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Spin relaxation in a zinc-blende (110) symmetric quantum well with δ doping
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Division of Applied Physics, Faculty of Engineering, Hokkaido University, Sapporo, Hokkaido 060-8628, Japan

(Received 27 November 2013; revised manuscript received 13 February 2014; published 26 February 2014)

The spin relaxation of a two-dimensional electron system (2DES) formed in a symmetric quantum well is
studied theoretically when the quantum well is parallel to the (110) plane of the zinc-blende structure, the spin
polarization is perpendicular to the well, and electrons occupy only the ground subband. The spin-relaxation
rate is calculated as a function of the distribution of donor impurities which are placed in the well layer.
Considered processes of the spin relaxation are (1) the intrasubband process by impurity-potential-induced
spin-orbit interaction (SOI), which is the Elliott-Yafet mechanism in the 2DES, and (2) virtual intersubband
processes consisting of a spin flip by (2a) well-potential-induced SOI or (2b) the Dresselhaus SOI, and a
scattering from an impurity. It is shown that all of the above processes disappear when all impurities are located
on the center plane of the well. Even if impurities are distributed over three (110) atomic layers, the spin-relaxation
rate is two orders of magnitude lower than that for the uniform distribution over the well width of 7.5 nm. In
GaAs/AlGaAs type-I quantum wells, the processes (1) and (2a) interfere constructively, being dominant over
(2b) for the well width of ∼10 nm, while in some type-II quantum wells, they can interfere destructively.

DOI: 10.1103/PhysRevB.89.075314 PACS number(s): 72.25.Rb, 73.63.Hs

I. INTRODUCTION

Employing the spin degree of freedom in semiconductors
is a promising approach to the development of hybrid devices
which perform all of the information processing, communica-
tions, and storage [1]. The prerequisite spin polarization can
be created in nonmagnetic semiconductors by the spin-orbit
interaction (SOI) through the spin Hall effects of the extrinsic
origin [2–6] and of the intrinsic one [7,8], which have been
confirmed in experiments [9–11]. However, the same SOI
becomes a driving force of the spin relaxation in various
mechanisms [12,13]. In this paper, we show theoretically that
the spin relaxation due to a spin flip by the SOI with a scattering
at an impurity vanishes for a two-dimensional electron system
(2DES) formed in a symmetric quantum well with a δ doping
[14,15] on the center plane of the well.

Two major mechanisms of the spin relaxation in n-doped
semiconductors are the Dyakonov-Perel mechanism [16–18]
and the Elliott-Yafet mechanism [19–21]. The Dyakonov-Perel
mechanism is due to the spin precession around a SOI-induced
effective magnetic field whose direction and magnitude depend
on the momentum of each electron. In addition to the Dressel-
haus SOI [22] due to the inversion asymmetry in the crystal
structure, the Rashba SOI [23–26] produces the effective
magnetic field in a 2DES formed in a quantum well with
the inversion asymmetry, and the Dyakonov-Perel mechanism
due to such SOIs is a major mechanism of the spin relaxation.
Fortunately, the Dyakonov-Perel mechanism can be turned off
for the spin direction perpendicular to the 2DES by preparing
a symmetric quantum well on a substrate oriented parallel to
the (110) plane of the zinc-blende structure. This is because
the Dresselhaus SOI in symmetric quantum wells parallel to
the (110) plane gives an effective magnetic field perpendicular
to the 2DES regardless of electron momentum [18,27] and the
Rashba SOI is absent in symmetric quantum wells.

The suppression of the spin relaxation in (110) symmetric
quantum wells was observed for the first time by Ohno et al.
[28] using the pump-probe method: the spin-relaxation time
in GaAs (110) symmetric quantum wells is more than an

order of magnitude longer than that in (100) quantum wells
[29]. The spin relaxation remaining in their undoped sample
was ascribed to the Bir-Aronov-Pikus mechanism [30] due to
the electron-hole exchange interaction. Holes are introduced
in the pump-probe experiment when the sample is excited
optically for the purpose of generation and detection of the spin
polarization. The Bir-Aronov-Pikus mechanism, however, can
be neglected in the later measurement by Müller et al. [31]
with use of the spin noise spectroscopy, which can avoid the
introduction of holes. Since the quantum well used in this
spin noise measurement was modulation doped, the observed
low spin-relaxation rate of (24 ns)−1 was attributed to the
Dyakonov-Perel mechanism due to the random Rashba field
produced by density fluctuations of donors located in barrier
layers [32]. In this paper, we instead consider a doping in a
well layer, and therefore the random Rashba field is outside
the scope of this paper.

A doping in a well layer has the advantage of efficient
generation of the spin polarization by the extrinsic spin Hall
effect. In fact, the spin accumulation produced by the spin Hall
effect has been observed in AlGaAs (110) quantum wells,
in which Si donors are doped uniformly in the well layer
[11]. The observed spin Hall effect has been explained by the
theory of the extrinsic spin Hall effect [33,34], in which donor
impurities in the well layer play a major role in creating the
spin polarization.

Such previous studies suggest that one promising way
to achieve large spin polarizations is to employ an n-doped
(110) symmetric quantum well, which can produce the spin
polarization by the extrinsic spin Hall effect and, at the same
time, can avoid the spin relaxation due to the Dyakonov-Perel
mechanism. An important task in this direction will be to find
a method to suppress the spin relaxation caused by donor
impurities introduced in the well layer.

It is known that impurities give rise to the spin relaxation
called the Elliott-Yafet mechanism, in which spin-flip
scatterings are caused by the combined action of the impurity
potential and the SOI. This mechanism is likely to be dominant
for the relaxation of the spin polarization perpendicular to
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the 2DES in a (110) symmetric quantum well, in which
the Dyakonov-Perel mechanism does not work. In quantum
wells, the Elliott-Yafet mechanism is modified by the subband
structure: in addition to intrasubband spin-flip processes
[35,36], intersubband spin-flip processes due to SOI matrix
elements between states in different subbands contribute to
the spin relaxation.

The importance of such intersubband processes in various
spin dynamics has been suggested in recent studies. Döhrmann
et al. [37] have proposed a spin-relaxation mechanism due
to intersubband spin-flip transitions, which are induced by
the Dresselhaus SOI and the impurity potential, between
the ground subband and the first-excited subband to explain
their observed result of the spin-relaxation time in a (110)
symmetric quantum well at higher temperatures such that
the first-excited subband is occupied by electrons. Bernardes
et al. [38] have theoretically studied roles of the intersubband
matrix element of the SOI induced by the well potential in a
symmetric quantum well and have derived the formula of the
spin Hall conductivity in this system. Zhou and Wu [39] have
calculated the spin-relaxation time of the 2DES occupying
only the ground subband in a (110) symmetric quantum well
by considering a virtual intersubband process through the
first-excited subband in terms of the Dresselhaus SOI with
the impurity potential.

In this paper, we theoretically study the spin relaxation in an
n-doped (110) symmetric quantum well for the spin orientation
perpendicular to the well. We consider the 2DES occupying
only the ground subband and study spin-flip scatterings
through both intrasubband and intersubband processes. The
intrasubband spin-flip scattering is caused by the SOI due to
the impurity potential. The intersubband spin-flip scattering is
a virtual process through one of the excited subbands, which
consists of an intersubband spin-flip process due to the SOI and
an intersubband scattering process due to the impurity potential
[39]. We take into account both the well-potential-induced SOI
and the Dresselhaus SOI for the intersubband spin-flip process.
In particular, we investigate the dependence of the spin-flip
scattering rate on the position of δ doping [14,15], which can
introduce impurities within an atomic layer in the well.

The organization of the paper is as follows. In Sec. II, we
describe the Hamiltonian, which includes the SOIs originating
from the impurity potential and the well potential in addition
to the Dresselhaus SOI. In Sec. III, we show that spin-flip
scatterings are absent when impurities are placed only in the
atomic layer at the center of the well (center δ doping). In
Sec. IV, we investigate spin-flip scatterings for off-center
δ dopings by calculating the spin-flip scattering rate as a
function of the position of δ doping. We also calculate
the spin-flip scattering rate for impurity distributions having
nonzero widths. In Sec. V, conclusions are given, in which it
is also shown that the spin current caused by the extrinsic spin
Hall effect does not disappear in the center δ doping.

II. HAMILTONIAN

We consider electron states in a quantum-well structure
which is formed by two different zinc-blende semiconductors.
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FIG. 1. (a) δ doping at the well center (z = 0). Filled circles (•)
represent impurities. (b) δ dopings at z = ±zd. (c) The well potential
Vwell(z) with height V0 and width W .

The Hamiltonian is

H = H0 + H1. (1)

The unperturbed Hamiltonian H0 is

H0 = p̂2

2m
+ Vwell(z), (2)

where p̂ = (p̂x,p̂y,p̂z) = −i�∇ = −i�(∇x,∇y,∇z) and m is
the effective mass of the conduction band. The well potential
Vwell(z), which is the potential due to the offset of the
conduction band at the interface between two constituent
semiconductors [40], is given for the width W and the height
V0(>0) by

Vwell(z) =
{

0 (|z| < W/2)
V0 (|z| > W/2), (3)

and is illustrated in Fig. 1. Each eigenstate of H0 is labeled by
the subband index, n = 0,1,2, . . . , as well as the wave vector
in the xy plane, k = (kx,ky), and the z component of the spin,
σ =↑ , ↓. The corresponding eigenenergy depends only on n

and k = |k| and is denoted by εnk or εnk. We assume that only
the ground subband with n = 0 is occupied by electrons.

The perturbation H1 is

H1 = Vimp(r) + H so
imp + H so

well + H so
D . (4)

Here Vimp(r) with r = (x,y,z) is the potential due to randomly
distributed impurities. H so

imp is the SOI due to Vimp(r), given by

H so
imp = −η

�
σ · (∇Vimp × p̂), (5)
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while H so
well is that caused by the well potential for an electron

in each of the valence bands, defined by

H so
well = −ηboff

�
σ · (∇Vwell × p̂) , (6)

where σ = (σx,σy,σz) is the Pauli spin matrix and η is the
effective coupling constant of the SOI for an electron in
the conduction band of the semiconductor in the well layer.
The factor boff is a dimensionless constant reflecting the
difference in the band offset between the conduction band
and each of the valence bands. The formula of boff is given in
the Appendix. The last term of H1 is the Dresselhaus SOI in
the zinc-blende structure,

H so
D = − γ

2�3
σ · h( p̂), (7)

where γ is the coupling constant of the Dresselhaus SOI and
h = (hx,hy,hz) can be understood as an effective magnetic
field. In (110) quantum wells, h is given by

hx = (−p̂2
x − 2p̂2

y + p̂2
z

)
p̂z,

hy = 4p̂xp̂yp̂z, (8)

hz = p̂x

(
p̂2

x − 2p̂2
y − p̂2

z

)
,

where the Cartesian unit vectors are taken as

ex = (−e[100] + e[010])/
√

2,

ey = e[001],

ez = (e[100] + e[010])/
√

2,

(9)

with e[100], e[010], and e[001] the unit vectors along the crystal
axes.

III. ABSENCE OF SPIN-FLIP SCATTERINGS
IN THE CENTER δ DOPING

Typical impurity-doping profiles are the uniform doping
and the modulation doping. The uniform doping in a well
layer has been used in measurements [11,28] and a calculation
[35] of the spin-relaxation time in (110) quantum wells, while
the modulation doping in barriers has also been employed in
measurements [31,37,41] and calculations [32,39].

In this paper, we adopt the δ doping [14,15] in the well
layer (|z| < W/2). By the method of δ doping, it is possible,
in principle, to dope donor impurities in a particular atomic
layer. We choose a doping symmetric with respect to the well
center (z = 0): a δ doping on two atomic layers at z = ±zd

(zd < W/2). Such a symmetric doping keeps the impurity
potential averaged over the plane symmetric. Note, however,
that the impurity potential Vimp is not symmetric because of
the random distribution of impurities in the plane.

First we consider a δ doping with zd = 0 in which all
impurities are on the center plane of the well [Fig. 1(a)]. In
such a δ doping, the impurity potential Vimp is even in z. Terms
with σz in H so

imp and H so
D are also even in z, while terms with

σx or σy in H so
imp, H so

well, and H so
D are odd in z, since p̂z → −p̂z

when z → −z.
Such a symmetry with respect to z = 0 leads to the absence

of spin-flip scatterings with initial and final states in the same
subband, which is valid in any order of the impurity potential
and the SOI [42]. Note that since we have assumed that only

even parity
Vimp

spin

odd parity

spin

even parity

spin

odd parity

spin

Himp
so,z

HD
so,z

Vimp

Himp
so,z

HD
so,z

n = 4
n = 2
n = 0

n = 5
n = 3
n =1

n = 5
n = 3
n =1

n = 4
n = 2
n = 0

Himp
so,xy HD

so,xyHwell
so

FIG. 2. Each electron state has a parity in addition to a spin
(z component) since the well potential Vwell is even in z. When zd = 0
[Fig. 1(a)] and the impurity potential Vimp is also even in z, some
perturbation terms change the parity and the spin at the same time,
while all others change neither the parity nor the spin. H so,xy

imp and
H so,z

imp (H so,xy

D and H
so,z
D ) denote terms with σx or σy and terms with

σz, respectively, of H so
imp (H so

D ).

the ground subband is occupied by electrons and consider only
elastic processes, both the initial and final states should be in
the ground subband.

The absence of such spin-flip scatterings is illustrated in
Fig. 2. First note that each wave function associated with z

in a symmetric quantum well has a parity: even parity for
n= even and odd parity for n = odd. Therefore, each electron
state is characterized by the parity and the spin σ . Terms in the
perturbation H1 with zd = 0, which are odd in z and include σx

or σy , change the parity and the spin at the same time, while all
of the others are even in z with σz and change neither the parity
nor the spin. Since the initial and final states of the considered
spin-flip scattering processes have the same parity and the
opposite spin, such processes do not occur by the perturbation
H1 with zd = 0.

IV. SPIN-FLIP SCATTERINGS
IN OFF-CENTER δ DOPINGS

A. Spin-relaxation time in terms of the spin-flip scattering rate

Next we investigate the spin relaxation in the case of off-
center δ dopings with zd �= 0 [Fig. 1(b)]. In this section, we
derive the formula of the spin-relaxation time, which is given
in terms of the spin-flip scattering rate of electrons.

The spin polarization, or the z component of the total spin
angular momentum of the 2DES, is given by

Sz =
∑
nk

�

2
(fnk↑ − fnk↓), (10)

in terms of the occupation probability, fnkσ , of a state with
two-dimensional momentum k and spin σ in the nth subband.
Our assumption that electrons occupy only the ground subband
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with n = 0 is expressed by

fnkσ = 0 (n � 1). (11)

We assume that f0kσ is given by the Fermi distribution function
with the spin-dependent chemical potential, μσ :

f0kσ = fσ (ε0k) =
[

exp

(
ε0k − μσ

kBT

)
+ 1

]−1

. (12)

Then the spin polarization becomes

Sz = �

2

∫ ∞

ε0

dεD[f↑(ε) − f↓(ε)], (13)

where D is the constant density of states per spin of the ground
subband and ε0 is the energy at the bottom of the ground
subband at k = 0.

The spin polarization Sz changes at each of the spin-flip
scatterings. With use of the transition rate W0k′σ̄←0kσ of a
spin-flip scattering from 0kσ to 0k′σ̄ (σ̄ is the spin opposite
to σ ), the time derivative of Sz is

dSz

dt
=

∑
k,k′

�(−W0k′↓←0k↑f0k↑ + W0k′↑←0k↓f0k↓). (14)

Here we define the total spin-flip scattering rate of an electron
in a state 0kσ by

P sf
0kσ =

∑
k′

W0k′σ̄←0kσ , (15)

and write the equation for the time derivative of Sz as

dSz

dt
=

∑
k

�
(−P sf

0k↑f0k↑ + P sf
0k↓f0k↓

)
. (16)

Since f0kσ = fσ (ε0k), it is convenient to separate the summa-
tion with respect to k into the integration with respect to energy
ε and the summation over the constant energy surface:

∑
k

· · · =
∫ ∞

ε0

dε
∑

k

δ(ε − ε0k) · · · . (17)

In addition, we introduce the average of P sf
0kσ over the constant

energy surface as

P̄ sf(ε) = 1

D

∑
k

δ(ε − ε0k)P sf
0kσ , (18)

which is shown to be independent of spin [43]. Equation (16),
with Eqs. (17) and (18), reduces to

dSz

dt
= (−�)

∫ ∞

ε0

dεDP̄ sf(ε)[f↑(ε) − f↓(ε)]. (19)

Here we assume a degenerate 2DES satisfying kBT �
εF − ε0 (εF denotes the Fermi energy) and a small spin polar-
ization satisfying |μ↑ − μ↓| � εF − ε0. Then, f↑(ε) − f↓(ε)
is negligibly small except in the close vicinity of εF, and
Eq. (19) becomes

dSz

dt
= (−�)P̄ sf(εF)

∫ ∞

ε0

dεD[f↑(ε) − f↓(ε)] = − 1

τs
Sz,

(20)

with

1

τs
= 2P̄ sf(εF). (21)

Here, τs is the spin-relaxation time. We have shown here that
1/τs is equal to twice the spin-flip scattering rate averaged over
the Fermi surface of the 2DES [44].

B. Intrasubband and intersubband processes
giving spin-flip scatterings

The transition rate appearing in the formula of the spin-flip
scattering rate, given by Eq. (15), is

W0k′σ̄←0kσ = 2π

�
|〈0k′σ̄ |T |0kσ 〉|2δ(ε0k′ − ε0k). (22)

Here, 〈0k′σ̄ |T |0kσ 〉 is the transition matrix element.
In deriving the transition matrix element, we take into

account both intrasubband and intersubband processes with
a spin flip by one of the SOIs, H so

imp, H so
well, and H so

D . We retain
terms of the transition matrix element in the lowest order both
in the spin-orbit coupling strength represented by η and γ and
in the impurity potential Vimp. A spin flip occurs due to the
SOI and therefore requires at least the first order in η or in
γ . From the argument in Sec. III, in order to have a spin-flip
scattering process with both the initial and final states in the
ground subband, we need to break the symmetry with respect
to z = 0 by introducing Vimp with zd �= 0. Therefore, the first
order of Vimp is at least required. All of the processes, which are
of the first order in the SOI and of the first order in Vimp, are
represented in Fig. 3. The intrasubband process in Fig. 3(a)
is due to H so

imp. The intersubband processes in Figs. 3(b)
and 3(c) are virtual processes through one of the excited
subbands caused by H so

well and H so
D , respectively, combined

with Vimp.
The transition matrix element for a spin-flip scattering from

0kσ to 0k′σ̄ consists of three terms, each corresponding to
each process in Fig. 3:

〈0k′σ̄ |T |0kσ 〉 = T k′σ̄ kσ
intra + T k′σ̄ kσ

inter,well + T k′σ̄ kσ
inter,D , (23)

Himp
so

HD
so

Vimp

Hwell
so

Vimp

(a) (b) (c)

n = 0

n ≥1
subband

spin

FIG. 3. (a) Intrasubband process by impurity-potential-induced
SOI, H so

imp. (b) Intersubband processes by well-potential-induced
SOI, H so

well, combined with impurity potential, Vimp. (c) Intersubband
processes by the Dresselhaus SOI, H so

D , combined with Vimp. In (b)
and (c), the summation is taken over excited subbands with odd parity
(n = odd).
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where

T k′σ̄ kσ
intra = 〈0k′σ̄ |H so

imp|0kσ 〉, (24)

T k′σ̄ kσ
inter,well =

∑
n=1,3,...

〈0k′σ̄ |H so
well|nk′σ 〉〈nk′σ |Vimp|0kσ 〉

ε0 − εn

+
∑

n=1,3,...

〈0k′σ̄ |Vimp|nkσ̄ 〉〈nkσ̄ |H so
well|0kσ 〉

ε0 − εn

,

(25)

and T k′σ̄ kσ
inter,D is obtained by replacing H so

well in T k′σ̄ kσ
inter,well with H so

D .
Here the summation is taken over positive odd numbers and
εn is the energy at the bottom of the nth subband.

We assume that the impurity potential is the sum of
contributions from each impurity,

Vimp(r) =
∑

j

v(r − rj ), (26)

where j labels each impurity, rj = (xj ,yj ,zj ) is the position
of the j th impurity, and v(r) is the potential created by an
impurity when it is located at r = 0. Then the intrasubband
contribution becomes

T k′σ̄ kσ
intra = η

2S
K1σ

∑
j

e−iq·ρj 〈0|[∇zṽ(q,z − zj )]|0〉, (27)

where |n〉 with n = 0,1,2, . . . represents the wave function
along the z direction of the nth subband, ρj = (xj ,yj ),
q = (qx,qy) = k′ − k, S is the area of the 2DES, and

K1σ = (ky + k′
y) − isσ (kx + k′

x), (28)

with sσ = 1 (σ =↑) and sσ = −1 (σ =↓). ṽ(q,z) with q =
(q2

x + q2
y )1/2 is the two-dimensional Fourier transform of v(r),

ṽ(q,z) =
∫ ∞

−∞
dx

∫ ∞

−∞
dy e−iq·ρ v(r), (29)

with ρ = (x,y). Since v(r) depends on ρ only through |ρ|, its
two-dimensional Fourier transform has no dependence on the
direction of q, and is real. The intersubband contributions are

T k′σ̄ kσ
inter,well = η

S
K1σ boff

∑
j

e−iq·ρj

×
∑

n=1,3,...

〈0|(∇zVwell)|n〉〈n|ṽ(q,z − zj )|0〉
ε0 − εn

, (30)

and
T k′σ̄ kσ

inter,D = γ

S
iK2σ

∑
j

e−iq·ρj

×
∑

n=1,3,...

〈0|∇z|n〉〈n|ṽ(q,z − zj )|0〉
ε0 − εn

, (31)

where

K2σ = k2
x − (k′

x)2

2
+ k2

y − (k′
y)2 − 2isσ (kxky − k′

xk
′
y). (32)

We first consider the case of boff = 1, where T k′σ̄ kσ
intra and

T k′σ̄ kσ
inter,well can be joined into

T k′σ̄ kσ
intra + T k′σ̄ kσ

inter,well = η

2S
K1σ

∑
j

e−iq·ρj

×〈ψ0(z,zj )|{∇z[Vwell + ṽ(q,z − zj )]}|ψ0(z,zj )〉.
(33)

Here, ψ0(z,zj ) is the ground-state wave function of a fictitious
Hamiltonian, which includes a fictitious potential from a single
impurity at zj , ṽ(q,z − zj ),[

p̂2
z

2m
+ Vwell(z) + ṽ(q,z − zj )

]
ψ0(z,zj ) = ε̃0(zj )ψ0(z,zj ),

(34)

where ε̃0(zj ) is the corresponding energy eigenvalue. Note
that the right-hand side of Eq. (33) is to be evaluated in the
first order of ṽ(q,z − zj ). We can show that each term of
the right-hand side of Eq. (33) is zero, since the average of
the force induced by any potential V (z) is zero when the
average is taken with respect to the wave function ψ(z) for
each bound eigenstate of the Hamiltonian, p̂2

z/2m + V (z),
that is,

〈ψ |(∇zV )| ψ〉 = 0. (35)

The vanishing of T k′σ̄ kσ
intra + T k′σ̄ kσ

inter,well at boff = 1 leads to its
simplified formula at nonzero boff :

T k′σ̄ kσ
intra + T k′σ̄ kσ

inter,well = (1 − boff)T
k′σ̄ kσ

intra . (36)

This equation shows that the intrasubband and intersubband
terms interfere destructively when boff > 0 and the interfer-
ence becomes completely destructive at boff = 1. The formula
of boff given in the Appendix shows that boff can take a value
close to unity in some type-II quantum wells.

The same equality as Eq. (35) has been employed by Ando
[45,46] to show that the spin splitting, linear in the in-plane
momentum of the 2DES, due to the SOI is absent when
the SOI is proportional to ∇zV where V (z) is the confining
potential of the 2DES, even if V (z) has no inversion symmetry.
Later, the k · p theory developed for heterostructures [47–49]
showed that the spin splitting is present when differences in
the band gap and the spin-orbit splitting between the well
and barrier layers are considered. This is because boff �= 1,
in general, and therefore the combined SOI due to the band
offset and the electrostatic potential is not proportional to ∇zV

(see the Appendix).

C. Spin-flip scattering rate averaged
over impurity in-plane positions

In calculating the spin-flip scattering rate averaged with
respect to the direction of k, P̄ sf(ε), defined by Eq. (18) with
Eq. (15), we perform another averaging of P̄ sf(ε) over various
impurity configurations with the same doping position zd. This
is performed by taking the average of |〈0k′σ̄ |T |0kσ 〉|2 over
uncorrelated in-plane positions of impurities,⎛

⎝∏
j

1

S

∫
S

dxjdyj

⎞
⎠ |〈0k′σ̄ |T |0kσ 〉|2. (37)

Then the spin-flip scattering rate P̄ sf(ε) is obtained to be

P̄ sf(ε) = P0

∫ 2π

0
dθ

[
(kW )2(1 + cos θ )tpot(q,zd)2

+ aD(kW )4(1 − cos 2θ )tD
inter(q,zd)2

]
, (38)

075314-5



HIROSHI AKERA, HIDEKATSU SUZUURA, AND YOSHIYUKI EGAMI PHYSICAL REVIEW B 89, 075314 (2014)

where ε = �
2k2/2m + ε0, q = k

√
2(1 − cos θ ), θ is the angle

of k′ with respect to k, and

P0 = π

2�

(e2/ε)2nimp

ε0

(
η

W 2

)2

, (39)

with ε the static dielectric constant of the semiconductor
and nimp the area density of impurities. The dimensionless
parameter aD is defined by

aD = 17

32

(
γ

ηWε0

)2

, (40)

with the ratio between γ , the coupling constant of the
Dresselhaus SOI, and η, that of the potential-induced SOIs.
The dimensionless quantity tpot(q,zd) comes from terms of
the transition matrix element caused by the potential-induced
SOIs and is given, using T k′σ̄ kσ

intra + T k′σ̄ kσ
inter,well in Eq. (36), by

tpot(q,zd) = ε

2e2
〈0 |[∇zṽ(q,z − zd)]| 0〉 (1 − boff). (41)

On the other hand, tD
inter(q,zd) is the contribution of the

intersubband process due to H so
D and is given, from T k′σ̄ kσ

inter,D
in Eq. (31), by

tD
inter(q,zd) = ε0

ε

e2

∑
n=1,3,...

〈0|∇z|n〉〈n|ṽ(q,z − zd)|0〉
ε0 − εn

. (42)

We simplify the calculation of tpot(q,zd) and tD
inter(q,zd) by

taking the limit [50] of V0 → ∞, which gives

εn = �
2

2m

[
(n + 1)π

W

]2

, (43)

and

〈0 |∇z| n〉 = − 4

W

n + 1

(n + 1)2 − 1
(n = odd). (44)

The potential of each donor impurity, v(r), is modeled by a
screened Coulomb potential,

v(r) = − e2

εr
exp(−ksr), (45)

where r = |r| and ks is the inverse of the screening length. Its
two-dimensional Fourier transform is

ṽ(q,z) = −2πe2

εQ
exp(−Q|z|), (46)

with Q = (q2 + k2
s )1/2.

D. Calculated spin-flip scattering rate as a function
of the impurity distribution

We present the spin-flip scattering rate calculated for a
quantum well made of GaAs and Al0.4Ga0.6As with the width
W = 75 Å, as in the sample employed in the measurement by
Ohno et al. [28]. We use the following values of parameters

for GaAs: γ = 27.5 eV Å
3

(Table III of Ref. [51]) and m =
0.067m0 with m0 the electron rest mass. We obtain the value of
boff in Eq. (A9) and that of η in Eq. (A5) to be boff = −0.82 for

GaAs/Al0.4Ga0.6As quantum well and η = 5.28 Å
2

for GaAs
by using the band parameters [52] of GaAs, AlAs, AlGaAs,
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(b)
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W
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wd
W
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well
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D
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FIG. 4. Spin-flip scattering rate P̄ sf (ε) divided by P0 [Eq. (39)].
k = |k| with k = (kx,ky) and ks is the inverse of the screening
length. (a) Dependence on the position of δ doping, zd. Contributions
from each spin-flip scattering process in Fig. 3 are also shown. (b)
Dependence on the width of the doped layer, wd, with all three
processes in Fig. 3 considered.

and GaAs/AlAs. By substituting the values of γ , m, and η with
W = 75 Å into Eq. (40), we obtain aD = 0.26.

Figure 4(a) presents the calculated zd dependence of P̄ sf(ε)
for kW = 1 and ksW = 1, where kFW = 1 with W = 75 Å
corresponds to the electron density of 2.8 × 1011 cm−2. Each
of the curves labeled Pintra, P well

inter , and P D
inter shows the value

of P̄ sf(ε) when one of the processes, (a)–(c), respectively, in
Fig. 3, is considered. Pintra, the intrasubband contribution, and
P well

inter = b2
offPintra, the intersubband contribution due to H so

well,
are comparable in magnitude since boff = −0.82. P D

inter, the
intersubband contribution due to H so

D , is about 0.03 of P well
inter

in magnitude at the maximum. The value of P̄ sf(ε) when all
three processes are considered is also plotted in Fig. 4(a) as
a curve labeled Ptotal. Since boff is negative, the intrasubband
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and intersubband terms of tpot(q,zd) interfere constructively
and therefore Ptotal in Fig. 4(a) is nearly four times larger than
each of Pintra and P well

inter . P̄ sf(ε) as a function of zd increases
in the vicinity of the well center, while it decreases near the
well boundary because the expectation value and the matrix
element of the screened Coulomb potential, given by Eq. (45),
are reduced in magnitude.

Next we consider impurity distributions with nonzero
widths: impurities are distributed uniformly within a layer
in −wd/2 < z < wd/2. We change the width of the doped
layer, wd, with the total number of impurities kept constant.
Figure 4(b) shows a calculated result of P̄ sf(ε) as a function
of wd. P̄ sf(ε) remains small for small values of wd and
increases monotonically with wd. Suppose that a possible
diffusion of impurities from the δ-doped layer gives an
impurity distribution over three (110) atomic layers. Then wd is
twice the atomic layer distance: wd = a/

√
2 = 4.0 Å for GaAs

with a = 5.65 Å. P̄ sf(ε) for this value of wd is found to be two
orders of magnitude smaller than that for wd = W (uniform
distribution in the full width of the well) when W = 75 Å.

Figure 5(a) demonstrates the dependence of P̄ sf(ε) on
the electron momentum, k: P̄ sf(ε) increases as kW becomes
larger. The origin of this increase is the factor (kW )2 in
front of tpot(q,zd)2 in Eq. (38), which is partly suppressed
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FIG. 5. Spin-flip scattering rate P̄ sf (ε) divided by P0 [Eq. (39)],
as a function of the position of δ doping, zd. (a) Dependence on
k = |k|. (b) Dependence on ks, the inverse of the screening length.

by the k dependence of ṽ(q,z) in Eq. (46) through q2 =
2k2(1 − cos θ ).

Figure 5(b) shows the dependence of P̄ sf(ε) on the inverse
of the screening length, ks: P̄ sf(ε) decreases with ks. This
comes from the ks dependence of ṽ(q,z) in Eq. (46) through
Q = (q2 + k2

s )1/2. P̄ sf(ε) approaches a constant value as
ks → 0, since Q → q then.

V. CONCLUSIONS

We have theoretically investigated the dependence of the
spin-relaxation rate on the impurity distribution in a zinc-
blende (110) symmetric quantum well for the spin orientation
perpendicular to the well, by calculating the spin-flip scattering
rate. First we have considered a δ doping on the center plane
of the well at z = 0 and shown that the symmetry with respect
to z = 0 of the impurity potential and the well potential leads
to the vanishing of all spin-flip scattering processes when only
the ground subband is occupied by electrons.

Next we have considered the presence of impurities in
positions deviated from the well center. We have found
that the spin-flip scattering rate remains small for narrow
impurity distributions centered at z = 0: the spin-flip scattering
rate for the distribution width of 4 Å [twice the distance
between adjacent GaAs (110) atomic layers] is estimated to
be two orders of magnitude smaller than that for the uniform
distribution over the well width of 75 Å. Since such a reduction
due to the symmetry of the impurity potential does not occur
in the spin current caused by the extrinsic spin Hall effect
[53], we conclude theoretically that the δ doping on the center
plane of the well has an advantage of achieving a larger spin
polarization than the uniform doping in the well layer.

In the calculation, we have taken into account all processes,
which are in the first order of the SOI and, at the same time,
in the first order of the impurity potential. We have found
that the intersubband spin-flip scattering process due to the
well-potential-induced SOI gives a contribution comparable
to the intrasubband process. In type-II quantum wells, the
interference between these two processes can be destructive,
which may result in a strong suppression of the spin relaxation.
In type-I quantum wells made of GaAs and AlGaAs, how-
ever, these two processes interfere constructively, giving an
enhanced spin-flip scattering rate, while the third contribution
from the intersubband process caused by the Dresselhaus SOI
makes only a negligible contribution.

APPENDIX

Here we derive the formula of boff appearing in Eq. (6),
by following the k · p theory developed for heterostructures
[38,47,54]. The potential acting on an electron is due to either
the band offset or the electrostatic potential. The potential due
to the band offset at the interface of heterostructures depends
on the band which the electron occupies. Without specifying
whether it is due to the band offset or the electrostatic potential
until Eq. (A3) below, we denote the potential acting on an
electron in the conduction band by Vc(z), that in the heavy-hole
plus light-hole bands by Vv(z), and that in the split-off band
by Vso(z). The SOI for an electron in the conduction band is
induced by position dependences of Vv(z) and Vso(z) through
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the mixing between the conduction and valence bands by the
k · p term, and is given for an electron with momentum (kx,ky)
by [38,47,54]

Hso = P 2

3

[
∇zVv

E2
g

− ∇zVso

(Eg + �so)2

] (
σxky − σykx

)
, (A1)

where Eg is the band gap and �so is the spin-orbit splitting. P

is the Kane matrix element [55] given by

P = −i
�

m0
〈S|p̂x |X〉 . (A2)

Here m0 is the electron rest mass, while |S〉 and |X〉 are
the s-type wave function at the conduction-band bottom
and the p-type wave function at the valence-band top,
respectively.

First consider the case of the electrostatic potential. In this
case, Vc(z), Vv(z), and Vso(z) are all equal to the electrostatic
potential energy Ves(z),

Vc(z) = Vv(z) = Vso(z) = Ves(z). (A3)

Then Eq. (A1) becomes

Hso = η (∇zVes)(σxky − σykx), (A4)

with

η = P 2

3

[
1

E2
g

− 1

(Eg + �so)2

]
, (A5)

which gives the formula of the effective coupling constant of
the SOI appearing in Eq. (5).

Next we consider the case where the potentials are due to
the band offset. In a quantum well with width W ,

Vc(z) = �Ech(z) = Vwell(z),

Vv(z) = �Evh(z),

Vso(z) = �Esoh(z),

(A6)

with

h(z) =
{

0 (|z| < W/2)
1 (|z| > W/2). (A7)

Here, �Ec(= V0), �Ev, and �Eso are band offsets of the
corresponding bands, defined by the offset of the energy in the
barrier layers relative to that in the well layer. Introducing Ec

(Eb
c ) the energy of the conduction-band bottom, Ev (Eb

v) that
of the valance-band top, and Eso (Eb

so) that of the split-off-band
top in the well layer (the barrier layers), we have Eg = Ec −
Ev, �so = Ev − Eso, �Ec = Eb

c − Ec, �Ev = Eb
v − Ev, and

�Eso = Eb
so − Eso. In this case, Eq. (A1) becomes

Hso = ηboff(∇zVc)(σxky − σykx), (A8)

with the formula of boff :

boff = �EvE
−2
g − �Eso(Eg + �so)−2

�Ec
[
E−2

g − (Eg + �so)−2
] . (A9)
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