

HOKKAIDO UNIVERSITY

Title	Synthesis of 1-Alkenylboronic Esters via Palladium-Catalyzed Cross-Coupling Reaction of Bis(pinacolato)diboron with 1-Alkenyl Halides and Triflates
Author(s)	Takahashi, Kou; Takagi, Jun; Ishiyama, Tatsuo; Miyaura, Norio
Citation	, 29(2), 126-127
Issue Date	2000-02-05
Doc URL	http://hdl.handle.net/2115/56184
Туре	article (author version)
File Information	(20) B-B + X-Vinyl (Com).pdf

Synthesis of 1-Alkenylboronic Esters viaPalladium-CatalyzedCross-CouplingReaction of Bis(pinacolato)diboron with1-Alkenyl Halides and Triflates

Kou Takahashi, Jun Takagi, Tatsuo Ishiyama and Norio Miyaura*

Division of Molecular Chemistry, Graduate School of Engineering, Hokkaido University, Sapporo 060-8628 (Received XXXX)

The synthesis of 1-alkenylboronic acid pinacol esters *via* the palladium-catalyzed cross-coupling reaction of 1-alkenyl halides or triflates with bis(pinacolato)diboron $[(Me_4C_2O_2)B-B(O_2C_2Me_4)]$ was carried out in toluene at 50 °C in the presence of potassium phenoxide (1.5 equivalents) and PdCl₂(PPh₃)₂•2PPh₃ (3 mol%).

The transition metal-catalyzed cross-coupling reaction of disilanes and distannanes is an elegant method for the synthses of organosilicone¹ and $-tin^2$ compounds directly from organic electrophiles, but the lack of suitable boron nucleophiles has limited this protocol. We have recently demonstrated the synthesis of arylboronates from aryl halides³ or triflates⁴, and allylboronates from allyl acetates⁵ *via* a palladium-catalyzed cross-coupling reaction of tetra(alkoxo)diborons. Very recently, Matsuda and Murata⁶ found that pinacolborane (Me₄C₂O₂)BH is an excellent boron-nucleophile for the palladium-catalyzed coupling reaction in the presence of triethylamine. Thus, tetra(alkoxo)diboron and pinacolborane are two nucleophiles now available for the boron cross-coupling reaction.

In this paper, we report the palladium-catalyzed coupling reaction of bis(pinacolato)diboron (1) and 1-alkenyl halides or triflates, which provides a one-step procedure for the synthesis of 1-alkenylboronic esters from vinyl electrophiles (Eq. 1)⁷.

Our initial studies (Eq. 2 and Table 1) were focused on the reaction conditions selectively yielding a vinyl boronate (3)because the previous reaction reported for the coupling with aryl halides³ resulted in the formation of an inseparable mixture of several by-products (4-6) (entry 1). Thus, the reaction involved the Heck coupling⁸ between **2a** and **3** yielding a small amount of 5, the homocoupling between 2a and 3 giving dimer 6^9 , and an unusual coupling giving a positional isomer 4 together with the desired coupling to afford 3. Although the formation of positional isomer 4 is not well understood, the Heck product and dimer (5 and 6) can be eliminated by changing KOAc or K_2CO_3 (entries 1 and 2) to a strong base because those side reactions are due to the slow transmetalation of 1 to the vinyl-Pd-Br intermediate. Thus, the selective coupling to give 3 was finally achieved by carrying out the reaction at 50 °C in the presence of a solid PhOK suspended in toluene (entries 10 and 11), whereas other solid bases such as K₃PO₄•nH₂O and NaOEt were not effective. The palladium-triphenylphosphine catalyst gave adequately better results than the palladium-dppf complex (entries 3-11).

The synthesis of 1-alkenylboronates from the representative haloalkenes is summarized in Table 2. The

reaction with 2-iododecene 2b and t-butyl derivative 2c still suffered from the formation of a positional isomer (entries 1 and but other 2-bromoalkenes (2d-2g) selectively gave 2), alkenylboronates in high yields, which are not available by conventional hydroboration of terminal alkynes¹⁰ (entries 2-6). The use of an insoluble base suspended in toluene can tolerate various functional groups in haloalkenes (entries 4-6). Although (E)-1-alkenylboronates have been synthesized by hydroboration of terminal alkynes and (Z)-derivatives by a two-step procedure from 1-halo-1-alkynes¹¹, the coupling reaction of diboron provided an alternative and stereoselective method for synthesizing both isomers with high stereoselectivity over 99% (entries 7 and 8). 2,2-Disubstituted 1-alkenylboronate and cyclic 1-alkenylboronate were obtained from the corresponding bromides without any difficulty because the side-reactions observed in Eq. 2 were very slow for these substrates (entries 9 and 10). However, all attempts at the couplings with 4-iodo-3-penten-2-one and methyl 3-bromo-2-methylpropenoate were unsuccessful.

Preliminary results for the cross-coupling of diboron 1 with 1-alkenyl triflate are shown in Eq. 3. Under similar reaction conditions to those used for halides, various triflates provided the corresponding 1-alkenylboronates, which results will be reported elsewhere.

References and notes

- Y. Hatanaka, T. Hiyama, *Tetrahedron Lett.*, 28, 4715 (1987).; H. Matsumoto, K. Shono, Y. Nagai, *J. Organomet. Chem.*, 208, 145 (1981).
- 2 H. Azizian, C. Eaborn, A. Pidcock, J. Organomet. Chem., 215, 49-58 (1981); D. Azarian, S. S. Dua, C. Eaborn, D. R. M. Walton, J. Organomet. Chem., 117, C55 (1976).
- T. Ishiyama, M. Murata, N. Miyaura, J. Org. Chem., 60, 7508 (1995).
 S. R. Piettre, S. Baltzer, *Tetrahedron Lett.* 38, 1197 (1997).
 A. Giroux, Y. Han, P. Prasit, *Tetrahedron Lett.* 38, 3841 (1997).
- 4 T. Ishiyama, Y. Itoh, T. Kitano, N. Miyaura, *Tetrahedron Lett.* **38**, 3447 (1997).
- 5 T. Ishiyama, T.-a. Ahiko, N. Miyaura, Tetrahedron Lett. 37,

6889 (1996). T.-a. Ahiko, T. Ishiyama, N. Miyaura, *Chem. Lett.*, 811 (1997).

- 6 M. Murata, S. Watanabe, Y. Matsuda, J. Org. Chem., 62, 6458 (1997);
- 7 During the course of our study, a similar cross-coupling reaction of haloalkenes with diboron 1 or pinacolborane was reported: S. M. Marcuccio, M. Rodopoulos, H. Weigold, *10th International Conference on Boron Chemistry*, Durham, England, July, 1999, PB-35; M. Murata, T. Oyama, S. Watanabe, Y. Matsuda, *76th Annual Meeting of Chemical Society of Japan*, March, 1999, 2B712.
- 8 R. F. Heck, in "*Palldium Reagents in Organic Syntheses*", Academic Press, New York (1985), pp 214-242.
- 9 Dimers included 2-octyl-1,3-dodecadiene and 2,3-dioctyl-1,3-butadiene, but the reaction shown in entry 1 selectively gave the former diene *via* the head to tail coupling between 2a and 3. N. Miyaura, A. Suzuki, J. Organomet. Chem., 213, C53 (1981).
- I. Rivera and J. A. Soderquist, *Tetrahedron Lett.*, **32**, 2311 (1991).
 Y. Yamamoto, R. Fujikawa, A. Yamada, N. Miyaura, *Chem. Lett.*, 1069 (1999).
- 11 D. S. Matteson, in "Stereodirected Synthesis with Organo-boranes", Springer, New York (1995), pp 31-41.

Table 1. Reaction conditions^a

Entry	Catalyst/Base/Solvent	Yield/%	% (3/4/5/6)) ^b
1	PdCl ₂ (dppf)/AcOK/DMSO	53	(51/11/ 1/37)
2	PdCl ₂ (dppf)/K ₂ CO ₃ /DMSO	56	$(52/2/5/41)^d$
3	PdCl ₂ (dppf)/PhOK/DMSO	67	$(70/2/4/24)^d$
4	PdCl ₂ (dppf)/PhOK/DMF	77	$(71/1/4/24)^d$
5	PdCl ₂ (dppf)/PhOK/EtOH	69	(80/ 1/ 9/10)
6	PdCl ₂ (dppf)/PhOK/dioxane	86	$(91/1/4/4)^d$
7	PdCl ₂ (dppf)/PhOK/toluene	74	(89/7/3/1) ^d
8	PdCl ₂ (PPh ₃) ₂ /PhOK/DMSO	81	(90/ 1/ 1/ 8) ^d
9	PdCl ₂ (PPh ₃) ₂ /PhOK/DMF	89	(92/ 1/ 1/ 6) ^e
10	PdCl ₂ (PPh ₃) ₂ /PhOK/toluene	78	(97/ 1/ 1/ 1) ^e
11	PdCl ₂ (PPh ₃) ₂ •2PPh ₃ /PhOK/toluen	e 96	(96/ 1/ 2/ 1) ^e

^aA mixture of 2-bromodecene **2a** (1.0 mmol), diboron **1** (1.1 mmol), palladium catalyst (0.03 mmol) and base (1.5 mmol) in solvent (6 ml) was stirred at 50 °C or 80 °C.

^bGC yields and their compositions were shown in the parentheses. ^cAt 80 °C for 16 h.

^{*d*}At 50 °C for 16 h.

^{*e*}At 50 °C for 5 h.

entry	haloalkene	yield/% ^b
	$= \stackrel{R}{\underset{X}{\overset{R}}{\overset{R}{\overset{R}{\overset{R}}{\overset{R}}{\overset{R}}{\overset{R}}{\overset{R}}}{\overset{R}{\overset{R}{\overset{R}{\overset{R}{\overset{R}{\overset{R}{\overset{R}{\overset{R}{\overset{R}{\overset{R}}{\overset{R}}{\overset{R}{\overset{R}{\overset{R}{\overset{R}{\overset{R}{\overset{R}{\overset{R}{\overset{R}{\overset{R}{\overset{R}{\overset{R}}{\overset{R}{\overset{R}{\overset{R}{\overset{R}{\overset{R}{\overset{R}}{\overset{R}}{\overset{R}}{\overset{R}}{\overset{R}}{\overset{R}}}}{\overset{{}}{\overset{R}}}}{{\overset{R}}{{}}}{\overset{{}}}{{}}}$	
1	2b : R=C ₈ H ₁₇ , X=I	65^d
2	2c : R=t-C ₄ H ₉ , X=Br	69 e
3	2d : R=Ph, X=Br	88
4	2e : R=(CH ₂) ₃ Cl, X=Br	85
5	2f : R=(CH ₂) ₃ CN, X=Br	85
6	2g : R=CH ₂ CH(OSi ^{<i>i</i>} BuMe ₂)CH(CH ₃) ₂ , X=Br	70
7	C ₈ H ₁₇ Br	47 <i>f</i>
8	C ₈ H ₁₇ Br	74
9) Br	57
10	── Br	99

Table 2. Synthesis of 1-alkenylboronates $(Eq. 1)^a$

_

^{*a*}A mixture of haloalkene (1.0 mmol), **1** (1.1 mmol), PdCl₂(PPh₃)₂ (0.03 mmol) plus PPh₃ (0.06 mmol), and PhOK (1.5 mmol) in toluene (5 ml) was stirred at 50 $^{\circ}$ C for 5 h. ^bGC yields. The products were isolated by Kugelrohr distillation or chromatography over silica gel. ^{*d*}The reaction accompanied with (*Z*)-1-dodecenylboronate (3%). e(E)-1-(2-*t*-butylethenyl)boronate (7%) was also produced. f(1-octylethenyl)boronate (6%).

Synthesisof1-AlkenylboronicEstersviaPalladium-CatalyzedCross-CouplingReactionofBis-(pinacolato)diboronwith1-AlkenylHalidesandTriflates

Koh Takahashi, Atsushi Takagi, Tatsuo Ishiyama, and Norio Miyaura*

