<table>
<thead>
<tr>
<th>Title</th>
<th>Platinum(0)-catalyzed diboration of allenes with bis(pinacolato)diboron</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author(s)</td>
<td>Ishiyama, Tatsuo; Kitano, Takahiro; Miyaura, Norio</td>
</tr>
<tr>
<td>Citation</td>
<td>Tetrahedron Letters, 39(16), 2357-2360</td>
</tr>
<tr>
<td>Issue Date</td>
<td>1998-04-16</td>
</tr>
<tr>
<td>Doc URL</td>
<td>http://hdl.handle.net/2115/56475</td>
</tr>
<tr>
<td>Type</td>
<td>article (author version)</td>
</tr>
<tr>
<td>File Information</td>
<td>(16) B-B + Allene (Com).pdf</td>
</tr>
</tbody>
</table>
Platinum(0)-Catalyzed Diboration of Allenes with Bis(pinacolato)diboron

Tatsuo Ishiyama, Takahiro Kitano, and Norio Miyaura*

Division of Molecular Chemistry, Graduate School of Engineering, Hokkaido University, Sapporo 060, Japan

Abstract: Bis(pinacolato)diboron [(Me_4C_2O_2)B-B(O_2C_2Me_4)] added to allenes in the presence of Pt(PPh_3)_4 at 80 °C or Pt(dba)_2/(c-Hex)_3P at 50 °C to afford 2,3-bis(boryl)-1-propenes in excellent yields. The one-pot synthesis of substituted homoallyl alcohols was also examined by the allylboration of aldehydes with diborated products followed by the coupling with organic halides.

Transition-metal-catalyzed addition reaction of metal-metal reagents to allenes provides a straightforward route to 2,3-bis(metal)-1-propene and its analogs, which include synthetically useful allylmetal part and vinylmetal part in the same molecule. Although disilanes,1 distannanes,2 silylstannanes,3 and germystannanes4 are known to add to allenes in the presence of palladium(0) catalyst, the corresponding reaction of diborons has not been reported so far presumably due to difficulties in the boron-boron bond activation by its oxidative addition to the palladium(0) complexes.5 Recently, we have found that platinum(0) complex effectively activates the boron-boron bond by the oxidative addition to give bis(boryl)platinum(II) complex.6 This activation protocol is readily extended to the catalytic diboration of unsaturated hydrocarbons, such as alkynes,6 alkenes,7 and 1,3-dienes.8 In the course of our study, we wish to disclose herein the platinum(0)-catalyzed addition of bis(pinacolato)diboron (1) to allenes (2) to afford 2,3-bis(boryl)-1-propenes (3) (Eq. 1).

\[
\begin{align*}
\text{RO}_2\text{B}-\text{B(OR)}_2 + \text{\text{\scriptsize R}}^1\text{\text{\scriptsize R}}^2\text{\{H\}} & \xrightarrow{\text{Pt catalyst}} \text{\text{\scriptsize R}}^1\text{\text{\scriptsize B(OR)}_2}\text{\text{\scriptsize R}}^2\text{\{H\}} \\
\text{(RO)}_2\text{B-B(OR)}_2 & \rightarrow \text{\text{\scriptsize R}}^1\text{\text{\scriptsize B(OR)}_2}\text{\text{\scriptsize R}}^2\text{\{H\}} + \text{\text{\scriptsize R}}^1\text{\text{\scriptsize R}}^2\text{\{H\}} \text{B(OR)}_2 \tag{1}
\end{align*}
\]

1,2-Propadiene (1.5 mmol) was allowed to react with 1 (1.0 mmol) for 16 h to optimize the reaction conditions. The addition completed at 80 °C with 3 mol% of Pt(PPh_3)_4 in toluene, producing the corresponding 3 in 99% yield. Ligand less platinum(0) complex such as Pt(dba)_2 also gave 3 even at room temperature, but the yield of the adduct is rather low (50%) because of catalyst decomposition. The catalytic activity of platinum(0) complex is markedly influenced by the nature of ligand. Comparison of the reaction rate at room temperature with Pd(dba)_2/PR_3 (1:1) elucidates the effectiveness of more sterically demanding ligand: e.g., (c-Hex)_3P (85%) > (4-MeOC_6H_4)_3P.
(66%) > (C\textsubscript{6}H\textsubscript{5})\textsubscript{3}P (46%) > (C\textsubscript{6}H\textsubscript{4})\textsubscript{3}P (25%) > Me\textsubscript{3}P (7%). As for the solvents, less polar one such as toluene is more favorable than dioxane or DMF.

The representative results of the reaction between 1 and 2 are summarized in Table 1. A variety 2 having alkyl and aryl substituents were smoothly converted into the corresponding 3 (82-99%) in toluene by using of Pt(PPh\textsubscript{3})\textsubscript{4} at 80 °C (Conditions A) or Pt(dbarg)(c-Hex)\textsubscript{3}P at 50 °C (Conditions B) (Entries 1-6), while strong electron-donating substituents on 2 such as MeO or MeS groups sufficiently slowed down the addition rate (Entries 7 and 8). The regioselectivity of the addition depends upon both the substituents of 2 and the bulkiness of ligands. The reaction of monosubstituted 2 (Entries 2-4) with less bulky ligands preferentially afforded the internal adducts (3b), whereas that of 1,1-disubstituted (Entries 5 and 6) or heteroatom-substituted 2 (Entries 7 and 8) with more bulky ligands tend to give the terminal adducts (3a). The (Z)-configuration of 3a (Entries 4, 7, 8) was immediately established by their conversion into known homoallyl alcohols and the comparison of 1H NMR spectra with authentic alcohols (Eq. 2).9

\[
\begin{align*}
\text{B(OR)}_2 & \quad \text{H} \\
\text{R}^1 & \quad \text{B(OR)}_2 \\
\text{PhCHO} & \quad \text{1} \\
\text{AcOH} & \quad \text{2} \\
\end{align*}
\]

1. PhCHO 2. AcOH

\[\text{R}^1 = \text{Ph}, \text{MeO}, \text{MeS}\]

The catalytic cycle for the present reaction may involve the oxidative addition of 1 to platinum(0) complex to give bis(boryl)platinum(II) intermediate (4), the insertion of 2 into B-Pt bond to provide vinyl- or p-allylplatinum(II) species (5 or 6), and the reductive elimination of 3 (Fig. 1). The stoichiometric reaction between 1,2-heptadiene and cis-Pt(BO\textsubscript{2}C\textsubscript{2}Me\textsubscript{4})(PPh\textsubscript{3})\textsubscript{2}6 resulted in an 83% yield of 3 (3a:3b = 17:83), strongly supporting the above catalytic cycle (Eq. 3). The slow reaction of 2 having strong electron-donating groups (Entries 7 and 8) may reflect the rate of insertion step, which was consistent with the relative reactivity observed on the insertion of diarylacetylenes to the B-Pt bond.10 The selective formation of 3a in the reaction of 1,1-disubstituted 2 may be due to the steric requirement; however, the observed regio- and stereoselectivity for monosubstituted and heteroatom-substituted 2 remains controversial.
Figure 1. The Catalytic Cycle for the Diboration

\[
\text{cis-Pt[B(OR)]}_2(PPh_3)_2 + \text{Bu} \rightarrow \text{Pt}[B(OR)]_2 \rightarrow \text{Bu} \rightarrow \text{H} \rightarrow \text{PhCHO} \rightarrow \text{dioxane} \rightarrow \text{50 °C/6 h} \rightarrow \text{PhI} \rightarrow \text{dioxane/90 °C/16 h} \rightarrow \text{PhOH} \rightarrow 75 \%
\]

83 % (3a:3b = 17:83)

The ready availability of various 3 from 2 now offers a simple route to substituted homoallyl alcohols. For example, the sequential reaction involving the allylboration of benzaldehyde (1.1 mmol) with 2,3-bis(boryl)-1-propene (1.0 mmol) in dioxane and the cross-coupling with iodobenzene (1.1 mmol) in the presence of PdCl$_2$(dppf) (3 mol%) and aqueous KOH (3 mmol) gave the corresponding homoallyl alcohol in 75% yield (Eq. 4).

\[
\begin{align*}
\text{PhCHO} & \rightarrow \text{PhI} \\
\text{PhOH} & \rightarrow 75 \%
\end{align*}
\]

A representative procedure for 3: To Pt(PPh$_3$)$_4$ (0.03 mmol) and 1 (1.0 mmol) were successively added toluene (6 ml) and 1,2-propadiene (1.5 mmol), and the resulting solution was then stirred at 80 °C for 16 h in a sealed reaction tube. Concentration of the reaction mixture and Kugelrohr distillation gave 2,3-bis(boryl)-1-propene: bp 130 °C/0.1 mmHg (oven temperature); 1H NMR (400 MHz, CDCl$_3$) d 1.24 (s, 12 H), 1.26 (s, 12 H), 1.82 (s, 2 H), 5.58 (br s, 1 H), and 5.71 (d, 1 H, $J = 3.4$ Hz); 13C NMR (100 MHz, CDCl$_3$) d 24.74, 83.05, 83.35, and 128.44; 11B NMR (128 MHz, CDCl$_3$) d 30.03 and 33.46.

References

<table>
<thead>
<tr>
<th>Entry</th>
<th>Allene (2)</th>
<th>Product (3a, 3b)</th>
<th>Conditions A</th>
<th>Conditions B</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Yield/% 3a:3b</td>
<td>Yield/% 3a:3b</td>
</tr>
<tr>
<td>1</td>
<td></td>
<td></td>
<td>99</td>
<td>99</td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td>97 6:94</td>
<td>90 16:84</td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td>90 7:93</td>
<td>82 8:92</td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
<td>94 29:71</td>
<td>84 68:32</td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
<td>96 50:50</td>
<td>84 85:15</td>
</tr>
<tr>
<td>6</td>
<td></td>
<td></td>
<td>98 76:24</td>
<td>99 98:2</td>
</tr>
<tr>
<td>7</td>
<td></td>
<td></td>
<td>81<sup>d</sup> 100:0</td>
<td>85<sup>d</sup> 100:0</td>
</tr>
<tr>
<td>8</td>
<td></td>
<td></td>
<td>48<sup>d</sup> 50:50</td>
<td>82<sup>d</sup> 82:18</td>
</tr>
</tbody>
</table>

Table 1. The Synthesis of 3 (Eq. 1)^a

<table>
<thead>
<tr>
<th>Entry</th>
<th>Allene (2)</th>
<th>Product (3a, 3b)</th>
<th>Conditions A</th>
<th>Conditions B</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Yield/% 3a:3b</td>
<td>Yield/% 3a:3b</td>
</tr>
<tr>
<td>1</td>
<td></td>
<td></td>
<td>99</td>
<td>99</td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td>97 6:94</td>
<td>90 16:84</td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td>90 7:93</td>
<td>82 8:92</td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
<td>94 29:71</td>
<td>84 68:32</td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
<td>96 50:50</td>
<td>84 85:15</td>
</tr>
<tr>
<td>6</td>
<td></td>
<td></td>
<td>98 76:24</td>
<td>99 98:2</td>
</tr>
<tr>
<td>7</td>
<td></td>
<td></td>
<td>81<sup>d</sup> 100:0</td>
<td>85<sup>d</sup> 100:0</td>
</tr>
<tr>
<td>8</td>
<td></td>
<td></td>
<td>48<sup>d</sup> 50:50</td>
<td>82<sup>d</sup> 82:18</td>
</tr>
</tbody>
</table>

^aAll reactions were carried out in toluene (6 ml) using 1 (1.0 mmol), 2 (1.5 mmol), and platinum catalyst (0.03 mmol).

Conditions A: Pt(PPh₃)₄/80 °C/16 h. Conditions B: Pt(dba)₂/(c-Hex)₃P/50 °C/18 h. The exact procedure, see the text.

^bIsolated yields based on 1.^cRegiosomeric purity was determined by GLC and ¹H NMR analyses.

^d0.1 mmol of catalyst was used.
PLATINUM(0)-CATALYZED ADDITION REACTION OF DIBORON REAGENT TO ALLENES
Tatsuo Ishiyama, Takahiro Kitano, and Norio Miyaura*
Division of Molecular Chemistry, Graduate School of Engineering, Hokkaido University, Sapporo 060, Japan

\[
\begin{align*}
(RO)_2B\quad &+ \quad \text{Pt catalyst} \\
\quad &\text{toluene} \\
\xrightarrow{\text{R}_1^1 \text{R}_2^2 \{\text{H}\}} \\
(RO)_2B &\quad \rightarrow \quad \text{(RO)}_2B \\
\quad &\quad \text{(RO)}_2B \\
\end{align*}
\]

\[
(RO)_2B(OR)_2 + \quad \rightarrow \quad \text{(RO)}_2B(OR)_2 + \\
(RO)_2B(OR)_2 \\
\]

\[
(RO)_2 = \text{Me}_4\text{C}_2\text{O}_2
\]