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Floating of extended states in a random magnetic field with a finite mean
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Effects of a uniform magnetic field on two-dimensional~2D! electrons subject to a random magnetic field

~RMF! are studied by a multifractal scaling analysis. For sufficiently strong uniform field (B̄@db), the RMF
system is equivalent to a quantum Hall system~QHS!, namely, the spectral density of states splits into
subbands, and states only at the subband centers are extended with the localization-length exponentn52.31

60.01, whereB̄ is the averaged magnetic field anddb is the characteristic amplitude of the spatially fluctu-

ating field. In the case ofB̄&db, subbands overlap each other and energies of extended states shift upwards
with keeping its universality class. This behavior conflicts with a recent theoretical prediction and demonstrates
that 2D systems in RMF’s even with small finite means are rather close to QHS’s.

Quantum transport and eigenstate properties of two-
dimensional~2D! fermions subject to a random magnetic
field ~RMF! have generated great theoretical and experimen-
tal interest in recent years. This problem is deeply related to
the composite-fermion picture of a half-filled Landau level.1

Strongly correlated 2D electrons can be mapped onto a fer-
mion gas in an effective gauge field. While this gauge field
globally cancels out the external magnetic field at half-
filling, the inhomogeneity of the local filling factor due to the
random potential by impurities induces spatial fluctuations of
the total field. Thus, one can treat correlated electrons at
half-filling as noninteracting charged fermions moving in a
RMF. In addition to this theoretical motivation, experimental
works on direct realizations of 2D RMF systems also encour-
age theoretical and numerical investigations.2–4

Most of the previous works on 2D RMF systems have
studied the case of the vanishing averaged field, i.e.,B̄
[*B(r )dr /L250, because the RMF with zero mean corre-
sponds to the composite-fermion picture of the half-filled
Landau level. The key question of this problem is whether
extended states exist in the system. In the early stage, except
for Ref. 5, a number of numerical works found a mobility
edge above which electronic states are extended.6–10 Recent
large-scale and precise simulations claim that localization
lengths of electrons in the midrange of the spectrum are ex-
tremely long but finite and extended states found in previous
works are actually localized in the thermodynamic limit.11–14

This result is also supported by the analytical argument
based on the nonlinears model.15 There is, however, no
conclusive evidence of the absence of the mobility edge, and
the localization problem of this system is still controversial.

It is also intriguing to study 2D electrons in a RMF with a
finite mean (B̄Þ0) in connection with magnetotransport
around half-filling. IfB̄ is much larger thandb, which is the
characteristic amplitude of fluctuations ofB(r ) and the cor-
relation lengthjB of the fluctuating magnetic field is much
longer than the cyclotron radius (l c) for B̄, a semiclassical
approximation gives a significant insight into electronic
states.16 Kalmeyer et al.7 and Huckestein17 have suggested
that the RMF withB̄@db is equivalent to the random scalar
potential of V(r )5(n1 1

2 )\vc(r ), where vc(r )

5eb(r )/mc, B(r )5B̄1b(r ), andn is the Landau level in-
dex. This means that the RMF system withdb/B̄!1 and
l c /jB!1 behaves as a quantum Hall system~QHS!, namely,
the energy spectrum of the 2D RMF system takes a subband
structure, states only at the subband centers are extended,
and the critical behavior is described by the same
localization-length exponentn with that characterizing the
quantum Hall transition.

Increasing the ratiodb/B̄, effects of the subband mixing
become crucial. In particular, it is quite interesting how en-
ergies of extended states move with increasingdb or de-
creasingB̄, because the problem of the RMF with zero mean
~i.e., B̄50 and dbÞ0! is regarded as the limiting case of
db/B̄→`. The similar problem has been vigorously studied
for the quantum Hall transition. In a two-dimensional elec-
tron gas with a random scalar potential and strong uniform
magnetic field, the number of extended states below the
Fermi energy (Next) increases, with decreasing the magnetic
field as Next5mcEF /\eB, if subbands are well separated
from each other. The scaling theory, however, predicts that
all states in 2D orthogonal systems that correspond to the
limit of B→0 are localized.18 Khmelnitskii19 and Laughlin20

solved this paradox by clarifying that the subband mixing
pushes upwards energies of extended states. This ‘‘floating-
up’’ scenario has been supported by both numerical21,22 and
experimental23–25 studies. Taking into account the equiva-
lence between the RMF system and the QHS in the semiclas-
sical limit, information on electronic states in the RMF with
a largedb is significant to probe the nature of electrons in
the RMF with B̄50. Chang, Yang, and Hong26 have pre-
dicted, using a semiclassical treatment and a perturbative
approach,27 that extended states in a RMF system with a
long-range correlation do not float up, even if subband mix-
ing becomes noticeable. Their conclusion is, however, valid
only if db is small compared toB̄ andjB@ l c . The behavior
of extended states is unclear whendb becomes still larger, or
in the case of a short-range correlation.

The purpose of this paper is to examine numerically the
behavior of extended states of 2D electrons in a short-range
RMF with a finite mean. The multifractal scaling analysis28

is employed to obtain the localization-length exponent and
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critical energies for several values ofdb/B̄. This technique
is based on the idea that amplitudes of the critical wave
function have a multifractal distribution, and not even at the
critical point but in the critical region, the amplitude distri-
bution is also multifractal in a scale less than the correlation
length j. We clarified that the 2DEG in a RMF withdb/B̄
!1 is equivalent to a QHS as predicted by Kalmeyeret al.7

and Huckestein.17 For db/B̄*1, we found the floating up of
extended states in contrast to the result by Chang, Yang, and
Hong.26

A model of noninteracting electrons on a square lattice
subject to a RMFB(r )5B̄1b(r ) is considered, whereB̄ and
b(r ) are the average field and the fluctuation aroundB̄. The
RMF constitutes the only type of disorder present. The sys-
tem is described by the tight-binding Hamiltonian

H52(̂
i j &

u i &t i j ^ j u1H.c., ~1!

where

t i j 5expF2p i
f i j

f0
G . ~2!

The symbolf0 is the unit of flux quanta andf i j is the line
integral of a random vector potential along the link~ij !. The
magnetic flux through a plaquette is given byf5(hf i j ,
where the summation runs over four links around the
plaquette. Considering the correspondence off i j to the RMF
B(r )5B̄1b(r ), in the Landau gauge,f i j 50 for the link~ij !
in the direction of thex axis and

f i j 52B̄axi1df i j , ~3!

in the direction parallel to they axis. Herexi is thex coor-
dinate of thei th site anda is the lattice constant. The quan-
tity df i j is uniformly distributed in the range of

@2a2db,a2db#. Hereafter we measureB̄ anddb in units of
f0 /a2. Periodic boundary conditions have been considered
for both x andy directions.

Densities of statesD(E) are shown in Fig. 1 for several

values ofdb/B̄, which is calculated by the forced oscillator
method.29,30 The value ofB̄ is fixed to be 0.1 for all results.
The system sizes are 5003500 for db50 and 3003300 for
other values ofdb. For db/B̄!1, the density of states well
separates into subbands like a QHS. This has been predicted
by the semiclassical theory that is valid fordb/B̄!1 and
jB@ l c .17 Increasingdb/B̄, subbands become broad, and the
lowest subband starts to merge with the second subband. It
should be noted that the density of states is completely sym-
metric around the band centerE50 due to the particle-hole
symmetry of the RMF system without any diagonal disorder
on a square lattice.

In order to examine the critically of electronic states, we
analyze wave functions by the multifractal finite-size scaling
method.28 In a conventional finite-size scaling for quasi-one-
dimensional systems, critical properties are obtained via a
response function, and rich information involved in the am-
plitude distribution of a wave function is discarded. On the
contrary, the present numerical technique utilizes such infor-
mation to reveal the critical behavior of the metal-insulator
transition ~MIT !. This scaling analysis is based on the fact
that the spatial distribution of the squared wave function at
criticality is multifractal. The multifractality is maintained
not even at the critical point if the length scale is less than
the correlation~or localization! lengthj. Analyzing how the
multifractality changes with the length scale, one can obtain
critical properties of the MIT. The amplitude distribution of
wave function is characterized by the quantityFq :

Fq5 lnF (
box~ l !

S (
i Pbox~ l !

uc i u2D qG , ~4!

wherec i is the wave function at the sitei, and is normalized
as ( i uc i u251 ~the summation is taken over all sites in the
system!, andq is an arbitrary constant. The symbols(box(l )
and( i Pbox(l ) represent summations over small boxes with a
linear sizel into which one divides the whole system with a
sizeL and over sites in the box, respectively. If we apply the
scaling hypothesis to the amplitude distribution of the wave
function near the critical point, the quantityFq can be writ-
ten as

Fq5 f q~L1/nuE2Ecu,l 1/nuE2Ecu!, ~5!

wheref q is a two-argument scaling function that depends on
q, Ec is the critical energy, andn is the localization-length
exponent. Since the lengthL is always larger thanl, the
scaling functionf q(x,y) is defined in the regime ofx>y.
Considering the multifractality of the critical wave function,
the asymptotic forms of the scaling functionf q(x,y) for lo-
calized states are28

f q~x,y!;H 0 if x@1 and y@1

nt~q!ln y if x@1 and y!1

nt~q!~ ln y2 ln x! if x!1 and y!1,
~6!

wheret(q) ~mass exponent! characterizes the multifractality
as Fq5t(q)ln(l/L) for the critical wave function. For ex-
tended states, the asymptotic forms are given by

FIG. 1. Densities of states of 2D electrons in RMF’s with sev-

eral values ofdb/B̄. The system sizes are 5003500 fordb50 and

3003300 for other values ofdb/B̄. B̄ is chosen to be 0.1 for all
cases.

PRB 62 16 757FLOATING OF EXTENDED STATES IN A RANDOM . . .



f q~x,y!

;H 2n~q21!~ ln y2 ln x! if x@1 and y@1

n@2~12q!ln x1t~q!ln y# if x@1 and y!1

nt~q!~ ln y2 ln x! if x!1 and y!1.

~7!

Using this scaling analysis, one obtains the critical energy
Ec , the localization-length exponentn, and the exponent
t(q) at the same time, while exponentsn andt(q) are cal-
culated separately in previous analyses. Values ofn andEc
can be calculated for an arbitrary value ofq. Since these
quantities do not depend onq, we can obtainn andEc mul-
tiply for different q’s. The scaling analysis with a fixed value

of q implies that a part of the amplitudes with a specific
intensity is analyzed. In our scaling analysis, box sizes play a
role of the scaling measure in addition to system sizes. This
feature releases us from calculating many eigenstates for dif-
ferent system sizes. In fact we have treated only two system
sizes in the case ofdb/B̄52.5.

Eigenstates of the Hamiltonian Eq.~1! are calculated by
the forced oscillator method.29,30 This numerical technique
enables us to compute eigenvalues and eigenvectors of very
large matrices. Values ofdb/B̄ treated here are 0.5, 2.0, and
2.5 with fixing B̄50.1. For eachdb/B̄, we calculated eigen-
states at 23 energy points in the lowest subband. The system
sizes areL540, 60, 80, 100, 120, and 140 fordb/B̄50.5
and 2.0, andL560 and 120 fordb/B̄52.5. The quantityFq
given by Eq.~4! is averaged over 64 realizations of wave
functions forL,100 and 32 forL>100. Figure 2 shows the
l and L dependences ofF2 for several energies (db/B̄ is
fixed at 0.5!. The l dependences shown in Fig. 2~a! are re-
sults for L5140. Increasing energy from the lower side of
the lowest subband center, profiles ofF2(ln l) change from
convex curves to a straight line and again turn to convex
curves. This implies that correlation lengths of states near the
subband center are long compared to those of other states.
The fact thatF2 at E523.418 is almost proportional to lnl
with the slope of 1.62 shows that the critical energyEc is
closed to this energy and the exponentt~2! is 1.62. As shown
in Fig. 2~b!, the L dependence ofF2 also supports this esti-
mation. In this case,F2}21.62 lnL at E523.418.

Using these data ofFq , we obtain the exponentn and the
critical energy Ec by fitting Fq to the scaling function
f q(L1/nuE2Ecu,l 1/nuE2Ecu). The function f q(x,y) is ex-
panded in powers ofx andy up to the third order. SinceFq
is always zero forl 5L, we impose restriction on the expan-
sion coefficients so thatf q50 for x5y. The calculated scal-
ing function f q(x,y) for q52 anddb/B̄50.5 is presented in
Fig. 3. Rescaled data ofF2 ~filled circles in Fig. 3! collapse
on a single scaling surface. The results of the scaling analysis

FIG. 2. ~a! Box-size dependences ofF2 for several values of

energies anddb/B̄50.5 with B̄50.1. The system sizeL is 140. The
dotted straight line showsF251.62 lnl1c1, wherec1 is a constant.
~b! System-size dependences ofF2 for several values of energies

anddb/B̄50.5 with B̄50.1. The box sizel is 1. The dotted straight
line showsF2521.62 lnL1c2. Typical error bars are indicated
only for E523.418 in both figures.

FIG. 3. The calculated scaling functionf 2(x,y) for db/B̄
50.5. Filled circles are rescaled data ofF2 .
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for q52 are summarized in Table I. Errors, calculated by the
bootstrap procedure, indicate their 95.4% confidence inter-
vals. In the bootstrap procedure, we analyzed 104 synthetic
data sets produced by duplicate sampling from the original

data. In the case ofdb/B̄50.5 for which subbands are well
separated as shown in Fig. 1, the critical energy is very close
to the center of the lowest subband@Ecenter'23.41, where
D(E) becomes maximum#. The localization-length exponent
n and the exponentt(q) agree well with those for the integer
quantum Hall transition, wheren52.3560.03 ~Ref. 31! and
t(2)51.6260.02.32 These results indicate that the RMF sys-

tem is equivalent to the QHS whendb/B̄!1. While this
equivalency has been predicted by the semiclassical theory
for long-range RMF systems,7,17 our results show the same
consequence even for short-range RMF systems.

As shown in Fig. 1, the mixing between the lowest and

the second lowest subbands just starts atdb/B̄52.0. In this
case the value of the critical energyEc is clearly shifted
upwards, while the exponentsn andt~2! are nearly the same

with those fordb/B̄50.5. Thus, the delocalization transition

in the RMF system withdb/B̄;1 belongs to the same uni-
versality class with that of the quantum Hall transition. In-

creasing furtherdb/B̄ (db/B̄52.5), Ec moves to still higher
energy with keepingn and t~2!. We conclude from these
results that the subband mixing gives rise to the ‘‘floating
up’’ of the critical energy. This conflicts with the perturba-

tion theory justified fordb/B̄&1.26 The value ofn is some-

what small compared to those fordb/B̄50.5 and 2.0. How-
ever, the quantityQ describing the goodness-of-fit of the

scaling function fordb/B̄52.5 is less thanQ’s for smaller

db/B̄, which is presumably caused by narrowing the critical
region by the subband mixing. Thus, the value ofn for

db/B̄52.5 has less reliability than those fordb/B̄50.5 and
2.0, and we suppose that the universality class does not
change even if subbands merge to this extent.

We have performed scaling analyses also for several val-
ues ofq. Results fordb/B̄52.0 are listed in Table II. The
critical energyEc and the exponentn should be independent
of q. In fact, Ec takes an almost constant value. On the con-
trary, the exponentn decreases slightly for large values ofq.
However, the quantityQ decreases withq. ~Note that errors
in Tables I and II are estimated by the bootstrap method.!

Similar tendencies appear in the case ofdb/B̄50.5 and 2.5.
Therefore, we believe thatEc and n obtained forq52 are
the most reliable values. The exponentt clearly depends on
q. Theq dependence oft agrees well with that of the quan-
tum Hall transition,33,34 which supports the coincidence of

the universality classes between the delocalization transition
in the RMF system with a strong uniform field and the quan-
tum Hall transition.

In conclusion, we have studied numerically 2D electronic
states in a RMF with a finite mean. A scaling analysis based
on the multifractality of the critical wave function reveals

that ~i! the RMF system withdb/B̄!1 is equivalent to a
QHS, i.e., the density of states takes a subband structure and
states only at the subband centers are extended withn

52.3160.01 andt(2)51.6160.03, ~ii ! for db/B̄*1, ener-
gies of extended states move upwards, and~iii ! the values of
n and t do not depend ondb/B̄, which means that the
‘‘floating up’’ occurs with keeping its universality class. The
floating up of extended states is also found in QHS’s. These
results suggest that the behavior of 2D electrons in a RMF is
quite similar to that in a QHS. When increasingdb/B̄ much
larger than 2.5, it becomes difficult to determine the values
of Ec , n and t precisely. Thus, it remains unclear whether
the similarity between RMF systems and QHS’s holds even
for db/B̄@1. In the limiting case ofdb/B̄→`, namely, the
RMF with zero mean, the value oft~2! @equivalent to the
fractal dimensionD2 of the wave function because oft(q)
5(q21)Dq# is about 1.8.11,35 This value apparently differs
from the present value, which suggests that the universality
class must change at a certain value ofdb/B̄ ~@1!. Our
previous work has predicted that all states are localized in the
case ofB̄50.11 The present result that energies of the ex-
tended states shift upwards as increasingdb/B̄ does not con-
flict with our previous conclusion, if a set of several ex-
tended states changes to that of localized ones at a large
db/B̄ due to merging the Chern numbers of these floating
extended states.22,36 In order to clarify this mechanism, fur-
ther investigation of the Chern number is necessary. We be-
lieve that our numerical results give significant information

TABLE I. Numerical results ofEc , n, andt for several values ofdb/B̄. Quantities ofx2, numbers of
dataN, and values of goodness-of-fitQ are also listed. The value ofq is set to beq52 for these results.

db/B̄ Ec n t~2! x2 N Q

0.5 23.412 7460.000 35 2.30860.013 1.61460.026 1433 1474 0.75
2.0 23.277460.0018 2.35360.016 1.60860.019 1499 1531 0.69
2.5 23.213160.0017 2.24460.068 1.60960.017 626 616 0.34

TABLE II. Numerical results ofEc , n, andt for several values
of q. Values ofx2 and Q are also listed. The number of data for

each case is 1531. The value ofdb/B̄ is set to bedb/B̄52 for these
results.

q Ec n t(q) x2 Q

1.5 23.276660.0019 2.33560.016 0.842660.0071 1503 0.66
2.0 23.277460.0018 2.35360.016 1.60860.019 1499 0.69
2.5 23.277860.0017 2.34460.016 2.31760.037 1508 0.63
3.0 23.278160.0017 2.33160.016 2.98860.057 1520 0.55
3.5 23.278360.0017 2.31060.016 3.63460.080 1537 0.42
4.0 23.278460.0017 2.29460.016 4.2660.10 1554 0.31
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about electronic states in RMF’s and are useful to understand
transport properties of 2D electrons in RMF’s.
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