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Effects of a uniform magnetic field on two-dimensiorfaD) electrons subject to a random magnetic field
(RMF) are studied by a multifractal scaling analysis. For sufficiently strong uniform fgid&b), the RMF
system is equivalent to a quantum Hall syst¢é@HS), namely, the spectral density of states splits into
subbands, and states only at the subband centers are extended with the localization-length exp®:3dnt
+0.01, whereB is the averaged magnetic field anl is the characteristic amplitude of the spatially fluctu-
ating field. In the case dB= &b, subbands overlap each other and energies of extended states shift upwards
with keeping its universality class. This behavior conflicts with a recent theoretical prediction and demonstrates
that 2D systems in RMF’s even with small finite means are rather close to QHS'’s.

Quantum transport and eigenstate properties of two=ep(r)/mc, B(r)=B+b(r), andn is the Landau level in-

dimensional(2D) fermions subject to a random magnetic dex. This means that the RMF system with/B<1 and

field (RMF) have generated great theoretical and experimean/§B<1 behaves as a quantum Hall systé@HS), namely

tal interest in recent years. This problem is deeply related t@ne energy spectrum of the 2D RMF system takes a subband
the composite-fermion picture of a half-filled Landau leVel. strycture, states only at the subband centers are extended,
Strongly correlated 2D electrons can be mapped onto a fegnd the critical behavior is described by the same
mion gas in an effective gauge field. While this gauge fieldjocalization-length exponent with that characterizing the
globally cancels out the external magnetic field at half-quantum Hall transition.

filling, the inhomogeneity of the local filling factor due to the  |hcreasing the ratith/B, effects of the subband mixing
random potential by impurities induces spatial fluctuations ohecome crucial. In particular, it is quite interesting how en-
the total field. Thus, one can treat correlated electrons argies of extended states move with increasiiigor de-

half-filling as noninteracting charged fermions moving in acreasingg, because the problem of the RMF with zero mean
RMF. In addition to this theoretical motivation, experimental ., — —~ . -
(i.e., B=0 and 6b+0) is regarded as the limiting case of

works on direct realizations of 2D RMF systems also encour-_~" o . ,
age theoretical and numerical investigatigm. ob/B— 0. The similar problem has been vigorously studied
Most of the previous works on 2D RMF systems havefor the quantum Hall transition. In a two-dimensional elec-

. L . — tron gas with a random scalar potential and strong uniform

S_tUd'ed the 2case of the vanishing averaged field, Be., magnetic field, the number of extended states below the
=JB(r)dr/L"=0, becaqse the .RMF_W'th ZEro mean CoIre- o i anergy K,y increases, with decreasing the magnetic
sponds to the composne—fer_mlon picture of the. half-filled . 4 45 Ny =mMCE:/#eB, if subbands are well separated

Landau level. The key question of this problem is whethery .y each other. The scaling theory, however, predicts that

extended states exist in the system. In the early stage, exCeRt states in 2D orthogonal systems that correspond to the
for Ref. 5, a number of numerical works found a mobility ;i of B, are localized® Khmelnitskii® and Laughlir®

edge above which electronic states are extefid¥tRecent solved this paradox by clarifying that the subband mixing

large-scale and pre(_:ise sim_ulations claim that localizatio ushes upwards energies of extended states. This “floating-
lengths of electrons in the midrange of the spectrum are e ip” scenario has been supported by both numetiéaiand
tremely long but finite and extended states found in prewou%xperiment&?‘% studies. Taking into account the equiva-

. . . . 14
\_/rvrc])'rks areI?qtuaIIIy Iocahzedtmdthbe tflﬁrmody?amlcl: limit Lence between the RMF system and the QHS in the semiclas-
Is result Is also supported by the analytical argumen ical limit, information on electronic states in the RMF with

based on the nonlinear model’® There is, however, no S .
X . e ’ lar is significan r he nature of electrons in
conclusive evidence of the absence of the mobility edge, an% argedb is significant to probe the nature of electrons

the localization problem of this system is still controversial. "€ RMF with B=0. Chang, Yang, and Hofghave pre- _
It is also intriguing to study 2D electrons in a RMF with a dicted, using a semiclassical treatment and a perturbative
— approactt/ that extended states in a RMF system with a

N —_ e long-range correlation do not float up, even if subband mix-
around half-filling. IfB is much larger thamb, which is the  ing becomes noticeable. Their conclusion is, however, valid
chargcterlstlc amplitude of fluct_uat|ons B(r) af‘d th_e cor- only if éb is small compared tgand§B>IC. The behavior
relation lengthg of the fluctuating magnetic field is much ¢ o onded states is unclear whembecomes still larger, or
longer than the cyclotron radius.j for B, a semiclassical jn the case of a short-range correlation.

approximation gives a significant insight into electronic  The purpose of this paper is to examine numerically the
states® Kalmeyer et al.” and Huckesteit{ have suggested pehavior of extended states of 2D electrons in a short-range
that the RMF withB> 6b is equivalent to the random scalar RMF with a finite mean. The multifractal scaling analy&is
potential of V(r)=(n+3)kw(r), where wg(r) is employed to obtain the localization-length exponent and

finite mean B#0) in connection with magnetotransport
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08— LA R I values ofsb/B, which is calculated by the forced oscillator
o method?®3° The value ofB is fixed to be 0.1 for all results.
o6l o | The system sizes are 58600 for Sb=0 and 300x 300 for
a | || — 8b/B=1.0 other values ofb. For §b/B<1, the density of states well
bt - - - 8o/B=2.0 separates into subbands like a QHS. This has_been predicted
P oal —=e-do/B=2.5 by the semiclassical theory that is valid féb/B<1 and
° T 8b/B=5.0
2 \ s £g>1..Y" Increasingsb/B, subbands become broad, and the
g | \,‘ lowest subband starts to merge with the second subband. It
0 02r ;':.:‘9 _____________ should be noted that the density of states is completely sym-
} ’\ < \ S metric around the band centBr=0 due to the particle-hole
1 L%\ N symmetry of the RMF system without any diagonal disorder
00, Yo _3‘0" on a square lattice.

In order to examine the critically of electronic states, we
analyze wave functions by the multifractal finite-size scaling
FIG. 1. Densities of states of 2D electrons in RMF's with sev- Method”® In a conventional finite-size scaling for quasi-one-
dimensional systems, critical properties are obtained via a
response function, and rich information involved in the am-
plitude distribution of a wave function is discarded. On the
contrary, the present numerical technique utilizes such infor-
critical energies for several values 6b/B. This technique matiqn to reveal th? critical behavio_r qf the metal-insulator

) transition (MIT). This scaling analysis is based on the fact

Enté%zidhgcetgemﬂi?r;:tztl ;gﬂlt')tgt?oeﬁ Zgéhfotcg\t)gﬁl a\;v‘;:/e%hat the spatial distribution of the squared wave function at
o : . o : ’ X ... criticality is multifractal. The multifractality is maintained
critical point but in the critical region, the amplitude distri-

S . : . not even at the critical point if the length scale is less than
bution is also multifractal in a scale less than the correlatloqhe correlatioror localization length &, Analyzing how the

length £. We clarified that the 2DEG in @ RMF withb/B — mytifractality changes with the length scale, one can obtain
<1 is equivalent to a QHS as predicted by Kalmegeal."  cyitical properties of the MIT. The amplitude distribution of
and Huckestein! For 5b/B=1, we found the floating up of wave function is characterized by the quanfiy:
extended states in contrast to the result by Chang, Yang, and
Hong?®

A model of noninteracting electrons on a square lattice
subject to a RMMB(r) =B+ b(r) is considered, wher and

b(r) are the average field and the fluctuation aroBndrhe ~ Whered; Is the wave function at the siteand is normalized
RMF constitutes the only type of disorder present. The sys@s =i #i|“=1 (the summation is taken over all sites in the

tem is described by the tight-binding Hamiltonian system, andq is an arbitrary constant. The symbalgy)
andX . poxq) represent summations over small boxes with a

linear sizel into which one divides the whole system with a

eral values ofsb/B. The system sizes are 58@00 for sb=0 and

300x 300 for other values ofb/B. B is chosen to be 0.1 for all
cases.

q
|'//i|2) ; 4

Fq=In

box(1) (iebox(l)

H=- % [l +H.c., (D sizeL and over sites in the box, respectively. If we apply the
: scaling hypothesis to the amplitude distribution of the wave
where function near the critical point, the quantify, can be writ-
b ten as
tij=exl{2ﬂ'i 1. 2 . .
o Fo=fo(LY|E—EoI"E-Ed), ()

I‘Ts ?Zr]ot;oalﬁgrlijg:s \l/JQcI:ttc?: ﬂgt); gﬁ;n;?ozn?ﬁe'sli(.t.ge_:_'ﬂg wheref,, is a two-argument scaling function that depends on
9 P g . o, E. is the critical energy, and is the localization-length

magnetic flux through a plaquette is given By=2nd;;, exponent. Since the length is always larger than, the
where the summation runs over four links around the

S scaling functionf,(x,y) is defined in the regime at=y.
plaguette. Considering the correspondencaipto the RMF Considering the multifractality of the critical wave function,

B(r)=B+b(r), in the Landau gaugeh;; =0 for the link(ij)  the asymptotic forms of the scaling functidg(x,y) for lo-

in the direction of thex axis and calized states afe

¢ij=—Baxi+ gy, 3) 0 if x>1 andy>1
in the direction parallel to thg axis. Herex; is thex coor- f (x,y)~1{ vr(q)iny if x>1 andy<1
dinate of theith site anda is the lattice constant. The quan- d

tity oy is uniformly distributed in the range of vr(g)(Iny—Inx) if x<1 andy<1, ©

[ —a%8b,a?sb]. Hereafter we measui® and 6b in units of

¢o/a®. Periodic boundary conditions have been considereavherer(q) (mass exponehptharacterizes the multifractality

for both x andy directions. as Fq=7(q)In(l/L) for the critical wave function. For ex-
Densities of state® (E) are shown in Fig. 1 for several tended states, the asymptotic forms are given by
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FIG. 2. (a) Box-size dependences &, for several values of
energies andb/B=0.5 withB=0.1. The system sizZeis 140. The
dotted straight line shows,=1.62 Inl+c,, wherec, is a constant.
(b) System-size dependencesf for several values of energies
andsb/B=0.5 withB=0.1. The box sizé¢is 1. The dotted straight
line showsF,=—1.62InL+c,. Typical error bars are indicated

4x10’ 10
System Size (L)

only for E= —3.418 in both figures.

fq(x,y)

2v(q—1)(Iny—Inx)
~<$ V[2(1—q)Inx+7(q)Iny]
v7(q)(Iny—Inx)

if x>1 andy>1
if x>1 andy<1
if x<1 andy<1.
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FIG. 3. The calculated scaling functiofy(x,y) for Sb/B
=0.5. Filled circles are rescaled datafof.

of q implies that a part of the amplitudes with a specific

intensity is analyzed. In our scaling analysis, box sizes play a
role of the scaling measure in addition to system sizes. This
feature releases us from calculating many eigenstates for dif-
ferent system sizes. In fact we have treated only two system

sizes in the case afb/B=2.5.

Eigenstates of the Hamiltonian E(l) are calculated by
the forced oscillator methad:*° This numerical technique
enables us to compute eigenvalues and eigenvectors of very

large matrices. Values aofb/B treated here are 0.5, 2.0, and

2.5 with fixing B=0.1. For eachsb/B, we calculated eigen-
states at 23 energy points in the lowest subband. The system

sizes arel =40, 60, 80, 100, 120, and 140 féb/B=0.5

and 2.0, and. =60 and 120 forsb/B=2.5. The quantityF,,
given by Eq.(4) is averaged over 64 realizations of wave
functions forL <100 and 32 fol.=100. Figure 2 shows the

| and L dependences of, for several energiesdp/B is
fixed at 0.5. Thel dependences shown in Fig(aR are re-
sults for L=140. Increasing energy from the lower side of
the lowest subband center, profilesf(Inl) change from
convex curves to a straight line and again turn to convex
curves. This implies that correlation lengths of states near the
subband center are long compared to those of other states.
The fact that~, at E= —3.418 is almost proportional to In
with the slope of 1.62 shows that the critical enefgyis
closed to this energy and the expone(®) is 1.62. As shown
in Fig. 2(b), theL dependence df, also supports this esti-
mation. In this casef,«—1.62InL at E= —3.418.

Using these data d¥,, we obtain the exponentand the
critical energy E; by fitting F, to the scaling function

Using this scaling analysis, one obtains the critical energy q(L*|E—Ec[,I""|E-E|). The function fy(x,y) is ex-

E., the localization-length exponent, and the exponent
7(q) at the same time, while exponentsand 7(q) are cal-
culated separately in previous analyses. Values ahd E,
can be calculated for an arbitrary value @f Since these
guantities do not depend ap we can obtairv andE; mul-

panded in powers of andy up to the third order. Sincg
is always zero fof =L, we impose restriction on the expan-
sion coefficients so thdt;=0 for x=y. The calculated scal-

ing functionf ,(x,y) for g=2 andéb/B=0.5 is presented in
Fig. 3. Rescaled data &f, (filled circles in Fig. 3 collapse

tiply for differentq’'s. The scaling analysis with a fixed value on a single scaling surface. The results of the scaling analysis
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TABLE I. Numerical results o, , v, and 7 for several values obb/B. Quantities ofxz, numbers of
dataN, and values of goodness-of-€ft are also listed. The value @fis set to beg=2 for these results.

Sb/B E. v 72 x? N Q

0.5 —3.41274+0.000 35 2.3080.013 1.614-0.026 1433 1474  0.75
2.0 —3.2774+0.0018 2.3530.016 1.6080.019 1499 1531 0.69
2.5 —3.2131+0.0017 2.2440.068 1.609:0.017 626 616 0.34

for g=2 are summarized in Table I. Errors, calculated by thethe universality classes between the delocalization transition
bootstrap procedure, indicate their 95.4% confidence interin the RMF system with a strong uniform field and the quan-
vals. In the bootstrap procedure, we analyzel dghthetic ~ tum Hall transition.

data sets produced by duplicate sampling from the original In conclusion, we have studied numerically 2D electronic
data. In the case afb/B= 0.5 for which subbands are well States in a RMF with a finite mean. A scaling analysis based
separated as shown in Fig. 1, the critical energy is very closn the multifractality of the criti(EI wave function reveals

to the center of the lowest subbafil.. .~ —3.41, where that (i) the RMF system withsb/B<1 is equivalent to a
D(E) becomes maximumThe localization-length exponent QHS, i.e., the density of states takes a subband structure and
v and the exponent(q) agree well with those for the integer states only at the subband centers are extended with

quantum Hall transition, where=2.35-0.03(Ref. 3) and  =2.31+0.01 andr(2)=1.61+0.03, (i) for Sb/B=1, ener-
7(2)=1.62+0.02%* These results indicate that the RMF sys- gies of extended states move upwards, @ingithe values of

tem is equivalent to the QHS whefb/B<1. While this » and 7 do not depend onsb/B, which means that the
equivalency has been predicted by the semiclassical theor{floating up” occurs with keeping its universality class. The
for long-range RMF systents;’ our results show the same floating up of extended states is also found in QHS'’s. These
consequence even for short-range RMF systems. results suggest that the behavior of 2D electrons in a RMF is
As shown in Fig. 1, the mixing between the lowest andquite similar to that in a QHS. When increasidg/B much

the second lowest subbands just startsl@B=2.0. In this  larger than 2.5, it becomes difficult to determine the values
case the value of the critical enerdg is clearly shifted Of Ec, v and 7 precisely. Thus, it remains unclear whether
upwards, while the exponentsand #(2) are nearly the same the similarity between RMF systems and QHS'’s holds even

with those forsb/B=0.5. Thus, the delocalization transition g’;ﬂgblsil- In the Iimitiﬂg calse Oﬁbz/BH”’g n?mely, tfr‘]e
in the RMF system withsb/B~1 belongs to the same uni- with zero mean, the value of2) [equivalent to the

. i i, fractal dimensiorD, of the wave function because a{q)
versality class with that of the quantum Hall transition. In- —(q—1)Dg] is about 1.8135This value apparently differs

creasing f_urtheﬁb/_g(éb/§:2.5), E. moves to still higher  from the present value, which suggests that the universality
energy with keeping’ and 7(2). We conclude from these ¢ o myst change at a certain value &/B (>1). Our

res”ult? thhat the sl,ubband n;ihx_ing gi;’I?S risc_ehtohthe Hﬂoagi”gprevious work has predicted that all states are localized in the
up™ of the critical energy. This conflicts with the perturba- case ofB=0.! The present result that energies of the ex-

. . o — 26 . -
tion theory justified fordb/B=1. Tff value ofy is some- tended states shift upwards as increasihB does not con-
what small compared to those féb/B=0.5 and 2.0. How- flict with our previous conclusion, if a set of several ex-

ever, the quantityQ describing the goodness-of-fit of the tended states changes to that of localized ones at a large
scaling function foréb/B=2.5 is less tharQ's for smaller  sb/B due to merging the Chern numbers of these floating
sb/B, which is presumably caused by narrowing the criticalextended stateS:* In order to clarify this mechanism, fur-
region by the subband mixing. Thus, the value iofor  ther investigation of the Chern number is necessary. We be-
Sb/B=2.5 has less reliability than those f6b/B=0.5 and lieve that our numerical results give significant information

2.0, and we suppose that the universality class does not

change even if subbands merge to this extent. TABLE Il. Numerical results o, v, andr for several values
We have performed scaling analyses also for several vaPf g. Values ofx? and Q are also listed. The number of data for

ues ofg. Results forsb/B=2.0 are listed in Table Il. The €achcaseis 1531. The valued/B is set to besb/B=2 for these

critical energyE, and the exponent should be independent "esults.
of g. In fact, E, takes an almost constant value. On the con- )
trary, the exponent decreases slightly for large valuesgpf 9 Ee v (a) x> Q

However, the quantity) decreases witl. (Note that errors 1.5 —3.2766-0.0019 2.3350.016 0.8426:0.0071 1503 0.66
in Tables | and Il are estimated by the Bootstrap method.o 0 —3.2774-0.0018 2.3530.016 1.6080.019 1499 0.69
Similar tendencies appear in the caseSbfB=0.5 and 2.5. 2.5 —3.2778:0.0017 2.3440.016 2.31%0.037 1508 0.63
Therefore, we believe thd, and v obtained forq=2 are 3.0 —3.2781+0.0017 2.33%+0.016 2.9880.057 1520 0.55
the most reliable values. The exponettlearly depends on 35 —3.2783-0.0017 2.316:0.016 3.6340.080 1537 0.42

g. Theq dependence of agrees well with that of the quan- 4.0 —3.2784-0.0017 2.2940.016 4.26:0.10 1554 0.31
tum Hall transition®>3* which supports the coincidence of
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about electronic states in RMF’s and are useful to understanon the FACOM VPP500 of Supercomputer Center, Institute
transport properties of 2D electrons in RMF’s. for Solid State Physics, University of Tokyo. This work was
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