LOCAL FINITE OUTER GALOIS THEORY

By

Yôichi MIYASHITA

Introduction.

This paper is the continuation of the preceding paper [22]. In §1 and §2, locally finite (outer) Galois extensions are treated. The main results are parallel to those of the finite case. In these studies, Nagahara [12] is our guide. Further several results for finite Galois extensions are added (Th. 1.18). In §3, we give a normal basis theorem for a finite Galois extension.

§1. As to notations and terminologies we follow [22]. Let A be a ring with 1 ($\neq 0$), C the center of A, G a (finite or infinite) group of automorphisms of A, $B=A^g=\{x\in A; \sigma(x)=x \text{ for all } \sigma \text{ in } G\}$, and \hat{G} the group of all B-automorphisms of A. \hat{G} is then a topological group in finite topology (cf. Jacobson [7]). We denote the closure of G in \hat{G} by G^*. A means the trivial crossed product of A with G: $A=\sum_{\sigma \in G} A \sigma$, $u_{\sigma}u_{\tau}=u_{\sigma \tau}$ ($\sigma, \tau \in G$), $u_{\sigma}x=\sigma(x)u_{\sigma}$ ($x\in A$). Then there is a canonical ring homomorphism j from A to End (A_{g}) defined by $j(\sum_{\sigma} x_{\sigma}u_{\sigma})(y)=\sum_{\sigma} x_{\sigma} \sigma(y)$ ($\sum_{\sigma} x_{\sigma}u_{\sigma} \in A$, $y \in A$). For any intermediate ring T of A/B, $G^r=\{\sigma \in G; \sigma|T=1_{T}\}$ is a subgroup of G, where $\sigma|T$ means the restriction of σ to T. We call it a fixed subgroup of G. For any subgroup H of G, $A^{H}=\{x\in A; \sigma(x)=x \text{ for all } \sigma \in H\}$ is an intermediate ring of A/B. We call it a fixed subring of A (with respect to G). Then, as is well known, the set of all fixed subgroups of G and the set of all fixed subrings of A are anti-order-isomorphic in the usual sense of Galois theory.

A subring T of A is called a G-invariant subring of A if $\sigma(T)=T$ for all σ in G (or equivalently, $\sigma(T)\subseteq T$ for all σ in G). Let N be a fixed subgroup of G. Then, A^{N} is G-invariant if and only if N is a normal subgroup of G: $N \triangleleft G$. Let T be an intermediate ring of A/B, and put $H=G^r$. Then, for σ, τ in G, $\sigma|T=\tau|T$ if and only if $\sigma H=\tau H$. Let H and K be subgroups of G such that $H \subseteq K$ and $(H:K)<\infty$, and let $H=\sigma_{1}K \cup \cdots \cup \sigma_{r}K$ be the left coset decomposition. For any x in A^{K} we put $t_{H,K}(x)=\sum_{i} \sigma_{i}(x)$. Then $t_{H,K}$ is an $A^{K}-A^{H}$-homomorphism from A^{K} to A^{H}, and is independent of the choice of $\sigma_{1},\cdots,\sigma_{r}$. If $K=1$, we write simply t_{H} instead of $t_{H,1}$.

Here we present several fundamental facts, which are essential throughout the present study. Let τM_{ν} and τN_{ν} be T-left, U-right modules. If τM_{ν} is
isomorphic to a direct summand of \(rN_{V} \) for some natural number \(r \), then we write \(_{T}M_{U}\mid_{T}N_{U} \), where \(rN_{V} \) means the direct sum of \(r \) copies of \(N_{U} \). If \(_{T}M_{U}\mid_{T}N_{U} \) and \(_{T}N_{V}\mid_{T}M_{U} \) we write \(_{T}M_{U}\sim_{T}N_{V} \) (similar) (cf. Morita [21]). To be easily seen, \(_{T}M_{U}\mid_{T}N_{U} \) if and only if there are \(T-U \)-homomorphisms \(f_{i}, \cdots, f_{r} \) in \(\text{Hom}_{T}(M_{U}, N_{U}) \) and \(g_{i}, \cdots, g_{r} \) in \(\text{Hom}_{T}(N_{U}, M_{U}) \) such that \(\Sigma_{i}f_{i}g_{i}=\text{the identity of } M_{i} \), or equivalently, \(\text{Hom}_{T}(M_{U}, N_{U})\cdot \text{Hom}_{T}(N_{U}, M_{U})=\text{Hom}_{T}(M_{U}, N_{U}) \). Then, \(_{T}M_{U}\mid_{T}N_{U} \), where homomorphisms act on the right side.

Let \(T \) be a ring with \(1 \), \(M \) a unital \(T \)-left module, and \(T^{*}=\text{End}_{T}(M) \).

S. 1. If \(_{T}T\mid_{T}M \) then \(M_{T}\mid_{T}T^{*} \). (i.e. \(M_{T} \) is finitely generated and projective) and \(T=\text{End}_{T}(M) \). \(\text{(Morita)} \)

S. 2. If \(_{T}M\mid_{T}T \) then \(T^{*}\mid_{T}M_{T} \). \(\text{(Morita)} \)

S. 3. Let \(T \) be commutative. If \(_{T}M\mid_{T}T \) and \(_{T}M \) is faithful, then \(_{T}T\mid_{T}M \). \(\text{(Auslander-Buchsbaum-Goldman)} \)

S. 4. Let \(\bar{T} \) be an extension ring of \(T \). If \(_{T}T\mid_{T}\bar{T} \) then \(_{T}T \) is a direct summand of \(_{T}\bar{T} \) (and conversely). \(\text{(Müller)} \)

S. 5. Let \(\bar{T} \) be an extension ring of \(T \). If \(_{T}\bar{T}\mid_{T}T_{T} \) then \(_{T}\bar{T} \) is a direct summand of \(_{T}T_{T} \). \(\text{(The proof is similar to the one of S.4.)} \)

In [22], \(A/B \) was called a \(G \)-Galos extension if \(G \) is finite and there are elements \(a_{1}, \cdots, a_{n} \); \(a_{1}^{*}, \cdots, a_{n}^{*} \) in \(A \) such that \(\Sigma_{i}a_{i}\sigma(a_{i}^{*})=\delta_{1,\sigma} \) (\(\sigma \in G \)). In this paper, \(A/B \) is called a finite \(G \)-Galos extension if \(A/B \) is \(G \)-Galos and \(t_{\sigma}(c)=1 \) for some \(c \) in \(A \). Then, the following are equivalent:

(a) \(A/B \) is finite \(G \)-Galos.
(b) \(G \) is finite, \(A_{B}\sim B_{B} \) and \(j: A=\text{End}(A_{B}) \).
(c) \(G \) is finite and \(A_{B}\sim B_{B} \).
(Cf. S. 1, S. 2, [6] and [21]).

\(A/B \) is called a locally finite \(G \)-Galos extension if there are fixed normal subgroups \(N_{i} \) (\(\lambda \in \Lambda \)) of \(G \) which satisfy the following conditions: (1) \((G: N_{i})<\infty \), and \(A/N_{i}|B \) is a finite \(G/N_{i} \)-Galos extension. (2) \(A=\bigcup_{i}A^{N_{i}} \), and \(\{A^{N_{i}} ; \lambda \in \Lambda \} \) is a directed set with respect to the inclusion relation (abbre. \(A=\bigcup_{i}A^{N_{i}} \) is a directed union). Then we call \(A=\bigcup_{i}A^{N_{i}} \) a representation of the locally finite \(G \)-Galos extension \(A/B \). If \(V_{A}(B)=C \), an extension \(A/B \) is said to be outer.

Now we shall prove first the following

Proposition 1.1. Let \(G=G^{*} \) (i.e. \(G \) is closed in \(\hat{G} \)). Then the following are equivalent:

(i) \(\{\sigma(x) ; \sigma \in G \} \) is finite for any \(x \) in \(A \).

(ii) \(G \) is compact.

(iii) Every directed union of fixed subrings of \(A \) with respect to \(G \) is also a fixed subring of \(A \) with respect to \(G \), and \(\bigcap H=1 \), where \(H \) ranges
over all fixed subgroups of G such that $(G:H)<\infty$.

Proof. (i) \Rightarrow (ii) If we put $\prod_{x\in A} \{\sigma(x); \sigma \in G\} = D$, then $G \subseteq D$ and D is compact. Therefore it is sufficient to prove that G is closed in D. Let ρ be any element of the closure of G in D. Then, as is easily seen, ρ is a B-ring isomorphism from A into A. Let a be in A, and put $F = \{\sigma(a); \sigma \in G\}$. Then, by assumption, F is a finite subset of A, so that there is an element τ in G such that $\rho|F = \tau|F$. Then, in particular, $\rho(\tau^{-1}(a)) = \tau(\tau^{-1}(a)) = a$. Thus ρ is a B-automorphism of A.

Hence the closure of G in D is contained in \hat{G}. Since G is closed in \hat{G}, G is closed in D, as desired. (ii) \Rightarrow (iii) For any x in G, we put $H_x = \{\sigma \in G; \sigma(x) = x\}$. Then H_x is open in G, and therefore σH_x is open in G for any σ in G. Then, since G is compact, we have $(G:H_x)<\infty$. Evidently $\cap_{x \in A} H_x = 1$. This proves the second assertion.

Let $(A \neq) T = \cup_{i \in A} T_i$ be a directed union of fixed subrings of A with respect to G, and let $K_i = G^{T_i}$. Then each K_i is a closed subgroup of G, and $A^{K_i} = T_i$. Let a be an element of $A - T$, and put $U = \{\sigma \in G; \sigma(a) = a\}$. Then U is open in G, so that each $K_i - U$ is closed in G. Since $a \notin T_i$ and $A^{K_i} = T_i$, we have $K_i - U \neq \emptyset$. For any finite subset $\{\lambda_1, \cdots, \lambda_n\}$ of A, there is an element λ_0 of A such that $T_i \supseteq \cup_{i \in A} T_i$. Then $K_\lambda \subseteq \cap_{i} K_{\lambda_i}$, and so $0 \neq K_\lambda - U \subseteq \cap_{i} K_{\lambda_i} - U = \cap_{i} (K_{\lambda_i} - U)$. Thus $\{K_i - U; i \in A\}$ has finite intersection property. Since G is compact, we have $\cap_{i} (K_i - U) \neq \emptyset$. If ρ is in $\cap_{i} (K_i - U)$ then $\rho \in G^{T_i}$ and $\rho(a) \neq a$. Therefore $a \neq A^{\rho}$, where $K = G^{T_i}$. Thus $A^{\rho} = T$. Hence T is a fixed subgroup of A with respect to G. (iii) \Rightarrow (i) Let H and K be fixed subgroups of G such that $(G:H)<\infty$ and $(G:K)<\infty$. Then $H \cap K$ is also a fixed subgroup of G with $(G:H \cap K)<\infty$. Therefore $\cup A^H$ is a directed union of fixed subrings of A, where H ranges over all fixed subgroups of G with $(G:H)<\infty$. Then, by assumption, $\cup A^H$ is a fixed subgroup of A with respect to G. Since $\cap H = 1$, we have $A = \cup A^H$. For any x in A, there is an A^H such that $x \in A^H$. Therefore if we put $L = \{\sigma \in G; \sigma(x) = x\}$ then $(G:L)<\infty$. This implies that $\{\sigma(x); \sigma \in G\}$ is finite.

Remark. For any x in A, $\{\sigma(x); \sigma \in G\} = \{\sigma(x); \sigma \in G^n\}$.

Proposition 1.2. Let N be a fixed normal subgroup of G such that $(G:N)<\infty$ and A^N/B is finite G/N-Galois, and G_1 a subgroup of G^* containing G. Then A^N/B is finite G_1/N_1-Galois, where $N_1 = \{\sigma \in G_1; \sigma|A^N = 1_{A^N}\}$.

Proof. Put $T = A^N$. Evidently $A^N = T$. Since G is dense in G_1 and T_B is finitely generated, there holds $G|T = G_1|T$. Therefore T is G_1-invariant, $N_1 \lhd G_1$, and $(G_1 : N_1)<\infty$. There are elements $a_1, \cdots, a_n; a_1^*, \cdots, a_n^*$ in T such that $\sum a_i \cdot \sigma(a_i^*) = \delta_{N, \sigma}$ for all σ in G. If τ is in $G_1 - N_1$ then $\tau|T = \rho|T$ for
some \(\rho \) in \(G - N \), and \(\sum_i a_i \cdot \tau(a_i^*) = \sum_i a_i \cdot \rho(a_i^*) = 0 \). Thus \(\sum_i a_i \cdot \sigma(a_i^*) = \delta_{N, \sigma} \) for \(\sigma \) in \(G_1 \).

Corollary. Let \(A/B \) be locally finite \(G \)-Galois, and \(G_1 \) a subgroup of \(G^* \) containing \(G \). Then \(A/B \) is locally finite \(G_1 \)-Galois.

Proposition 1.3. Let \(H_\lambda (\lambda \in \Lambda) \) be fixed subgroups of \(G \) such that \(A = \bigcup_{\lambda \in \Lambda} A^{H_\lambda} \) is a directed union.

1. If \(H \) is a subgroup of \(G \) such that \((G:H) < \infty \) then \(A^H \subseteq A^{H_\lambda} \) for some \(\lambda \) in \(\Lambda \).

2. If \(K \) is a subgroup of \(G \) such that \((K:1) \) < \(\infty \) then \(K \cap H_\mu = 1 \) for some \(\mu \) in \(\Lambda \).

Proof. (1) Let \([H_\lambda \cup H]\) be the subgroup of \(G \) generated by \(H_\lambda \cup H \). Since \(G \supseteq [H_\lambda \cup H] \supseteq H \), we have \((G:[H_\lambda \cup H]) \subseteq (G:H) \) for all \(\lambda \) in \(\Lambda \). Let \((G:[H_\lambda \cup H]) \) be maximum. We shall prove that \(A^H \subseteq A^{H_\lambda} \). For any \(H_\lambda \) there is an \(H_\mu \) such that \(A^{H_\mu} \supseteq A^{H_\lambda} \cup A^{H_\lambda_0} \). Then \(H_\mu \subseteq H_\lambda \cap H_\lambda_0 \), and so \([H_\mu \cup H] \subseteq [H_\lambda \cup H] \cap [H_\lambda_0 \cup H] \). Since \((G:[H_\lambda \cup H]) \) is maximum, we have \((G_\lambda \cup H) \supseteq [H_\lambda \cup H] \cap [H_\lambda_0 \cup H] \). Hence \([H_\lambda \cup H] \subseteq [H_\lambda \cup H] \) for all \(\lambda \) in \(\Lambda \). Then \(A^H = \bigcup_{\lambda} (A^{H_\lambda} \cap A^H) = \bigcup_{\lambda} A^{[H_\lambda \cup H]} = A^{[H_\lambda \cup H]} \cap A^H \), which means \(A^H \subseteq A^{H_\lambda} \). (2) Since \(A = \bigcup_{\lambda} A^{H_\lambda} \), we have \(1 = G^A = \bigcap_{\lambda} H_\lambda \). Let \(K = \{ \sigma_1 = 1, \sigma_2, \ldots, \sigma_r \} \). Then, for any \(\sigma_\mu (i \neq 1) \), there is an \(H_\mu \) such that \(\sigma_\mu \in H_\mu \). By assumption there is a \(\mu \) such that \(H_\mu \subseteq \bigcap_{\lambda \in 1, \ldots, r} H_\mu \). Then \(H \cap H_\mu \subseteq H \cap (\bigcap_{\lambda \in 1, \ldots, r} H_\mu) = 1 \).

Remark. Let \(A/B \) be locally finite \(G \)-Galois, and \(A = \bigcup_{\lambda \in \Lambda} A^{N_\lambda} \) its representation. If \(G \) is finite then \(A = A^{N_\lambda} \) for some \(\lambda \).

Proposition 1.4. Let \(T \) be an intermediate ring of \(A/B \) such that \(G|T \) is finite, and \(H = G^T \), and \(G = \sigma_1 H \cup \cdots \cup \sigma_r H \) a left coset decomposition of \(G \). If there are elements \(t_1, \ldots, t_n ; t^*_1, \ldots, t^*_n \) in \(T \) such that \(\sum_i t_i \cdot \sigma(t^*_i) = \delta_{\mu, \sigma} \) for all \(\sigma \) in \(G \), then there hold the following.

1. \(T = A^H \), and \(T_\mu \) is finitely generated and projective.

2. \(j^*: A(\sum_k u_{k_\mu})T = \sum_k A u_{k_\mu} \cong \text{Hom}(T_\mu, A_\mu) \), where \(j^*(\sum_k u_{k_\mu})(t) = \sum_k x_k \cdot s_k(t) \), and this induces the \(B - T \)-isomorphism \((\sum_k u_{k_\mu})T \cong \text{Hom}(T_\mu, A_\mu) \).

3. The following are equivalent: (i) \(B_\mu | T_\mu \). (ii) \(B_\mu | T_\mu \). (iii) \(\delta_{\mu, \sigma}(c) = 1 \) for some \(c \) in \(T \).

Proof. (1) \(\delta_{\mu, \sigma} \) is a \(B - B \)-homomorphism from \(A^H \) to \(B \). For any \(y \) in \(A^H \), \(T \), \(\sum_i t_i \cdot \delta_{\mu, \sigma}(t^*_i) = \sum_i t_i \sum_k s_k(t^*_i) = \sum_i \sum_k t_i \cdot s_k(t^*_i) = \delta_{\mu, \sigma}(y) = y \). Hence \(A^H = T \), and \(T_\mu \) is finitely generated and projective (cf. [3]). (2) \(j^* \) is the mapping such that \(j^*(f) = \sum_i f(t_i)(\sum_k u_{k_\mu})t_i^* \) (\(f \in \text{Hom}(T_\mu, A_\mu) \)). The second part will be easily seen. (3) The equivalence (i) \(\iff \) (iii) is easy from (2).
Therefore (i) and (ii) are equivalent, because the situation is right-left symmetric.

Proposition 1.5. Let A/B be locally finite G-Galois. Then there hold the following:

1. G^* is compact.
2. By j, Δ is isomorphic to a dense subring of $\text{Hom}(A_B, A_B)$.
3. A subgroup H of G is a closed subgroup of G if and only if H is a fixed subgroup of G.

Proof. Let $A=\bigcup_{\lambda} A_{\lambda}$ be a representation of the locally finite G-Galois extension A/B. (1) If x is in A then $x\in A_{\nu}$ for some ν in Λ. Then $(G:N_{\nu})<\infty$ implies that $(\{\sigma(x); \sigma \in G\} = \{\sigma(x); \sigma \in G^*\}$ is finite. Hence, by Prop. 1.1, G^* is compact. (2) By Prop. 1.4 (2), $\text{Im} j$ is dense in $\text{Hom}(A_B, A_B)$. Therefore it suffices to prove that j is 1–1. Let $\sigma_1, \cdots, \sigma_r$ be different elements in G. Then there is a finite subset F of A such that $\sigma_i|F \neq \sigma_j|F$ provided $i \neq k$. From this fact and Prop. 1.4, we can easily see that j is 1–1. (3) Evidently, a fixed subgroup is a closed subgroup. Let H be any subgroup of G, and put $H'=G^*$, where $T=A^H$. Then $T=A^H$. It suffices to prove that H is dense in H'. To prove this, we take any finite subset F of A. Then $F \subseteq A_{\nu}$ for some N_{ν}. Put $N=N_{\nu}$. Then, by finite Galois theory, we obtain $(G/N)^{T}=HN/N$ and $(A/N)^{T}=HN/N$, where $T=H^N$ and $T'=A^H$. (cf. [22; Prop. 2.2]). Since $A^H=H \cap A^N=A^H \cap A^N=A^W$, we have $HN/N=HN/N$, that is, $HN=H'N$. Hence $H|A^N=H'|A^N$, and so $H|F=H'|F$. Since F is arbitrary, this implies that H is dense in H'. This completes the proof.

Theorem 1.6. Let A/B be locally finite G-Galois, $G=G^*$, and H a subgroup of G, and let A' be an indecomposable extension ring of B such that $V_{A'}(B)=V_{A'}(A')$. Assume that there is a B-ring homomorphism g from A to A'. Then, for any B-ring homomorphism f from A^H to A', there is an element σ in G such that $f=g\sigma|A^H$.

Proof. Let $A=\bigcup_{\lambda} A_{\lambda}$ be a representation. For each N_{λ}, there is an element σ in G such that $f|A_{\lambda}^{HN_{\lambda}}=g\sigma|A_{\lambda}^{HN_{\lambda}}$. (cf. [22; Th. 4.1]). For each λ, we put $K_{\lambda}=\{\sigma \in G; f|A_{\lambda}^{HN_{\lambda}}=g\sigma|A_{\lambda}^{HN_{\lambda}}\}$. Then $K_{\lambda} \neq \emptyset$, and $\{K_{\lambda} ; \lambda \in \Lambda\}$ has finite intersection property. Let τ be in the closure of K_{λ} in G. Since $(A_{\lambda}^{N_{\lambda}})_{\lambda}$ is finitely generated, $\tau|A_{\lambda}^{N_{\lambda}}=\alpha|A_{\lambda}^{N_{\lambda}}$ for some α in K_{λ}. Then $f|A_{\lambda}^{HN_{\lambda}}=g\alpha|A_{\lambda}^{HN_{\lambda}}$. Hence $\tau \in K_{\lambda}$, and therefore K_{λ} is closed in G. Since G is compact (Prop. 1.5), we have $\cap_{\lambda} K_{\lambda} \neq \emptyset$. If ρ is in $\cap_{\lambda} K_{\lambda}$, then $f|A_{\lambda}^{HN_{\lambda}}=g\rho|A_{\lambda}^{HN_{\lambda}}$ for all λ. Since $A^H=\bigcup_{\lambda} A_{\lambda}^{HN_{\lambda}}$, we know $f=g\rho|A^H$.

The following theorem will follow at once from Th. 1.6 and Cor. to Prop. 1.2.

Theorem 1.7. Let A/B be locally finite outer G-Galois, and A an
indecomposable ring. Then $G^* = \hat{G}$, that is, G is dense in \hat{G}.

Proposition 1.8. Let A/B be locally finite G-Galois, and $G=G^*$ (cf. Cor. to Prop. 1.2). Then there hold the following.

(1) For an intermediate ring T of A/B the following are equivalent.
 (i) $T=A^H$ for some subgroup H of G. (ii) There are subgroups $H_\nu (\nu \in \Gamma)$ of G such that $T=\bigcup_{\nu} A^{H}_\nu$, $(G:H)_\nu<\infty$ and $\{A^{H}_\nu; \nu \in \Gamma\}$ is a directed set with respect to the inclusion relation.

(2) If H is a subgroup of G such that $(G:H)<\infty$ then $(A^H)_B$ is finitely generated.

Proof. Let $A=\bigcup_{i \in I_A} A^{N_i}$ be a representation of the locally finite G-Galois extension A/B. (1) (i) \iff (ii) $T=A^H=\bigcup_{i} (A^H \cap A^{N_i})=\bigcup_{i} A^{H+N_i}$ is a directed union, and $(G:HN_\nu)<\infty$. (ii) \iff (i) follows from Prop. 1.1. (2) By Prop. 1.3, $A^H \subseteq A^{N_\nu}$ for some ν in A. Then, $A^H=\bigcup_{\nu} A^{H_\nu}$ is a fixed subring of the finite G/N_ν-Galois extension A^{N_ν}/B, and therefore $(A^{N_\nu})_B | (A^H)_B$ (cf. [22; §2. p. 118]). Since $(A^{N_\nu})_B$ is finitely generated, $(A^H)_B$ is finitely generated.

Let T be an intermediate ring of A/B, and S a subset of A. T is called a G-separable cover of S if T satisfies the following conditions:

(1) T/B is a separable extension, and $T \supseteq S$.
(2) $G|T$ is finite.
(3) $G|T$ is strongly distinct (i.e. if $\sigma|T \neq \tau|T$ for σ, τ in G then $\sigma|T$ and $\tau|T$ are strongly distinct).

Theorem 1.9. Let A/B be locally finite outer G-Galois, and T an intermediate ring of A/B. Then the following are equivalent:

(i) $T=A^H$ for some subgroup H of G such that $(G:H)<\infty$.
(ii) T/B is a separable extension, T_B is finitely generated, and $G|T$ is strongly distinct.
(iii) T is a G-separable cover of B.

Proof. Let $A=\bigcup_{i \in I_A} A^{N_i}$ be a representation. (i) \iff (ii) By Prop. 1.3, $T=A^H \subseteq A^{N_\nu}$ for some ν in A. Then T is a fixed subring of the finite G/N_ν-Galois extension A^{N_ν}/B. Then, by [19; Prop. 3.4], T/B is a separable extension. By Prop. 1.8 (2) (cf. Cor. to Prop. 1.2), T_B is finitely generated. By [22; Th. 2.6], $G|T$ is strongly distinct. (ii) \iff (iii) This follows from the fact that $\{\sigma(x); \sigma \in G\}$ is finite for any x in A. (iii) \iff (i) Let $\{(t_i, t_i^*); i=1, \ldots, n\}$ be a (B, T)-projective coordinate system of T/B. Then, by [22; Prop. 1.2], $\sum_i t_i \cdot \sigma(t_i^*)=\delta_{H, \sigma}$ for σ in G, where $H=G^T$. $(G:H)<\infty$ implies $(G:H)<\infty$. By Prop. 1.4, $A^H=T$.

Combining Th. 1.9 with Prop. 1.8, we obtain the following theorem (cf. [12; Th. 3], [28; Theorem]).
Theorem 1.10. Let A/B be locally finite outer G-Galois, and $G=G^*$. Then, for an intermediate ring T of A/B, the following are equivalent.

(i) $T=A^H$ for some subgroup H of G.

(ii) For any finite subset F of T there is an intermediate ring T_0 of T/B such that $T_0\supseteq F$, T_0/B is separable, T_0 is finitely generated, and $G\mid T_0$ is strongly distinct.

(iii) Any finite subset of T has a G-separable cover which is contained in T.

Next we shall proceed to the characterization of locally finite outer Galois extensions.

Proposition 1.11. Let $V_A(B)=C$, T a G-separable cover of B, and (t_i, t_i^*) a (B, T)-projective coordinate system for T/B, and put $H=G^H$. Then there hold the following.

(1) $\sum_i t_i \cdot \sigma(t_i^*) = \delta_{H, \sigma}$ for all σ in G.

(2) $A^H=T$, $(G:H)<\infty$, and T/B is a projective Frobenius extension.

(3) Let K be a subgroup of G containing H. Then, $\sum_i t_{K:H}(t_i)\sigma(t_i^*) = \delta_{K, \sigma}$ for all σ in G, T is (B, A^K)-projective, $T\mid A^K$ is a projective Frobenius extension, and $G\mid A^K$ is strongly distinct. Further the following are equivalent. $(\alpha) (A^K)_{A^K}|T_{A^K}$. $(\beta) (A^K)_{A^K}|\langle A^K \rangle T$. $(\gamma) t_{K:H}(c)=1$ for some c in T.

Proof. (1) follows from [22; Prop. 1.2], and (2) is obvious by (1) and Prop. 1.4. (3) It will be easily seen that $\sum_i t_{K:H}(t_i)\sigma(t_i^*) = \delta_{K, \sigma}$ for all σ in G. Since $\sum_i t_i \otimes t_i^* = \sum_i t_i \otimes t_i^* t \in T \otimes_B T$ for t in T, $\sum_i t_{K:H}(t_i)\otimes t_i^* = \sum_i t_{K:H}(t_i) \otimes t_i^* \in A^K \otimes_B T$ for all y in A^K. Hence the mapping $x \rightarrow \sum_i t_{K:H}(t_i)\otimes t_i^* x$ from T to $A^K \otimes_B T$ is an A^K-homomorphism. Since $\sum_i t_{K:H}(t_i)\otimes t_i^* x = x$, it follows that T is (B, A^K)-projective. Let $\rho|A^K \neq \tau|A^K$ for ρ, τ in G. Then $\tau^{-1}\rho \notin K$, and so $0 = \tau(\sum_i t_{K:H}(t_i)\tau^{-1}\rho(t_i^*)) = \sum_i \tau(t_{K:H}(t_i))\rho(t_i^*)$. Thus, by [22; Prop. 1.1], $\rho|A^K$ and $\tau|A^K$ are strongly distinct. If we set $G=K$ in Prop. 1.4, the remainder follows from Prop. 1.4.

Theorem 1.12. Let $V_A(B)=C$. Then the following statements are equivalent.

(i) A/B is locally finite (outer) G-Galois.

(ii) For any finite subset F of A there is a G-invariant G-separable cover T of F such that $F B_{|T} T$.

(iii) For any finite subset F of A there is a G-separable cover T of F which satisfies the following: If T_0 is an intermediate ring of T/B such that $(\alpha) T$ is (B, T_0)-projective, $(\beta) T/T_0$ is a projective Frobenius extension, $(\gamma) G\mid T_0$ is strongly distinct, then $T_0 \cap T_0 \subseteq T_0 \cap T$.

(iv) For any finite subset F of A there is a G-separable cover T of F
which satisfies the following: If T_0 is an intermediate ring of T/B such that (α) T is (B, T_0)-projective, (β) T/T_0 is a projective Frobenius extension, (γ) $G|T_0$ is strongly distinct, (δ) T_0 is a G-invariant fixed subring (with respect to G), then $\tau_0T_0|\tau_0T$.

Proof. (i) \Rightarrow (ii), (iii) Let $A=\bigcup_{\mu\in\Lambda}A^{N_{\mu}}$ be a representation of the locally finite G-Galois extension A/B. Then any finite subset F of A is contained in some $A^{N_{\mu}} (\mu \in \Lambda)$. By [22; Th. 1.5], $A^{N_{\mu}}$ is a G-invariant G-separable cover of F such that $\rho_B|_{B}A^{N_{\mu}}$. Let T_0 be an intermediate ring of $A^{N_{\mu}}/B$ such that $A^{N_{\mu}}$ is (B, T_0)-projective and that $G|T_0$ is strongly distinct. Then, by [22; Th. 2.6], T_0 is a fixed subring of the finite outer G/N_{μ}-Galois $A^{N_{\mu}}/B$, whence $\tau_0T_0|\tau_0T$ by [22; §2. p. 118]. (ii) \Rightarrow (i) Let F be a finite subset of A, and T a G-invariant G-separable cover of F such that $\rho_B|_{B}T$. If we put $N=G^r$, then $A^{N}=T, N \triangleleft G$ and $(G:N)<\infty$ (Prop. 1.11). By Prop. 1.11, A^{N}/B is a finite G/N-Galois extension. Noting that $(A^{N})_{B}$ is finitely generated, A/B is a locally finite G-Galois extension. (iii) \Rightarrow (iv) is trivial. (iv) \Rightarrow (i) Let T_1 be a separable cover of an element x in A. Put $G^x=H_1$. Then $\#(G|T_1)<\infty$ implies $(G:H_1)<\infty$ and $\# \{\sigma(x) ; \sigma \in G\}<\infty$. Thus any finite subset of A is contained in a G-invariant finite subset of A. Let F be a G-invariant finite subset of A, and T a G-separable cover of F as that in (iv), and let $\{(t_i, t^*_i) ; i=1, \cdots, n\}$ be a (B, T)-projective coordinate system of T/B, and $H=G^r$. Then, by Prop. 1.11, $A^{r}=T$, $(G:H)<\infty$, and $\sum_{i}t_i \sigma(t^*_i)=\delta_{\sigma,x}$ for all $\sigma \in G$. Set $N=G^r$. Then $H \triangleleft N \triangleleft G$, and $F \subseteq A^{N} \subseteq A^{r}=T$. By Prop. 1.11, T is (B, A^{N})-projective, T/A^{N} is a projective Frobenius extension, and $G|A^{N}$ is strongly distinct. Then, by the assumption for T, $(A^{N})|_{(A^{N})∩(N_1)}T$, so that $t_{N:B}(c)=1$ for some $c \in T$ (Prop. 1.11 (3)). Put $t^*_i=t_{N:B}(t_i)$ and $t^*_i\in A^{N}$. Then, $t_i, t^*_i \in A^{N}$, and $\sum t_i \sigma(t^*_i)=\delta_{\sigma,x}$ for all $\sigma \in G$ (Prop. 1.11 (3)). Further, as is easily seen, $\sum t_i \sigma(t^*_i)=\delta_{\sigma,x}$ for all $\sigma \in G$. Since $\rho_B|_{B}T$ (Prop. 1.11 (3)), we have $\rho_B|_{B}A^{N}$. Thus A^{N}/B is a finite G/N-Galois extension. Noting that $(A^{N})_{B}$ is finitely generated, we conclude that A/B is a locally finite G-Galois extension.

Proposition 1.13. Let $A^{*} \supseteq T \supseteq B^{*}$ be rings such that A^{*} is (B^{*}, T)-projective, A' an extension ring of B^{*} such that $V_{A'}(B^{*})=V_{A'}(A')$, and f_{1}, \cdots, f_{s} B^{*}-ring homomorphisms from A^{*} to A' such that $f_{i}|T$ and $f_{k}|T$ ($i \neq k$) are strongly distinct. If $(B^{*})^{s}_{B^{*}} \rightarrow T^{s}_{B^{*}}$, then $(A'^{*})^{s}_{B^{*}} \rightarrow (A')^{s}_{A'^{*}}$.

Proof. Let $\{(t_i, a^*_i) ; i=1, \cdots, n\}$ be a (B^{*}, T)-projective coordinate system for A^{*}. Then, by [22; Prop. 1.2], $\sum f_{h}(t_i) f_{k}(a^*_i)=\delta_{h,k}$ for all h, k. Let φ be a A'-right homomorphism from $T \otimes_{B^{*}}A'$ to $(A')_{A'^{*}}$ defined by $\varphi(t \otimes a')= (f_{h}(t)a', \cdots, f_{s}(t)a')$. Since $\sum f_{h}(t_i) f_{k}(a^*_i)=\delta_{h,k}$, φ is an epimorphism. $(B^{*})^{s}_{B^{*}} \rightarrow T^{s}_{B^{*}}$ implies that $(A')^{s}_{A'^{*}} \rightarrow T \otimes_{B^{*}}A'$ Hence we have $(A')^{s}_{A'^{*}} \rightarrow (A')^{s}_{A'^{*}}$, as
desired.

Concerning Prop. 1.13, we consider the following condition.

Condition (F): If $\mathcal{A}A^r \rightarrow \mathcal{A}A^s$ for positive integers r, s, then $r \geq s$.

Remark. Let $\mathcal{A}A^r \rightarrow \mathcal{A}A^s$ for positive integers r, s. Then, since $\mathcal{A}A^s$ is projective, $\mathcal{A}A^r$ is isomorphic to an A-direct summand of $\mathcal{A}A^r$.

1. If $\mathcal{A}A$ is finite dimensional, then $r \cdot \text{dim} \mathcal{A}A \geq s \cdot \text{dim} \mathcal{A}A$, and so $r \geq s$ (cf. [11]).

2. Assume that there is a proper ideal \mathfrak{A} of A such that $\mathcal{A}A/\mathfrak{A}$ is finite dimensional. Then, since $\mathcal{A}A^r/\mathfrak{A}^r \rightarrow \mathcal{A}A^s/\mathfrak{A}^s$, the above (1) yields $r \geq s$, because $\mathcal{A}A^r/\mathfrak{A}^r \cong (A/\mathfrak{A})^r$ and $\mathcal{A}A^s/\mathfrak{A}^s \cong (A/\mathfrak{A})^s$.

3. If A is commutative, then $r \geq s$ by (2).

Proposition 1.14. Let $V_\mathcal{A}(B)=C$, and A an indecomposable ring satisfying (F), and let T be an intermediate ring of A/B, and S a subset of A. Then the following are equivalent:

(i) T is a G-separable cover of S.

(ii) $T \supseteq S$, T/B is a separable extension, and T_B is finitely generated.

Proof. (i) \Rightarrow (ii) is evident by Prop. 1.11. (ii) \Rightarrow (i) By [22; Lemma 2.7], A is (B, T)-projective. Then, by Prop. 1.13, we have $\#(G|T) < \infty$, and hence T is a G-separable cover of S.

If A is commutative, then A satisfies (F). Therefore, by Th. 1.12, S. 3 and Prop. 1.14, we have the following

Theorem 1.15 (Nagahara [12]). Let A be an indecomposable commutative ring. Then the following are equivalent.

(i) A/B is locally finite G-Galois.

(ii) For any finite subset F of A there is an intermediate ring T of A/B such that

(a) T/B is a separable extension, and T_B is finitely generated,

(b) $T \supseteq F$.

Proposition 1.16. Let A/B be locally finite G-Galois, and H a subgroup of G. Then $G|A^H$ is strongly distinct.

Proof. Let σ, τ be in G, and e a central idempotent of A such that $\sigma(x)e = \tau(x)e$ for all x in A^H. Let $A = \bigcup_{\lambda \in \Lambda} A^{N_\lambda}$ be a representation of the locally finite G-Galois extension A/B. We may assume that $e \in A^{N_\lambda}$ for all $\lambda \in \Lambda$. Suppose that $\sigma|A^H \neq \tau|A^H$. Since $A^H = \bigcup_{\mu \in \Lambda} A^{N_\mu}$, $\sigma|A^{N_\mu} \neq \tau|A^{N_\mu}$ for some μ in Λ. Then, by [22; Prop. 2.4], $(G/N_\mu)|A^{N_{\mu}}$ is strongly distinct. Therefore we have $e = 0$. Thus $G|A^H$ is strongly distinct.

Theorem 1.17. Let A/B be locally finite outer G-Galois, and T an intermediate ring of A/B. Then the following are equivalent.

(i) $T = A^H$ for some subgroup H of G, and A_T is finitely generated.
(ii) \(T = A^\sigma \) for some subgroup \(H \) of \(G \) such that \((H:1) < \infty \).

(iii) \(A|T \) is a projective Frobenius extension, \(\Hom(A_T, A_T) \subseteq \Delta \), and \(G|T \) is strongly distinct.

When any of the above conditions is satisfied \(A|A^H \) is finite \(-\)Galois.

Proof. Let \(A = \bigcup_{\mu \in \Lambda} A^\mu \) be a representation of the locally finite outer \(-\)Galois extension \(A/B \). (i) \(\Rightarrow \) (ii) Let \(A = x_T T + \cdots + x_T T \). Then \(x_T, \ldots, x_T \in A^{N_T} \) for some \(\mu \in \Lambda \), so that \(A = A^{N_T} \cdot T = A^{N_T} \cdot A^H \). Hence \(N_T \cap H = 1 \). Since \((G : N_T) < \infty \) we have \((H : 1) < \infty \). (ii) \(\Rightarrow \) (iii) By Prop. 1.3, \(H \cap N_T = 1 \) for some \(\mu \in \Lambda \). There are elements \(a_1, \ldots, a_n \), \(a_1^*, \ldots, a_n^* \in A^{N_T} \) such that \(\sum_i a_i \cdot \sigma(a_i^*) = \delta_{N_T} \) for all \(\sigma \) in \(G \). Then \(\sum_i a_i \cdot \sigma(a_i^*) = \delta_{N_T} \), for all \(\sigma \) in \(H \). Hence \(A/A^H \) is \(H \)-Galois. Therefore \(A/A^H \) is a projective Frobenius extension (cf. [22; p. 121]), and \(\Hom(A_T, A_T) = \bigcap_{\sigma \in H} A u, \subseteq \Delta \). By Prop. 1.16, \(G|T \) is strongly distinct. (iii) \(\Rightarrow \) (i) Let \(h = \sum_{\tau \in H} a_i u_i \) be a Frobenius homomorphism of \(A/T \), where \(H \) is a finite subset of \(G \) and \(a_i \neq 0 \) for all \(\tau \) in \(H \). Then, since \(th = ht \) for all \(t \) in \(T \), we have \(ta_i = a_i \cdot \tau(t) \) for all \(t \) in \(T \), in particular, \(ba_i = a_b \) for all \(b \) in \(B \). Hence \(a_i \in V(A)_B = C \) for all \(t \) in \(H \). There are elements \(r_i, l_i \) in \(A \) such that \(x = \sum_i x \cdot h(x r_i) l_i = \sum_i r_i h(l_i x) \) for all \(x \in A \) (cf. [27]). Then \(u_i = \sum_i r_i h(l_i) = \sum_i r_i \sum_{\tau \in H} a_i \cdot \tau(l_i) u_i = \sum_{\tau \in H} \sum_i r_i a_i \cdot \tau(l_i) u_i \), and so \(1 = \sum_i r_i a_i l_i = a_i \sum_i r_i l_i \). Thus \(a_i \) is an invertible element in \(C \), and \(a_i^{-1} = \sum_i r_i l_i \). Since \(H \) is finite there is an \(N_T \) such that \(\tau \cdot A^{N_T} \neq \rho \cdot A^{N_T} \) provided \(\tau \neq \rho \). \(\tau, \rho \in H \). Since \(A^{N_T}/B \) is finite \(G/N_T \)-Galois, there are elements \(d_k, e_k \in A^{N_T} \) such that \(\sum_k d_k \cdot \sigma(e_k) = \delta_{N_T} \) for all \(\sigma \) in \(G \). Put \(D_0 = \Hom(A_T, A_T) \). Then \(D_0 = AhA \), and \(D_0 \ni \sum_k \tau(d_k) h e_k = \sum_{\tau \in H} \sum_k \tau(d_k) a_i \cdot \sigma(e_k) u_i = a_i u_i \) for \(\tau \) in \(H \). Thus \(D_0 = AhA = \sum_{\tau \in H} \oplus A u_i \). Since \(A/T \) is a projective Frobenius extension with Frobenius homomorphism \(h, A \otimes_T A \simeq_A b_A \) by the correspondence \(x \otimes y \to x y h \). Let \(\varphi \) be the \(A \)-left homomorphism from \(A \) to \(D_0 \) defined by \(\varphi(\sum x_i u_i) = \sum_{\tau \in H} x_i h(y r_i) v l_i \), for all \(\mu \in \Lambda \). and \(\psi \) the \(A \)-left homomorphism from \(D_0 \) to \(D \) defined by \(\psi(x y h) = \sum_i x \cdot h(y r_i) v l_i \), for all \(\mu \in \Lambda \). Then, \(h(\tau r_i) a_i = \tau h(y r_i) a_i \). \(\tau \in H \), so \(\varphi = 1 \). Since \(a_i u_i = \sum_k \tau(d_k) h e_k \), we have \(\psi(a_i u_i) = \sum_k \sum \tau(d_k) h(e_k r_i) v l_i = \sum_{\tau \in H} \sum_k \tau(d_k) a_i \cdot \tau(r_i) u_i l_i \), and so \(\varphi(a_i u_i) = \psi(\sum \tau(d_k) a_i \cdot \tau(r_i) u_i l_i \). On the other hand, \(\varphi(a_i u_i) = a_i u_i \), and hence \(\sum \tau(d_k) a_i \cdot \tau(r_i) = a_i \cdot \tau(a_i) \), for all \(\tau \) in \(H \). Since \(a_i^{-1} = \sum_i r_i l_i \), we have \(a_i^* \cdot \tau(a_i) \). Noting that \(\tau(a_i) \) is an invertible element of \(C \), \(A a_i a_i = A a_i \cdot \tau(a_i) = A a_i \), and so \(A = A a_i + \Ann_A(a_i) \), where \(\Ann_A(a_i) = \{ x \in A ; x a_i = 0 \} \). If \(x a_i \in \Ann_A(a_i) \), then \(0 = x a_i^* = x a_i \cdot \tau(a_i) \), so that \(x a_i = 0 \). Therefore \(A a_i \) is written as \(A \cdot \tau \), with a central idempotent \(g \) of \(A \). Since \(A a_i u_i \subseteq D_0 \), we have \(g u_i \in D_0 \), and so \(g \cdot t = g \cdot \tau(t) \) for all \(t \) in \(T \). Consequently, \(D_0 = \sum_{\tau \in H} \oplus A u_i \), and \(H = G \cdot T \). Hence \(\End(A) = (A^H)_T \) the right multiplications of elements of \(A \). Since \(a_i u_i \in D_0 = \End(A_T) \), we have \(a_i u_i \in \End(A_{(\mu)}) \). Noting that \(a_i \) is in \(C \), we
can easily seen that \(a,u \in \text{Hom}(A_{(A^{H})}, A_{(A^{H})})\). Thus \(h = \sum_{i \in H} a, u \in \text{Hom}(A_{(A^{H})}A_{(A^{H})}, A_{(A^{H})})\). Then, by [27; Cor. 1], \(A/A^H\) is also a projective Frobenius extension with a Frobenius homomorphism \(h\). Since \((H:1) < \infty\), there is an \(N_i\) such that \(H \cap N_i = 1\) (Prop. 1.3 (2)). Then \(A^{H\cap N_i} \subseteq A^{N_i}\), and \(H \simeq HN_i/N_i\) canonically. Therefore there is an element \(c \in A^{N_i}\) such that \(t_{H}(c) = 1\) (cf. [22; §2. p. 118]), which implies \((A^{H})_{(A^{H})}|A_{(A^{H})}\), because the \(A^H\)-right homomorphism \(x \rightarrow t_{H}(cx)\) \((x \in A)\) from \(A\) to \(A^H\) splits. Therefore there is an element \(d\) in \(A\) such that \(h(d) = 1\). Then, for any \(x\) in \(A^H\), \(T \ni h(dx) = h(d)x = x\). Thus we obtain \(T = A^H\), as desired.

Theorem 1.18. Let \(A/B\) be finite outer \(G\)-Galois, and \(T\) an intermediate ring of \(A/B\). Then the following are equivalent.

(i) \(T = A^H\) for some subgroup \(H\) of \(G\).

(ii) \(A/T\) is a projective Frobenius extension, and \(G|T\) is strongly distinct.

(iii) \(T/B\) is a separable extension, and \(G|T\) is strongly distinct.

Proof. (i) \(\Leftrightarrow\) (ii) is evident from Th. 1.17. (i) \(\Rightarrow\) (iii) follows from [22; Th. 2.6] and [19; Prop. 3.4]. (iii) \(\Rightarrow\) (i) follows from [22; Th. 2.6 and Lemma 2.7].

§2. Heredity of locally finite Galois extensions.

Let \(A_0\) be a \(G^*\)-invariant subring of \(A\) such that the mapping \(\sigma \rightarrow \sigma|A_0\) \((\sigma \in G^*)\) is one-to-one and such that \(A_0/A_0^{\sigma}\) is a locally finite \(G\)-Galois extension, and let \(G^*\) be compact (as an automorphism group of \(A\)). Put \(B_0 = A_0^{\sigma}\), and let \(A_0 = \bigcup_{\lambda \in A} A_0^{N_i}\) be a representation of the locally finite \(G\)-Galois extension \(A_0/B_0\). Then \(G/N_i\) may be considered as a finite group of automorphisms of \(A^{N_i}\). And, by [22; Th. 5.1 and §2. p. 118], \(A^{N_i} = A_0^{N_i} \otimes_{B_0} B\), \(A^{N_i}/B\) is finite \(G/N_i\)-Galois. Since \(\cup_i A^{N_i}\) is a directed union, the compactness of \(G^*\) implies that \(\cup_i A^{N_i}(\subseteq A_0)\) is a fixed subring of \(A\) with respect to \(G^*\) (Prop. 1.1), so that \(A = \cup_i A^{N_i}\), because \(\sigma \rightarrow \sigma|A_0\) \((\sigma \in G^*)\) is 1–1. Thus \(A/B\) is locally finite \(G\)-Galois. Let \(H\) be any subgroup of \(G\). Then, \(A^H = \bigcup_{i} (A^H \cap A^{N_i}) = \cup_i A^{HN_i}\). By [22; Th. 5.1], \(A^{HN_i} = (A_0^{N_i})^{HN_i}/N_i \otimes_{B_0} B = A_0^{HN_i} \otimes_{B_0} B\). Hence \(A^H = \bigcup_i(A_0^{HN_i} \otimes_{B_0} B) = A_0^H \otimes_{B_0} B\), and \(A_0^H \otimes_{B_0} B \rightarrow A_0^H = A^H\) canonically. Since the isomorphism \(A_0^{HN_i} \otimes_{B_0} B \simeq A_0^{HN_i}/N_i \otimes_{B_0} B\) may be considered as \(A_0^{HN_i} \otimes_{B_0} B \rightarrow A_0^{H \cap N_i} \otimes_{B_0} B \rightarrow A^H\), we know \(A^H = A_0^H \otimes_{B_0} B\). Symmetrically we obtain \(A^H = B \otimes_{B_0} A_0^H\). Next we consider the set of all \(A_0^G\)-left submodules of \(A\) and the set of all \(B_0\)-left submodules of \(B\). Let \(\overline{X}\) be any \(A_0^G\)-left submodule of \(A\). Then \(\overline{X} \cap A^{N_i}\) is an \(A_0^{N_i}(G/N_i)\)-left submodule of \(A^{N_i}\). Therefore, by [22; Th. 5.1], we have \(\overline{X} \cap A^{N_i} = A_0^{N_i}(\overline{X} \cap A^{N_i}) \cap B = A_0^{N_i} \otimes_{B_0}(\overline{X} \cap B)\), so that \(\overline{X} = \cup_i(\overline{X} \cap A^{N_i}) = \cup_i(A_0^{N_i}(\overline{X} \cap B)) = A_0(\overline{X} \cap B)\). Since \(A_0^{N_i} \otimes_{B_0}(\overline{X} \cap B) \simeq A_0^{N_i}(\overline{X}\)
\(\bigcap B \subseteq X \) for all \(\lambda \), we have \(X = A_0 \otimes_{B_0} (X \cap B) \). Evidently \(X \cap B \) is a \(B_0 \)-left submodule of \(B \). Let \(X \) be any \(B_0 \)-left submodule of \(B \). Then, as is easily seen, \(A_0 X \) is an \(A_0 \)-\(G \)-left submodule of \(A \), and \(A_0 X = \bigcup_\lambda A_0 X_\lambda \). By [22; Th. 5.1], \(A_0 X \cap B = X \) for all \(\lambda \) in \(A \), so that \(A_0 X \cap B = \bigcup_\lambda (A_0 X_\lambda \cap B) \). If \(\overline{Y} \) is a \(G \)-invariant intermediate ring of \(A/A_0 \), then \(\overline{Y} \cap B \) is an intermediate ring of \(B/B_0 \), and \(\overline{Y} = A_0 (\overline{Y} \cap B) \). Symmetrically we have \(\overline{Y} = (\overline{Y} \cap B) A_0 \). If \(Y \) is an intermediate ring of \(B/B_0 \) such that \(A_0 Y = Y A_0 \), then \(A_0 Y \) is a \(G \)-invariant intermediate ring of \(A/A_0 \). Since \(A = \bigcup \lambda A_\lambda X_\lambda \), we have \(\overline{Y} = \bigcup \lambda (\overline{Y} \cap A_\lambda X_\lambda \cap B) \), and \(\overline{Y} / (\overline{Y} \cap B) \) is finite \(G/N_{\alpha} \)-Galois (22; Th. 5.1). Hence \(\overline{Y} / (\overline{Y} \cap B) \) is locally finite \(G \)-Galois. Thus we have obtained the following.

Theorem 2.1. Let \(A_0 \) be a \(G^* \)-invariant subring of \(A \) such that \(\sigma \rightarrow \sigma|A_0 \ (\sigma \in G^*) \) is 1–1 and such that \(A_0 / B_0 \) is locally finite \(G \)-Galois where \(B_0 = A_0^\theta \), and let \(G^* \) be compact. Then there hold the following:

1. \(A/B \) is locally finite \(G \)-Galois.
2. \(A^H = B \otimes_{B_0} A_0^H = A_0^H \otimes_{B_0} B \) for any subgroup \(H \) of \(G \). In particular, \(A = B \otimes_{B_0} A_0 = A_0 \otimes_{B_0} B \).
3. Let \(\{X\} \) and \(\{X\} \) be the set of all \(A_0 \)-\(G \)-left submodules of \(A \) and the set of all \(B_0 \)-left submodules of \(B \), respectively. Then, \(X \rightarrow X \cap B \) and \(X \rightarrow A_0 X = A_0 X \cap B \) are mutually converse order isomorphisms between \(\{X\} \) and \(\{X\} \).
4. Let \(\{\overline{Y}\} \) and \(\{Y\} \) be the set of all \(G \)-invariant intermediate rings of \(A/A_0 \) and the set of all intermediate rings of \(B/B_0 \) such that \(A_0 Y = Y A_0 \), respectively. Then \(\overline{Y} / (\overline{Y} \cap B) \) is locally finite \(G \)-Galois, and \(\overline{Y} \rightarrow \overline{Y} \cap B \) and \(Y \rightarrow A_0 Y = Y A_0 \) are mutually converse order isomorphisms between \(\{\overline{Y}\} \) and \(\{Y\} \).

Let \(A, A' \) be \(R \)-algebras such that \(A \otimes_R A' \neq 0 \). Assume that \(A/B \) is a locally finite \(G \)-Galois extension such that \(R \cdot 1 \subseteq B \), and assume that \(A' \) is a locally finite \(G' \)-Galois extension such that \(R \cdot 1 \subseteq B' \). Then each \(\sigma \times \tau \) in \(G \times G' \) induces an automorphism of \(A \otimes \tau \). Let \(A = \bigcup \alpha A^\alpha \) and \(A' = \bigcup \beta A'^\beta \) be representations of \(A/B \) and \(A'/B' \) respectively. Then, by [22; Th. 5.2], \((A^\alpha \otimes_R A'^\beta)/(B \otimes B') \) is a finite \((G/N_\alpha) \times (G'/N'_\beta) \)-Galois extension. Let \(\varphi_{\alpha \beta} \) be the canonical \(R \)-algebra homomorphism from \(A^\alpha \otimes_R A'^\beta \) to \(A^\alpha \otimes A'^\beta \) \(\subseteq A \otimes_R A' \). We put \(A \otimes_R A' \cong A^\alpha \otimes A'^\beta \) and \(A \otimes_R A' \cong B \otimes B' = B^* \). To be easily seen, \(\text{Ker } \varphi_{\alpha \beta} \) is a \((G/N_\alpha) \times (G'/N'_{\beta}) \)-invariant ideal of \(A^\alpha \otimes_R A'^\beta \). Hence \(A_{\alpha \beta} / B^* \) is \((G/N_\alpha) \times (G'/N'_{\beta}) \)-Galois ([22; Th. 5.6]). There are elements \(c \) and \(c' \) in \(A^\alpha \) and \(A'^\beta \) respectively such that \(t_{\alpha / N_{\alpha}}(c) = 1 \) and \(t_{\beta / N_{\beta}}(c') = 1 \). Then \(c \otimes c' \in A_{\alpha \beta} \) and \(t_{(\alpha / N_{\alpha}) \times (\beta / N_{\beta})}(c \otimes c') = 1 \otimes 1 \). Hence \(A_{\alpha \beta} / B^* \) is a finite \((G/N_\alpha) \times (G'/N'_{\beta}) \)-Galois extension, and \(\{\sigma \times \tau \in G \times G'; \ \sigma \times \tau | A_{\alpha \beta} = 1_{A_{\alpha \beta}}\} = N_\alpha \times N'_\beta \). Since \(A_{\alpha \beta}(N_\alpha \times N'_\beta) = (N_\alpha N_\beta) \times (N_{\alpha \beta} N'_\beta) = 1 \), \(G \times G' \) may be considered
as a group of automorphisms of $A \otimes_R A'$. Let H and H' be subgroups of G and G', respectively. Then, $(A \otimes_R A')^{H \times H'} = \bigcup_{a, b} A_{a, b}^{H \times H'} = \bigcup_{a, b} (A_{a}^{H} \otimes A_{b}^{H'}) = (\bigcup_{a} A_{a}^{X_{a}^{H}})(\bigcup_{b} A_{b}^{X_{b}^{H'}}) = A^{H} \otimes A^{H'}$ by [22; Th. 5.2]. In particular, $(A \otimes_R A')^{N_{a} \times N_{b}'} = A_{a}^{N_{a}} \otimes A_{b}'^{N_{b}'} = A_{a} = A_{b}'$, and evidently $(G \times G' : N_{a} \times N_{b}') \leq \infty$. Since $A \otimes_R A' = \bigcup_{a, b} A_{a}^{X_{a} \times X_{b}'}$ is a directed union, $A \otimes_R A'/B \otimes B'$ is a locally finite $G \times G'$-Galois extension. Let $a \in A$ and $a' \in A'$. Then it is evident that $\{\sigma \times \tau \in G \times G'; \sigma(a) \otimes \tau(a') = a \otimes a'\} \supseteq \{a \in G; \sigma(a) = a\} \times \{\tau \in G'; \tau(a') = a'\}$. Put $\{a \in G; \sigma(a) = a\} = K$ and $\{\tau \in G'; \tau(a') = a'\} = K'$. Then $A^{K} \subseteq A_{a}^{X}$ and $A^{K'} \subseteq A_{a}'^{N_{b}'}$ for some $a, b \in \Lambda$ (Prop. 1.3), so that $N_{a} \subseteq K$ and $N_{b}' \subseteq K'$. By [22; Th. 5.2], $(G/N_{a} \times G'/N_{b}')(A_{a} \otimes A_{b}') = (K/N_{a} \times K'/N_{b}')$, and hence $(G \times G')(A_{a} \otimes A_{b}') = K \times K'$. Since $(A^{K})_{B}$ and $(A^{K'})_{B}$ are finitely generated, $(A^{K} \otimes_{B} A^{K'})_{B}$ is finitely generated. Hence the finite topology of $G \times G'$ with respect to $A \otimes R A'$ is the product topology of the finite topology of G with respect to A and the finite topology of G' with respect to A'. Thus we have proved the following

Theorem 2.2. Let A and A' be R-algebras such that $A \otimes_R A' \neq 0$. If A/B is a locally finite G-Galois extension such that $R \cdot 1 \subseteq B$, and A'/B' is a locally finite G'-Galois extension such that $R \cdot 1 \subseteq B'$, then $(A \otimes_R A')/(B \otimes B')$ is a locally finite $G \times G'$-Galois extension, and $(A \otimes_R A')^{H \times H'} = A^{H} \otimes A^{H'}$ for any subgroup H of G and any subgroup H' of G'. The finite topology of $G \times G'$ with respect to $A \otimes R A'$ is the product topology of the finite topology of G with respect to A and the finite topology of G' with respect to A'.

Corollary. Let A/B be a locally finite G-Galois extension such that $B \subseteq C$, and A' a B-algebra such that $A \otimes_R A' \neq 0$. Then $(A \otimes_R A')/(1 \otimes A')$ is a locally finite G-Galois extension, and $(A \otimes_{B} A')(A \otimes_{B} A') = A^{H} \otimes A'$ for any subgroup H of G.

Proposition 2.3. Let A/B be locally finite G-Galois, and $G = G^*$. If H and K are closed subgroups of G, then $A^{H \cap K} = A^{H} \cdot A^{K} = A^{K} \cdot A^{H}$. In particular, if $H \cap K = 1$ then $A = A^{H} \cdot A^{K} = A^{K} \cdot A^{H}$.

Proof. Let $A = \bigcup_{\mu \in \Lambda} A^{N_{\mu}}$ be a representation of the locally finite G-Galois extension A/B. First we assume that $(G : K) < \infty$. Then, by Prop. 1.3, $A^{K} \subseteq A^{N_{\mu}}$ for some $\mu \in \Lambda$. Since $(A^{N_{\mu}})_{B}$ is finitely generated and $(A^{K})_{B}$ is a direct summand of $(A^{N_{\mu}})_{A^{K}}$ ([22; § 2. p. 118]), $(A^{K})_{B}$ is finitely generated. Therefore we may assume that $A^{K} \subseteq A^{N_{\mu}}$ for all $\mu \in \Lambda$. Then $N_{\mu} \subseteq K$ for $\lambda \in \Lambda$, and $A_{\mu}^{H} \cdot A^{K} = (\bigcup_{\mu \in \Lambda} A^{N_{\mu}})(\bigcup_{\mu \in \Lambda} A^{N_{\mu}}) = \bigcup_{\mu \in \Lambda} (A^{N_{\mu}} \cdot A^{N_{\mu}}) = \bigcup_{\lambda} A^{N_{\mu} \cap N_{\mu}', K}$ by [22; Prop. 5.3]. Since $N_{\mu}H \cap K = N_{\mu}(H \cap K)$ for all λ, we have $A^{H} \cdot A^{K} = \bigcup_{\lambda} A^{N_{\mu} \cap N_{\mu}'; K} = A^{H} \cdot A^{K}$. Next we return to general case. For any finite subset F of A^{K}, we put $K_{F} = \{\sigma \in G; \sigma[F = 1_{F}]\}$. Then $(G : K_{F}) < \infty$, $A^{K_{F}} \subseteq A^{K}$, and $(A^{K_{F}})_{B}$ is finitely generated. Therefore $A^{K} = \bigcup_{F} A^{K_{F}}$ is a directed union, and
hence $A^H,A^K=A^H(\bigcup_{\lambda}A^{K_{\lambda}})=\bigcup_{\lambda}(A^H\cdot A^{K_{\lambda}})$ is also a directed union. Since each $A^H\cdot A^{K_{\lambda}} (=A^H\cap K_{\lambda})$ is a fixed subring of A, $A^H\cdot A^K$ is a fixed subring of A (Prop. 1.1). Hence, as is easily seen, $A^H\cdot A^K=A^{H\cap K}$. Symmetrically we have $A^{H\cap K}=A^K\cdot A^H$.

Corollary. Let A/B be locally finite G-Galois, $G=G^*$, and $H_i (i \in \Gamma)$ be closed subgroups of G. Then, $[\bigcup_i A^{H_i}]=A^{\cap H_i}$, where $[\bigcup_i A^{H_i}]$ means the subring of A generated by $\bigcup_i A^{H_i}$.

Proof. Evidently $[\bigcup_i A^{H_i}]=\bigcup [A^{H_{i_1}} \cup \cdots \cup A^{H_{i_n}}]$, where $\{i_1, \ldots, i_n\}$ ranges over all finite subsets of Γ. By Prop. 2.3, $A^{H_{i_1}\cap \cdots \cap H_{i_n}}=A^{H_{i_1}} \cdots A^{H_{i_n}}=[A^{H_{i_1}} \cup \cdots \cup A^{H_{i_n}}]$, and therefore $[\bigcup_i A^{H_i}]$ is a directed union of fixed subrings of A. Hence, by Prop. 1.1, $[\bigcup_i A^{H_i}]$ is a fixed subring. Since $\{\sigma \in G ; \sigma [\bigcup_i A^{H_i}]=1\}=\bigcap_i H_i$, we obtain $[\bigcup_i A^{H_i}]=A^{\cap H_i}$, as desired.

Proposition 2.4. Let A/B be locally finite G-Galois, \mathfrak{N} a G-invariant proper ideal of A, K a closed subgroup of G, and N a closed normal subgroup of G such that $(G:N)<\infty$. Then there hold the following:

1. $A^{K\cap N}/A^K$ is finite $K/(K\cap N)$-Galois. In particular, A^N/B is finite G/N-Galois.

2. $(A^N+\mathfrak{A})/\mathfrak{A}/((B+\mathfrak{A})/\mathfrak{A})$ is finite G/N-Galois, and $((A^N+\mathfrak{A})/\mathfrak{A})^{H}= (A^{NH}+\mathfrak{A})/\mathfrak{A}$ for any subgroup H of G.

Proof. Let $A=\bigcup_{\mu \in A} A^{N_{\mu}}$ be a representation of the locally finite G-Galois extension A/B. (1) By Prop. 1.3, $A^N \subseteq A^{N_{\mu}}$ for some $\mu \in A$, and then $N_{\mu} \subseteq N$, $A^N=(A^{N_{\mu}})^{N\cap N_{\mu}}$. Therefore, by [22; Prop. 5.7], A^N/B is finite $(G/N)\times (N/N_{\mu})$-Galois, or equivalently, finite G/N-Galois. Accordingly, A^N/A^{NK} is finite NK/N-Galois, or equivalently, finite $K/(K\cap N)$-Galois. $K/(K\cap N)$ may be considered as a finite group of automorphisms of $A^{K\cap N}$, because $K\cap N \triangleleft K$. Then $A^{K\cap N}/A^K$ is finite $K/(K\cap N)$-Galois. (2) By (1), A^N/B is finite G/N-Galois. If $t_{\theta/N}(c)=1$ for c in A^N, then $t_{\theta/N}(c+\mathfrak{A})=1+\mathfrak{A}$. Then, by [22; Th. 5.6], $((A^N+\mathfrak{A})/\mathfrak{A})/(B+\mathfrak{A})/\mathfrak{A})$ is finite G/N-Galois, and $((A^N+\mathfrak{A})/\mathfrak{A})^{H}= (A^{NH}+\mathfrak{A})/\mathfrak{A}$ for any subgroup H of G.

Let A/B be locally finite G-Galois, K a closed subgroup of G, and N a G-invariant proper ideal of A. Let $A=\bigcup_{\mu \in A} A^{N_{\mu}}$ be a representation of the locally finite G-Galois extension A/B. Then $A^N=\bigcup_{\mu} (A^N \cap A^{N_{\mu}})=\bigcup_{\mu} A^{NN_{\mu}}$ is a directed union, and each NN_{μ} is a closed normal subgroup of G, because $(G:N)<\infty$. Then, by Prop. 2.4 (1), $A^{NN_{\mu}}/B$ is finite G/NN_{μ}-Galois. Therefore there are elements $a_1, \ldots, a_m ; b_1, \ldots, b_m$ in $A^{NN_{\mu}}$ such that $\sum a_i \cdot \sigma(b_i)=\delta_{NN_{\mu},\sigma}$ for σ in G. Hence $A^{NN_{\mu}}/B$ is finite $(G/N)/(NN_{\mu})/N$-Galois. Hence A^N/B is locally finite G/N-Galois. Next we consider K. $A=\bigcup_{\mu} A^{N_{\mu}\cap K}$ is a directed union, and each $N_{\mu}\cap K$ is a fixed
normal subgroup of K such that $(K : N_{i} \cap K) < \infty$. By Prop. 2.4 (1), each $A_{0}^{N_{i}/K}/A^{K}$ is finite $K/(N_{i} \cap K)$-Galois. Hence A/A^{K} is locally finite K-Galois. Finally we consider \mathfrak{A}. Evidently, $A/\mathfrak{A} = \bigcup_{\lambda}((A^{N_{\lambda}}+\mathfrak{U})/\mathfrak{A})$. By Prop. 2.4 (2), $((A^{N_{\lambda}}+\mathfrak{U})/\mathfrak{A})/((B+\mathfrak{A})/\mathfrak{A})$ is finite G/N_{i}-Galois, and $((A^{N_{\lambda}}+\mathfrak{U})/\mathfrak{A})^{H} = (A^{N_{\lambda}H} + \mathfrak{U})/\mathfrak{A}$ for any subgroup H of G. Therefore $(A/\mathfrak{A})^{H} = \bigcup_{\lambda}((A^{N_{\lambda}}+\mathfrak{U})/\mathfrak{A})^{H} = \bigcup_{\lambda}(A^{N_{\lambda}H} + \mathfrak{U})/\mathfrak{A}$ for any subgroup H of G. Hence $((A+\mathfrak{A})/\mathfrak{A})/((B+\mathfrak{A})/\mathfrak{A})$ is locally finite G-Galois. Thus we have proved the following

Theorem 2.5. Let A/B be locally finite G-Galois, N a closed normal subgroup of G, K a closed subgroup of G, and \mathfrak{A} a G-invariant proper ideal of A. Then there hold the following:

1. A^{N}/B is locally finite G/N-Galois.
2. A/A^{K} is locally finite K-Galois.
3. $((A+\mathfrak{A})/\mathfrak{A})/((B+\mathfrak{A})/\mathfrak{A})$ is locally finite G-Galois, and $(A+\mathfrak{A})/\mathfrak{A}^{H} = (A^{H} + \mathfrak{A})/\mathfrak{A}$ for any subgroup H of G.

Corollary. Let A/B be locally finite G-Galois, and e a non-zero idempotent in $B \cap C$. Then Ae/Be is locally finite G-Galois, and $(Ae)^{H} = A^{H}e$ for any subgroup H of G.

Let A/B be locally finite G-Galois, n a positive integer, and J the ring of rational integers. Then, $(J)n$ is a J-algebra, and $(J)n \otimes_{J} A \simeq (A)n \neq 0$. If we define $\sigma(a_{et}) = (\sigma(a_{et}))$ for any σ in G and any (a_{et}) in $(A)n$, then $(A)n/(B)n$ is locally finite G-Galois and $(A)m = (A^{H})m$ for any subgroup H of G (Th. 2.2). Now, let $\{e_{ik} ; i, k = 1, \cdots, m\}$ a system of matrix units contained in B, and $A = \bigcup_{\lambda}A^{N_{\lambda}}$ a representation of A/B. Put $A_{0} = V_{A} \{e_{ik}\}$ and $B_{0} = B \cap A_{0}$. Then, as is well known, $A = \sum_{i, k} A_{0}e_{ik}$, $A_{0} \simeq A_{0}e_{ik}$ by the right multiplication of e_{ik}. To be easily seen, $A^{N_{\lambda}} = \sum_{i, k} A_{0}^{N_{\lambda}} e_{ik}$, and $A^{N_{\lambda}H} = V_{A^{H}} \{e_{ik}\}$. There is an element c in $A^{N_{\lambda}}$ such that $t_{\lambda;N_{\lambda}}(c) = 1$. Let $c = \sum_{i, k} x_{ik} e_{ik}$ ($x_{ik} \in A^{N_{\lambda}H}$). Then $1 = t_{\lambda;N_{\lambda}}(c) = \sum_{i, k} t_{\lambda;N_{\lambda}}(x_{ik}) e_{ik}$, and so $t_{\lambda;N_{\lambda}}(x_{ik}) = 1$. Thus, by [22; 5.8], $A_{0}^{N_{\lambda}}/B_{0}$ is finite G/N_{i}-Galois. Since $A_{0} = \bigcup_{\lambda}, A_{0}^{N_{\lambda}}$ is a directed union, A_{0}/B_{0} is locally finite G-Galois. Therefore, by Th. 2.1, $A_{0} = A_{0} \otimes_{B_{0}} B$. Thus we have obtained the following

Theorem 2.6. Let A/B be locally finite G-Galois.

1. For any positive integer n, $(A)n/(B)n$ is locally finite G-Galois, and $(A)n^{H} = (A^{H})n$ for any subgroup H of G.
2. If $\{e_{ik} ; i, k = 1, \cdots, m\}$ is a system of matrix units contained in B, $A_{0} = V_{A} \{e_{ik}\}$, and $B_{0} = B \cap A_{0}$, then A_{0}/B_{0} is locally finite G-Galois, and $A = A_{0} \otimes_{B_{0}} B$.

Let A/B be finite G-Galois, and M a Δ-left module. For any subgroup H of G, we put $M^{H} = \{m \in M ; u, m = m$ for all $\tau \in H\}$, which is an A^{H}.\[1\]
submodule of M. Evidently $M^H \supseteq A^H \cdot M^\sigma$, and the mapping $\varphi : A^H \otimes_B M^\sigma \rightarrow M^H$ defined by $a \otimes m \mapsto am$ ($a \in A$, $m \in M^\sigma$) is an A^H-left homomorphism. By assumption there are elements $a_1, \ldots, a_n; a_1^*, \ldots, a_n^*$ in A such that $\sum_i a_i \cdot \sigma(a_i^*) = \delta_{i, \sigma}$ ($\sigma \in G$), $t_H(d) = 1$. Put $t_i = t_H(a_i)$. Then, $t_i \in A^H$ and $\sum_i t_i \cdot \sigma(a_i^*) = \delta_{i, \sigma}$ for σ in G. If m is in M^σ, then $A^H \cdot M^\sigma \ni t_i \sum_{\sigma \in G} u_{\sigma}(a_i^* dm) = \sum_i t_i \sum_{\sigma \in G} (a_i^* d) u_m = t_H(d) m = \sum_i t_i \sum_{\sigma \in G} (a_i^* da) \otimes m_0 = t_H(da) \otimes m_0 = a \otimes m_0$. From this fact, as is easily seen, φ is 1–1. Thus we have $M^H = A^H \otimes_B M^\sigma$. Next we proceed to more general case.

Let A/B be locally finite G-Galois, $A = \bigcup_{i=1}^r A^N_i$ its representation, and M a A-left module. Let $G = \sigma_1 N_1 \cup \cdots \cup \sigma_r N_r$ be the coset decomposition of G, and let A_i be the trivial crossed product of A^N_i with G/N_i: $A_i = \bigoplus \sigma \in G/N_i A^N_i v_{\overline{\sigma}}$, $v_{\overline{\sigma}} v_{\overline{\sigma'}} = v_{\overline{\sigma \sigma'}}$, $v_{\overline{\sigma}} a = \sigma(a) v_{\overline{\sigma}}$ ($\sigma = \sigma_i N_i, \sigma_k = \sigma_k N \in G/N_i, a \in A^N_i$). For any m in M^N_i and any $\sum_i x_i v_{\overline{\sigma}} (m) = \sum_i x_i u_{\sigma_i} m$. Then, as is easily seen, M^N_i is a A_i-left module. Since A^N_i/B is finite G/N_i-Galois, we obtain that $M^N_i = A^N_i \otimes_B M^\sigma$ and $M^N_i H = A^N_i H \otimes_B M^\sigma$ for any subgroup H of G. Since $A = \bigcup_i A^N_i$ is a directed union, so is $\bigcup_i M^N_i$. For any subgroup H of G, $(\bigcup_i M^N_i)^H = \bigcup_i M^N_i H = \bigcup_i A^N_i H \cdot M^\sigma = A^H \cdot M^\sigma$, and $A^N_i H \otimes_B M^\sigma \simeq A^N_i H \cdot M^\sigma$ canonically. The last isomorphism may be considered as $A^N_i H \otimes_B M^\sigma \rightarrow A^H \otimes_B M^\sigma \rightarrow A^H \cdot M^\sigma$, and hence we see that $(\bigcup_i M^N_i)^H = A^H \otimes_B M^\sigma$. For any m in M we put $H_m = \{ \sigma \in G ; \sigma m = m \}$, which is a subgroup of G. Assume that $(G : H_m) < \infty$ and that H_m is closed in G. Then, by Prop. 1.3, $H_m \supseteq N_\nu$ for some $\nu \in A$, so that $m \in M^N_\nu$. Conversely, if m is in $\bigcup_\nu M^N_\nu$, then $m \in M^N_\nu$ for some N_ν, so that $H_m \supseteq N_\nu$. Then, since $(G : N_\nu) < \infty$ and N_ν is closed in G, $(G : H_m) < \infty$ and H_m is closed in G. Thus we have proved the following:

Theorem 2.7. Let A/B be locally finite G-Galois, and M a A-left module. Then there hold the following:

1. $A \cdot M^\sigma$ is a A-submodule of M, and $(A \cdot M^\sigma)^H = A^H \otimes_B M^\sigma$ for any subgroup H of G.

2. $A \cdot M^\sigma = \{ m \in M ; (G : H_m) < \infty$ and H_m is closed in $G \}$, where $H_m = \{ \sigma \in G ; \sigma m = m \}$.

Corollary. Let A/B be finite G-Galois, and M a A-left module. Then, $M^H = A^H \otimes_B M^\sigma$ for any subgroup H of G, in particular, $M = A \otimes_B M^\sigma$ (cf. [4; Th. 1.3] and [22; Th. 5.1 (2)]).

Proposition 2.8. Let A/B be finite G-Galois. Then the following are equivalent.

1. There are elements $a_1, \ldots, a_n; a_1^*, \ldots, a_n^*$ in $V_A(B)$ such that $\sum_i a_i \cdot \sigma(a_i^*) = \delta_{i, \sigma}$ ($\sigma \in G$) (cf. [22; Cor. to Th. 5.1]).
(ii) \(\text{If } \ A|B \text{ is outer } G\text{-Galois, and } \ A|B \text{.} \)

Proof. Since \(\text{(A)} \ (\sum_{\sigma} u_{\sigma}) A \cong \text{Hom}(A, B) \) by \(j \), it follows that \(\text{(A)} \ V_{A}(B) \cong \text{Hom}(B, B) \) and it is evident that \(V_{A}(B) \cong \text{Hom}(B, B) \) canonically. To be easily seen, \(A|B \) if and only if there are elements \(f_{1}, \cdots, f_{n} \) in \(\text{Hom}(B, B) \) such that \(\sum_{i} g_{i} f_{i}(x) = x \) for all \(x \) in \(A \). Consequently \((ii) \) is equivalent to that \(u_{1} = \sum_{i} a_{i}(\sum_{\sigma} u_{\sigma}) a_{i}^{*} \) (= \(\sum_{i} a_{i} \sigma(a_{i}^{*})u_{\sigma} \)) for some \(a_{1}, \cdots, a_{n} \; a_{1}^{*}, \cdots, a_{n}^{*} \) in \(V_{A}(B) \). Hence \((i) \) and \((ii) \) are equivalent.

Corollary. Let \(G \) be finite. Then the following are equivalent.

(i) \(\ A|B \) is outer \(G\text{-Galois, and } \ A|B \).

(ii) There are elements \(a_{1}, \cdots, a_{n} \; a_{1}^{*}, \cdots, a_{n}^{*} \) in \(C \) such that \(\sum_{i} a_{i} \sigma(a_{i}^{*}) = \delta_{1,\sigma} \) \((\sigma \in G) \).

Proof. This follows from [22; Prop. 6.4 and Prop. 6.5] and Prop. 2.8. \(A|B \) is called a completely outer \(G\text{-Galois extension if } G \) is finite and completely outer (cf. [22]).

Theorem 2.9. Let \(B' \) be a ring with identity, \(Z \) its center, and \(G' \) a finite group.

1. If \(A'\not|B' \) is completely outer \(G'\text{-Galois and } \ A'|B', \text{ then } A' = B' \otimes_{Z} C' \), where \(C' \) is the center of \(A' \), and \(C'|Z \) is \(G'\text{-Galois.} \)

2. If \(C'|Z \) is \(G'\text{-Galois and } C' \text{ is commutative, then } A' = B' \otimes_{Z} C' \) is a completely outer \(G'\text{-Galois extension over } B', \ A'|B', \text{ and } 1\otimes C' \text{ is the center of } A'. \)

Proof. (1) By [22; Prop. 6.4], \(A'|B' \) is outer \(G'\text{-Galois and } V_{A'}(B') = C' \), where \(C' \) is the center of \(A' \). Then, by Cor. to Prop. 2.8 and [22; Th. 5.1], \(C'|Z \) is \(G'\text{-Galois and } A' = B' \otimes_{Z} C' \). (2) By [22; Th. 5.2 and Prop. 6.5], \(A'|B(\otimes 1) \) is completely outer \(G'\text{-Galois. Since } Z \text{ is a direct summand of }_{Z} C', B' \cong B' \otimes 1 \text{ canonically, and } \ A'|B', \text{ because }_{Z} C'|Z. \text{ Then, by Cor. to Prop. 2.8, } C'|Z \text{ is } C'\text{-Galois, where } C'^{*} \text{ is the center of } A'. \text{ Since } C'^{*} \supseteq 1 \otimes C' \supseteq Z \text{ and } (1 \otimes C')/Z \text{ is } G'\text{-Galois ([22; Th. 5.1 or Th. 5.6])}, \text{ we have } C'^{*} = Z(1 \otimes C') = 1 \otimes C' ([22; Th. 5.1]).

Lemma 2.10. Let \(T \) be a ring, and \(U \) a subring of \(T \).

1. Let \(T|U \) be a separable extension. If a \(T\)-left module \(M \) is \(U\)-projective, then \(M \) is \(T\)-projective.

2. If \(\sigma T \otimes_{U} T|_{T} \) and \(\sigma U|_{U} M \) for a \(T\)-left module \(M \), then \(\sigma T|_{T} M \).

3. Let \(T_{0} \) be an intermediate ring of \(T|U \). If \(T \) is \((U, T_{0})\)-projective and \(T_{0} \) is a \(T_{0}\)-\(T_{0}\)-direct summand of \(T \), then \(T_{0}|U \) is a separable extension.

Proof. (1) Since the mapping \(x \otimes y \to xy \text{ form } T \otimes_{U} T \text{ to } T \) splits as a \(T\)-\(T\)-homomorphism, the mapping \(x \otimes m \to xm \text{ from } T \otimes_{U} M \text{ to } M \) splits as
a T-left homomorphism. Since $_\rho M$ is projective, so is $T \otimes _\rho M$. Therefore M is T-projective. (2) Since $_\rho U|_\rho M$, $T|_\rho T \otimes _\rho M$. Since $T \otimes _\rho T|_\rho T$, we have $T \otimes _\rho M|_\rho M$. Hence we have $T|_\rho M$. (3) Let ϕ be the canonical homomorphism from $T_0 \otimes _\rho T$ to T defined by $\phi(t \otimes m) = t \cdot m$, and let ϕ be a $T_0 \otimes _\rho T$-homomorphism from T to $T_0 \otimes _\rho T$ such that $\phi(x) = x$ for all x in T. If $\phi(1) = \sum a_i \otimes b_i$ ($a_i \in T_0$, $b_i \in T$), then $\sum_i a_i b_i = 1$ and $\sum_i y a_i \otimes b_i = \sum_i a_i \otimes b_i y$ ($\in T_0 \otimes _\rho T$) for all y in T_0. Let π be a $T_0 \otimes _\rho T$-homomorphism from T to T_0 such that $\pi|T_0 = 1_{T_0}$. Then, since $\sum_i y a_i \otimes b_i = \sum_i a_i \otimes b_i y$ ($\in T_0 \otimes _\rho T$) for all y in T_0, we have $\sum_i a_i \cdot \pi(b_i) = 1$ and $\sum_i y a_i \otimes \pi(b_i) = \sum_i a_i \otimes \pi(b_i) y$ ($\in T_0 \otimes _\rho T_0$) for y in T_0. Then the mapping $y \mapsto \sum_i a_i \otimes \pi(b_i) y$ from T_0 to $T_0 \otimes _\rho T_0$ is a $T_0 \otimes _\rho T$-homomorphism, and $\sum_i a_i \cdot \pi(b_i) y = y$. Hence T_0/U is a separable extension.

Proposition 2.11. Let A/B be finite G-Galois, and Z the center of B. If B is a separable Z-algebra and $Z \subseteq C$, then $V_A(B)/Z$ is finite G-Galois.

Proof. By [2; Prop. 1.5], $B \otimes _Z B^0$ is a central separable Z-algebra, where B^0 is the opposite ring of B. Since $_B A$ and $_B B$ are finitely generated and projective, so is A. Then, by Lemma 2.10 (1), $A \otimes _Z B$ is finitely generated and projective. By [2; Th. 2.1], $A \otimes _Z B \otimes _Z B^0 |_{A \otimes _Z B}$, and hence $V_B(B)/B \otimes B$. Then, by Prop. 2.8, $V_A(B)/Z$ is finite G-Galois (cf. S. 3).

Theorem 2.12. Let G be finite, π the group homomorphism defined by $\pi(a) = \sigma|C$ ($\sigma \in G$), Z the center of B, and $Z_0 = C^0$, and assume that A is indecomposable. Then the following statements are equivalent.

(i) A/Z_0 is separable, and π is 1-1.
(ii) $V_A(B) = C$, A/Z is separable, and $B \otimes _B B$.
(iii) $V_A(B) = C$, and both B/Z and C/Z are separable.
(iv) Both B/Z and C/Z_0 are separable, and π is 1-1.
(v) $V_A(B) = C$, A/B is separable, A is (Z, B)-projective, and $B \otimes _B A$.
(vi) $A = B \cdot C$, and A/Z is separable.
(vii) $A \otimes _Z A^0 \cdot A^0 |_{A \otimes _Z A^0}$, and $\operatorname{Hom}(A \otimes _Z A^0, A \otimes _Z A^0) = 0$ for any σ in G such that $\sigma \neq 1$.

Proof. (i) \Rightarrow (ii) By [2; Th. 2.3], A/C and C/Z_0 are separable. Therefore, by [4; Th. 1.3], C/Z_0 is G-Galois. Then, by [22; Th. 5.1], $A = B \otimes _Z C$. Hence $V_A(B) = C$, and $Z = Z_0$. Since Z is finitely generated and projective, $B \otimes _B B$. (ii) \Rightarrow (iii) $V_A(B) = C$ implies $Z = Z_0$ ($\subseteq C$). By [22; Lemma 2.7], A/C and A/B are separable, so that A/B is outer G-Galois ([22; Th. 1.5]). Then, by Prop. 2.8, C/Z is G-Galois, so that C/Z is separable. Since A/C is separable, B/Z is separable ([22; Cor. to Th. 5.1]). (iii) \Rightarrow (iv) In this case, $Z = Z_0$. By [2; Th. 3.1], $A = B \cdot C$, whence π is 1-1. (iv) \Rightarrow (v) By
[4; Th. 1.3], C/Z_0 is G-Galois. Hence, by [22; Th. 5.1], A/B is G-Galois, and $A=B\cdot C$. Then A/B is separable, $V_A(B)=C$, and $Z=Z_0$. Since Z is commutative, τZ is a direct summand of τC (S. 3), so that $\tau_0(c)=1$ for some c in C. Then B is a B-direct summand of A (cf. [22; § 2. p. 118]). Since B/Z is separable, A is (Z, B)-projective ([22; Lemma 2.7]). $(v) \implies (vi)$ By Lemma 2.10 (3), B/Z is separable. Then, by [2; Th. 3.1], $A=B\otimes_\tau C$. Since both A/B and B/Z are separable, A/Z is separable ([22; Lemma 2.7]).

$(vi) \implies (i)$ As $A=B\cdot C$, $V_A(B)=C$, $Z=Z_0$, and π is 1-1. Thus we know that $(i) \sim (vi)$ are equivalent. $(i) \implies (vii)$ In this case, $V_A(B)=C$, $Z=Z_0$, and B/Z is separable. Then, by [2; Th. 2.1], $\B_{\otimes_\tau B}\otimes_\tau B|_{\B\otimes_\tau B}$. Therefore $\B\otimes_\tau B|_{\B\otimes_\tau B}$. Hence $\B\otimes_\tau B|_{\B\otimes_\tau B}$. By [22; Prop. 1.3], $\B\otimes_\tau B|_{\B\otimes_\tau B}$. The second assertion follows from [22; Prop. 6.3]. $(vii) \implies (i)$ By assumption, $\End(\otimes_\tau B|_{\B\otimes_\tau B})\simeq \oplus_{\sigma\in G} \End(\otimes_\tau B|_{\B\otimes_\tau B})$ (external direct sum as rings). To be easily seen, $\End(\otimes_\tau B|_{\B\otimes_\tau B})\simeq C$, which is commutative. Hence $\End(\otimes_\tau B|_{\B\otimes_\tau B})$ is a commutative ring.

Proposition 2.13. Let A/B be locally finite G-Galois, and b an element of B which is not a right zero divisor of B. Then b is not a right zero divisor of A.

Proof. Let a be an element of A such that $ab=0$. Then $Aab=0$, and $\sigma(Aa)b=0$ for all σ in G. Hence, $(\sum_\sigma \sigma(Aa)) \cap B=0$. Then, by assumption, $\sum_\sigma \sigma(Aa) \cap B=0$. Then, by Th. 2.1 (3), $\sum_\sigma \sigma(Aa)=A(\sum_\sigma \sigma(Aa)) \cap B=0$. Hence $a=0$.

Let A/B be locally finite G-Galois, and $S \ni 1$ a G-invariant multiplicative system of regular elements in A such that a left quotient ring \overline{A} of A with respect to S exists. Then G may be regarded as a group of automorphisms of \overline{A}. To be easily seen, $\{\sigma(x); \sigma \in G\}$ is finite for any x in \overline{A}. Then, by Th. 2.1, $\overline{A}/\overline{B}$ is locally finite G-Galois and $\overline{A}=\overline{B}\otimes_\tau A=\overline{A}\otimes_\tau \overline{B}$, where $\overline{B}=\overline{A}^G$. To be easily seen, any element in $B \cap S$ is a unit of \overline{B}. For b in \overline{B}, we put
$\mathfrak{L} = \{x \in A \mid xb \in A\}$, which is a \mathfrak{J}-left submodule of A. Then $(\mathfrak{S} \cap B)b \subseteq B$. If $\mathfrak{S} \cap B \cap S \neq 0$, then $sb \in B$ for some s in $B \cap S$. Therefore, if we assume that $\mathfrak{J}(s) \cap B \cap S \neq 0$ for all $s \in S$, then \overline{B} is a left quotient ring of B with respect to $B \cap S$. Thus we obtain the following

Theorem 2.14. Let A/B be locally finite G-Galois, and $S \ni 1$ a G-invariant multiplicative system of regular elements of A such that a left quotient ring \overline{A} of A with respect to S exists. Further, assume that $\mathfrak{J}(s) \cap B \cap S \neq 0$ for all $s \in S$. Then there hold the following:

1. $\overline{A}/\overline{B}$ is locally finite G-Galois and $\overline{A} = \overline{B} \otimes_B A = A \otimes_B \overline{B}$, where $\overline{B} = \overline{A}_0$.
2. \overline{A} is a left quotient ring of A with respect to $B \cap S$. \overline{B} is a left quotient ring of B with respect to $B \cap S$.

Remark. Let A/B be locally finite G-Galois, and S a G-invariant multiplicative system of regular elements in A such that $S \subseteq C$ and $S \ni 1$. Then S satisfies the conditions in Th. 2.14. To see this, we put $H = \{\sigma \in G; \sigma(s) = s\}$ for $s \in S$. If $G = \sigma_1 H \cup \cdots \cup \sigma_r H$ is the left coset decomposition of G, then $\mathfrak{L} = \mathfrak{L} \cap B \cap S$ for $s \in S$. If $G = \sigma_1 H \cup \cdots \cup \sigma_r H$ is the left coset decomposition of G, then

A non-zero ring T with 1 is called a left Goldie ring if T satisfies the following conditions: (1) T is a semi-prime ring. (2) Any independent set of non-zero left ideals is finite (i.e., T is finite dimensional). (3) T satisfies the ascending chain condition for annihilator left ideals.

A left Goldie ring has a complete left quotient ring which is a semi-simple ring with minimum condition for left ideals, and conversely (Goldie [17]). (Cf. [7])

Theorem 2.15. Let A/B be locally finite G-Galois, A a left Goldie ring, \overline{A} a complete left quotient ring of A, and B a semi-prime ring. Then there hold the following:

1. $\overline{A}/\overline{B}$ is locally finite G-Galois, where $\overline{B} = \overline{A}_0$.
2. B is a left Goldie ring, and \overline{B} is a complete left quotient ring of B.

Proof. Let S be the set of all regular elements of A. First we shall prove that B is a left Goldie ring. Since $\mathfrak{A} A$ is finite dimensional, $\mathfrak{A} A$ is finite dimensional. Then, by Th. 2.1 (3), $\mathfrak{A} B$ is finite dimensional. Let $I \subseteq I'$ be left ideals of B. Then $l_A(r_B(I)) \subseteq l_A(r_B(I'))$, where $r_B(I) = \{y \in B; l_B = 0\}$ and $l_A(r_B(I)) = \{x \in A; x \cdot r_B(I) = 0\}$. From this fact, B satisfies the ascending chain condition for annihilator left ideals of B. Hence B is a left Goldie ring. By Prop. 2.13, $S \cap B$ is the set of all regular elements of B. For any s in S, $\mathfrak{A} A s$ is essential in $\mathfrak{A} A$, so that $\mathfrak{A} s$ is essential in $\mathfrak{A} A$. Then, by Th. 2.1 (3), $\mathfrak{A} s(\mathfrak{A} s \cap B)$ is essential in $\mathfrak{A} B$, so that $\mathfrak{A} s \cap B$ contains a regular element.
of B ([17; Th. (3.9)]). Hence $A(s) \cap B \cap S \neq 0$ for any s in S. Thus the present theorem follows from Th. 2.14.

Remark. In the following cases, the condition that B is semi-prime is superfluous.

(1) G is finite and completely outer (cf. [22; p. 132]).

(2) B is contained in the center of A.

Let T be a ring. If T-left modules M and N have no non-zero isomorphic subquotients, we say that τM and τN are unrelated (cf. [22]).

Lemma 2.16. Let T be a ring, and let M and N be T-left modules, and W a T-submodule of M. If $\tau(M/W)$ and τN are unrelated, and τW and τN are unrelated, then τM and τN are unrelated.

Proof. Assume that there are isomorphic subquotients X/X_0 and Y/Y_0 of τM and τN, respectively. Then, as is easily seen, $X + W \supset X_0 + W$ or $X \cap W \supset X_0 \cap W$. If $X + W \supset X_0 + W$, then $Y/X_0 \simeq (X + W)/(X_0 + W) \neq 0$, a contradiction. If $X \cap W \supset X_0 \cap W$, then $(X \cap W)/(X_0 \cap W) \simeq (X_0 + (X \cap W))/X_0 \simeq Y/Y_0$, which is also a contradiction.

Proposition 2.17. Let σ, τ be in G, and assume that τAu_{σ} and τAu_{τ} are unrelated. Then, for any finite subset $\{x_1, \cdots, x_r; y_1, \cdots, y_s\}$ of A, there are elements $a_k, b_k \ (k=1, \cdots, t)$ in A such that $\sum_k a_k x_i \cdot \sigma(b_k) = x_i$ and $\sum_k a_k y_h \cdot \tau(b_k) = 0$ for all x_i, y_h.

Proof. By Lemma 2.16, $\tau (Au_{\sigma})_A$ and $\tau (Au_{\tau})_A$ are unrelated. Then, since $A(x_1 u_{\sigma}, \cdots, x_r u_{\sigma}, y_1 u_{\tau}, \cdots, y_s u_{\tau})A$ is an A-A-submodule of $\tau (Au_{\sigma})_A \oplus (Au_{\tau})_A$, the set $\{(x_1 u_{\sigma}, \cdots, x_r u_{\sigma}, 0, \cdots, 0) \in A(x_1 u_{\sigma}, \cdots, x_r u_{\sigma}, y_1 u_{\tau}, \cdots, y_s u_{\tau})A \ (cf. [22; Prop. 6.1])$. Therefore there are elements $a_k, b_k \ (k=1, \cdots, t)$ in A such that $\sum_k a_k(x_1 u_{\sigma}, \cdots, x_r u_{\sigma}, y_1 u_{\tau}, \cdots, y_s u_{\tau})b_k = (x_1 u_{\sigma}, \cdots, x_r u_{\sigma}, 0, \cdots, 0)$. Then, $\sum_k a_k x_i \cdot \sigma(b_k) = x_i$ and $\sum_k a_k y_h \cdot \tau(b_k) = 0$ for all x_i, y_h.

Combining Prop. 2.17 with [22; Prop. 6.11] we can easily see the following

Proposition 2.18. Let A and A' be R-algebras with $A \otimes_R A' \neq 0$, and let G and G' be completely outer finite groups of R-automorphisms of A and A', respectively. Then, $G \times G'$ is completely outer as an automorphism group of $A \otimes_R A'$.

§ 3.

Proposition 3.1. Let A/B be locally finite G-Galois, and X a Δ-left submodule of A. Then $X = A(X \cap B)$.

Proof. This follows from Th. 2.1 (3).

Proposition 3.2. Let A/B be locally finite G-Galois, $\{\mathbb{P}\}$ the set of
all maximal ideals of A, and $\{\mathfrak{p}\}$ the set of all maximal ideals of B. Then the following are equivalent:

(i) $\mathfrak{P} \to \mathfrak{P} \cap B$ is a mapping from $\{\mathfrak{P}\}$ onto $\{\mathfrak{p}\}$.

(ii) $A\mathfrak{p}A \neq A$ for all $\mathfrak{p} \in \{\mathfrak{p}\}$, and $\cap_{\mathfrak{p} \in \mathfrak{P}} \sigma(\mathfrak{P})$ is Δ-A-maximal for all $\mathfrak{P} \in \{\mathfrak{P}\}$.

If (i) holds, then the following are true:

1. $\mathfrak{p}A = A\mathfrak{p} \neq A$ for any $\mathfrak{p} \in \{\mathfrak{p}\}$.

2. $\{\cap_{\sigma}(\mathfrak{P}); \mathfrak{P} \in \{\mathfrak{P}\}\}$ is the set of all maximal Δ-A-submodules of A.

3. $\mathfrak{R}(\Delta_{A}) = \mathfrak{R}(\Delta_{A}) = \mathfrak{R}(\Delta_{B}) = A = \mathfrak{R}(\Delta_{B})$, and $\mathfrak{R}(\Delta_{A}) \cap B = \mathfrak{R}(\Delta_{B})$.

4. B is B-B-completely reducible if and only if $\cap_{i} \cap_{\sigma}(\mathfrak{P}) = 0$ for some $\mathfrak{P}_{i} (i = 1, \ldots, n)$ in $\{\mathfrak{P}\}$.

Proof. (i) \implies (ii) If \mathfrak{P} is in $\{\mathfrak{P}\}$, then $\mathfrak{P} \cap B = \sigma(\mathfrak{P}) \cap B$ for any σ in G, and so $\mathfrak{P} \cap B = (\cap_{\sigma}(\mathfrak{P})) \cap B$. By Prop. 3.1, $A((\cap_{\sigma}(\mathfrak{P})) \cap B) = \cap_{\sigma}(\mathfrak{P}) = (\cap_{\sigma}(\mathfrak{P}) \cap B)A$. Hence $A\mathfrak{p} = A\mathfrak{p} \neq A$ for all \mathfrak{p} in $\{\mathfrak{p}\}$. Let X be a Δ-A-submodule of A with $A X = X \cap_{\sigma}(\mathfrak{P})$. Then $B X \cap B Y = (\cap_{\sigma}(\mathfrak{P})) \cap B = \mathfrak{P} \cap B$, and so $X \cap B = (\cap_{\sigma}(\mathfrak{P})) \cap B$. Then, by Prop. 3.1, $X = \cap_{\sigma}(\mathfrak{P})$, so $\cap_{\sigma}(\mathfrak{P})$ is Δ-A-maximal. Let Y be a maximal Δ-A-submodule of A. Take a maximal ideal \mathfrak{P}_{1} of A with $\mathfrak{P}_{1} \supseteq Y$. Then $\cap_{\sigma}(\mathfrak{P}_{1}) \supseteq Y$, and so $\cap_{\sigma}(\mathfrak{P}_{1}) = Y$. Thus we obtain (2). Therefore $\mathfrak{R}(\Delta_{A}) = \mathfrak{R}(\Delta_{A})$. Since $\mathfrak{R}(\Delta_{A}) \cap B = \mathfrak{R}(\Delta_{B})$, we have $\mathfrak{R}(\Delta_{A}) = A \cdot \mathfrak{R}(\Delta_{B}) = \mathfrak{R}(\Delta_{B})$ (Prop. 3.1). B is B-B-completely reducible if and only if $\cap_{i} \mathfrak{p}_{i} = 0$ for some $\mathfrak{p}_{1}, \ldots, \mathfrak{p}_{n}$ in $\{\mathfrak{P}\}$. Thus we obtain (4) (cf. Prop. 3.1). (ii) \implies (i) Let $\mathfrak{p} \in \{\mathfrak{p}\}$. Then, as $A\mathfrak{p}A \neq A$, $\mathfrak{p} \not\subseteq \mathfrak{P}$ for some $\mathfrak{P} \in \{\mathfrak{P}\}$, and so $\mathfrak{p} = \mathfrak{P} \cap B$ by the maximality of \mathfrak{p}. Let \mathfrak{Q} be in $\{\mathfrak{P}\}$. Then $\mathfrak{Q} \supseteq \mathfrak{Q} \cap B$ for some $\mathfrak{q} \in \{\mathfrak{p}\}$. There is a $\Sigma \in \{\mathfrak{P}\}$ with $\mathfrak{Q} \cap B = \mathfrak{q}$. Then $(\cap_{\sigma}(\Sigma)) \cap B = \Sigma \cap B \supseteq \Sigma \cap B = (\cap_{\sigma}(\Sigma)) \cap B$, and therefore $\cap_{\sigma}(\Sigma) \supseteq \cap_{\sigma}(\mathfrak{Q})$ by Prop. 3.1. By assumption, $\cap_{\sigma}(\Sigma) = \cap_{\sigma}(\mathfrak{P})$. Hence $\mathfrak{q} = \mathfrak{Q} \cap B = \mathfrak{Q} \cap B$. This completes the proof.

Concerning Prop. 3.2, we state the following

Lemma 3.3. Let \mathfrak{P} be a maximal ideal of A such that $\cap_{\sigma}(\mathfrak{P}) = \cap_{\sigma}(\mathfrak{P})$ for some $\sigma_{1}, \ldots, \sigma_{n}$ in G. Then $\cap_{\sigma}(\mathfrak{P})$ is Δ-A-maximal, and $\{\cap_{\sigma}(\mathfrak{P}); \cap_{\sigma}(\mathfrak{P}); i = 1, \ldots, n\}$ is the set of all maximal ideals containing $\cap_{\sigma}(\mathfrak{P})$.

Proof. Let \mathfrak{Q} be a maximal ideal of A with $\mathfrak{Q} \supseteq \cap_{\sigma}(\mathfrak{P})$. If $\mathfrak{Q} \neq \cap_{\sigma}(\mathfrak{P})$ for all i, then $\mathfrak{Q} + \cap_{\sigma}(\mathfrak{P}) = A$ for all i. Then we have a contradiction $A = \mathfrak{Q} + \cap_{\sigma}(\mathfrak{P}) = \mathfrak{Q} + \cap_{\sigma}(\mathfrak{P})$.

Remark. In the following cases, the assumption in Lemma 3.3 holds.

1. G is finite.
2. The ring $A/\mathfrak{R}(\Delta_{A})$ satisfies the descending chain condition for ideals.
Proposition 3.4.

(1) Let A/B be locally finite outer G-Galois, and B B-B-completely reducible. Assume that, for any maximal ideal \mathfrak{P} of A, there are elements $\sigma_1, \ldots, \sigma_n$ in G such that $\cap_i \sigma_i(\mathfrak{P}) = \cap_e \sigma(\mathfrak{P})$. Then A is A-A-completely reducible.

(2) Let G be finite and completely outer, and $B \mid A_B$. Then A is A-A-completely reducible if and only if B is B-B-completely reducible. If there is a maximal ideal \mathfrak{P} of A such that $\cap_e \sigma(\mathfrak{P}) = 0$, then B is B-B-minimal, and conversely.

Proof. (1) Any maximal ideal \mathfrak{p} of B is written as $\mathfrak{p} = Be$ with a central idempotent e of B. Then, by assumption, $(1 \neq) \ e \in V_A(B) = C$. Therefore, $A\mathfrak{p} = Ae = eA = \mathfrak{p}A \neq A$. Thus, by Prop. 3.2 and Lemma 3.3, A is A-A-completely reducible. (2) In this case, $\alpha A = A\alpha \neq A$ for any proper ideal α of B (cf. [22; p. 132]). Then, by Prop. 3.2 and Lemma 3.3, the first assertion is evident (cf. [22; Prop. 6.4]). For any \mathfrak{P} in $\{\mathfrak{P}\}$, $(\cap_e \sigma(\mathfrak{P}) \cap B) = \mathfrak{P} \cap B = 0$ if and only if $\cap_e \sigma(\mathfrak{P}) = 0$ (Prop. 3.1). Thus we know the second assertion.

Theorem 3.5. Let A/B be finite G-Galois, B a semi-primary ring, and $A\mathfrak{p}A \neq A$ for any maximal ideal \mathfrak{p} of B. Then $A_B \simeq A_B^g$, that is, A has a normal basis. (Cf. [13; Th. 1]).

Proof. By [22; Th. 1.7], it suffices to prove that A_B is free. Let $g = (G : 1)$. (1) First we assume that $R(B) = 0$. Then B is a direct sum of simple rings: $B = a_1 + \cdots + a_n$. Let $1 = \sum_i e_i$, $e_i \in a_i$. Then $a_i = Be_i = e_i B$ and $e_i^2 = e_i$. By assumption we have $(1 - e_i)A = A(1 - e_i)$ (Prop. 3.2 and Lemma 3.3), so that e_i is a central idempotent of A contained in B. Then each Ae_i/Be_i is G-Galois ([22; Cor. to Th. 5.6]). Since Be_i is a simple ring, B has a normal basis (cf. [7]). Hence Ae_i has a normal basis, so that $Ae_i \simeq B(\mathfrak{b} \mathfrak{b})$ for all i ([22; Th. 1.7]). Hence $A_B \simeq A_B^g$. (2) Next we proceed to general case. Since A and B are semi-primary ([22; Prop. 7.3]), $R(A_A) = R(A)$ and $R(B_B) = R(B)$. Then, by Prop. 3.2 and Lemma 3.3, $R(A) = R(B_A) = A \cdot R(B)$ and $R(A) \cap B = R(B)$. By [22; Th. 5.6], $(A/R(A))/(B/R(B)) \cong R(B)$ is G-Galois, and satisfies the same conditions as A/B, because $(B + R(A))/R(A) \simeq B/(R(A) \cap B) = B/R(B)$ canonically. By (1), we have $A_B \\ R(A) \simeq B_B/R(B)$ for all i. Since $R(B) \simeq R(B)A$ and A_B is finitely generated and projective, we have $A_B \simeq B_B^g$. This completes the proof.

Corollary. Let A/B be finite G-Galois, B a semi-primary ring, and Z the center of B. Assume that $Z \subseteq C$ and that B is a central separable Z-algebra. Then A has a normal basis.

Proof. In this case, any proper ideal of B is written as αA with an ideal
a of Z (cf. [2]). Then, as $Z \subseteq C$, $(aB)A = aA = Aa = A(Ba) \neq A$ ([22; Lemma 7.1]).

Let A/B be finite G-Galois, $B \subseteq C$, and $g = (G:1)$. For any prime ideal \mathfrak{p} of B, we denote by $B_\mathfrak{p}$ the quotient extension of B with respect to \mathfrak{p}. Then $B_\mathfrak{p}$ is a B-algebra, canonically. By [22; Cor. to Th. 5.2], $(B_\mathfrak{p} \otimes_B A)/B_\mathfrak{p}$ is G-Galois. Since $B_\mathfrak{p}$ is a local ring, $b_{\mathfrak{p}} B_\mathfrak{p} \otimes_B A \simeq_{b_{\mathfrak{p}}}(B_\mathfrak{p})^g$ (Cor. to Th. 3.5). We denote by $K_\mathfrak{p}$ the quotient field of B/\mathfrak{p}. Then we have $\mathfrak{k}_\mathfrak{p} K_\mathfrak{p} \otimes_B A \simeq_{\mathfrak{k}_\mathfrak{p}}(K_\mathfrak{p})^g$ similarly. Thus we obtain the following

Proposition 3.6. Let A/B be finite G-Galois, $B \subseteq C$, and $g = (G:1)$. Then, $b_{\mathfrak{p}} B_\mathfrak{p} \otimes_B A \simeq_{b_{\mathfrak{p}}}(B_\mathfrak{p})^g$ and $\mathfrak{k}_\mathfrak{p} K_\mathfrak{p} \otimes_B A \simeq_{\mathfrak{k}_\mathfrak{p}}(K_\mathfrak{p})^g$ for any prime ideal \mathfrak{p} of B, where $B_\mathfrak{p}$ is the quotient extension of B with respect to \mathfrak{p} and $K_\mathfrak{p}$ is the quotient field of B/\mathfrak{p}.

The following lemma is of some interest.

Lemma 3.7. Let $R \supseteq S$ be rings, R_s is finitely generated and projective, and sS is a direct summand of sR. If rS is injective, then sS is injective.

Proof. Let I be any left ideal of S, and f any S-left homomorphism from I to sR. Since R_s is finitely generated and projective, we have $R|I = R \otimes S$. Therefore f can be extended to an R-left homomorphism from $R|I$ to R, canonically. Then, by assumption, there is an element a in R such that $r \cdot (s)f = rsa$ for r in R and s in I, so that $(s)f = sa$ for all s in I. Therefore, as is well known, sR is injective. Since sS is a direct summand of sR, sS is injective.

Lemma 3.8. $\Re(A) \cap B \subseteq \Re(B)$.

Proof. Let b be in $\Re(R) \cap B$. Then $1 - b$ has an inverse in A. Since $B = A^g$, $1 - b$ has an inverse in B. Hence $\Re(A) \cap B$ is a quasi-regular ideal of B, that is, $\Re(A) \cap B \subseteq \Re(B)$.

Proposition 3.9. Let G be finite. If there is an element c in A such that $1 - t_\alpha(c) \in \Re(A)$, then there is an element d in A such that $t_\alpha(d) = 1$.

Proof. By Lemma 3.8, we have $1 - t_\alpha(c) \in \Re(A) \cap B \subseteq \Re(B)$, so that $t_\alpha(A) + \Re(B) = B$. Since $t_\alpha(A)$ is an ideal of B, we have $t_\alpha(A) = B$. Hence $t_\alpha(d) = 1$ for some d in A.

Theorem 3.10. Let A/B be G-Galois, A a commutative ring, H a subgroup of G, and A' a B-algebra. Then, $A' \otimes_B A''$ is a direct sum of minimal ideals if and only if A' is a direct sum of minimal ideals (cf. [7; p. 178. Th. 2]).

Proof. In this case, $(A' \otimes_B A)/A'$ is finite G-Galois, G is completely outer as an automorphism group of $A' \otimes_B A$, and $(A' \otimes_B A)'' = A' \otimes_B A''$ (cf. [22; Th.
5.2 and Prop. 6.5]). Thus the present theorem is an easy consequence from Prop. 3.4 (2).

Concerning [22; Th. 6.9], we note the following

Lemma 3.11. Let A/C be separable, and e an idempotent of A such that $eA \subseteq Ae$. Then e is a central idempotent of A.

Proof. Since $A/\mathfrak{M}(A)$ is a semi-prime ring, we have $(eA+\mathfrak{M}(A))/\mathfrak{M}(A)\cong (Ae+\mathfrak{M}(A))/\mathfrak{M}(A)$, that is, $eA+\mathfrak{M}(A)=Ae+\mathfrak{M}(A)$, and so $Ae=eA+(Ae \cap \mathfrak{M}(A))=2A+\mathfrak{M}(A)e$. Since A is a central separable C-algebra, $\mathfrak{M}(A)\subseteq \mathfrak{M}(C)A$ by [2; Cor. 3.2]. Since $\mathfrak{M}(A)<\mathfrak{M}(A)\subseteq \mathfrak{M}(C)A$, we have $\mathfrak{M}(A)=\mathfrak{M}(C)A$, and $Ae=eA+\mathfrak{M}(C)e$. Hence $Ae=eA$, because eA is finitely generated. Consequently, e is a central idempotent of A.

Proposition 3.12. Let A/B be locally finite G-Galois, and assume that there is a representation $A=\bigcup_{\lambda}A^{N_{\lambda}}$ of A/B such that each $\mathfrak{M}(B)A^{N_{\lambda}}$ is an ideal of $A^{N_{\lambda}}$. Then $\mathfrak{M}(A)=\mathfrak{M}(B)A=A \cdot \mathfrak{M}(B)$, and $\mathfrak{M}(A)\cap B=\mathfrak{M}(B)$.

Proof. Let \mathfrak{N} be a right ideal of A such that $\mathfrak{M}(B)A+\mathfrak{N}=A$. Then $\mathfrak{M}(B)A^{N_{\lambda}}+(\mathfrak{N} \cap A^{N_{\lambda}}) \ni 1$ for some λ in A, so that $\mathfrak{M}(B)A^{N_{\lambda}}+(\mathfrak{N} \cap A^{N_{\lambda}})=A^{N_{\lambda}}$. Since $\mathfrak{M}(B)A^{N_{\lambda}} \subseteq \mathfrak{M}(A^{N_{\lambda}})$, we have $\mathfrak{N} \cap A^{N_{\lambda}}=A^{N_{\lambda}}$, and hence $\mathfrak{N}=A$. Thus we know that $\mathfrak{M}(B)A \subseteq \mathfrak{M}(A)$. Combining this with Lemma 3.8, we have $\mathfrak{M}(A)\cap B=\mathfrak{M}(B)$. Hence $\mathfrak{M}(A)=\mathfrak{M}(B)A=A \cdot \mathfrak{M}(B)$ (Prop. 3.1).

Theorem 3.13. Let A/B be locally finite G-Galois, $B \subseteq C$, and A' a B-algebra such that $A'\simeq A' \otimes 1$ ($\subseteq A' \otimes B$) canonically.

1. $\mathfrak{M}(A' \otimes B A)=\mathfrak{M}(A' \otimes A)$, and $\mathfrak{M}(A' \otimes A) \cap (A' \otimes 1)=\mathfrak{M}(A') \otimes 1$.

2. If A is commutative, then $\mathfrak{M}(A' \otimes A^H)=\mathfrak{M}(A') \otimes A^H$ for any subgroup H of G.

Proof. Let $A=\bigcup_{\lambda}A^{N_{\lambda}}$ be a representation of the locally finite G-Galois extension A/B. Then $(A' \otimes B A)/(A' \otimes 1)$ is a locally finite G-Galois extension with representation $A' \otimes B A=\bigcup_{\lambda}A' \otimes A^{N_{\lambda}}$, where $A' \otimes A^{N_{\lambda}}=(A' \otimes B A)^{N_{\lambda}}$ is a finite G/N_{λ}-Galois extension over $A' \otimes 1$. (1) This will be easily seen by Prop. 3.12. (2) We may assume that H is closed in G. Then each $A^H/A^{N_{\lambda}} \subseteq A^H$ is finite $H/(H \cap N_{\lambda})$-Galois, and $H/(H \cap N_{\lambda})$ is completely outer as an automorphism group of A^H/N_{λ} ([22; Th. 6.6]). Then $H/(H \cap N_{\lambda})$ is completely outer as an automorphism group $A' \otimes B A^{H/N_{\lambda}}$ (Prop. 2.18), and so $H/(H \cap N_{\lambda})$ is completely outer as an automorphism group of $A' \otimes A^{H/N_{\lambda}}$ (Prop. 6.11). Now, $(A' \otimes B A)/(A' \otimes A^H)$ is a locally finite H-Galois extension with representation $A' \otimes B A=\bigcup_{\lambda}A' \otimes A^{H/N_{\lambda}}$, where $A' \otimes A^{H/N_{\lambda}}=(A' \otimes B A)^{H/N_{\lambda}}$ is a finite $H/(H \cap N_{\lambda})$-Galois extension over $A' \otimes A^H$. Then, by [22; Th. 7.10] and Prop. 3.12, $\mathfrak{M}(A' \otimes B A)=\mathfrak{M}(A' \otimes A^H)(A' \otimes B A)$. On the other hand,
\(\Re(A' \otimes_B A) = \Re(A') \otimes A = (\Re(A') \otimes A^H)(A' \otimes_B A) \). Hence \(\Re(A' \otimes A^B) = \Re(A') \otimes A^H \), as desired (cf. [22; Lemma 7.1]).

References

([1]–[14] are found in [22] below.)

Department of Mathematics, Hokkaido University

(Received June 10, 1967)