $A\otimes A\otimes A\otimes A$ is $C\otimes C$, so that f is written as $f =\sum_{\sigma}a_{\sigma}a_{\sigma}^{*}$ (a_{σ}, a_{σ}^{*} $\in C$). Then, $u_{\sigma}=\sum_{\sigma}a_{\sigma}a_{\sigma}^{*}u_{\sigma}^{*}$ ($=\sum_{\sigma}(\sum_{\sigma}a_{\sigma}^{*})u_{\sigma}$), and hence $\sum_{\sigma}a_{\sigma}^{*}a_{\sigma}^{*}=\delta_{1,\sigma}$. This completes the proof of the theorem.

Premark. The following are also equivalent to (i) \leftrightarrow (iii).

(viii) A/C is separable, and C/Z_0 is G-Galois (cf. Kanzaki [8]).

(ix) A/B is outer G-Galois, and B/Z is separable.

Proposition 2.13. Let A/B be locally finite G-Galois, and b an element of B which is not a right zero divisor of B. Then b is not a right zero divisor of A.

Proof. Let a be an element of A such that $ab=0$. Then $Aab=0$, and so $\sigma(\Delta)a\cdot b=0$ for all σ in G. Hence, $(\sum_{\sigma}(\Delta)a\cdot b)\cap B=0$. Then, by assumption, $(\sum_{\sigma}(\Delta)a\cdot b)\cap B=0$. Then, by Th. 2.1 (3), $\sum_{\sigma}(\Delta)a\cdot b=\sum_{\sigma}(\Delta)a\cdot (\sum_{\sigma}(\Delta)a\cdot b)\cap B=0$. Hence $a=0$.

Let A/B be locally finite G-Galois, and S a G-invariant multiplicative system of regular elements in A such that a left quotient ring \overline{A} of A with respect to S exists. Then G may be regarded as a group of automorphisms of \overline{A}. To be easily seen, $\{s(x); s \in G\}$ is finite for any x in \overline{A}. Then, by Th. 2.1, $\overline{A}/\overline{B}$ is locally finite G-Galois and $\overline{A}=\overline{B}\otimes_B A=\overline{A}\otimes_B \overline{B}$, where $\overline{B}=\overline{A}$. To be easily seen, any element in $B\cap S$ is a unit of B. For b in \overline{B}, we put
$\mathfrak{L}=\{x \in A; \exists b \in A\}$, which is a \mathcal{J}-left submodule of A. Then $(\mathfrak{L} \cap B)b \subseteq B$. If $\mathfrak{L} \cap B \cap S \neq \emptyset$, then $sb \in B$ for some s in $B \cap S$. Therefore, if we assume that $\mathcal{J}(s) \cap B \cap S \neq \emptyset$ for all $s \in S$, then \overline{B} is a left quotient ring of B with respect to $B \cap S$. Thus we obtain the following.

Theorem 2.14. Let A/B be locally finite G-Galois, and $S \ni 1$ a G-invariant multiplicative system of regular elements of A such that a left quotient ring \overline{A} of A with respect to S exists. Further, assume that $\mathcal{J}(s) \cap B \cap S \neq \emptyset$ for all $s \in S$. Then there hold the following:

1. $\overline{A}/\overline{B}$ is locally finite G-Galois and $\overline{A}=\overline{B} \otimes_{B}A=A \otimes_{B}\overline{B}$, where $\overline{B}=\overline{A}^o$.
2. \overline{A} is a left quotient ring of A with respect to $B \cap S$. \overline{B} is a left quotient ring of B with respect to $B \cap S$.

Remark. Let A/B be locally finite G-Galois, and S a G-invariant multiplicative system of regular elements in A such that $S \subseteq C$ and $S \ni 1$. Then S satisfies the conditions in Th. 2.14. To see this, we put $H=\{\sigma \in G; \sigma(s)=s\}$ for s in S. If $G=\sigma_1H \cup \cdots \cup \sigma_rH$ is the left coset decomposition of G, then $\cap_{i=1}^{r}\sigma_i(s) \in \Delta(s) \cap B \cap S$.

A non-zero ring T with 1 is called a left Goldie ring if T satisfies the following conditions: (1) T is a semi-prime ring. (2) Any independent set of non-zero left ideals is finite (i.e., \mathcal{T} is finite dimensional). (3) T satisfies the ascending chain condition for annihilator left ideals.

A left Goldie ring has a complete left quotient ring which is a semi-simple ring with minimum condition for left ideals, and conversely (Goldie [17]). (Cf. [7])

Theorem 2.15. Let A/B be locally finite G-Galois, A a left Goldie ring, \overline{A} a complete left quotient ring of A, and B a semi-prime ring. Then there hold the following:

1. $\overline{A}/\overline{B}$ is locally finite G-Galois, where $\overline{B}=\overline{A}^o$.
2. B is a left Goldie ring, and \overline{B} is a complete left quotient ring of B.

Proof. Let S be the set of all regular elements of A. First we shall prove that B is a left Goldie ring. Since $\mathcal{A}A$ is finite dimensional, \mathcal{A} is finite dimensional. Then, by Th. 2.1 (3), \mathcal{A} is finite dimensional. Let $I \subseteq I'$ be left ideals of B. Then $l_A(r_B(I)) \subseteq l_A(r_B(I'))$, where $r_B(I)=\{y \in B; l_1y=0\}$ and $l_A(r_B(I))=\{x \in A; x \cdot r_B(I)=0\}$. From this fact, B satisfies the ascending chain condition for annihilator left ideals of B. Hence B is a left Goldie ring. By Prop. 2.13, $S \cap B$ is the set of all regular elements of B. For any s in S, $\mathcal{A}As$ is essential in $\mathcal{A}A$, so that $\mathcal{A}(s)$ is essential in $\mathcal{A}A$. Then, by Th. 2.1 (3), $\mathcal{A}(s) \cap B$ is essential in $\mathcal{A}B$, so that $\mathcal{A}(s) \cap B$ contains a regular element.
of B ([17; Th. (3.9)]). Hence $A(s) \cap B \cap S \neq 0$ for any s in S. Thus the present theorem follows from Th. 2.14.

Remark. In the following cases, the condition that B is semi-prime is superfluous.

1. G is finite and completely outer (cf. [22; p. 132]).
2. B is contained in the center of A.

Let T be a ring. If T-left modules M and N have no non-zero isomorphic subquotients, we say that τM and τN are unrelated (cf. [22]).

Lemma 2.16. Let T be a ring, and let M and N be T-left modules, and W a T-submodule of M. If $\tau(M/W)$ and τN are unrelated, and τW and τN are unrelated, then τM and τN are unrelated.

Proof. Assume that there are isomorphic subquotients X/X_0 and Y/Y_0 of τM and τN, respectively. Then, as is easily seen, $X + W \supseteq X_0 + W$ or $X \cap W \supseteq X_0 \cap W$. If $X + W \supseteq X_0 + W$, then $Y/Y_0 \simeq X/X_0 \rightarrow (X + W)/(X_0 + W) \neq 0$, a contradiction. If $X \cap W \supseteq X_0 \cap W$, then $(X \cap W)/(X_0 \cap W) \simeq (X_0 + (X \cap W))/X_0 \subseteq X/X_0 \simeq Y/Y_0$, which is also a contradiction.

Proposition 2.17. Let σ, τ be in G, and assume that $A\sigma A$ and $A\tau A$ are unrelated. Then, for any finite subset $\{x_1, \cdots, x_r; y_1, \cdots, y_s\}$ of A, there are elements $a_k, b_k \ (k = 1, \cdots, t)$ in A such that $\sum_x a_kx_i \cdot \sigma(b_k) = x_i$ and $\sum_y a_ky_h \cdot \tau(b_k) = 0$ for all x_i, y_h.

Proof. By Lemma 2.16, $A\sigma A$ and $A\tau A$ are unrelated. Then, since $A(x_1 u_\sigma, \cdots, x_r u_\sigma, y_1 u_\tau, \cdots, y_s u_\tau)A$ is an A-A-submodule of $A\sigma A \oplus (A\tau A)^t$, $A(x_1 u_\sigma, \cdots, x_r u_\sigma, 0, \cdots, 0) \in A(x_1 u_\sigma, \cdots, x_r u_\sigma, y_1 u_\tau, \cdots, y_s u_\tau)A$ (cf. [22; Prop. 6.1]). Therefore there are elements $a_k, b_k \ (k = 1, \cdots, t)$ in A such that $\sum_x a_k(x_1 u_\sigma, \cdots, x_r u_\sigma, y_1 u_\tau, \cdots, y_s u_\tau)b_k = (x_1 u_\sigma, \cdots, x_r u_\sigma, 0, \cdots, 0)$. Then, $\sum_x a_kx_i = x_i$ and $\sum_y a_ky_h \cdot \tau(b_k) = 0$ for all x_i, y_h.

Combining Prop. 2.17 with [22; Prop. 6.11] we can easily see the following

Proposition 2.18. Let A and A' be R-algebras with $A \otimes_R A' \neq 0$, and let G and G' be completely outer finite groups of R-automorphisms of A and A', respectively. Then, $G \times G'$ is completely outer as an automorphism group of $A \otimes_R A'$.

§ 3.

Proposition 3.1. Let A/B be locally finite G-Galois, and X a Δ-left submodule of A. Then $X = A(X \cap B)$.

Proof. This follows from Th. 2.1 (3).

Proposition 3.2. Let A/B be locally finite G-Galois, $\{\mathfrak{B}\}$ the set of
all maximal ideals of A, and $\{p\}$ the set of all maximal ideals of B. Then the following are equivalent:

(i) $\mathfrak{P} \rightarrow \mathfrak{P} \cap B$ is a mapping from $\{\mathfrak{P}\}$ onto $\{p\}$.

(ii) $ApA \neq A$ for all $p \in \{p\}$, and $\cap_{i \in G} \sigma(\mathfrak{P})$ is Δ-A-maximal for all $\mathfrak{P} \in \{\mathfrak{P}\}$.

If (i) holds, then the following are true:

1. $pA = Ap \neq A$ for any $p \in \{p\}$.
2. $\{\cap_{i} \sigma(\mathfrak{P}); \mathfrak{P} \in \{\mathfrak{P}\}\}$ is the set of all maximal Δ-A-submodules of A.
3. $\mathcal{R}(\Delta A_{A}) = \mathcal{R}(\Delta A_{A}) = \mathcal{R}(\Delta B_{B}) A = A \cdot \mathcal{R}(\Delta B_{B})$, and $\mathcal{R}(\Delta A_{A}) \cap B = \mathcal{R}(\Delta B_{B})$.
4. B is B-B-completely reducible if and only if $\cap_{i} \cap_{\sigma}(\mathfrak{P}_{i}) = 0$ for some $\mathfrak{P}_{i} (i=1, \cdots, n)$ in $\{\mathfrak{P}\}$.

Proof. (i) \Rightarrow (ii) If \mathfrak{P} is in $\{\mathfrak{P}\}$, then $\mathfrak{P} \cap B = \sigma(\mathfrak{P}) \cap B$ for any σ in G, and so $\mathfrak{P} \cap B = (\cap_{i} \sigma(\mathfrak{P})) \cap B$. By Prop. 3.1, $A ((\cap_{i} \sigma(\mathfrak{P})) \cap B) = (\cap_{i} \sigma(\mathfrak{P})) ((\cap_{i} \sigma(\mathfrak{P})) \cap B)$. Hence $Ap = pA \neq A$ for all p in $\{p\}$. Let X be a Δ-A-submodule of A with $A \cap X \supseteq \cap_{i} \sigma(p)$. Then $B \supseteq X \cap B \supseteq (\cap_{i} \sigma(\mathfrak{P})) \cap B = \mathfrak{P} \cap B$, and so $X \cap B = (\cap_{i} \sigma(\mathfrak{P})) \cap B$. Then, by Prop. 3.1, $X = \cap_{\sigma} \mathfrak{P}$. Thus $\cap_{\sigma} \mathfrak{P}$ is Δ-A-maximal. Let Y be a maximal Δ-A-submodule of A. Take a maximal \mathfrak{P}_{1} of A with $\mathfrak{P}_{1} \supseteq Y$. Then $\cap_{\sigma} \mathfrak{P}_{1} \supseteq Y$, and so $\cap_{\sigma} \mathfrak{P}_{1} = Y$. Thus we obtain (2). Therefore $\mathcal{R}(\Delta A_{A}) = \mathcal{R}(\Delta A_{A})$. Since $\mathcal{R}(\Delta A_{A}) \cap B = \mathcal{R}(\Delta B_{B})$, we have $\mathcal{R}(\Delta A_{A}) = A \cdot \mathcal{R}(\Delta B_{B}) = \mathcal{R}(\Delta B_{B}) A$ (Prop. 3.1). B is B-B-completely reducible if and only if $\cap_{i} p_{i} = 0$ for some p_{1}, \cdots, p_{n} in $\{p\}$. Thus we obtain (4) (cf. Prop. 3.1). (ii) \Rightarrow (i) Let $p \in \{p\}$. Then, as $ApA \neq A$, $p \subseteq \mathfrak{P}$ for some $\mathfrak{P} \in \{\mathfrak{P}\}$, and so $p = \mathfrak{P} \cap B$ by the maximality of p. Let \mathfrak{Q} be in $\{\mathfrak{P}\}$. Then $q \supseteq \cap_{\sigma} \mathfrak{P}$ for some $q \in \{q\}$. There is a $\mathfrak{Q} \in \{\mathfrak{P}\}$ with $\mathfrak{Q} \cap B = q$. Then $(\cap_{\sigma} \mathfrak{Q}) \cap B = \mathfrak{Q} \cap B \supseteq \cap_{\sigma} \mathfrak{P}$, and therefore $\cap_{\sigma} \mathfrak{Q} \supseteq \cap_{\sigma} \mathfrak{P}$ by Prop. 3.1. By assumption, $\cap_{\sigma} \mathfrak{Q} = \cap_{\sigma} \mathfrak{P}$. Hence $q = \cap_{\sigma} \mathfrak{Q} \cap B = \cap_{\sigma} \mathfrak{P}$. This completes the proof.

Concerning Prop. 3.2, we state the following

Lemma 3.3. Let \mathfrak{P} be a maximal ideal of A such that $\cap_{\sigma} \sigma(\mathfrak{P}) = \cap_{i} \sigma_{i}(\mathfrak{P})$ for some $\sigma_{1}, \cdots, \sigma_{n}$ in G. Then $\cap_{\sigma} \sigma(\mathfrak{P})$ is Δ-A-maximal, and $\{\sigma_{i}(\mathfrak{P}); i=1, \cdots , n\}$ is the set of all maximal ideals containing $\cap_{\sigma} \sigma(\mathfrak{P})$.

Proof. Let Δ be a maximal ideal of A with $\Delta \supseteq \cap_{\sigma} \sigma(\mathfrak{P})$. If $\Delta \neq \sigma_{i}(\mathfrak{P})$ for all i, then $\Delta + \sigma_{i}(\mathfrak{P}) = A$ for all i. Then we have a contradiction $A = \Delta + \cap_{i} \sigma_{i}(\mathfrak{P}) = \Delta + \cap_{\sigma} \sigma(\mathfrak{P})$.

Remark. In the following cases, the assumption in Lemma 3.3 holds.

1. G is finite. 2. The ring $A/\mathcal{R}(\Delta A_{A})$ satisfies the descending chain condition for ideals. 3. G^{*} is compact, and every maximal ideal of A is A-A-finitely generated. (Cf. Prop. 1.1).
Proposition 3.4.

(1) Let A/B be locally finite outer G-Galois, and B B-B-completely reducible. Assume that, for any maximal ideal \mathfrak{P} of A, there are elements $\sigma_1, \cdots, \sigma_n$ in G such that $\cap_i \sigma_i(\mathfrak{P}) = \cap_i \sigma(\mathfrak{P})$. Then A is A-A-completely reducible.

(2) Let G be finite and completely outer, and $B|A_B$. Then A is A-A-completely reducible if and only if B is B-B-completely reducible. If there is a maximal ideal \mathfrak{P} of A such that $\cap_i \sigma(\mathfrak{P}) = 0$, then B is B-B-minimal, and conversely.

Proof. (1) Any maximal ideal \mathfrak{p} of B is written as $\mathfrak{p} = Be$ with a central idempotent e of B. Then, by assumption, $(1 \neq e) e \in V_A(B) = C$. Therefore, $A\mathfrak{p} = Ae = eA = \mathfrak{p}A \neq A$. Thus, by Prop. 3.2 and Lemma 3.3, A is A-A-completely reducible. (2) In this case, $\alpha A = A\alpha \neq A$ for any proper ideal α of B (cf. [22; p. 132]). Then, by Prop. 3.2 and Lemma 3.3, the first assertion is evident (cf. [22; Prop. 6.4]). For any \mathfrak{P} in $\{\mathfrak{P}\}$, $((\cap_i \sigma(\mathfrak{P})) \cap B =) \mathfrak{P} \cap B = 0$ if and only if $\cap_i \sigma(\mathfrak{P}) = 0$ (Prop. 3.1). Thus we know the second assertion.

Theorem 3.5. Let A/B be finite G-Galois, B a semi-primary ring, and $A\mathfrak{p}A \neq A$ for any maximal ideal \mathfrak{p} of B. Then $B\mathfrak{p}A \simeq B\mathfrak{p}BG$, that is, A has a normal basis. (Cf. [13; Th. 1]).

Proof. By [22; Th. 1.7], it suffices to prove that $B\mathfrak{p}A$ is free. Let $g = (G:1)$. (1) First we assume that $\mathfrak{R}(B) = 0$. Then B is a direct sum of simple rings: $B = a_1 + \cdots + a_n$. Let $1 = \sum_i e_i$, $e_i \in a_i$. Then $\alpha_i = Be_i = e_i B$ and $e_i^2 = e_i$. By assumption we have $(1-e_i)A = A(1-e_i)$ (Prop. 3.2 and Lemma 3.3), so that e_i is a central idempotent of A contained in B. Then each Ae_i/Be_i is G-Galois ([22; Cor. to Th. 5.6]). Since Be_i is a simple ring, Be_iAe_i is free (cf. [7]). Hence Ae_i has a normal basis, so that $B\mathfrak{p}Ae_i \simeq B\mathfrak{p}(Be_{i})^p$ for all i ([22; Th. 1.7]). Hence $B\mathfrak{p}A \simeq B\mathfrak{p}^p$. (2) Next we proceed to general case. Since A and B are semi-primary ([22; Prop. 7.3]), $\mathfrak{R}(\mathfrak{a}A_A) = \mathfrak{R}(A)$ and $\mathfrak{R}(\mathfrak{b}B_B) =$ $\mathfrak{R}(B)$. Then, by Prop. 3.2 and Lemma 3.3, $\mathfrak{R}(A) = \mathfrak{R}(B) = A = \mathfrak{R}(B)$ and $\mathfrak{R}(A) \cap B = \mathfrak{R}(B)$. By [22; Th. 5.6], $(A/\mathfrak{R}(A))/(B + \mathfrak{R}(A))/\mathfrak{R}(A)$ is G-Galois, and satisfies the same conditions as A/B, because $(B + \mathfrak{R}(A))/\mathfrak{R}(A) \simeq B/(\mathfrak{R}(A) \cap B) = B/\mathfrak{R}(B)$ canonically. By (1), we have $B\mathfrak{p}A/\mathfrak{R}(A) \simeq B/\mathfrak{p}(B/\mathfrak{R}(B))^p$. Since $\mathfrak{R}(A) = \mathfrak{R}(B)A$ and $B\mathfrak{p}A$ is finitely generated and projective, we have $B\mathfrak{p}A \simeq B\mathfrak{p}$.

Corollary. Let A/B be finite G-Galois, B a semi-primary ring, and Z the center of B. Assume that $Z \subseteq C$ and that B is a central separable Z-algebra. Then A has a normal basis.

Proof. In this case, any proper ideal of B is written as αB with an ideal
α of \(Z\) (cf. [2]). Then, as \(Z \subseteq C\), \((αB)A = αA = Aα = A(Bα) \neq A\) ([22; Lemma 7.1]).

Let \(A/B\) be finite \(G\)-Galois, \(B \subseteq C\), and \(g = (G:1)\). For any prime ideal \(p\) of \(B\), we denote by \(B_p\) the quotient extension of \(B\) with respect to \(p\). Then \(B_p\) is a \(B\)-algebra, canonically. By [22; Cor. to Th. 5.2], \((B_p \otimes_B A)/B_p\) is \(G\)-Galois. Since \(B_p\) is a local ring, \(B_p B_p \otimes_B A \cong B_p(B_p)^g\) (Cor. to Th. 3.5). We denote by \(K_p\) the quotient field of \(B/p\). Then we have \(K_p K_p \otimes_B A \cong K_p(K_p)^g\) similarly. Thus we obtain the following

Proposition 3.6. Let \(A/B\) be finite \(G\)-Galois, \(B \subseteq C\), and \(g = (G:1)\). Then, \(b_p B_p \otimes_B A \cong B_p(B_p)^g\) and \(K_p K_p \otimes_B A \cong K_p(K_p)^g\) for any prime ideal \(p\) of \(B\), where \(B_p\) is the quotient extension of \(B\) with respect to \(p\) and \(K_p\) is the quotient field of \(B/p\).

The following lemma is of some interest.

Lemma 3.7. Let \(R \supseteq S\) be rings, \(R_s\) is finitely generated and projective, and \(sS\) is a direct summand of \(sR\). If \(sR\) is injective, then \(sS\) is injective.

Proof. Let \(I\) be any left ideal of \(S\), and \(f\) any \(S\)-left homomorphism from \(I\) to \(sR\). Since \(R_s\) is finitely generated and projective, we have \(RI = R \otimes S I\). Therefore \(f\) can be extended to an \(R\)-left homomorphism from \(RI\) to \(R\), canonically. Then, by assumption, there is an element \(a\) in \(R\) such that \(r \cdot (s)f = rsa\) for \(r\) in \(R\) and \(s\) in \(I\), so that \((s)f = sa\) for all \(s\) in \(I\). Therefore, as is well known, \(sR\) is injective. Since \(sS\) is a direct summand of \(sR\), \(sS\) is injective.

Lemma 3.8. \(\mathfrak{A}(A) \cap B \subseteq \mathfrak{A}(B)\).

Proof. Let \(b\) be in \(\mathfrak{A}(R) \cap B\). Then \(1 - b\) has an inverse in \(A\). Since \(B = A^g\), \(1 - b\) has an inverse in \(B\). Hence \(\mathfrak{A}(A) \cap B\) is a quasi-regular ideal of \(B\), that is, \(\mathfrak{A}(A) \cap B \subseteq \mathfrak{A}(B)\).

Proposition 3.9. Let \(G\) be finite. If there is an element \(c\) in \(A\) such that \(1 - t_{o}(c) \in \mathfrak{A}(A)\), then there is an element \(d\) in \(A\) such that \(t_{o}(d) = 1\).

Proof. By Lemma 3.8, we have \(1 - t_{o}(c) \in \mathfrak{A}(A) \cap B \subseteq \mathfrak{A}(B)\), so that \(t_{o}(A) + \mathfrak{A}(B) = B\). Since \(t_{o}(A)\) is an ideal of \(B\), we have \(t_{o}(A) = B\). Hence \(t_{o}(d) = 1\) for some \(d\) in \(A\).

Theorem 3.10. Let \(A/B\) be \(G\)-Galois, \(A\) a commutative ring, \(H\) a subgroup of \(G\), and \(A'\) a \(B\)-algebra. Then, \(A' \otimes_B A^\alpha\) is a direct sum of minimal ideals if and only if \(A'\) is a direct sum of minimal ideals (cf. [7; p. 178. Th. 2]).

Proof. In this case, \((A' \otimes_B A)/A'\) is finite \(G\)-Galois, \(G\) is completely outer as an automorphism group of \(A' \otimes_B A\), and \((A' \otimes_B A)^\alpha = A' \otimes_B A^\alpha\) (cf. [22; Th.
5.2 and Prop. 6.5]). Thus the present theorem is an easy consequence from Prop. 3.4 (2).

Concerning [22; Th. 6.9], we note the following

Lemma 3.11. Let A/C be separable, and e an idempotent of A such that $eA \subseteq Ae$. Then e is a central idempotent of A.

Proof. Since $A\Re(A)$ is a semi-prime ring, we have $(eA + \Re(A))/\Re(A) = (Ae + \Re(A))/\Re(A)$, that is, $eA + \Re(A) = Ae + \Re(A)$, and so $Ae = eA + (Ae \cap \Re(A))$. Since A is a central separable C-algebra, $\Re(A) = \Re(C)A$ by [2; Cor. 3.2]. Since $\Re(A_{A}) \supseteq \Re(A) \supseteq \Re(C)A$, we have $\Re(A) = \Re(C)A$, and $Ae = eA + \Re(C)Ae$. Hence $Ae = eA$, because eAe is finitely generated. Consequently, e is a central idempotent of A.

Proposition 3.12. Let A/B be locally finite G-Galois, and assume that there is a representation $A = \bigcup_{N_{i}} A^{N_{i}}$ of A/B such that each $\Re(B)A^{N_{i}}$ is an ideal of $A^{N_{i}}$. Then $\Re(A) = \Re(B)A = A \cdot \Re(B)$, and $\Re(A) \cap B = \Re(B)$.

Proof. Let \mathfrak{J} be a right ideal of A such that $\Re(B)A + \mathfrak{J} = A$. Then $\Re(B)A^{N_{i}} + (\mathfrak{J} \cap A^{N_{i}}) \ni 1$ for some λ in A, so that $\Re(B)A^{N_{i}} + (\mathfrak{J} \cap A^{N_{i}}) = A^{N_{i}}$. Since $\Re(B)A^{N_{i}} \subseteq \Re(A^{N_{i}})$, we have $\mathfrak{J} \cap A^{N_{i}} = A^{N_{i}}$, and hence $\mathfrak{J} = A$. Thus we know that $\Re(B)A \subseteq \Re(A)$. Combining this with Lemma 3.8, we have $\Re(A) \cap B = \Re(B)$. Hence $\Re(A) = \Re(B)A = A \cdot \Re(B)$ (Prop. 3.1).

Theorem 3.13. Let A/B be locally finite G-Galois, $B \subseteq C$, and A' a B-algebra such that $A' \simeq A' \otimes 1 (\subseteq A' \otimes_{B} A)$ canonically.

1. $\Re(A' \otimes_{B} A) = \Re(A' \otimes A)$, and $\Re(A' \otimes A) \cap (A' \otimes 1) = \Re(A') \otimes 1$.

2. If A is commutative, then $\Re(A' \otimes A^H) = \Re(A') \otimes A^H$ for any subgroup H of G.

Proof. Let $A = \bigcup_{N_{i}} A^{N_{i}}$ be a representation of the locally finite G-Galois extension A/B. Then $A' \otimes_{B} A / (A' \otimes 1)$ is locally finite G-Galois extension with representation $A' \otimes_{B} A = \bigcup_{\lambda} A' \otimes A^{N_{i}}$, where $A' \otimes A^{N_{i}} = (A' \otimes_{B} A)^{N_{i}}$ is a finite G/N_{i}-Galois extension over $A' \otimes 1$. (1) This will be easily seen by Prop. 3.12. (2) We may assume that H is closed in G. Then each $A^H \cap N_{i} / A^H$ is finite $H/(H \cap N_{i})$-Galois, and $H/(H \cap N_{i})$ is completely outer as an automorphism group of $A^H \cap N_{i}$ (22; Th. 6.6). Then $H/(H \cap N_{i})$ is completely outer as an automorphism group $A' \otimes_{B} A^H \cap N_{i}$ (Prop. 2.18), and so $H/(H \cap N_{i})$ is completely outer as an automorphism group $A' \otimes_{B} A^H \cap N_{i}$ (22; Prop. 6.11). Now, $(A' \otimes_{B} A) / (A' \otimes A^H)$ is a locally finite H-Galois extension with representation $A' \otimes_{B} A = \bigcup_{\lambda} A' \otimes A^H \cap N_{i}$, where $A' \otimes A^H \cap N_{i} = (A' \otimes_{B} A)^{H \cap N_{i}}$ is a finite $H/(H \cap N_{i})$-Galois extension over $A' \otimes A^H$. Then, by [22; Th. 7.10] and Prop. 3.12, $\Re(A' \otimes_{B} A) = \Re(A' \otimes A^H) (A' \otimes_{B} A)$. On the other hand,
$\mathcal{R}(A' \otimes_B A) = \mathcal{R}(A') \otimes A = (\mathcal{R}(A') \otimes A^H)(A' \otimes_B A)$. Hence $\mathcal{R}(A' \otimes A^B) = \mathcal{R}(A') \otimes A^H$, as desired (cf. [22; Lemma 7.1]).

References

([1]~[14] are found in [22] below.)

Department of Mathematics,
Hokkaido University

(Received June 10, 1967)