ON CARTAN-BRAUER-HUA THEOREM*

By

Kaoru MOTOSE

Since Cartan-Brauer-Hua theorem was generalized as in Jacobson [3, Th. 7. 13.1] and Nagahara and Tominaga [6, Lemma 2], this theorem has been extended to simple rings (cf. Kishimoto [4] and Nagahara, Kishimoto and Tominaga [5]). The purpose of the present paper is to extend [4, Th. 2] and [5, Th. 2] to primitive rings.

Throughout our study, we use the following conventions: U will represent a ring with 1, and B a subdirectly irreducible subring1) of U such that the unique minimal ideal T of B is not nilpotent. A primitive ring and a completely primitive ring will mean a right primitive ring and the ring of all the linear transformations in a left vector space over a division ring, respectively. Let R be a ring. If for any finite subset F of R there exists a completely primitive subring of R containing F, R is said to be locally completely primitive. Let A be an arbitrary non-empty set. By Λ be an arbitrary non-empty set.

Let R be a ring. If for any finite subset F of R there exists a completely primitive subring of R containing F, R is said to be locally completely primitive. Let A be an arbitrary non-empty set. By $(R)_{A}$ and $R^{(A)}$ we denote the ring of all row-finite matrices $(x_{ij})(i,j \in \Lambda)$ and the direct sum of $\#\Lambda^{2}$-copies of R-left module R; thus $(R)_{A}$ can be regarded as the ring of all linear transformations in $R^{(A)}$.

We shall first prove the following that contains [4, Th. 2].

Theorem 1. Let A be a subring of U, and $\{2t; t \in T\} \neq 0$. If B is invariant relative to all the inner derivations effected by elements of A then either T is $A-A$-admissible or $A \subseteq V_{A}(B)^{3})$.

Proof. Let a be an arbitrary element of A. If $\{a, 1\}$ is linearly left independent over B then the same argument used in the proof of [4, Th. 2] enables us to conclude that $a \in V_{A}(B)$. On the other hand, if $\{a, 1\}$ is linearly left dependent over B then the set $\{b \in B; ba \in B\} = \{b \in B; ab \in B\}$ forms a non-zero ideal of B, so that $Ta = T^2a = T(Ta) \subseteq TB \subseteq T$ and similarly $aT \subseteq T$. We have thus $A = V_{A}(B)^{\cup}A_{0}$, where $A_{0} = \{a \in A; Ta + aT \subseteq T\}$. Since both $V_{A}(B)$ and A_{0} are submodules, it follows that either $V_{A}(B) = A$ or $A_{0} = A$ (cf. [7, Lemma 3.5]).

* The author expresses his best thanks to Professors G. Azumaya, K. Kishimoto, Y. Miyashita and H. Tominaga for their useful advices and encouragements.

2) $\#A$ denotes the cardinal number of the set A.

3) $V_{A}(B)$ means the centralizer of B in U.

Corollary 1. Let A be a subring of U such that B is invariant relative to all the inner derivations effected by elements of A, and $\{2t; t \in T\} \neq \emptyset$.

1 Let B be completely primitive. If there exists a primitive idempotent $e \in B$ such that $\text{r}_{\nu}(eB)=0^{4)}$ then either $A \subseteq B$ or $A \subseteq V_{U}(B)$.

1' If $A=U$, A is primitive and B is completely primitive then either $B=A$ or $B \subseteq V_{A}(A)$.

(2) Let U be completely primitive, and $A \supseteq B$. If A is dense$^{5)}$ in U then B is either dense in A or contained in the center of A.

Proof. Assume that $A \not\subseteq V_{U}(B)$. By Th. 1, T is then A-A-admissible.

1 Since T is the socle of B, we have $eT=eB$. Hence, $A_{r} \subseteq \text{Hom}_{eBe}$ $(eB, eB)=B_{r}$, where A_{r} and B_{r} are the rings of right multiplications in eB by the elements of A and B, respectively. Since $\text{r}_{\nu}(eB)=0$, it follows $A \subseteq B$.

1' If e' is an arbitrary primitive idempotent in B then $e'A \subseteq e'TA=e'T=e'B$, which implies that e' is a primitive idempotent of A. Hence, $\text{r}_{\nu}(e'B)=\text{r}_{\nu}(e'A)=0$, and so $A=B$ by the assertion (1).

2 Obviously, T is an ideal of A. Hence, $(T$ and so) B is dense in A by [3, Th. 2.4.4].

Next, we shall present an extension of [5, Th. 2].

Let A be a completely primitive unital$^{6)}$ subring of U different from $(GF(2))_{2}$. Then one may regard $A=(D)_{A}$ where D is a division ring. We identify D with the ring of diagonal matrices of which diagonal elements are the same. $e_{ij} \in A$ represents the matrix with element 1_{D} in the (i, j)-position and 0's elsewhere. Let S be the socle of A, then we have $S=\sum_{i \epsilon A} A_{e_{ii}}$. We set $E=\{e_{ij}; i, j \epsilon A\}$ and $E^{*}=\{\sum_{i \epsilon A} d_{ij} e_{ij}; d_{ij} \epsilon D\}$. Then E^{*} is a dense subring of A. If R is a subring of U such that $R\tilde{A}=R^{7)}$ and $\# A \geq 1$, then by using the same argument as in [5, Lemma 2] we can prove that if $Re_{pq} \subseteq R$ for some $e_{pq} \epsilon E$ then $RE^{*} \subseteq R$.

First we need the following Lemma.

Lemma 1. If $B\tilde{A}=B$ then $TE^{*} \subseteq T$ or $E^{*} \subseteq V_{U}(B)$.

Proof. Let a be an arbitrary regular element of A. If $\{1, a\}$ is linearly left dependent over B then the set $\{b \epsilon B; ba \epsilon B\}$ is a non-zero ideal of B, and so $Ta \subseteq T$. Now, let a be biregular (i.e. a and $1-a$ are regular). If $\{1, a\}$ is linearly left independent over B, then by the same argument used

4) $\text{r}_{\nu}(eB)$ means the right annihilator of eB in U.

5) We introduce the finite topology in U.

6) A unital subring of U means a subring containing the identity element of U.

7) 1_{D} denotes the identity element of D.

8) \tilde{A} represents the group of inner automorphisms of U induced by regular elements of A.
in the proof of [7, Lemma 3.5] one can see that \(a \in V_U(B) \). Hence, by making use of the same method as in the proof of [5, Th. 2], we can prove our assertion except for the case \(A=(GF(2))_A \) with \(\#A \geq \aleph_0 \). In what follows, we shall restrict ourselves to the exceptional case. By [3, Th. 5.3.1] one may regard then \(A=(GF(2))_B \otimes_{aGF(2)} A \). Choose an arbitrary index \(\lambda \in A \), and consider the elements \(a= \begin{bmatrix} 011 & 000 \\ 100 & 010 \\ 100 & 000 \end{bmatrix} \) and \(h= \begin{bmatrix} 010 & 000 \\ 010 & 000 \end{bmatrix} \) in \(A \).

Then, it is easy to see that \((1+h)a(1+h)^{-1}=a+a^* \) and \(a^*+a^*2 \in E \). Since \(a \) is biregular, it follows \(Ta \subseteq T \) or \(a \in V_U(B) \). If \(Ta \subseteq T \) then \(T \bar{A}=T \) implies \(T \supseteq (1+h)Ta(1+h)^{-1}=T(a+a^*) \). Hence, by the remark stated just before our lemma, it follows \(TE^* \subseteq T \). On the other hand, if \(a \in V_U(B) \) then the same argument yields \(E^* \subseteq V_U(B) \).

Now, we are at the position to prove the following that contains [5, Th. 2].

Theorem 2. If \(B\bar{A}=B \) and \(T \cdot S \neq 0 \) then either \(T \) is \(A-A \)-admissible or \(A \subseteq V_U(B) \).

Proof. By Lemma 1, \(TE^* \subseteq T \) or \(E^* \subseteq V_U(B) \). Let \(u \) be an arbitrary regular element of \(A \). Then, \(TSTu=TSu \cdot u^{-1}Tu=TST \). Since \(E^* \) is dense in \(A \) and \(\epsilon \cdot u = \epsilon u u^{-1} \) is of finite rank, there exists \(\epsilon^* \in E^* \) such that \(u \epsilon u = \epsilon^* u = \epsilon \epsilon^* \). If \(TE^* \subseteq T \) then \(Tu \epsilon^* = uTu \epsilon^* \subseteq uTu^{-1} = T \), and so \(Tu \epsilon u \subseteq Tu \epsilon^* \subseteq T \). On the other hand, if \(E^* \subseteq V_U(B) \) then \(V_U(B) \bar{A}=V_U(B) \) implies \(u \epsilon u = \epsilon \epsilon^* \in V_U(B) \). Since \(A \) is generated by regular elements by Zelinsky's theorem (cf. [8]) and \(S=\sum_{\epsilon \in \Lambda} A \epsilon u \), we have proved that \(TSTA=TST \) and there holds either \(TS \subseteq T \) or \(S \subseteq V_U(B) \). Now, assume first that \((0 \neq) TS \subseteq T \). Then \(TST=T \), and so \(TA=TSTA=TST=T \). Next, assume that \(S \subseteq V_U(B) \). Then \(r_B(S) =0 \) because \(TS \neq 0 \). If \(u \) is any regular element of \(A \) and \(b \) any element of \(B \), then for every \(s \in S \) we have \(s(b-ubu^{-1})=sb-(su)bu^{-1}=sb-b(su)u^{-1}=0 \), which implies \(b-ubu^{-1}=0 \) and thus \(A \subseteq V_U(B) \).

By virtue of Th. 2, the proof of the following proceeds in the same ways as that of Cor. 1.

Corollary 2. Let \(A \) be a completely primitive unital subring of \(U \) such that \(A \neq (GF(2))_A \) and \(B\bar{A}=B \).

1. Let \(B \) be completely primitive. If there exists a primitive idempotent \(e \) in \(B \) such that \(r_B(eB)=0 \) then either \(A \subseteq B \) or \(A \subseteq V_U(B) \).

2. If \(A=U \) then \(B \) is either dense in \(A \) or contained in \(V_A(A) \).

In the remainder of this paper, we shall give an extension of Th. 2.

Theorem 3. Let \(A \) be a locally completely primitive unital subring of \(U \) different from \((GF(2))_A \). If \(B\bar{A}=B \) and \(r_A(T)=0 \) then either \(T \) is
A-A-admissible or $A \subseteq V_U(B)$.

Proof. If $\#A < \aleph_0$ then A is a simple ring (with minimum condition). Hence, by Th. 2, we may assume $\#A \geq \aleph_0$. Let a be any element of A and A' a completely primitive subring different from $(GF(2))_2$ and containing both a and 1. Since $B A' = B$ and $r'_A(T) = 0$, it follows by Th. 2 that T is A'-A'-admissible or $A' \subseteq V_U(B)$. This shows that $A = V_A(B) \cup A_0$, where $A_0 = \{a \in A; Ta + aT \subseteq T\}$, and therefore $A = V_A(B)$ or $A = A_0$.

References

Department of Mathematics,
Hokkaido University

(Received April 3, 1967)