<table>
<thead>
<tr>
<th>Title</th>
<th>LOCALLY FINITE OUTER GALOIS THEORY</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author(s)</td>
<td>Miyashita, Yôichi</td>
</tr>
<tr>
<td>Citation</td>
<td>Journal of the Faculty of Science Hokkaido University. Ser. 1 Mathematics, 20(1-2), 001-026</td>
</tr>
<tr>
<td>Issue Date</td>
<td>1967</td>
</tr>
<tr>
<td>Doc URL</td>
<td>http://hdl.handle.net/2115/56082</td>
</tr>
<tr>
<td>Type</td>
<td>bulletin (article)</td>
</tr>
<tr>
<td>File Information</td>
<td>JFSHIU_20_N1-2_001-026.pdf</td>
</tr>
<tr>
<td>Hokkaido University Collection of Scholarly and Academic Papers</td>
<td>HUSCAP</td>
</tr>
</tbody>
</table>
LOCALLY FINITE OUTER GALOIS THEORY

By

Yôichi MIYASHITA

Introduction.

This paper is the continuation of the preceding paper [22]. In §1 and §2, locally finite (outer) Galois extensions are treated. The main results are parallel to those of the finite case. In these studies, Nagahara [12] is our guide. Further several results for finite Galois extensions are added (Th. 1.18). In §3, we give a normal basis theorem for a finite Galois extension.

§1. As to notations and terminologies we follow [22]. Let A be a ring with 1 (≠ 0), C the center of A, G a (finite or infinite) group of automorphisms of A, \(B = A^g = \{ x \in A ; \sigma(x) = x \text{ for all } \sigma \in G \} \), and \(\hat{G} \) the group of all B-automorphisms of A. \(\hat{G} \) is then a topological group in finite topology (cf. Jacobson [7]). We denote the closure of G in \(\hat{G} \) by \(G^* \). \(\Delta \) means the trivial crossed product of A with G: \(\Delta = \sum_{\sigma \in G} A \sigma \), \(u_r u_r = u_r \sigma, \) (\(\sigma, \tau \in G \)), \(u_r x = \sigma(x) u_r \) (\(x \in A \)). Then there is a canonical ring homomorphism j from \(\Delta \) to End \((A_B) \) defined by \(j(\sum_{\sigma} x_{\sigma}u_{\sigma})(y) = \sum_{\sigma} x_{\sigma}(y) \) \((\sum_{\sigma} x_{\sigma}u_{\sigma} \in \Delta, y \in A) \). For any intermediate ring T of A/B, \(G^T = \{ \sigma \in G ; \sigma|T = 1 \} \) is a subgroup of G, where \(\sigma|T \) means the restriction of \(\sigma \) to T. We call it a fixed subgroup of G. For any subgroup H of G, \(A^H = \{ x \in A ; \sigma(x) = x \text{ for all } \sigma \in H \} \) is an intermediate ring of A/B. We call it a fixed subring of A (with respect to G). Then, as is well known, the set of all fixed subgroups of G and the set of all fixed subrings of A are anti-order-isomorphic in the usual sense of Galois theory. A subring T of A is called a G-invariant subring of A if \(\sigma(T) = T \text{ for all } \sigma \in G \) (or equivalently, \(\sigma(T) \subseteq T \) for all \(\sigma \in G \)). Let N be a fixed subgroup of G. Then, \(A^N \) is G-invariant if and only if N is a normal subgroup of G: \(N \triangleleft G \). Let T be an intermediate ring of A/B, and put \(H = G^T \). Then, for \(\sigma, \tau \in G, \sigma|T = \tau|T \text{ if and only if } \sigma H = \tau H \). Let H and K be subgroups of G such that \(H \supseteq K \text{ and } (H:K) < \infty \), and let \(H = \sigma_1 K \cup \cdots \cup \sigma_r K \) be the left coset decomposition. For any \(x \in A^K \) we put \(t_{B;K}(x) = \sum_{\sigma} \sigma(x) \). Then \(t_{B;K} \) is an \(A^K - A^K \)-homomorphism from \(A^K \) to \(A^K \), and is independent of the choice of \(\sigma_1, \cdots, \sigma_r \). If \(K = 1 \), we write simply \(t_B \) instead of \(t_{B;1} \).

Here we present several fundamental facts, which are essential throughout the present study. Let \(\tau M_B \) and \(\tau N_B \) be T-left, U-right modules. If \(\tau M_B \) is
isomorphic to a direct summand of τN^r_U for some natural number r, then we write $\tau M_U|_{\tau N^r_U}$, where τN^r_U means the direct sum of r copies of τN_U. If $\tau M_U|_{\tau N_U}$ and $\tau N_U|\tau M_U$ we write $\tau M_U \sim \tau N_U$ (similar) (cf. Morita [21]). To be easily seen, $\tau M_U|_{\tau N^r_U}$ if and only if there are $T-U$-homomorphisms f_1, \cdots, f_r in Hom $(\tau M_U, \tau N_U)$ and g_1, \cdots, g_r in Hom $(\tau N_U, \tau M_U)$ such that $\Sigma_i f_i g_i=$ the identity of M, or equivalently, Hom $(\tau M_U, \tau N_U)$Hom $(\tau N_U, \tau M_U)$Hom $(\tau M_U, \tau M_U)$, where homomorphisms act on the right side.

Let T be a ring with 1, M a unital T-left module, and $T^* = \text{End}(\tau M)$.

S.1. If $\tau T |_{\tau M}$ then $M_T |_{T^*}$ (i.e. M_T is finitely generated and projective) and $T = \text{End} (M_T)$. (Morita)

S.2. If $\tau M |_{\tau T}$ then $T^* |_{T^*}$. (Morita)

S.3. Let T be commutative. If $\tau M |_{\tau T}$ and τM is faithful, then $\tau T |_{\tau M}$. (Auslander-Buchsbaum-Goldman)

S.4. Let T be an extension ring of T. If $\tau T |_{\tau T}$ then τT is a direct summand of τT^* (and conversely). (Müller)

S.5. Let T be an extension ring of T. If $\tau T_T |_{\tau T}$ then τT_T is a direct summand of τT_T. (The proof is similar to the one of S.4.)

In [22], A/B was called a G-Galois extension if G is finite and there are elements $a_1, \cdots, a_n; a_1^*, \cdots, a_n^*$ in A such that $\Sigma_i a_i \sigma(a_i^*) = \delta_{1, \sigma}$ ($\sigma \in G$). In this paper, A/B is called a finite G-Galois extension if A/B is G-Galois and $t_\sigma (c) = 1$ for some c in A. Then, the following are equivalent:

(a) A/B is finite G-Galois.
(b) G is finite, $A_{\sigma} \sim B_{\sigma}$ and $j: A \simeq \text{End} (A_{\sigma})$.
(c) G is finite and $\Delta \sim_A A$.

(Cf. S.1, S.2, [6] and [21]).

A/B is called a locally finite G-Galois extension if there are fixed normal subgroups N_λ ($\lambda \in \Delta$) of G which satisfy the following conditions: (1) $(G: N_\lambda) < \infty$, and A^N/B is a finite G/N_λ-Galois extension. (2) $A = \bigcup_{\lambda} A^{N_\lambda}$, and $\{A^{N_\lambda}; \lambda \in \Delta\}$ is a directed set with respect to the inclusion relation (abbre. $A = \bigcup_{\lambda} A^{N_\lambda}$ is a directed union). Then we call $A = \bigcup_{\lambda} A^{N_\lambda}$ a representation of the locally finite G-Galois extension A/B. If $V_{A}(B)=C$, an extension A/B is said to be outer.

Now we shall prove first the following

Proposition 1.1. Let $G = G^*$ (i.e. G is closed in \hat{G}). Then the following are equivalent:

(i) $\{\sigma(x); \sigma \in G\}$ is finite for any x in A.
(ii) G is compact.
(iii) Every directed union of fixed subrings of A with respect to G is also a fixed subring of A with respect to G, and $\bigcap H = 1$, where H ranges
over all fixed subgroups of G such that $(G:H)<\infty$.

Proof. (i) \Rightarrow (ii) If we put $\prod_{x\in A}\{\sigma(x); \sigma \in G\}=D$, then $G \subseteq D$ and D is compact. Therefore it is sufficient to prove that G is closed in D. Let ρ be any element of the closure of G in D. Then, as is easily seen, ρ is a B-ring isomorphism from A into A. Let a be in A, and put $F=\{\sigma(a); \sigma \in G\}$. Then, by assumption, F is a finite subset of A, so that there is an element τ in G such that $\rho|F=\tau|F$. Then, in particular, $\rho(\tau^{-1}(a))=\tau(\tau^{-1}(a))=a$. Thus ρ is a B-automorphism of A. Hence the closure of G in D is contained in \hat{G}. Since G is closed in \hat{G}, G is closed in D, as desired. (ii) \Rightarrow (iii) For any x in G, we put $H_x=\{\sigma \in G; \sigma(x)=x\}$. Then H_x is open in G, and therefore σH_x is open in G for any σ in G. Then, since G is compact, we have $(G:H_x)<\infty$. Evidently $\cap_{x\in A}H_x=1$. This proves the second assertion. Let $(A\neq) T=\bigcup_{i\in A}T_i$ be a directed union of fixed subrings of A with respect to G, and let $K_i=G^{T_i}$. Then each K_i is a closed subgroup of G, and $A^{K_i}=T_i$. Let a be an element of $A-T$, and put $U=\{\sigma \in G; \sigma(a)=a\}$. Then U is open in G, so that each K_i-U is closed in G. Since $a \notin T_i$ and $A^{K_i}=T_i$, we have $K_i-U \neq \emptyset$. For any finite subset $\{\lambda_1, \cdots, \lambda_n\}$ of A, there is an element λ_0 of A such that $T_{\lambda_0} \supseteq \bigcup_i T_{\lambda_i}$. Then $K_{\lambda_0} \subseteq \bigcap_i K_{\lambda_i}$, and so $\emptyset \neq K_{\lambda_0}-U \subseteq \bigcap_i K_{\lambda_i}-U=\bigcap_i (K_{\lambda_i}-U)$. Thus $\{K_{\lambda_i}-U; \lambda \in A\}$ has finite intersection property. Since G is compact, we have $\bigcap_i (K_{\lambda_i}-U) \neq \emptyset$. If ρ is in $\bigcap_i (K_{\lambda_i}-U)$ then $\rho \in G^T$ and $\rho(a) \neq a$. Therefore $a \neq A^\rho$, where $K=G^T$. Thus $A^\rho=T$. Hence T is a fixed subring of A with respect to G. (iii) \Rightarrow (i) Let H and K be fixed subgroups of G such that $(G:H)<\infty$ and $(G:K)<\infty$. Then $H \cap K$ is also a fixed subgroup of G with $(G:H \cap K)<\infty$. Therefore $\cup A^U$ is a directed union of fixed subrings of A, where H ranges over all fixed subgroups of G with $(G:H)<\infty$. Then, by assumption, $\cup A^U$ is a fixed subring of A with respect to G. Since $\bigcap H=1$, we have $A=\cup A^U$. For any x in A, there is an A^U such that $x \in A^U$. Therefore if we put $L=\{\sigma \in G; \sigma(x)=x\}$ then $(G:L)<\infty$. This implies that $\{\sigma(x); \sigma \in G\}$ is finite.

Remark. For any x in A, $\{\sigma(x); \sigma \in G\}=\{\sigma(x); \sigma \in G^*\}$.

Proposition 1.2. Let N be a fixed normal subgroup of G such that $(G:N)<\infty$ and A^N/B is finite G/N-Galois, and G_1 a subgroup of G^* containing G. Then A^N/B is finite G_1/N_1-Galois, where $N_1=\{\sigma \in G_1; \sigma|A^N=1_{A^N}\}$.

Proof. Put $T=A^N$. Evidently $A^N=T$. Since G is dense in G_1 and T is finitely generated, there holds $G|T=G_1|T$. Therefore T is G_1-invariant, $N_1 \subseteq G_1$, and $(G_1:N_1)<\infty$. There are elements $a_1, \cdots, a_n; a_1^*, \cdots, a_n^*$ in T such that $\sum_ia_i\cdot \sigma(a_i^*)=\delta_{N, \sigma}$ for all σ in G. If τ is in G_1-N_1 then $\tau|T=\rho|T$ for
some ρ in $G-N$, and $\sum_{i}a_{i}\cdot\rho(a_{i}t)=\sum_{i}a_{i}\cdot\rho(a_{i}t)\cdot\delta_{N_{i},t}$ for σ in G_{1}.

Corollary. Let A/B be locally finite G-Galois, and G_{1} a subgroup of G^{*} containing G. Then A/B is locally finite G_{1}-Galois.

Proposition 1.3. Let $H_{i}(\lambda \in \Lambda)$ be fixed subgroups of G such that $A=\bigcup_{\lambda \in \Lambda}A^{H_{i}}$ is a directed union.

1. If H is a subgroup of G such that $(G:H)<\infty$ then $A^{H}\subseteq A^{H_{i}}$ for some $\lambda \in \Lambda$.

2. If K is a subgroup of G such that $(K:1)<\infty$ then $K\cap H_{i}=1$ for some $\mu \in \Lambda$.

Proof. (1) Let $[H_{i}\cup H]$ be the subgroup of G generated by $H_{i}\cup H$. Since $G\supseteq[H_{i}\cup H]\supseteq H$, we have $(G:[H_{i}\cup H])<(G:H)$ for all $\lambda \in \Lambda$. Let $(G:[H_{i}\cup H])$ be maximum. We shall prove that $A^{H}\subseteq A^{H_{i}}$. For any H_{i} there is an H_{i} such that $A^{H_{i}}\supseteq A^{H_{i}}$. Then $H_{i}\subseteq H_{i}\cap H_{i}$, and so $[H_{i}\cup H]\subseteq[H_{i}\cup H]$. Hence $[H_{i}\cup H]\subseteq[H_{i}\cup H]$ for all $\lambda \in \Lambda$. Then $A^{H}=\bigcup_{\lambda}(A^{H}\cap A^{H})=\bigcup_{\lambda}A^{[H\cup H]}=A^{[H_{i}\cup H]}A^{H_{i}}\cap A^{H}$, which means $A^{H}\subseteq A^{H_{i}}$. (2) Since $A=\bigcup_{\lambda}A^{H_{i}}$, we have $1=A=A^{\bigcap_{\lambda}H_{i}}$. Let $K=\{\sigma_{i}=1, \sigma_{2}, \cdots, \sigma_{r}\}$. Then, for any $\sigma_{i} (i \neq 1)$, there is an H_{i} such that $\sigma_{i} \notin H_{i}$. By assumption there is a μ such that $H_{\mu}\subseteq \bigcap_{i=1, \cdots, r}H_{i}$. Then $H\cap H_{\mu}\subseteq H\cap (\bigcap_{i=1, \cdots, r}H_{i})=1$.

Remark. Let A/B be locally finite G-Galois, and $A=\bigcup_{\lambda \in \Lambda}A^{N_{i}}$ its representation. If G is finite then $A=A^{N_{i}}$ for some λ.

Proposition 1.4. Let T be an intermediate ring of A/B such that $G|T$ is finite, and let $H=\sigma_{1}H_{1}\cup\cdots\cup\sigma_{r}H_{r}$ a left coset decomposition of G. If there are elements $t_{1}, \cdots, t_{n}; t_{1}^{*}, \cdots, t_{n}^{*}$ in T such that $\sum_{i}t_{i}^{*}\sigma(t_{i}^{*})=\delta_{u_{i}}$ for all σ in G, then there hold the following.

1. $T=A^{u}$, and T_{n} is finitely generated and projective.

2. $j^{*}: A(\Sigma_{k}u_{k})T=\Sigma_{k}Au_{k}\simeq\text{Hom}(T_{n}, A_B)$, where $j^{*}(\Sigma_{k}x_{k}u_{k})T=(\Sigma_{k}x_{k}\cdot\sigma(t_{k}^{*}))T$, and this induces the $B-T$-isomorphism $(\Sigma_{k}u_{k})T\simeq\text{Hom}(T_{n}, A_B)$.

3. The following are equivalent: (i) $B_{n}|T_{n}$. (ii) $B|T$. (iii) $t_{n}\cdot T(c)=1$ for some c in T.

Proof. (1) $t_{n}: B\to B$ is a $B-B$-homomorphism from A^{u} to B. For any y in A^{u}, $T\subseteq\Sigma_{k}t_{k}^{*}t_{n}(y)=\Sigma_{k}t_{k}^{*}\Sigma_{k}\sigma_{k}(y)=\Sigma_{k}\Sigma_{i}t_{i}^{*}\sigma_{k}(t_{k}^{*})\sigma_{k}(y)=y$. Hence $A^{u}=T$, and T_{n} is finitely generated and projective (cf. [3]). (2) $j^{*^{-1}}$ is the mapping such that $j^{*^{-1}}(f)=\Sigma_{i}f(t_{i}(\Sigma_{k}u_{k}))t_{n}^{*}$ ($f \in \text{Hom}(T_{n}, A_B)$). The second part will be easily seen. (3) The equivalence (i)\iff (iii) is easy from (2).
Therefore (i) and (ii) are equivalent, because the situation is right-left symmetric.

Proposition 1.5. Let A/B be locally finite G-Galois. Then there hold the following:

1. G^* is compact.
2. By j, A is isomorphic to a dense subring of $\text{Hom}(A_B, A_B)$.
3. A subgroup H of G is a closed subgroup of G if and only if H is a fixed subgroup of G.

Proof. Let $A = \bigcup_{\nu} A^{N_{\nu}}$ be a representation of the locally finite G-Galois extension A/B. (1) If x is in A then $x \in A^{N_{\nu}}$ for some ν in A. Then $(G : N_{\nu}) < \infty$ implies that $(\{\sigma(x); \sigma \in G\} = \{\sigma(x); \sigma \in G^*\}$ is finite. Hence, by Prop. 1.1, G^* is compact. (2) By Prop. 1.4 (2), $\text{Im} j$ is dense in $\text{Hom}(A_B, A_B)$. Therefore it suffices to prove that j is 1–1. Let $\sigma_1, \ldots, \sigma_r$ be different elements in G. Then there is a finite subset F of A such that $\sigma_i|F \neq \sigma_j|F$ provided $i \neq k$. From this fact and Prop. 1.4, we can easily see that j is 1–1. (3) Evidently, a fixed subgroup is a closed subgroup. Let H be any subgroup of G, and put $H' = G^*$, where $T = A^H$. Then $T = A^H$. It suffices to prove that H is dense in H'. To prove this, we take any finite subset F of A. Then $F \subseteq A^{N_{\nu}}$ for some N_{ν}. Put $N = N_{\nu}$. Then, by finite Galois theory, we obtain $(G/N)^{T_{1}} = HN/N$ and $(A/N)^{T_{1}} = H'N/N$, where $T_1 = A^{HN}$ and $T_1 = A^{H'N}$ (cf. [22; Prop. 2.2]). Since $A^{HN} = A^H \cap A^N = A^W \cap A^N = A^{H'N}$, we have $HN/N = H'N/N$, that is, $HN = H'N$. Hence $H|A^N = H'|A^N$, and so $H|F = H'|F$. Since F is arbitrary, this implies that H is dense in H'. This completes the proof.

Theorem 1.6. Let A/B be locally finite G-Galois, $G = G^*$, and H a subgroup of G, and let A' be an indecomposable extension ring of B such that $V_{A'}(B) = V_{A'}(A')$. Assume that there is a B-ring homomorphism g from A to A'. Then, for any B-ring homomorphism f from A^H to A', there is an element σ in G such that $f = g\sigma|A^H$.

Proof. Let $A = \bigcup_{\nu} A^{N_{\nu}}$ be a representation. For each N_{ν}, there is an element σ in G such that $f|A^{N_{\nu}} = g\sigma|A^{N_{\nu}}$ ([22; Th. 4.1]). For each λ, we put $K_{\lambda} = \{\sigma \in G; f|A^{N_{\nu}} = g\sigma|A^{N_{\nu}}\}$. Then $K_{\lambda} \neq \emptyset$, and $\{K_{\lambda}; \lambda \in \Lambda\}$ has finite intersection property. Let τ be in the closure of K_{λ} in G. Since $(A^{N_{\lambda}})_B$ is finitely generated, $\tau|A^{N_{\lambda}} = \alpha|A^{N_{\lambda}}$ for some α in K_{λ}. Then $\tau|A^{N_{\lambda}} = \alpha|A^{N_{\lambda}}$, and so $f|A^{N_{\lambda}} = g\alpha|A^{N_{\lambda}} = g\tau|A^{N_{\lambda}}$. Hence $\tau \in K_{\lambda}$, and therefore K_{λ} is closed in G. Since G is compact (Prop. 1.5), we have $\bigcap K_{\lambda} \neq \emptyset$. If ρ is in $\bigcap K_{\lambda}$, then $f|A^{N_{\lambda}} = g\rho|A^{N_{\lambda}}$ for all λ in Λ. Since $A^H = \bigcup A^{N_{\nu}}$, we know $f = g\rho|A^H$.

The following theorem will follow at once from Th. 1.6 and Cor. to Prop. 1.2.

Theorem 1.7. Let A/B be locally finite outer G-Galois, and A an
indecomposable ring. Then \(G^* = \hat{G}\), that is, \(G\) is dense in \(\hat{G}\).

Proposition 1.8. Let \(A/B\) be locally finite \(G\)-Galois, and \(G = G^*\) (cf. Cor. to Prop. 1.2). Then there hold the following.

(1) For an intermediate ring \(T\) of \(A/B\) the following are equivalent.

\((i)\) \(T = A^H\) for some subgroup \(H\) of \(G\). \((ii)\) There are subgroups \(H_t\) (\(t \in \Gamma\)) of \(G\) such that \(T = \bigcup_t A^{H_t}\), \((G:H_t) < \infty\) and \(\{A^{H_t}; t \in \Gamma\}\) is a directed set with respect to the inclusion relation.

(2) If \(H\) is a subgroup of \(G\) such that \((G:H) < \infty\) then \((A^H)_B\) is finitely generated.

Proof. Let \(A = \bigcup_{i \epsilon I} A^{N_i}\) be a representation of the locally finite \(G\)-Galois extension \(A/B\). (1) \((i) \Rightarrow (ii)\) \(T = A^H = \bigcup_i (A^H \cap A^{N_i}) = \bigcup_i A^{H\cap N_i}\) is a directed union, and \((G:HN_i) < \infty\). \((ii) \Rightarrow (i)\) follows from Prop. 1.1. (2) By Prop. 1.3, \(A^H \subseteq A^\nu\) for some \(\nu\) in \(A\). Then, \(A^H = A^{H\nu}\) is a fixed subring of the finite \(G/N_\nu\)-Galois extension \(A^\nu/B\), and therefore \((A^\nu)_B/(A^\nu)_B\) (cf. [22; §2. p. 118]). Since \((A^\nu)_B\) is finitely generated, \((A^H)_B\) is finitely generated.

Let \(T\) be an intermediate ring of \(A/B\), and \(S\) a subset of \(A\). \(T\) is called a \(G\)-separable cover of \(S\) if \(T\) satisfies the following conditions:

(1) \(T/B\) is a separable extension, and \(T \supseteq S\).

(2) \(G/T\) is finite.

(3) \(G/T\) is strongly distinct (i.e. if \(\sigma|T \neq \tau|T\) for \(\sigma, \tau\) in \(G\) then \(\sigma|T\) and \(\tau|T\) are strongly distinct).

Theorem 1.9. Let \(A/B\) be locally finite outer \(G\)-Galois, and \(T\) an intermediate ring of \(A/B\). Then the following are equivalent:

(i) \(T = A^H\) for some subgroup \(H\) of \(G\) such that \((G:H) < \infty\).

(ii) \(T/B\) is a separable extension, \(T_B\) is finitely generated, and \(G/T\) is strongly distinct.

(iii) \(T\) is a \(G\)-separable cover of \(B\).

Proof. Let \(A = \bigcup_{i \epsilon I} A^{N_i}\) be a representation. (i) \(\Rightarrow (ii)\) By Prop. 1.3, \(T = A^H \subseteq A^\nu\) for some \(\nu\) in \(A\). Then \(T\) is a fixed subring of the finite \(G/N_\nu\)-Galois extension \(A^\nu/B\). Then, by [19; Prop. 3.4], \(T/B\) is a separable extension. By Prop. 1.8 (2) (cf. Cor. to Prop. 1.2), \(T_B\) is finitely generated. By [22; Th. 2.6], \(G/T\) is strongly distinct. (ii) \(\Rightarrow (iii)\) This follows from the fact that \(\{\sigma(x); \sigma \in G\}\) is finite for any \(x\) in \(A\). (iii) \(\Rightarrow (i)\) Let \(\{(t_i, r_i); i = 1, \ldots, n\}\) be a \((B, T)\)-projective coordinate system of \(T/B\). Then, by [22; Prop. 1.2], \(\sum_i t_i \cdot \sigma(t_i) = \delta_{H, \sigma}\) for \(\sigma\) in \(G\), where \(H = G^T\). \(#(G/T) < \infty\) implies \((G:H) < \infty\). By Prop. 1.4, \(A^H = T\).

Combining Th. 1.9 with Prop. 1.8, we obtain the following theorem (cf. [12; Th. 3], [28; Theorem]).
Theorem 1.10. Let A/B be locally finite outer G-Galois, and $G=G^*$. Then, for an intermediate ring T of A/B, the following are equivalent.

(i) $T=A^H$ for some subgroup H of G.

(ii) For any finite subset F of T there is an intermediate ring T_0 of T/B such that $T_0\supseteq F$, T_0/B is separable, T_0 is finitely generated, and $G|T_0$ is strongly distinct.

(iii) Any finite subset of T has a G-separable cover which is contained in T.

Next we shall proceed to the characterization of locally finite outer Galois extensions.

Proposition 1.11. Let $V_A(B)=C$, T a G-separable cover of B, and $\{ (t_i, t_i^*) ; i=1, \ldots, n \}$ a (B, T)-projective coordinate system for T/B, and put $H=G^T$. Then there hold the following.

1. $\sum_i t_i \cdot \sigma(t_i^*) = \delta_{H,a}$ for all σ in G.

2. $T^H = T$, $(G:H) < \infty$, and T/B is a projective Frobenius extension.

3. Let K be a subgroup of G containing H. Then, $\sum t_{K,H}(t_i) \sigma(t_i^*) = \delta_{K,a}$ for all σ in G, T is (B, A^K)-projective, T/A^K is a projective Frobenius extension, and $G|A^K$ is strongly distinct. Further the following are equivalent. (a) $(A^K|T_A^K)$. (b) $(A^K\cap \{ (A^K)_A^K\})|\{ (A^K)_A^K\}$. (c) $t_{K,H}(c)=1$ for some c in T.

Proof. (1) follows from [22; Prop. 1.2], and (2) is obvious by (1) and Prop. 1.4. (3) It will be easily seen that $\sum_t t_{K,H}(t_i) \sigma(t_i^*) = \delta_{K,a}$ for all σ in G. Since $\sum_t y \cdot t_{K,H}(t_i) \otimes t_i^* = \sum_t t_{K,H}(t_i) \otimes t_i^* t$ $(t \in T \otimes B T)$ for t in T, $\sum_t y \cdot t_{K,H}(t_i) \otimes t_i^* = \sum t_{K,H}(t_i) \otimes t_i^* y$ $(y \in A^K \otimes B T)$ for all y in A^K. Hence the mapping $x \rightarrow \sum t_{K,H}(t_i) \otimes t_i^* x$ from T to $A^K \otimes B T$ is an A^K-homomorphism. Since $\sum t_{K,H}(t_i) \otimes t_i^* x = x$, it follows that T is (B, A^K)-projective. Let $\rho|A^K \neq \tau|A^K$ for ρ, τ in G. Then $\tau^{-1} \rho \notin K$, and so $0 = \tau(\sum t_{K,H}(t_i) \tau^{-1} \rho(t_i^*)) = \sum \tau(t_{K,H}(t_i)) \rho(t_i^*)$. Thus, by [22; Prop. 1.1], $\rho|A^K$ and $\tau|A^K$ are strongly distinct. If we set $G=K$ in Prop. 1.4, the remainder follows from Prop. 1.4.

Theorem 1.12. Let $V_A(B)=C$. Then the following statements are equivalent.

(i) A/B is locally finite (outer) G-Galois.

(ii) For any finite subset F of A there is a G-invariant G-separable cover T of F such that $B|T$.

(iii) For any finite subset F of A there is a G-separable cover T of F which satisfies the following: If T_0 is an intermediate ring of T/B such that (a) T is (B, T_0)-projective, (b) T/T_0 is a projective Frobenius extension, (c) $G|T_0$ is strongly distinct, then $T_0 \supseteq T$. (d) $G|T$.

(iv) For any finite subset F of A there is a G-separable cover T of F
which satisfies the following: If T_0 is an intermediate ring of T/B such that (α) T is (B, T_0)-projective, (β) T/T_0 is a projective Frobenius extension, (γ) $G|T_0$ is strongly distinct, (δ) T_0 is a G-invariant fixed subring (with respect to G), then $T_0|T_0$.

Proof. (i) \Rightarrow (ii), (iii) Let $A = \bigcup_{\mu \in A} A^\mu$ be a representation of the locally finite G-Galois extension A/B. Then any finite subset F of A is contained in some A^μ ($\mu \in A$). By [22; Th. 1.5], A^μ is a G-invariant G-separable cover of F such that $p_B|_{\mu} A^\mu$. Let T_0 be an intermediate ring of A^μ/B such that A^μ is (B, T_0)-projective and that $G|T_0$ is strongly distinct. Then, by [22; Th. 2.6], T_0 is a fixed subring of the finite outer G/N-Galois extension A^μ/B, whence $T_0|T_0$ by [22; §2. p. 118]. (ii) \Rightarrow (i) Let F be a finite subset of A, and T a G-invariant G-separable cover of F such that $p_B|_{\mu} T$. If we put $N = G^\mu$, then $A^\mu = T$, $N \cap G$ and $(G:N) < \infty$ (Prop. 1.11). By Prop. 1.11, A^μ/B is a finite G/N-Galois extension. Noting that $(A^\mu)_B$ is finitely generated, A/B is a locally finite G-Galois extension. (iii) \Rightarrow (iv) is trivial. (iv) \Rightarrow (i) Let T_1 be a separable cover of an element x in A. Put $G^\mu = H_1$. Then $\#(G|T_1) < \infty$ implies $(G:H_1) < \infty$ and $\# \{x(a); \sigma \in G\} < \infty$. Thus any finite subset of A is contained in a G-invariant finite subset of A. Let F be a G-invariant finite subset of A, and T a G-separable cover of F as that in (iv), and let $\{(t, t^*_\sigma); i = 1, \ldots, n\}$ be a (B, T)-projective coordinate system of T/B, and $H = G^\mu$. Then, by Prop. 1.11, $A^n = T$, $(G:H) < \infty$, and $\sum_i t_i^* \sigma = \delta_{\mu,\sigma}$ for all σ in G. Set $N = G^\mu$. Then $H \subseteq N \cap G$, and $F \subseteq A^\mu \subseteq A^n = T$. By Prop. 1.11, T is (B, A^μ)-projective, T/A^μ is a projective Frobenius extension, and T/A^μ is strongly distinct. Then, by the assumption for F, $(A^\mu)_B \subseteq T$, so that $t_{N:B}(c) = 1$ for some c in T (Prop. 1.11 (3)). Put $t^*_\sigma = t_{N:B}(t^*_\sigma)$ and $t^*_n = t_{N:B}(t^*_n \sigma)$. Then, t^*_σ, t^*_n is A^μ, and $\sum_i t^*_i \sigma = \delta_{\mu,\sigma}$ for all σ in G (Prop. 1.11 (3)). Further, as is easily seen, $\sum_i t^*_i \sigma = \delta_{\mu,\sigma}$ for all σ in G. Since $p_B|_{\mu} T$ (Prop. 1.11 (3)), we have $p_B|_{\mu} A^\mu$. Thus A^μ/B is a finite G/N-Galois extension. Noting that $(A^\mu)_B$ is finitely generated, we conclude that A/B is a locally finite G-Galois extension.

Proposition 1.13. Let $A^* \supseteq T \supseteq B^*$ be rings such that A^* is (B^*, T^*)-projective, A' an extension ring of B^* such that $V_{A'}(B^*) = V_{A'}(A')$, and f_1, \ldots, f_s B^*-ring homomorphisms from A^* to A' such that $f_i|T$ and $f_k|T$ (i ≠ k) are strongly distinct. If $(B^*)_{B^*} \rightarrow T_{B^*}$, then $(A')_{A'} \rightarrow T_{A'}$.

Proof. Let $\{(t, a^*_i); i = 1, \ldots, n\}$ be a (B^*, T)-projective coordinate system for A^*. Then, by [22; Prop. 1.2], $\sum_i f_h(t_i) f_k(a^*_i) = \delta_{h,k}$ for all h, k. Let ϕ be a A'-right homomorphism from $T \otimes_B A'$ to $(A')_{A'}$ defined by $\phi(t \otimes a') = (f(t) a', \ldots, f(t) a')$. Since $\sum_i f_h(t_i) f_k(a^*_i) = \delta_{h,k}$, ϕ is an epimorphism. $(B^*)_{B^*} \rightarrow T_{B^*}$ implies that $(A')_{A'} \rightarrow T \otimes_B A'. Hence we have $(A')_{A'} \rightarrow (A')_{A'}$.
desired.

Concerning Prop. 1.13, we consider the following condition.
Condition (F): If $\mathcal{A}A^r \rightarrow \mathcal{A}A^s$ for positive integers r, s, then $r \geq s$.

Remark. Let $\mathcal{A}A^r \rightarrow \mathcal{A}A^s$ for positive integers r, s. Then, since $\mathcal{A}A^s$ is projective, $\mathcal{A}A^s$ is isomorphic to an A-direct summand of $\mathcal{A}A^r$.

(1) If $\mathcal{A}A$ is finite dimensional, then $r \cdot \dim \mathcal{A}A \geq s \cdot \dim \mathcal{A}A$, and so $r \geq s$ (cf. [11]).

(2) Assume that there is a proper ideal \mathfrak{U} of A such that $\mathcal{A}A/\mathfrak{U}$ is finite dimensional. Then, since $\mathcal{A}A^r/\mathfrak{U}^r \rightarrow \mathcal{A}A^s/\mathfrak{U}^s$, the above (1) yields $r \geq s$, because $\mathcal{A}A^r/\mathfrak{U}^r \simeq \mathcal{A}(A/\mathfrak{U})^r$ and $\mathcal{A}A^s/\mathfrak{U}^s \simeq \mathcal{A}(A/\mathfrak{U})^s$.

(3) If A is commutative, then $r \geq s$ by (2).

Proposition 1.14. Let $\mathcal{V}_A(B) = C$, and A an indecomposable ring satisfying (F), and let T be an intermediate ring of A/B, and S a subset of A. Then the following are equivalent:

(i) T is a G-separable cover of S.

(ii) $T \supseteq S$, T/B is a separable extension, and T_B is finitely generated.

Proof. (i) \Rightarrow (ii) is evident by Prop. 1.11. (ii) \Rightarrow (i) By [22; Lemma 2.7], A is (B, T)-projective. Then, by Prop. 1.13, we have $\#(G|T) < \infty$, and hence T is a G-separable cover of S.

If A is commutative, then A satisfies (F). Therefore, by Th. 1.12, S. 3 and Prop. 1.14, we have the following

Theorem 1.15 (Nagahara [12]). Let A be an indecomposable commutative ring. Then the following are equivalent.

(i) A/B is locally finite G-Galois.

(ii) For any finite subset F of A there is an intermediate ring T of A/B such that (a) T/B is a separable extension, and T_B is finitely generated, (b) $T \supseteq F$.

Proposition 1.16. Let A/B be locally finite G-Galois, and H a subgroup of G. Then $G|A^H$ is strongly distinct.

Proof. Let σ, τ be in G, and e a central idempotent of A such that $\sigma(x)e = \tau(x)e$ for all x in A^H. Let $A = \bigcup_{\lambda \in \Lambda} A^{N_{\lambda}}$ be a representation of the locally finite G-Galois extension A/B. We may assume that $e \in A^{N_{\lambda}}$ for all λ in Λ. Suppose that $\sigma|A^H \neq \tau|A^H$. Since $A^H = \bigcup_{\lambda \in \Lambda} A^{N_{\lambda}H}$, $\sigma|A^{N_{\mu}H} \neq \tau|A^{N_{\mu}H}$ for some μ in Λ. Then, by [22; Prop. 2.4], $(G/N_{\mu})|A^{N_{\mu}H}$ is strongly distinct. Therefore we have $e = 0$. Thus $G|A^H$ is strongly distinct.

Theorem 1.17. Let A/B be locally finite outer G-Galois, and T an intermediate ring of A/B. Then the following are equivalent.

(i) $T = A^H$ for some subgroup H of G, and A_T is finitely generated.
(ii) $T=A^H$ for some subgroup H of G such that $(H:1)<\infty$.

(iii) A/T is a projective Frobenius extension, $	ext{Hom}(A_T,A_T)\subseteq\Delta$, and $G|T$ is strongly distinct.

When any of the above conditions is satisfied A/A^H is finite H-Galois.

Proof. Let $A=\bigcup_{\mu\in A}A^{N_{\mu}}$ be a representation of the locally finite outer G-Galois extension A/B. (i) \implies (ii) Let $A=x_1T+\cdots+x_rT$. Then $x_1,\ldots,x_r\in A^{N_{\mu}}$ for some $\mu\in A$, so that $A=A^{N_{\mu}}T=A^{N_{\mu}A^H}$. Hence $N_{\mu}\cap H=1$. Since $(G:N_{\mu})<\infty$ we have $(H:1)<\infty$. (ii) \implies (iii) By Prop. 1.3, $H\cap N_{\mu}=1$ for some $\mu \in A$. There are elements $a_1,\ldots,a_n, a_1\cdots,a_n\in A^{N_{\mu}}$ such that $\Sigma_i a_i\cdot (a_i^{\ast}) = \delta_{N_{\mu},\tau}$ for all τ in G. Then $\Sigma_i a_i\cdot (a_i^{\ast}) = \delta_{N_{\mu},\tau}$ for all τ in G. Hence A/A^{H} is H-Galois. Therefore A/A^H is a projective Frobenius extension (cf. [22; p. 121]), and $\text{Hom}(A_T,A_T)\subseteq\Delta_0\subseteq\Delta$. By Prop. 1.16, $G|T$ is strongly distinct. (iii) \implies (i) Let $h=\Sigma_{e\in H}a_{ue}u$ be a Frobenius homomorphism of A/T, where H is a finite subset of G and $u \ne 0$ for all τ in H. Then, since $th=ht$ for all t in T, we have $ta_t=a_\tau t(t)$ for all t in T, in particular, $ba_t=a_t b$ for all b in B. Hence $a_{\tau}e_{V}(A_{B})=C$ for all τ in H. There are elements r_i, l_i in A such that $x=\Sigma_i h(xr_i)l_i=\Sigma_i r_i h(l_i x)$ for all x in A (cf. [27]). Then $u_{e}=\Sigma_i r_i h(\sum r_i)\tau(l_i)\tau(u_{e})=\Sigma_{e\in H}\sum_i r_i a_{e}\tau(l_i)\tau(u_{e})$, and so $1=\Sigma_i r_i a_{e}l_i= a_{1}\Sigma_i r_i l_i$. Thus a_{e} is an invertible element in C, and $a_{1}^{-1}=\Sigma_i r_i l_i$. Since H is finite there is an N_{μ} such that $\tau|A^{N_{\mu}}\neq\rho|A^{N_{\mu}}$ for all τ in H. Since $A^{N_{\mu}}/B$ is finite $G|N_{\mu}$-Galois, there are elements $d_{k}, e_{k} \in A^{N_{\mu}}$ such that $\Sigma_k d_{k}\cdot e_{k}=\delta_{N_{\mu},\tau}$ for all τ in G. Put $\Delta=\text{Hom}(A_T,A_T)$. Then $\Delta=A^{H}A$, and $\Delta=A_{\tau}u_{e}\subseteq\Delta_0=A_{\tau}u_{e}$ for all τ in H. Thus $\Delta=A^{H}A=\Sigma_{e\in H}A\tau u_{e}$. Since A/T is a projective Frobenius extension with Frobenius homomorphism $h_{\tau}: A\otimes_{\tau}A\simeq A\otimes_{\tau}A$ by the correspondence $x\otimes y \mapsto xhy$. Let φ be the A-left homomorphism from A to Δ defined by $\varphi(\Sigma_{e\in H}x_{e}u_{e})=\Sigma_{e\in H}x_{e}a_{e}u_{e}$, and φ be the A-left homomorphism from Δ to Δ defined by $\varphi(xy)=\Sigma_{e\in H}x_{e}h(yr_{e})u_{e}$, where $u=\Sigma_{e\in H}u_{e}$. Then, as $h(tr_{e})a_{e}=h(yr_{e})a_{e}$ ($\tau\in H$), $\varphi=1$. Since $a_{e}u_{e}=\Sigma_{e\in H}r_{e}a_{e}u_{e}$, we have $\varphi(a_{e}u_{e})=\Sigma_{e\in H}\Sigma_{e\in H}\tau(d_{e})h_{\tau}(e_{e}r_{e})u_{e}=\Sigma_{e\in H}a_{e}\tau(l_{e})u_{e}$, and so $\varphi(a_{e}u_{e})=\Sigma_{e\in H}a_{e}\tau(l_{e})u_{e}\tau(l_{e})u_{e}$. On the other hand, $\varphi(a_{e}u_{e})=a_{e}u_{e}$, and hence $a_{e}^{\ast}a_{e}u_{e}=a_{e}a_{e}u_{e}$, for all τ in H. Since $a_{1}^{-1}=\Sigma_i r_i l_i$, we have $a_{e}^{\ast}=a_{e}a_{e}$. Noting that a_{e} is an invertible element of C, $Aa_{e}=Aa_{e}a_{e}=Aa_{e}$, and so $A=Aa_{e}+\text{Ann}_{A}(a_{e})$, where $\text{Ann}_{A}(a_{e})=\{x\in A; xa_{e}=0\}$. If $xa_{e}\in \text{Ann}_{A}(a_{e})$, then $0=xa_{e}^{\ast}=xa_{e}a_{e}^{\ast}a_{e}$, so that $xa_{e}=0$. Thus $A=Aa_{e}+\text{Ann}_{A}(a_{e})$. Therefore Aa_{e} is written as A_{g}, with a central idempotent g. Since $Aa_{e}, u_{e}\subseteq\Delta$, we have $g_{u_{e}}u_{e}\in\Delta_{0}$, and so $g_{u_{e}}u_{e}=g_{u_{e}}u_{e}t$ for all t in T. Consequently, $\Delta_{0}=\Sigma_{e\in H}Aa_{e}$, and $H=Ga_{e}$. Hence $\text{End}_{A}(A_{T})=A^{H}A$, the right multiplications of elements of A. Since $a_{e}u_{e}\in \Delta_{0}=\text{End}(A_{T})$, we have $a_{e}u_{e}\in \text{End}(A_{(H,u_{e})})$. Noting that a_{e} is in C, we
can easily seen that \(a_\tau u_\tau \in \text{Hom}(A^{(\lambda H)}, A^{(\lambda H)}) \). Thus \(h = \sum_{\tau \in H} a_\tau u_\tau \in \text{Hom}(A^{(\lambda H)}A^{(\lambda H)}, A^{(\lambda H)}A^{(\lambda H)}) \). Then, by [27; Cor. 1], \(A/A^H \) is also a projective Frobenius extension with a Frobenius homomorphism \(h \). Since \((H:1) < \infty \), there is an \(N_i \) such that \(H \cap N_i = 1 \) (Prop. 1.3 (2)). Then \(A^{H i} \subseteq A^{N_i} \), and \(H \cong H N_i / N_i \) canonically. Therefore there is an element \(c \) in \(A^{N_i} \) such that \(t_H(c) = 1 \) (cf. [22; §2. p. 118]), which implies \((A^{H})^{(\lambda H_i)} / A^{(\lambda H)} \), because the \(A^H \)-right homomorphism \(x \rightarrow t_H(cx) \) (\(x \in A \)) from \(A \) to \(A^H \) splits. Therefore there is an element \(d \) in \(A \) such that \(h(d) = 1 \). Then, for any \(x \) in \(A^H \), \(T \ni h(dx) = h(d)x = x \). Thus we obtain \(T = A^H \), as desired.

Theorem 1.18. Let \(A/B \) be finite outer \(G \)-Galois, and \(T \) an intermediate ring of \(A/B \). Then the following are equivalent.

(i) \(T = A^H \) for some subgroup \(H \) of \(G \).

(ii) \(A/T \) is a projective Frobenius extension, and \(G|T \) is strongly distinct.

(iii) \(T/B \) is a separable extension, and \(G|T \) is strongly distinct.

Proof. (i) \(\iff \) (ii) is evident from Th. 1.17. (i) \(\implies \) (iii) follows from [22; Th. 2.6] and [19; Prop. 3.4]. (iii) \(\implies \) (i) follows from [22; Th. 2.6 and Lemma 2.7].

§ 2. Heredity of locally finite Galois extensions.

Let \(A_0 \) be a \(G^* \)-invariant subring of \(A \) such that the mapping \(\sigma \rightarrow \sigma|A_0 \) (\(\sigma \in G^* \)) is one-to-one and such that \(A_0/A_0^\sigma \) is a locally finite \(G \)-Galois extension, and let \(G^* \) be compact (as an automorphism group of \(A \)). Put \(B_0 = A_0^\sigma \), and let \(A_0 = \bigcup_{\lambda \in A} A_0^N \) be a representation of the locally finite \(G \)-Galois extension \(A_0/B_0 \). Then \(G/N_\lambda \) may be considered as a finite group of automorphisms of \(A^{N_\lambda} \). And, by [22; Th. 5.1 and §2. p. 118], \(A^{N_\lambda} = A_0^{N_\lambda} \otimes_{B_0} B, A^{N_\lambda}/B \) is finite \(G/\bigcup_{\lambda \in A} A^{N_\lambda} \). Since \(\bigcup_{\lambda \in A} A^{N_\lambda} \) is a directed union, the compactness of \(G^* \) implies that \(\bigcup_{\lambda \in A} A^{N_\lambda}(\bigcup_{\lambda \in A} A_0) \) is a fixed subring of \(A \) with respect to \(G^* \) (Prop. 1.1), so that \(A = \bigcup_{\lambda \in A} A^{N_\lambda} \), because \(\sigma \rightarrow \sigma|A_0 \) (\(\sigma \in G^* \)) is 1–1. Thus \(A/B \) is locally finite \(G \)-Galois. Let \(H \) be any subgroup of \(G \). Then, \(A^H = \bigcup_{\lambda \in A} (A^{H \cap A^{N_\lambda}}) = \bigcup_{\lambda \in A} A^{H \cap A^{N_\lambda}} \). By [22; Th. 5.1], \(A^{N_\lambda} = (A^N)^{H \cap A^{N_\lambda}} \otimes_{B_0} B = A_0^{H \cap A^{N_\lambda}} \otimes_{B_0} B \). Hence \(A^H = \bigcup_{\lambda \in A} (A_0^{H \cap A^{N_\lambda}}) \cdot B = A_0^{H \cap A^{N_\lambda}} \otimes_{B_0} B \). And \(A^H \otimes_{B_0} B \rightarrow A^H \otimes_{B_0} B \rightarrow A^H \), we know \(A^H = A_0^H \otimes_{B_0} B \). Symmetrically we obtain \(A^H = B \otimes_{B_0} A_0^H \). Next we consider the set of all \(A_0 \)-left submodules of \(A \) and the set of all \(B_0 \)-left submodules of \(B \). Let \(\overline{X} \) be any \(A_0 \)-left submodule of \(A \). Then \(\overline{X} \cap A^{N_\lambda} \) is an \(A_0^{N_\lambda}(G/\bigcup_{\lambda \in A} A^{N_\lambda}) \)-left submodule of \(A^{N_\lambda} \). Therefore, by [22; Th. 5.1], we have \(\overline{X} \cap A^{N_\lambda} = A_0^{N_\lambda}(\overline{X} \cap A^{N_\lambda}) \cap B = A_0^{N_\lambda} \otimes_{B_0} (\overline{X} \cap B) \), so that \(\overline{X} = \bigcup_{\lambda \in A} (\overline{X} \cap A^{N_\lambda}) = \bigcup_{\lambda \in A} (A_0^{N_\lambda}(\overline{X} \cap B)) = A_0(\overline{X} \cap B) \). Since \(A_0^{N_\lambda} \otimes_{B_0} (\overline{X} \cap B) \cong A_0^{N_\lambda}(\overline{X} \cap B) \).
of $\exists = A_0 \otimes_{B_0} (X \cap B)$ for all λ, we have $\exists = A_0 \otimes_{B_0} (X \cap B)$. Evidently $X \cap B$ is a B_0-left submodule of B. Let X be any B_0-left submodule of B. Then, as is easily seen, $A_0 X$ is an $A_0 G$-left submodule of A, and $A_0 X = \cup_1 A_0^{N \lambda} X$. By [22; Th. 5.1], $A_0^{N \lambda} X \cap B = X$ for all λ in Λ, so that $A_0 X \cap B = \cup_1 (A_0^{N \lambda} X \cap B) = X$. If \overline{Y} is a G-invariant intermediate ring of A/A_0, then $\overline{Y} \cap B$ is an intermediate ring of B/B_0, and $\overline{Y} = A_0 (\overline{Y} \cap B)$. Symmetrically we have $\overline{Y} = (\overline{Y} \cap B) A_0$. If Y is an intermediate ring of B/B_0 such that $A_0 Y = Y A_0$, then $A_0 Y$ is a G-invariant intermediate ring of A/A_0. Since $A = \cup_1 A^{N \lambda}$, we have $\overline{Y} = \cup_1 (\overline{Y} \cap A^{N \lambda}) = \cup_1 \overline{Y}^{N \lambda}$, and $\overline{Y}^{N \lambda} (\overline{Y} \cap B)$ is finite G/N_{λ}-Galois ([22; Th. 5.1]. Hence $\overline{Y} (\overline{Y} \cap B)$ is locally finite G-Galois. Thus we have obtained the following.

Theorem 2.1. Let A_0 be a G^*-invariant subring of A such that $\sigma \rightarrow \sigma | A_0$ ($\sigma \in G^*$) is 1-1 and such that A_0/B_0 is locally finite G-Galois where $B_0 = A_0^G$, and let G^* be compact. Then there hold the following:

1. A/B is locally finite G-Galois.
2. $A^H = B \otimes_{B_0} A_0^H = A_0^H \otimes_{B_0} B$ for any subgroup H of G. In particular, $A = B \otimes_{B_0} A_0 = A_0 \otimes_{B_0} B$.
3. Let $\{X\}$ and $\{X\}$ be the set of all $A_0 G$-left submodules of A and the set of all B_0-left submodules of B, respectively. Then, $X \rightarrow X \cap B$ and $X \rightarrow A_0 X = A_0 \otimes_{B_0} X$ are mutually converse order isomorphisms between $\{X\}$ and X.
4. Let $\{\overline{Y}\}$ and $\{Y\}$ be the set of all G-invariant intermediate rings of A/A_0 and the set of all intermediate rings of B/B_0 such that $A_0 Y = Y A_0$, respectively. Then $\overline{Y} (\overline{Y} \cap B)$ is locally finite G-Galois, and $\overline{Y} \rightarrow \overline{Y} \cap B$ and $Y \rightarrow A_0 Y = Y A_0$ are mutually converse order isomorphisms between $\{\overline{Y}\}$ and $\{Y\}$.

Let A', A' be R-algebras such that $A \otimes_{R} A' \neq 0$. Assume that A/B is a locally finite G-Galois extension such that $R \cdot 1 \subseteq B$, and assume that A' is a locally finite G'-Galois extension such that $R \cdot 1 \subseteq B'$. Then each $\sigma \times \tau$ in $G \times G'$ induces an automorphism of $A \otimes_{R} A'$. Let $A = \cup_\sigma A^{N \sigma}$ and $A' = \cup_\beta A'^{N \beta}$ be representations of A/B and A'/B' respectively. Then, by [22; Th. 5.2], $A^{N \sigma} \otimes_{R} A'^{N \beta} (B \otimes B')$ is a finite $(G/N_{\sigma}) \times (G'/N_{\beta})$-Galois extension. Let $\varphi_{\alpha \beta}$ be the canonical R-algebra homomorphism from $A^{N \sigma} \otimes_{R} A'^{N \beta}$ to $A^{N_{\alpha \beta}} \otimes_{R} A'^{N_{\beta \alpha}}$ ($\subseteq A \otimes_{R} A'$). We put $(A \otimes_{R} A') \supseteq A^{N \sigma} \otimes_{R} A'^{N \beta} = A_{\alpha \beta}$ and $(A \otimes_{R} A') \supseteq B \otimes B' = B^*$. To be easily seen, Ker $\varphi_{\alpha \beta}$ is a $(G/N_{\alpha}) \times (G'/N'_{\beta})$-invariant ideal of $A^{N \sigma} \otimes_{R} A'^{N \beta}$. Hence $A_{\alpha \beta}/B^*$ is $(G/N_{\alpha}) \times (G'/N'_{\beta})$-Galois ([22; Th. 5.6]). There are elements c and c' in $A^{N \sigma}$ and $A'^{N \beta}$ respectively such that $t_{\alpha \beta}(c) = 1$ and $t_{\beta \alpha}(c') = 1$. Then $c \otimes c' \in A_{\alpha \beta}$ and $t_{(\alpha /N_{\alpha}) \times (\beta /N'_{\beta})} (c \otimes c') = 1 \otimes 1$. Hence $A_{\alpha \beta}/B^*$ is a finite $(G/N_{\alpha}) \times (G'/N'_{\beta})$-Galois extension, and $\{\sigma \times \tau \in G \times G'; \sigma \times \tau | A_{\alpha \beta} = 1_{A_{\alpha \beta}}\} = N_{\alpha} \times N'_{\beta}$. Since $\cap_{\alpha \beta} (N_{\alpha} \times N'_{\beta}) = (\cap_{\alpha} N_{\alpha}) \times (\cap_{\beta} N'_{\beta}) = 1$, $G \times G'$ may be considered
as a group of automorphisms of \(A \otimes_{R} A'\). Let \(H\) and \(H'\) be subgroups of \(G\) and \(G'\), respectively. Then, \((A \otimes_{R} A')^{H \times H'} = \bigcup_{\alpha, \beta} A_{\alpha \beta}^{H \times H'} = \bigcup_{\alpha} A_{\alpha}^{H} \otimes A_{\beta}^{H'} = (\bigcup_{\alpha} A_{\alpha}^{H'}) \otimes (\bigcup_{\beta} A_{\beta}^{H'}) = A^{H} \otimes A^{H'}\) by [22; Th. 5.2]. In particular, \((A \otimes_{R} A')^{N_{\alpha} \times N_{\beta}} = A_{\alpha \beta}^{N_{\alpha} \times N_{\beta}}\) and we have \((G \times G')^{N_{\alpha} \times N_{\beta}} < \infty\). Since \(A \otimes_{R} A' = \bigcup_{\alpha, \beta} A_{\alpha \beta}^{N_{\alpha} \times N_{\beta}}\) is a directed union, \(A \otimes_{R} A'/B \otimes B'\) is a locally finite \(G \times G'\)-Galois extension. Let \(a \in A\) and \(a' \in A'\). Then it is evident that \(\{\sigma \times \tau \in G \times G' \mid \sigma(a) \otimes \tau(a') = a \otimes a'\} \supseteq \{\sigma \in G \mid \sigma(a) = a\} \times \{\tau \in G' \mid \tau(a') = a'\}\). Put \(\{\sigma \in G \mid \sigma(a) = a\} = K\) and \(\{\tau \in G' \mid \tau(a') = a'\} = K'\). Then \(A^{K} \subseteq A_{\alpha}^{N_{\alpha}}\) and \(A^{K'} \subseteq A_{\alpha}^{N_{\beta}}\) for some \(\alpha, \beta\) (Prop. 1.3), so that \(N_{\alpha} \subseteq K\) and \(N_{\beta} \subseteq K'\). By [22; Th. 5.2], \((G/N_{\alpha} \times G'/N_{\beta})^{A^{K} \otimes A^{K'}} = K/(N_{\alpha} \times K'/N_{\beta})\), and hence \((G \times G')^{A^{K} \otimes A^{K'}} = K \times K'\). Since \((A^{K})_{B}\) and \((A^{K'})_{B}\) are finitely generated, \((A^{K} \otimes A^{K'})_{B} = A^{K} \otimes A^{K'}\) is finitely generated. Hence the finite topology of \(G \times G'\) with respect to \(A \otimes_{R} A'\) is the product topology of the finite topology of \(G\) with respect to \(A\) and the finite topology of \(G'\) with respect to \(A'\). Thus we have proved the following

Theorem 2.2. Let \(A\) and \(A'\) be \(R\)-algebras such that \(A \otimes_{R} A' \neq 0\). If \(A/B\) is a locally finite \(G\)-Galois extension such that \(R \cdot 1 \subseteq B\), and \(A'/B'\) is a locally finite \(G'\)-Galois extension such that \(R \cdot 1 \subseteq B'\), then \((A \otimes_{R} A')/(B \otimes B')\) is a locally finite \(G \times G'\)-Galois extension, and \((A \otimes_{R} A')^{H \times H'} = A^{H} \otimes A^{H'}\) for any subgroup \(H\) of \(G\) and any subgroup \(H'\) of \(G'\). The finite topology of \(G \times G'\) with respect to \(A \otimes_{R} A'\) is the product topology of the finite topology of \(G\) with respect to \(A\) and the finite topology of \(G'\) with respect to \(A'\).

Corollary. Let \(A/B\) be a locally finite \(G\)-Galois extension such that \(B \subseteq C\), and \(A'\) a \(B\)-algebra such that \(A \otimes_{B} A' \neq 0\). Then \((A \otimes_{B} A')/(1 \otimes A')\) is a locally finite \(G\)-Galois extension, and \((A \otimes_{B} A')^{H} = A^{H} \otimes A'\) for any subgroup \(H\) of \(G\).

Proposition 2.3. Let \(A/B\) be locally finite \(G\)-Galois, and \(G = G^{*}\). If \(H\) and \(K\) are closed subgroups of \(G\), then \(A^{H} \cap K = A^{H} \cdot A^{K} = A^{K} \cdot A^{H}\) in particular, if \(H \cap K = 1\) then \(A = A^{H} \cdot A^{K} = A^{K} \cdot A^{H}\).

Proof. Let \(A = \bigcup_{\mu} A_{\mu}^{N_{\mu}}\) be a representation of the locally finite \(G\)-Galois extension \(A/B\). First we assume that \((G : K) < \infty\). Then, by Prop. 1.3, \(A^{K} \subseteq A_{\mu}^{N_{\mu}}\) for some \(\mu \in \Lambda\). Since \((A^{N_{\mu}})_{B}\) is finitely generated and \((A^{K})_{A_{\mu}}^{K}\) is a direct summand of \((A^{N_{\mu}})_{A_{\mu}}^{K}\) ([22; §2. p. 118]), \((A^{K})_{B}\) is finitely generated. Therefore we may assume that \(A^{K} \subseteq A_{\mu}^{N_{\mu}}\) for all \(\lambda \in \Lambda\). Then \(N_{\mu} \subseteq K\) for \(\lambda \in \Lambda\), and \(A^{H} \cdot A^{K} = (\bigcup_{\mu} A_{\mu}^{N_{\mu}})(\bigcup_{\mu} A_{\mu}^{N_{\mu} K}) = \bigcup_{\mu} A_{\mu}^{N_{\mu} H \cap N_{\mu} K} = \bigcup_{\mu} A_{\mu}^{N_{\mu} H \cap K}\) by [22; Prop. 5.3]. Since \(N_{\mu} \cap H = N_{\mu} \cap K\) for all \(\lambda\), we have \(A^{H} \cdot A^{K} = \bigcup_{\mu} A_{\mu}^{N_{\mu} H \cap K} = A^{H} \cap K\). Next we return to general case. For any finite subset \(F\) of \(A^{K}\), we put \(K_{F} = \{\sigma \in G \mid \sigma[F = 1_{F}]\}\). Then \((G : K_{F}) < \infty\), \(A^{K_{F}} \subseteq A^{K}\), and \((A^{K_{F}})_{B}\) is finitely generated. Therefore \(A^{K} = \bigcup_{F} A^{K_{F}}\) is a directed union, and
hence $A^{H}A^{K} = A^{H}(\cup_{\gamma}A^{K_{\gamma}}) = \cup_{\gamma}A^{H}A^{K_{\gamma}}$ is also a directed union. Since each $A^{H}A^{K_{\gamma}} = A^{H}(\cup_{\gamma}A^{K_{\gamma}})$ is a fixed subring of A, $A^{H}A^{K}$ is a fixed subring of A (Prop. 1.1). Hence, as is easily seen, $A^{H}A^{K} = A^{H\cap K}$. Symmetrically we have $A^{H\cap K} = A^{K}A^{H}$.

Corollary. Let A/B be locally finite G-Galois, $G = G^{*}$, and $H, (r \in \Gamma)$ be closed subgroups of G. Then, $[\cup_{r}A^{H_{r}}] = A^{H}$, where $[\cup_{r}A^{H_{r}}]$ means the subring of A generated by $\cup_{r}A^{H_{r}}$.

Proof. Evidently $[\cup_{r}A^{H_{r}}] = \cup[A^{H_{r_{1}}} \cup \cdots \cup A^{H_{r_{n}}}]$, where $\{r_{1}, \ldots, r_{n}\}$ ranges over all finite subsets of Γ. By Prop. 2.3, $A^{H_{r_{1}\cap\cdots\cap H_{r_{n}}} = A^{H_{r_{1}}} \cdots A^{H_{r_{n}}} = [A^{H_{1}} \cdots \cup A^{H_{n}}]}$, and therefore $[\cup_{r}A^{H_{r}}]$ is a directed union of fixed subrings of A. Hence, by Prop. 1.1, $[\cup_{r}A^{H_{r}}]$ is a fixed subring. Since $\{\sigma \in G; \sigma|[\cup_{r}A^{H_{r}}] = 1\} = \cap_{r}H_{r}$, we obtain $[\cup_{r}A^{H_{r}}] = A^{H_{r}}$, as desired.

Proposition 2.4. Let A/B be locally finite G-Galois, \mathfrak{A} a G-invariant proper ideal of A, K a closed subgroup of G, and N a closed normal subgroup of G such that $(G:N) < \infty$. Then there hold the following:

1. $A^{N\cap K}/A^{K}$ is finite $K/(K\cap N)$-Galois. In particular, A^{N}/B is finite G/N-Galois.

2. $(A^{N} + \mathfrak{A})/(B + \mathfrak{A})/\mathfrak{A}$ is finite G/N-Galois, and $((A^{N} + \mathfrak{A})/\mathfrak{A})^{H} = (A^{N}/B + \mathfrak{A})/\mathfrak{A}$ for any subgroup H of G.

Proof. Let $A = \cup_{\mu}A^{N_{\mu}}$ be a representation of the locally finite G-Galois extension A/B. (1) By Prop. 1.3, $A^{N} \subseteq A^{N_{\mu}}$ for some $\mu \in \Lambda$, and then $N_{\mu} \subseteq N$, $A^{N} = (A^{N_{\mu}})^{N/N_{\mu}}$. Therefore, by [22; Prop. 5.7], A^{N}/B is finite $(G/N)/(N/N_{\mu})$-Galois, or equivalently, finite G/N-Galois. Accordingly, A^{N}/A^{NK} is finite $N/(KN)$-Galois, or equivalently, finite $K/(K\cap N)$-Galois. $K/(K\cap N)$ may be considered as a finite group of automorphisms of A^{N}, because $K\cap N < K$. Then $A^{N\cap K}/A^{K}$ is finite $K/(K\cap N)$-Galois. (2) By (1), A^{N}/B is finite G/N-Galois. If $t_{\lambda}/N(c) = 1$ for c in A^{N}, then $t_{\lambda}/N(c + \mathfrak{A}) = 1 + \mathfrak{A}$. Then, by [22; Th. 5.6], $((A^{N} + \mathfrak{A})/\mathfrak{A})/(B + \mathfrak{A})/\mathfrak{A}$ is finite G/N-Galois, and $((A^{N} + \mathfrak{A})/\mathfrak{A})^{H} = (A^{N}/B + \mathfrak{A})/\mathfrak{A}$ for any subgroup H of G.

Let A/B be locally finite G-Galois, K a closed subgroup of G, N a closed normal subgroup of G, and \mathfrak{A} a G-invariant proper ideal of A. Let $A = \cup_{\mu}A^{N_{\mu}}$ be a representation of the locally finite G-Galois extension A/B. Then $A^{N} = \cup_{\mu}(A^{N} \cap A^{N_{\mu}}) = \cup_{\mu}A^{NN_{\mu}}$ is a directed union, and each NN_{μ} is a closed normal subgroup of G, because $(G:N) < \infty$. Then, by Prop. 2.4 (1), A^{NN} is finite G/NN-Galois. Therefore there are elements $a_{1}, \ldots, a_{m}; b_{1}, \ldots, b_{m}$ in A^{NN} such that $\sum_{i=1}^{m}a_{i}\sigma(b_{i}) = 0_{NN}$ for σ in G. Hence A^{NN}/B is finite $(G/N)/(NN)/N$-Galois. Hence A^{N}/B is locally finite G/N-Galois. Next we consider K. $A = \cup_{\mu}A^{N_{\mu}\cap K}$ is a directed union, and each $N_{\mu}\cap K$ is a fixed
normal subgroup of K such that $(K : N_{i} \cap K) < \infty$. By Prop. 2.4 (1), each $A^{N_{i} \cap K}/A^{K}$ is finite $K/(N_{i} \cap K)$-Galois. Hence A/A^{K} is locally finite K-Galois. Finally we consider \mathfrak{U}. Evidently, $A/\mathfrak{U} = \bigcup_{\lambda}((A^{N_{i}} + \mathfrak{U})/\mathfrak{U})$. By Prop. 2.4 (2), $((A^{N_{i}} + \mathfrak{U})/\mathfrak{U})/((B + \mathfrak{U})/\mathfrak{U})$ is finite G/N_{i}-Galois, and $((A^{N_{i}} + \mathfrak{U})/\mathfrak{U})^{H} = (A^{N_{i} \cap K}/\mathfrak{U})/((B + \mathfrak{U})/\mathfrak{U})$ for any subgroup H of G. Therefore $(A/\mathfrak{U})^{H} = \bigcup_{\lambda}((A^{N_{i}} + \mathfrak{U})/\mathfrak{U})^{H} = \bigcup_{\lambda}((A^{N_{i} \cap K}/\mathfrak{U})/((B + \mathfrak{U})/\mathfrak{U})$ is locally finite G-Galois. Thus we have proved the following

Theorem 2.5. Let A/B be locally finite G-Galois, N a closed normal subgroup of G, K a closed subgroup of G, and \mathfrak{U} a G-invariant proper ideal of A. Then there hold the following:

1. A^{N}/B is locally finite G/N-Galois.
2. A/A^{K} is locally finite K-Galois.
3. $((A + \mathfrak{U})/\mathfrak{U})/((B + \mathfrak{U})/\mathfrak{U})$ is locally finite G-Galois, and $((A + \mathfrak{U})/\mathfrak{U})^{H} = (A^{H} + \mathfrak{U})/\mathfrak{U}$ for any subgroup H of G.

Corollary. Let A/B be locally finite G-Galois, and e a non-zero idempotent in $B \cap C$. Then Ae/Be is locally finite G-Galois, and $(Ae)^{H} = A^{H}e$ for any subgroup H of G.

Let A/B be locally finite G-Galois, n a positive integer, and J the ring of rational integers. Then, $(J)_{n}$ is a J-algebra, and $(J)_{n} \otimes_{J}A \simeq (A)_{n}$. If we define $\sigma((a_{ik})) = (\sigma(a_{ik}))$ for any σ in G and any (a_{ik}) in $(J)_{n}$, then $(J)_{n}/((B)_{n}$ is locally finite G-Galois. $((A)_{n})^{H} = (A^{H})_{n}$ for any subgroup H of G (Th. 2.2). Now, let $\{e_{ik} ; i, k = 1, \cdots, m\}$ a system of matrix units contained in B, and $A = \bigcup_{i \in I} A^{N_{i}}$ a representation of A/B. Put $A_{0} = V_{\mathfrak{A}}(\{e_{ik}\})$ and $B_{0} = B \cap A_{0}$. Then, as is well known, $A = \bigcup_{i \in I} A^{N_{i}}$, $A_{0} \simeq A_{0}e_{ik}$ by the right multiplication of e_{ik}. To be easily seen, $A^{N_{i}} = \bigcup_{i \in I} A_{0}e_{ik}^{i}$, and $A_{0}^{N_{i}} = V(A^{N_{i}}(\{e_{ik}\})$. There is an element c in $A^{N_{i}}$ such that $t_{\theta;N_{i}}(x_{i}) = 1$. Let $c = \sum_{i \in I} x_{i}e_{ik}$ ($x_{i} \in A_{0}^{N_{i}}$). Then $1 = t_{\theta;N_{i}}(x_{i}) = \sum_{i \in I} x_{i}e_{ik} \in A_{0}^{N_{i}}$. For any positive integer n, $(A)_{n}/((B)_{n}$ is locally finite G-Galois, and $(A)_{n}^{H} = (A^{H})_{n}$ for any subgroup H of G.

Theorem 2.6. Let A/B be locally finite G-Galois.

1. For any positive integer n, $(A)_{n}/((B)_{n}$ is locally finite G-Galois, and $(A)_{n}^{H} = (A^{H})_{n}$ for any subgroup H of G.
2. If $\{e_{ik}; i, k = 1, \cdots, m\}$ is a system of matrix units contained in B, $A_{0} = V_{\mathfrak{A}}(\{e_{ik}\})$, and $B_{0} = B \cap A_{0}$, then A_{0}/B_{0} is locally finite G-Galois, and $A = A_{0} \otimes_{B_{0}}B$. Thus we have obtained the following

Let A/B be finite G-Galois, and M a Δ-left module. For any subgroup H of G, we put $M^{H} = \{m \in M; u_{m}m = m \text{ for all } \tau \in H\}$, which is an A^{H}.
submodule of M. Evidently $M^H \supseteq A^H \cdot M^g$, and the mapping $\varphi : A^H \otimes_B M^g \to M^H$ defined by $a \otimes m \to am$ ($a \in A$, $m \in M^g$) is an A^H-left homomorphism. By assumption there are elements $a_1, \ldots, a_n; a_1^*, \ldots, a_n^*$ in A such that $\sum_{i} a_i^* \cdot \sigma (a_i^*) = \delta_{i, \sigma}$ ($\sigma \in G$), $t_H(d) = 1$. Put $t_\iota = t_H(a_\iota)$. Then, $t_\iota \in A^H$ and $\sum_{i} t_\iota \cdot \sigma (a_i^*) = \delta_{H, \iota}$ for ι in G. If m is in M^g, then $A^H : \cdot M^g \ni t_\iota \sum_{\iota \in G} u_\iota (a_\iota^* dm) = \sum_{\iota} t_\iota \sum_{\iota \in G} \sigma (a_\iota^* d) u_m = t_H(d) m = m$. Hence φ is an epimorphism. If $a \in A^H$ and $m_0 \in M^g$, then $\sum_{\iota} t_\iota \otimes \sum_{\iota \in G} u_\iota (a_\iota^* dm_0) = \sum_{\iota} t_\iota \otimes \sum_{\iota \in G} \sigma (a_\iota^* da) m_0 = \sum_{\iota} t_\iota \sum_{\iota \in G} \sigma (a_\iota^* da) \otimes m_0 = a \otimes m_0$. From this fact, as is easily seen, φ is 1-1. Thus we have $M^H = A^H \otimes_B M^g$. Next we proceed to more general case.

Let A/B be locally finite G-Galois, $A = \bigcup_{\iota \in I} A^{N_\iota}$ its representation, and M a Δ-left module. Let $G = \sigma_1 N_1 \cup \cdots \cup \sigma_r N_r$ be the coset decomposition of G, and let A_ι be the trivial crossed product of A^{N_ι} with G/N_ι: $A_\iota = \Delta_{\iota} \subseteq A^{N_\iota}$, $\Delta_{\iota} \subseteq \Delta_{\iota} = \{a \in G; u_{\sigma} m = m \}$, for any m in M^{N_ι}, and any $\sum a_i v_{\iota a_i} = \sum a_i v_{\iota a_i}$ in A_ι. Since A^{N_ι} is a Δ-left module, we have $M^{N_\iota} = A^{N_\iota} \otimes_B M^g$ and $M^{N_\iota, H} = A^{N_\iota H} \otimes_B M^g$ for any subgroup H of G. Since $A = \bigcup_{\iota \in I} A^{N_\iota}$ is a directed union, so is $\bigcup_{\iota \in I} M^{N_\iota}$. For any subgroup H of G, $(\bigcup_{\iota \in I} M^{N_\iota})^g = \bigcup_{\iota \in I} M^{N_\iota, H} = \bigcup_{\iota \in I} A^{N_\iota H} \cdot M^g = A^H \cdot M^g$, and $A^{N_\iota H} \otimes_B M^g \cong A^{N_\iota H} \cdot M^g$ canonically. The last isomorphism may be considered as $A^{N_\iota H} \otimes_B M^g \to A^H \otimes_B M^g \to A^H : \cdot M^g$, and hence we see that $(\bigcup_{\iota \in I} M^{N_\iota})^g = A^H \otimes_B M^g$. For any m in M we put $H_m = \{a \in G; u_m m = m \}$, which is a subgroup of G. Assume that $(G: H_m) < \infty$ and that H_m is closed in G. Then, by Prop. 1.3, $H_m \supseteq N_\iota$, for some $\iota \in I$, so that $m \in M^{N_\iota}$. Conversely, if m is in $\bigcup_{\iota \in I} M^{N_\iota}$, then $m \in M^{N_\iota}$ for some N_ι, so that $H_m \supseteq N_\iota$. Then, since $(G: N_\iota) < \infty$ and N_ι is closed in G, $(G: H_m) < \infty$ and H_m is closed in G. Thus we have proved the following

Theorem 2.7. Let A/B be locally finite G-Galois, and M a Δ-left module. Then there hold the following:

1. $A \cdot M^g$ is a Δ-submodule of M, and $(A \cdot M^g)^g = A^H \otimes_B M^g$ for any subgroup H of G.
2. $A \cdot M^g = \{m \in M; (G: H_m) < \infty \text{ and } H_m \text{ is closed in } G \}$, where $H_m = \{a \in G; u_m m = m \}$.

Corollary. Let A/B be finite G-Galois, and M a Δ-left module. Then, $M^H = A^H \otimes_B M^g$ for any subgroup H of G, in particular, $M = A \otimes_B M^g$ (cf. [4; Th. 1.3] and [22; Th. 5.1 (2)]).

Proposition 2.8. Let A/B be finite G-Galois. Then the following are equivalent.

1. There are elements $a_1, \ldots, a_n; a_1^*, \ldots, a_n^*$ in $V_A(B)$ such that $\sum a_i^* \cdot \sigma (a_i^*) = \delta_{i, \sigma}$ ($\sigma \in G$) (cf. [22; Cor. to Th. 5.1]).
Locally Finite Outer Galois Theory

(ii) $\nu A_B\|\nu B_B$.

Proof. Since $(A \supseteq) (\sum_\sigma u_\sigma) A \simeq \text{Hom}(A_B, B_B)$ by j, it follows that $(\sum_\sigma u_\sigma) V_A(B) \simeq \text{Hom}(\nu A_B, \nu B_B)$, and it is evident that $V_A(B) \simeq \text{Hom}(\nu B_B, \nu A_B)$ canonically. To be easily seen, $\nu A_B\|\nu B_B$ if and only if there are elements f_1, \ldots, f_n in $\text{Hom}(\nu A_B, \nu B_B)$ and g_1, \ldots, g_n in $\text{Hom}(\nu B_B, \nu A_B)$ such that $\sum g_i f_i(x) = x$ for all x in A. Consequently (ii) is equivalent to that $u_i = \sum a_i (\sum_\sigma u_\sigma) a_i^*$ ($= \sum a_i^* \sigma(a_i^*) u_\sigma$) for some a_1, \ldots, a_n; a_1^*, \ldots, a_n^* in $V_A(B)$. Hence (i) and (ii) are equivalent.

Corollary. Let G be finite. Then the following are equivalent.

(i) A/B is outer G-Galois, and $\nu A_B\|\nu B_B$.

(ii) There are elements a_1, \ldots, a_n; a_1^*, \ldots, a_n^* in C such that $\sum a_i^* \sigma(a_i^*) = \delta_{1,\sigma}$ ($\sigma \in G$).

Proof. This follows from [22; Prop. 6.4 and Prop. 6.5] and Prop. 2.8. A/B is called a completely outer G-Galois extension if G is finite and completely outer (cf. [22]).

Theorem 2.9. Let B' be a ring with identity, Z its center, and G' a finite group.

(i) If A'/B' is completely outer G'-Galois and $\nu A'/B'|\nu B '|$ then $A' = B' \otimes_{Z} C'$, where C' is the center of A', and C'/Z is G'-Galois.

(ii) If C'/Z is G'-Galois and C' is commutative, then $A' = B' \otimes_{Z} C'$ is a completely outer G'-Galois extension over B', $\nu A'/B'|\nu B'$. and $1 \otimes C'$ is the center of A'.

Proof. (1) By [22; Prop. 6.4], A'/B' is outer G'-Galois and $V_{A'}(B') = C'$, where C' is the center of A'. Then, by Cor. to Prop. 2.8 and [22; Th. 5.1], C'/Z is G'-Galois and $A' = B' \otimes_{Z} C'$. (2) By [22; Th. 5.2 and Prop. 6.5], $A'/(B' \otimes 1)$ is completely outer G'-Galois. Since Z is a direct summand of $\otimes C'$, $B' \simeq B' \otimes 1$ canonically, and $\nu A'/B'|\nu B'$, because Z is G'-Galois. Then, by Cor. to Prop. 2.8, C'/Z is G'-Galois, where C' is the center of A'. Since $C' \supseteq 1 \otimes C' \supseteq Z$ and $(1 \otimes C')/Z$ is G'-Galois ([22; Th. 5.1 or Th. 5.6]), we have $C' = Z \cdot (1 \otimes C') = 1 \otimes C'$ ([22; Th. 5.1]).

Lemma 2.10. Let T be a ring, and U a subring of T.

(1) Let T/U be a separable extension. If a T-left module M is U-projective, then M is T-projective.

(2) If $\tau T \otimes_{\nu} T' \tau T$ and $\tau U \nu M$ for a T-left module M, then $\tau T \nu M$.

(3) Let T_0 be an intermediate ring of T/U. If T is (U, T_0)-projective and T_0 is a $T_0\otimes_{U} T_0$-direct summand of T, then T_0/U is a separable extension.

Proof. (1) Since the mapping $x \otimes y \rightarrow xy$ form $T \otimes_{\nu} T$ to T splits as a $T-T$-homomorphism, the mapping $x \otimes m \rightarrow xm$ from $T \otimes_{\nu} M$ to M splits as
a T-left homomorphism. Since $_{r}M$ is projective, so is $_{r}T\otimes_{U}M$. Therefore M is T-projective. (2) Since $_{U}U|_{U}M$, $_{r}T|_{r}T\otimes_{U}M$. Since $_{r}T\otimes_{U}T|_{r}T$, we have $_{r}T\otimes_{U}M|_{r}M$. Hence we have $_{r}T|_{r}M$. (3) Let φ be the canonical homomorphism from $T_{0}\otimes_{U}T$ to T defined by $\varphi(t_{0}\otimes t)=t_{0}$, and let ϕ be a T_{0}-T-homomorphism from T to $T_{0}\otimes_{U}T$ such that $\varphi\phi(x)=x$ for all x in T. If $\phi(1)=\sum a_{i}\otimes b_{i}$ ($a_{i}\in T_{0}$, $b_{i}\in T$), then $\sum a_{i}b_{i}=1$ and $\sum ya_{i}\otimes b_{i}=$ $\sum a_{i}\otimes b_{i}y$ ($\in T_{0}\otimes_{U}T$) for all y in T_{0}. Let π be a T_{0}-T-homomorphism from T to T_{0} such that $\pi|T_{0}=1_{T_{0}}$. Then, since $\sum ya_{i}\otimes b_{i}=$ $\sum a_{i}\otimes b_{i}y$ ($\in T_{0}\otimes_{U}T$) for all y in T_{0}, we have $\sum a_{i}\pi(b_{i})=1$ and $\sum ya_{i}\otimes \pi(b_{i})=$ $\sum a_{i}\otimes \pi(b_{i})y$ ($\in T_{0}\otimes_{U}T_{0}$) for y in T_{0}. Then the mapping $y\rightarrow \sum a_{i}\otimes \pi(b_{i})y$ from T_{0} to $T_{0}\otimes_{U}T_{0}$ is a T_{0}-T-homomorphism, and $\sum a_{i}\pi(b_{i})y=y$. Hence T_{0}/U is a separable extension.

Proposition 2.11. Let A/B be finite G-Galois, and Z the center of B. If B is a separable Z-algebra and $Z\subseteq C$, then $V_{A}(B)|Z$ is finite G-Galois.

Proof. By [2; Prop. 1.5], $B\otimes_{Z}B^{0}$ is a central separable Z-algebra, where B^{0} is the opposite ring of B. Since A and ZB are finite generated and projective, so is A. Then, by Lemma 2.10 (1), $n\otimes_{Z}Z^{0}$ is a finite generated and projective. By [2; Th. 2.1], $nZB\otimes_{Z}B^{0}$ is a Z-Galois extension, and hence $nA_{B}|_{B}B^{0}$. Then, by Prop. 2.8, $V_{A}(B)|Z$ is finite G-Galois (cf. S. 3).

Theorem 2.12. Let G be finite, π the group homomorphism defined by $\pi(\sigma)=\sigma|C$ ($\sigma\in G$), Z the center of B, and $Z=Z^{0}$, and assume that A is indecomposable. Then the following statements are equivalent.

(i) A/Z_{0} is separable, and π is 1–1.
(ii) $V_{A}(B)=C$, A/Z is separable, and $nA_{B}|_{B}B^{0}$.
(iii) $V_{A}(B)=C$, and both B/Z and C/Z are separable.
(iv) Both B/Z and C/Z_{0} are separable, and π is 1–1.
(v) $V_{A}(B)=C$, A/B is separable, A is (Z, B)-projective, and $nB_{B}|_{B}A_{B}^{0}$.
(vi) $A=B-C$, and A/Z is separable.
(vii) $\alpha\otimes_{Z_{0}}A\otimes_{Z_{0}}A^{0}$, $\alpha\otimes_{Z_{0}}, A^{0}, \alpha_{n}\alpha_{A}^{0}$, and $Hom(\alpha A_{n}A_{A}=0$ for any σ in G such that $\sigma\neq 1$.

Proof. (i) \Rightarrow (ii) By [2; Th. 2.3], A/C and C/Z_{0} are separable. Therefore, by [4; Th. 1.3], C/Z_{0} is G-Galois. Then, by [22; Th. 5.1], $A=B\otimes_{Z_{0}}C$. Hence $V_{A}(B)=C$, and $Z=Z_{0}$. Since A is finitely generated and projective, $nA_{B}|_{B}B^{0}$. (ii) \Rightarrow (iii) $V_{A}(B)=C$ implies $Z=Z_{0}$. By [22; Lemma 2.7], A/C and A/B are separable, so that A/B is outer G-Galois ([22; Th. 1.5]). Then, by Prop. 2.8, C/Z is G-Galois, so that C/Z is separable. Since A/C is separable, B/Z is separable ([22; Cor. to Th. 5.1]). (iii) \Rightarrow (iv) In this case, $Z=Z_{0}$. By [2; Th. 3.1], $A=B-C$, whence π is 1–1. (iv) \Rightarrow (v) By
[4; Th. 1.3], C/Z_0 is G-Galois. Hence, by [22; Th. 5.1], A/B is G-Galois, and $A=BC$. Then A/B is separable, $V_A(B)=C$, and $Z=Z_0$. Since Z is commutative, Z is a direct summand of ZC (S. 3), so that $t_0(c)=1$ for some c in C. Then B is a B-direct summand of A (cf. [22; § 2. p. 118]). Since B/Z is separable, A is (G, B)-projective ([22; Lemma 2.7]). (v) \Rightarrow (vi) By Lemma 2.10 (3), B/Z is separable. Then, by [2; Th. 3.1], $A=Z\otimes_B C$. Since both A/B and B/Z are separable, A/Z is separable ([22; Lemma 2.7]).

(vi) \Rightarrow (i) As $A=BC$, $V_A(B)=C$, $Z=Z_0$, and π is 1-1. Thus we know that (i) \sim (vi) are equivalent. (i) \Rightarrow (vi) In this case, $V_A(B)=C$, $Z=Z_0$, and B/Z is separable. Then, by [2; Th. 2.1], $B\otimes_Z B|_B B$. Therefore $B\otimes_Z B|_B B$, and then $A\otimes_Z A|_A A\otimes_B A$. By [22; Prop. 1.3], $A\simeq A\otimes_B A$. Hence $A\otimes_Z A|_A A\otimes_B A$. The second assertion follows from [22; Prop. 6.3].

(vii) \Rightarrow (i) By assumption, $\text{End}(A\otimes_Z A|_A A\otimes_B A)$ is a commutative ring. Then, by S. 1 and S. 3, $A\otimes_Z A$ is finitely generated and projective. Hence $A\otimes_Z A$ is finitely generated and projective, that is, A/Z_0 is separable. Let f be the projection from A to A_1 with respect to the decomposition $A=\sum_\sigma A$. Then, since $\text{End}(A\otimes Z_A)$ is commutative, f is in the center of $A\otimes A$. (cf. S. 1). By [2; Prop. 1.5], the center of $A\otimes A$ is $C\otimes C$, so that f is written as $f=\sum_\sigma a_\sigma d_\sigma^* (a_\sigma, d_\sigma^* \in C)$. Then, $u_1=\sum_\sigma a_\sigma (\sum_\sigma u_\sigma) a_\sigma^* \left(=\sum_\sigma (\sum_\sigma a_\sigma \sigma(a_\sigma^*)) u_\sigma\right)$, and hence $\sum_\sigma a_\sigma \sigma(a_\sigma^*)=d_1$. This completes the proof of the theorem.

\textbf{Remark.} The following are also equivalent to (i) \Leftrightarrow (iii).

(viii) A/C is separable, and C/Z_0 is G-Galois (cf. Kanzaki [8]).

(ix) A/B is outer G-Galois, and B/Z is separable.

\textbf{Proposition 2.13.} Let A/B be locally finite G-Galois, and b an element of B which is not a right zero divisor of B. Then b is not a right zero divisor of A.

\textbf{Proof.} Let a be an element of A such that $ab=0$. Then $AaB=0$, and so $\sigma(Aa)b=0$ for all σ in G. Hence, $(\sum_\sigma \sigma(Aa))\cap B=0$. Then, by assumption, $(\sum_\sigma \sigma(Aa))\cap B=0$. Then, by Th. 2.1 (3), $\sum_\sigma \sigma(Aa)=A((\sum_\sigma \sigma(Aa))\cap B)=0$. Hence $a=0$.

Let A/B be locally finite G-Galois, and $S \ni 1$ a G-invariant multiplicative system of regular elements in A such that a left quotient ring A of A with respect to S exists. Then G may be regarded as a group of automorphisms of A. To be easily seen, $\{\sigma(x); \sigma \in G\}$ is finite for any x in A. Then, by Th. 2.1, A/B is locally finite G-Galois and $A=\overline{B}\otimes_B A=\overline{A}\otimes_B B$, where $\overline{B}=A^{\sigma}$. To be easily seen, any element in $B\cap S$ is a unit of B. For b in B, we put
$\mathcal{L} = \{ x \in A ; xb \in A \}$, which is a \mathcal{D}-left submodule of A. Then $(\mathcal{L} \cap B)b \subseteq B$. If $\mathcal{L} \cap B \cap S \neq \emptyset$, then $sb \in B$ for some s in $B \cap S$. Therefore, if we assume that $\mathcal{D}(s) \cap B \cap S \neq \emptyset$ for all $s \in S$, then \overline{B} is a left quotient ring of B with respect to $B \cap S$. Thus we obtain the following

Theorem 2.14. Let A/B be locally finite G-Galois, and $S \ni 1$ a G-invariant multiplicative system of regular elements of A such that a left quotient ring \overline{A} of A with respect to S exists. Further, assume that $\Delta(s) \cap B \cap S \neq \emptyset$ for all $s \in S$. Then there hold the following:

1. $\overline{A}/\overline{B}$ is locally finite G-Galois and $\overline{A} = \overline{B} \otimes_{B} A = A \otimes_{B} \overline{B}$, where $\overline{B} = \overline{A^{o}}$.

2. \overline{A} is a left quotient ring of A with respect to $B \cap S$. \overline{B} is a left quotient ring of B with respect to $B \cap S$.

Remark. Let A/B be locally finite G-Galois, and S a G-invariant multiplicative system of regular elements in A such that $S \subseteq C$ and $S \ni 1$. Then S satisfies the conditions in Th. 2.14. To see this, we put $H = \{ \sigma \in G ; \sigma(s) = s \}$ for s in S. If $G = \sigma_{1}H \cup \cdots \cup \sigma_{r}H$ is the left coset decomposition of G, then $\mathfrak{L}, \mathfrak{L}(s) \subseteq \Delta(s) \cap B \cap S$.

A non-zero ring T with 1 is called a left Goldie ring if T satisfies the following conditions: (1) T is a semi-prime ring. (2) Any independent set of non-zero left ideals is finite (i.e., T is finite dimensional). (3) T satisfies the ascending chain condition for annihilator left ideals.

A left Goldie ring has a complete left quotient ring which is a semi-simple ring with minimum condition for left ideals, and conversely (Goldie [17]). (Cf. [7])

Theorem 2.15. Let A/B be locally finite G-Galois, A a left Goldie ring, \overline{A} a complete left quotient ring of A, and B a semi-prime ring. Then there hold the following:

1. $\overline{A}/\overline{B}$ is locally finite G-Galois, where $\overline{B} = \overline{A^{o}}$.

2. B is a left Goldie ring, and \overline{B} is a complete left quotient ring of B.

Proof. Let S be the set of all regular elements of A. First we shall prove that B is a left Goldie ring. Since $\mathcal{A}A$ is finite dimensional, $\mathcal{A}A$ is finite dimensional. Then, by Th. 2.1 (3), $\mathcal{A}B$ is finite dimensional. Let $I \subseteq I'$ be left ideals of B. Then $l_{A}(r_{B}(I)) \subseteq l_{A}(r_{B}(I'))$, where $r_{B}(I) = \{ y \in B ; Iy = 0 \}$ and $l_{A}(r_{B}(I)) = \{ x \in A ; x \cdot r_{B}(I) = 0 \}$. From this fact, B satisfies the ascending chain condition for annihilator left ideals of B. Hence B is a left Goldie ring. By Prop. 2.13, $S \cap B$ is the set of all regular elements of B. For any s in S, $\mathcal{A}s$ is essential in $\mathcal{A}A$, so that $\mathcal{A}(s)$ is essential in $\mathcal{A}A$. Then, by Th. 2.1 (3), $s(\mathcal{A}(s) \cap B)$ is essential in $\mathcal{A}B$, so that $\mathcal{A}(s) \cap B$ contains a regular element.
of B ([17; Th. (3.9)]). Hence $A(s) \cap B \cap S \neq 0$ for any s in S. Thus the present theorem follows from Th. 2.14.

Remark. In the following cases, the condition that B is semi-prime is superfluous.

1. G is finite and completely outer (cf. [22; p. 132]).
2. B is contained in the center of A.

Let T be a ring. If T-left modules M and N have no non-zero isomorphic subquotients, we say that $_TN$ and $_TM$ are unrelated (cf. [22]).

Lemma 2.16. Let T be a ring, and let M and N be T-left modules, and W a T-submodule of M. If $_T(M/W)$ and $_TN$ are unrelated, and $_TW$ and $_TM$ are unrelated, then $_TM$ and $_TN$ are unrelated.

Proof. Assume that there are isomorphic subquotients X/X_0 and Y/Y_0 of $_TM$ and $_TN$, respectively. Then, as is easily seen, $X + W \supseteq X_0 + W$ or $X \cap W \supsetneq X_0 \cap W$. If $X + W \supsetneq X_0 + W$, then $Y/Y_0 \approx X/X_0 \implies (X + W)/(X_0 + W) \neq 0$, a contradiction. If $X \cap W \supsetneq X_0 \cap W$, then $(X \cap W)/(X_0 \cap W) \approx (X_0 + (X \cap W))/X_0 \subseteq X/X_0 \approx Y/Y_0$, which is also a contradiction.

Proposition 2.17. Let σ, τ be in G, and assume that $_A\left[A\right]$ and $_A\left[A\right]$ are unrelated. Then, for any finite subset $\{x_1, \cdots, x_r, y_1, \cdots, y_s\}$ of A, there are elements a_k, b_k $(k = 1, \cdots, t)$ in A such that $\sum_k a_kx_i \cdot \sigma(b_k) = x_i$ and $\sum_k a_ky_h \cdot \tau(b_k) = 0$ for all x_i, y_h.

Proof. By Lemma 2.16, $_A\left[A\right]$ and $_A\left[A\right]$ are unrelated. Then, since $A(x_1 u_\sigma, \cdots, x_r u_\sigma, y_1 u_\tau, \cdots, y_s u_\tau)A$ is an A-A-submodule of $_A\left[A\right] \oplus (_A\left[A\right]$ $A(x_1 u_\sigma, \cdots, x_r u_\sigma, 0, \cdots, 0) \in A(x_1 u_\sigma, \cdots, x_r u_\sigma, y_1 u_\tau, \cdots, y_s u_\tau)A$ (cf. [22; Prop. 6.1]). Therefore there are elements a_k, b_k $(k = 1, \cdots, t)$ in A such that $\sum_k a_k(x_1 u_\sigma, \cdots, x_r u_\sigma, y_1 u_\tau, \cdots, y_s u_\tau)b_k = (x_1 u_\sigma, \cdots, x_r u_\sigma, 0, \cdots, 0)$. Then, $\sum_k a_kx_i \cdot \sigma(b_k) = x_i$ and $\sum_k a_ky_h \cdot \tau(b_k) = 0$ for all x_i, y_h.

Combining Prop. 2.17 with [22; Prop. 6.11] we can easily see the following:

Proposition 2.18. Let A and A' be R-algebras with $A \otimes_R A' \neq 0$, and let G and G' be completely outer finite groups of R-automorphisms of A and A', respectively. Then, $G \times G'$ is completely outer as an automorphism group of $A \otimes_R A'$.

§ 3.

Proposition 3.1. Let A/B be locally finite G-Galois, and X a A-left submodule of A. Then $X = A(X \cap B)$.

Proof. This follows from Th. 2.1 (3).

Proposition 3.2. Let A/B be locally finite G-Galois, $\{B\}$ the set of
all maximal ideals of A, and $\{p\}$ the set of all maximal ideals of B. Then the following are equivalent:

(i) $\mathfrak{P} \rightarrow \mathfrak{B} \cap B$ is a mapping from $\{\mathfrak{P}\}$ onto $\{p\}$.

(ii) $A \mathfrak{p} A \neq A$ for all $\mathfrak{p} \in \{p\}$, and $\cap_{\sigma \in G} \mathfrak{P}$ is A-A-maximal for all $\mathfrak{P} \in \{\mathfrak{P}\}$.

If (i) holds, then the following are true:

(1) $p A = A \mathfrak{p} \neq A$ for any $p \in \{p\}$.

(2) $\{\cap_{\sigma} \mathfrak{P}; \mathfrak{P} \in \{\mathfrak{P}\}\}$ is the set of all maximal A-A-submodules of A.

(3) $\mathfrak{R}(A A_\mathfrak{p}) = \mathfrak{R}(A A_\mathfrak{b}) = \mathfrak{R}(B B_\mathfrak{b}) A = A \cdot \mathfrak{R}(B B_\mathfrak{b})$, and $\mathfrak{R}(A A_\mathfrak{p}) \cap B = \mathfrak{R}(B B_\mathfrak{b})$.

(4) B is B-B-completely reducible if and only if $\cap_{i} \cap_{\sigma} \sigma(\mathfrak{P}) = 0$ for some $\mathfrak{P}_i (i = 1, \cdots, n)$ in $\{\mathfrak{P}\}$.

Proof. (i) \Rightarrow (ii) If \mathfrak{P} is in $\{\mathfrak{P}\}$, then $\mathfrak{P} \cap B = \sigma(\mathfrak{P}) \cap B$ for any σ in G, and so $\mathfrak{P} \cap B = (\cap_{\sigma} \sigma(\mathfrak{P})) \cap B$. By Prop. 3.1, $A((\cap_{\sigma} \sigma(\mathfrak{P})) \cap B) \cap B = \cap_{\sigma} \sigma(\mathfrak{P}) \cap B$. Hence $A \mathfrak{p} = \mathfrak{p} A \neq A$ for all $p \in \{p\}$. Let X be a A-A-submodule of A with $A \supseteq X \supseteq \sigma(\mathfrak{P})$. Then $B \supseteq X \cap B \supseteq (\cap_{\sigma} \sigma(\mathfrak{P})) \cap B = \mathfrak{P} \cap B$, and so $X \cap B = (\cap_{\sigma} \sigma(\mathfrak{P})) \cap B$. Then, by Prop. 3.1, $X = \cap_{\sigma} \sigma(\mathfrak{P})$ is A-A-maximal. Let Y be a maximal A-A-submodule of A. Take a maximal ideal \mathfrak{P}_1 of A with $\mathfrak{P}_1 \supseteq Y$. Then $\cap_{\sigma} \sigma(\mathfrak{P}) \supseteq Y$, and so $\cap_{\sigma} \sigma(\mathfrak{P}) = Y$. Thus we obtain (2). Therefore $\mathfrak{R}(A A_\mathfrak{p}) = \mathfrak{R}(A A_\mathfrak{b})$. Since $\mathfrak{R}(A A_\mathfrak{p}) \cap B = \mathfrak{R}(B B_\mathfrak{b})$, we have $\mathfrak{R}(A A_\mathfrak{p}) = A \cdot \mathfrak{R}(B B_\mathfrak{b}) = \mathfrak{R}(B B_\mathfrak{b}) A$ (Prop. 3.1). B is B-B-completely reducible if and only if $\cap_{i} \cap_{\sigma} \sigma(\mathfrak{P}) = 0$ for some $\mathfrak{P}_i (i = 1, \cdots, n)$ in $\{\mathfrak{P}\}$. Thus we obtain (4) (cf. Prop. 3.1). (ii) \Rightarrow (i). Let $p \in \{p\}$. Then, as $A \mathfrak{p} A \neq A$, $\mathfrak{p} \subseteq \{\mathfrak{P}\}$ for some $\mathfrak{P} \in \{\mathfrak{P}\}$, and so $\mathfrak{p} = \mathfrak{P} \cap B$ by the maximality of \mathfrak{p}. Let \mathfrak{O} be in $\{\mathfrak{P}\}$. Then $q \subseteq \mathfrak{O} \cap B$ for some $q \in \{q\}$. There is a $\mathfrak{O}' \in \{\mathfrak{P}\}$ with $\mathfrak{O}' \cap B = q$. Then $\cap_{\sigma} \sigma(\mathfrak{O}') \cap B = \mathfrak{O}' \cap B \supseteq \mathfrak{O} \cap B = (\cap_{\sigma} \sigma(\mathfrak{O})) \cap B$, and therefore $\cap_{\sigma} \sigma(\mathfrak{O}') \supseteq \cap_{\sigma} \sigma(\mathfrak{O})$ by Prop. 3.1. By assumption, $\cap_{\sigma} \sigma(\mathfrak{O}') = \cap_{\sigma} \sigma(\mathfrak{O})$. Hence $q = \mathfrak{O}' \cap B = \mathfrak{O} \cap B$. This completes the proof.

Concerning Prop. 3.2, we state the following

Lemma 3.3. Let \mathfrak{P} be a maximal ideal of A such that $\cap_{\sigma \in G} \sigma(\mathfrak{P}) = \cap_{i} \sigma_i (\mathfrak{P})$ for some $\sigma_1, \cdots, \sigma_n$ in G. Then $\cap_{\sigma} (\mathfrak{P})$ is A-A-maximal, and $\cap_{i} \sigma_i (\mathfrak{P}); i = 1, \cdots, n$ is the set of all maximal ideals containing $\cap_{\sigma} (\mathfrak{P})$.

Proof. Let \mathfrak{O} be a maximal ideal of A with $\mathfrak{O} \supseteq \cap_{\sigma} (\mathfrak{P})$. If $\mathfrak{O} \neq \sigma_i (\mathfrak{P})$ for all i, then $\mathfrak{O} + \mathfrak{O}_i (\mathfrak{P}) = A$ for all i. Then we have a contradiction $A = \mathfrak{O} + \cap_{i} \sigma_i (\mathfrak{P}) = \mathfrak{O} + \cap_{\sigma} (\mathfrak{P})$.

Remark. In the following cases, the assumption in Lemma 3.3 holds.

(1) G is finite. (2) The ring $A/\mathfrak{R}(A A_\mathfrak{p})$ satisfies the descending chain condition for ideals. (3) G^* is compact, and every maximal ideal of A is A-A-finitely generated. (Cf. Prop. 1.1).
Proposition 3.4.

(1) Let A/B be locally finite outer G-Galois, and B B-B-completely reducible. Assume that, for any maximal ideal \mathfrak{P} of A, there are elements $\sigma_1, \ldots, \sigma_n$ in G such that $\cap_i \sigma_i(\mathfrak{P}) = \cap \sigma(\mathfrak{P})$. Then A is A-A-completely reducible.

(2) Let G be finite and completely outer, and $B_B|A_B$. Then A is A-A-completely reducible if and only if B is B-B-completely reducible. If there is a maximal ideal \mathfrak{P} of A such that $\cap \sigma(\mathfrak{P}) = 0$, then B is B-B-minimal, and conversely.

Proof. (1) Any maximal ideal \mathfrak{p} of B is written as $\mathfrak{p} = \mathfrak{p}Be$ with a central idempotent e of B. Then, by assumption, $(1 \neq e) \in V_e(B) = C$. Therefore, $A\mathfrak{p} = Ae = eA = \mathfrak{p}A \neq A$. Thus, by Prop. 3.2 and Lemma 3.3, A is A-A-completely reducible. (2) In this case, $\mathfrak{a}A = A\mathfrak{a} \neq A$ for any proper ideal \mathfrak{a} of B (cf. [22; p. 132]). Then, by Prop. 3.2 and Lemma 3.3, the first assertion is evident (cf. [22; Prop. 6.4]). For any \mathfrak{P} in $\{\mathfrak{P}\}$, $((\cap \sigma(\mathfrak{P})) \cap B = \mathfrak{P} \cap B = 0$ if and only if $\cap \sigma(\mathfrak{P}) = 0$ (Prop. 3.1). Thus we know the second assertion.

Theorem 3.5. Let A/B be finite G-Galois, B a semi-primary ring, and $A\mathfrak{p}A \neq A$ for any maximal ideal \mathfrak{p} of B. Then $A \simeq B_B$, that is, A has a normal basis. (cf. [13; Th. 1]).

Proof. By [22; Th. 1.7], it suffices to prove that B_B is free. Let $g = (G : 1)$. (1) First we assume that $\mathfrak{N}(B) = 0$. Then B is a direct sum of simple rings: $B = a_1 + \cdots + a_n$. Let $1 = \sum e_i, e_i \in a_i$. Then $a_i = Be_i = e_i B$ and $e_i^2 = e_i$. By assumption we have $(1 - e_i)A = A(1 - e_i)$ (Prop. 3.2 and Lemma 3.3), so that e_i is a central idempotent of A contained in B. Then each Ae_i/Be_i is G-Galois ([22; Cor. to Th. 5.6]). Since Be_i is a simple ring, $Be_i A e_i$ is free (cf. [7]). Hence Ae_i has a normal basis, so that $B_Be_i A e_i \simeq B_B e_i$ for all i ([22; Th. 1.7]). Hence $B_B \simeq B_B$. (2) Next we proceed to general case. Since A and B are semi-primary ([22; Prop. 7.3]), $\mathfrak{N}(A) = \mathfrak{N}(A)$ and $\mathfrak{N}(B) = \mathfrak{N}(B)$. Then, by Prop. 3.2 and Lemma 3.3, $\mathfrak{N}(A) = \mathfrak{N}(B) A = A \mathfrak{N}(B)$ and $\mathfrak{N}(A) \cap B = \mathfrak{N}(B)$. By [22; Th. 5.6], $(A/\mathfrak{N}(A))/(B + \mathfrak{N}(A)) \simeq (A/\mathfrak{N}(A))/\mathfrak{N}(A)$ is G-Galois, and satisfies the same conditions as A/B, because $(B + \mathfrak{N}(A))/\mathfrak{N}(A) \simeq B/(\mathfrak{N}(A) \cap B) = B/\mathfrak{N}(B)$ canonically. By (1), we have $B_B/\mathfrak{N}(B) \times B_B/\mathfrak{N}(B)$ and B_B is finitely generated and projective, we have $B_B \simeq B_B$. Since $\mathfrak{N}(A) = \mathfrak{N}(B) A$ and B_B is finitely generated and projective, we have $B_B \simeq B_B$. This completes the proof.

Corollary. Let A/B be finite G-Galois, B a semi-primary ring, and Z the center of B. Assume that $Z \subseteq C$ and that B is a central separable Z-algebra. Then A has a normal basis.

Proof. In this case, any proper ideal of B is written as $\mathfrak{a}B$ with an ideal
a of Z (cf. [2]). Then, as $Z \subseteq C$, $(aB)A = \alpha A = A\alpha = A(B\alpha) \neq A$ ([22; Lemma 7.1]).

Let A/B be finite G-Galois, $B \subseteq C$, and $g=(G:1)$. For any prime ideal \mathfrak{p} of B, we denote by $B_{\mathfrak{p}}$ the quotient extension of B with respect to \mathfrak{p}. Then $B_{\mathfrak{p}}$ is a B-algebra, canonically. By [22; Cor. to Th. 5.2], $(B_{\mathfrak{p}} \otimes_{B} A)/B_{\mathfrak{p}}$ is G-Galois. Since $B_{\mathfrak{p}}$ is a local ring, $R_{\mathfrak{p}}B_{\mathfrak{p}} \otimes_{B} A \simeq B_{\mathfrak{p}}(B_{\mathfrak{p}})^{g}$ (Cor. to Th. 3.5). We denote by $K_{\mathfrak{p}}$ the quotient field of B/\mathfrak{p}. Then we have $K_{\mathfrak{p}}K_{\mathfrak{p}} \otimes_{B} A \simeq K_{\mathfrak{p}}(K_{\mathfrak{p}})^{g}$ similarly. Thus we obtain the following

Proposition 3.6. Let A/B be finite G-Galois, $B \subseteq C$, and $g=(G:1)$. Then, $B_{\mathfrak{p}}B_{\mathfrak{p}} \otimes_{B} A \simeq B_{\mathfrak{p}}(B_{\mathfrak{p}})^{g}$ and $K_{\mathfrak{p}}K_{\mathfrak{p}} \otimes_{B} A \simeq K_{\mathfrak{p}}(K_{\mathfrak{p}})^{g}$ for any prime ideal \mathfrak{p} of B, where $B_{\mathfrak{p}}$ is the quotient extension of B with respect to \mathfrak{p} and $K_{\mathfrak{p}}$ is the quotient field of B/\mathfrak{p}.

The following lemma is of some interest.

Lemma 3.7. Let $R \supseteq S$ be rings, R_{S} is finitely generated and projective, and S is a direct summand of R. If R is injective, then S is injective.

Proof. Let I be any left ideal of S, and f any S-left homomorphism from I to S. Since R_{S} is finitely generated and projective, we have $RI=R \otimes_{S} I$. Therefore f can be extended to an R-left homomorphism from R to R, canonically. Then, by assumption, there is an element a in R such that $r \cdot (s)f = rsa$ for r in R and s in I, so that $(s)f = sa$ for all s in I. Therefore, as is well known, S is injective. Since S is a direct summand of R, S is injective.

Lemma 3.8. $\Re(A) \cap B \subseteq \Re(B)$.

Proof. Let b be in $\Re(R) \cap B$. Then $1-b$ has an inverse in A. Since $B=A^{\sigma}$, $1-b$ has an inverse in B. Hence $\Re(A) \cap B$ is a quasi-regular ideal of B, that is, $\Re(A) \cap B \subseteq \Re(B)$.

Proposition 3.9. Let G be finite. If there is an element c in A such that $1-\sigma(c) \in \Re(A)$, then there is an element d in A such that $t_{\sigma}(d)=1$.

Proof. By Lemma 3.8, we have $1-\sigma(c) \in \Re(A) \cap B \subseteq \Re(B)$, so that $t_{\sigma}(A)+\Re(B)=B$. Since $t_{\sigma}(A)$ is an ideal of B, we have $t_{\sigma}(A)=B$. Hence $t_{\sigma}(d)=1$ for some d in A.

Theorem 3.10. Let A/B be G-Galois, A a commutative ring, H a subgroup of G, and A' a B-algebra. Then, $A' \otimes_{B} A^{\sigma}$ is a direct sum of minimal ideals if and only if A' is a direct sum of minimal ideals (cf. [7; p. 178. Th. 2]).

Proof. In this case, $(A' \otimes_{B} A)/A'$ is finite G-Galois, G is completely outer as an automorphism group of $A' \otimes_{B} A$, and $(A' \otimes_{B} A)^{\sigma}=A' \otimes_{B} A^{\sigma}$ (cf. [22; Th.
5.2 and Prop. 6.5]). Thus the present theorem is an easy consequence from Prop. 3.4 (2).

Concerning [22; Th. 6.9], we note the following

Lemma 3.11. Let A/C be separable, and e an idempotent of A such that $eA \subseteq Ae$. Then e is a central idempotent of A.

Proof. Since $A/\mathfrak{R}(A)$ is a semi-prime ring, we have $(eA+\mathfrak{R}(A))/\mathfrak{R}(A) = (eA+\mathfrak{R}(A))/\mathfrak{R}(A)$, that is, $eA+\mathfrak{R}(A) = Ae+\mathfrak{R}(A)$, and so $Ae = eA + (Ae \cap \mathfrak{R}(A)) = eA + \mathfrak{R}(A)e$. Since A is a central separable C-algebra, $\mathfrak{R}(A)A = \mathfrak{R}(C)A$ by [2; Cor. 3.2]. Since $\mathfrak{R}(A)A \supseteq \mathfrak{R}(A) \supseteq \mathfrak{R}(C)A$, we have $\mathfrak{R}(A) = \mathfrak{R}(C)A$, and $Ae = eA + \mathfrak{R}(C)Ae$. Hence $Ae = eA$, because eAe is finitely generated. Consequently, e is a central idempotent of A.

Proposition 3.12. Let A/B be locally finite G-Galois, and assume that there is a representation $A = \bigcup_{i \in I} A^{N_i}$ of A/B such that each $\mathfrak{R}(A)A^{N_i}$ is an ideal of A^{N_i}. Then $\mathfrak{R}(A) = \mathfrak{R}(B)A = A \cdot \mathfrak{R}(B)$, and $\mathfrak{R}(A) \cap B = \mathfrak{R}(B)$.

Proof. Let \mathfrak{J} be a right ideal of A such that $\mathfrak{R}(B)A + \mathfrak{J} = A$. Then $\mathfrak{R}(B)A^{N_i} + (\mathfrak{J} \cap A^{N_i}) \ni 1$ for some λ in A, so that $\mathfrak{R}(B)A^{N_i} + (\mathfrak{J} \cap A^{N_i}) = A^{N_i}$. Since $\mathfrak{R}(B)A^{N_i} \subseteq \mathfrak{R}(A^{N_i})$, we have $\mathfrak{J} \cap A^{N_i} = A^{N_i}$, and hence $\mathfrak{J} = A$. Thus we know that $\mathfrak{R}(B)A \subseteq \mathfrak{R}(A)$. Combining this with Lemma 3.8, we have $\mathfrak{R}(A) \cap B = \mathfrak{R}(B)$. Hence $\mathfrak{R}(A) = \mathfrak{R}(B)A = A \cdot \mathfrak{R}(B)$ (Prop. 3.1).

Theorem 3.13. Let A/B be locally finite G-Galois, $B \subseteq C$, and A' a B-algebra such that $A' \approx A' \otimes 1$ ($\subseteq A' \otimes B$) canonically.

1. $\mathfrak{R}(A' \otimes B) = \mathfrak{R}(A' \otimes A)$, and $\mathfrak{R}(A' \otimes A) \cap (A' \otimes 1) = \mathfrak{R}(A') \otimes 1$.

2. If A is commutative, then $\mathfrak{R}(A' \otimes A') = \mathfrak{R}(A') \otimes A'$ for any subgroup H of G.

Proof. Let $A = \bigcup_{i \in I} A^{N_i}$ be a representation of the locally finite G-Galois extension A/B. Then $(A' \otimes B)A/(A' \otimes 1)$ is a locally finite G-Galois extension with representation $A' \otimes B = \bigcup_{i \in I} A' \otimes A^{N_i}$, where $A' \otimes A^{N_i} = (A' \otimes B)^{N_i}$ is a finite G/N_i-Galois extension over $A' \otimes 1$. (1) This will be easily seen by Prop. 3.12. (2) We may assume that H is closed in G. Then each $A'/N_i = A'H$ is finite $H/(H \cap N_i)$-Galois, and $H/(H \cap N_i)$ is completely outer as an automorphism group of A'/N_i ([22; Th. 6.6]). Then $H/(H \cap N_i)$ is completely outer as an automorphism group $A' \otimes B A'^{H \cap N_i}$ (Prop. 2.18), and so $H/(H \cap N_i)$ is completely outer as an automorphism group of $A' \otimes B A'^{H \cap N_i}$ (Prop. 2.11). Now, $(A' \otimes B)A/(A' \otimes A')$ is a locally finite H-Galois extension with representation $A' \otimes B = \bigcup_{i \in I} A' \otimes A'^{H \cap N_i}$, where $A' \otimes A'^{H \cap N_i} = (A' \otimes B)A'^{H \cap N_i}$ is a finite $H/(H \cap N_i)$-Galois extension over $A' \otimes A'$. Then, by [22; Th. 7.10] and Prop. 3.12, $\mathfrak{R}(A' \otimes B) = \mathfrak{R}(A' \otimes A')(A' \otimes B)$. On the other hand,
$\Re(A' \otimes_B A) = \Re(A') \otimes A = (\Re(A') \otimes A^H) (A' \otimes_B A)$. Hence $\Re(A' \otimes A^B) = \Re(A') \otimes A^H$, as desired (cf. [22; Lemma 7.1]).

References

([1]~[14] are found in [22] below.)

Department of Mathematics, Hokkaido University

(Received June 10, 1967)