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Method of determining kinetic boundary conditions in net
evaporation/condensation

Misaki Kon, Kazumichi Kobayashi,a) and Masao Watanabe
Division of Mechanical and Space Engineering, Faculty of Engineering,
Hokkaido University, Kita 13 Nishi 8, Kita-ku, Sapporo, Hokkaido 060-8628, Japan

(Received 31 January 2014; accepted 3 July 2014; published online 23 July 2014)

The aim of the present study is to develop the method of determining the
kinetic boundary condition (KBC) at a vapor-liquid interface in net evapora-
tion/condensation. We proposed a novel method for determining the KBC by com-
bining the numerical simulations of the mean field kinetic theory and the molecular
gas dynamics. The method was evaluated on steady vapor flow between two liquid
slabs at different temperatures. A uniform net mass flux in the vapor phase induced
by net evaporation and condensation is obtained from the numerical simulation of the
mean field kinetic theory for both vapor and liquid phases. The KBC was specified by
using the uniform net mass flux, and the numerical simulation of the molecular gas
dynamics was conducted for the vapor phase. Comparing the macroscopic variables
in the vapor phase obtained from both numerical simulations, we can validate the
KBC whether the appropriate solutions are obtained. Moreover, the evaporation and
condensation coefficients were estimated uniquely. The results showed that the con-
densation and evaporation coefficients were identical and constant in net evaporation.
On the other hand, in net condensation, the condensation coefficient increased with
the collision molecular mass flux. We also presented the applicable limit of the KBC
which is assumed to be the isotropic Gaussian distribution at the liquid temperature.
From these results, the KBCs in net evaporation and condensation, which enable the
exact macroscopic variables to be determined, were proposed. C© 2014 AIP Publishing
LLC. [http://dx.doi.org/10.1063/1.4890523]

I. INTRODUCTION

Net evaporation and condensation are the fundamental physical processes underlying vapor
flows and heat and mass transfers across a vapor-liquid interface. Since these phenomena originate
from the deviation of the velocity distribution function, f, composed of the molecules outgoing from
or colliding onto the vapor-liquid interface, the application of the kinetic theory of gases (molecular
gas dynamics) is essential to examine the vapor behaviors near the interface.1, 2 In the analysis of the
kinetic theory for vapor flows, the kinetic boundary condition (KBC) at the vapor-liquid interface
plays an important role in the nonequilibrium region near the interface.1–3 If the correct KBC is
established in the various vapor-liquid nonequilibrium states, the exact quantities of mass, momen-
tum, and energy fluxes accompanying net evaporation and condensation can be estimated only from
the analysis by the kinetic theory. Since the KBC is adopted for the molecules outgoing from the
interface to the vapor phase, the key processes of the molecules at the vapor-liquid interface are
evaporation and reflection. For the analysis of the evaporation and condensation phenomena related
to the KBC, several studies have been conducted by using molecular dynamics (MD) simulations
and other types of molecular simulations.4–24 Some of these studies have attempted to distin-
guish each molecule evaporating from, condensing onto, or reflecting at the vapor-liquid interface
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FIG. 1. Schematics of evaporation, reflection and condensation processes of molecules at a vapor-liquid interface according
to Eq. (1). Left: the outgoing molecules from the interface, right: the colliding molecules onto the interface.

(e.g., the detailed behaviors of molecules in the vicinity of the vapor-liquid interface are discussed
by Cao et al.20).

In order to avoid the ambiguities introduced in the process of assigning a molecule to evaporation
or reflection, Ishiyama et al.4 proposed the novel concept of spontaneous evaporation9 with the
assumption that the evaporation molecular mass flux is only a function of the liquid temperature,
and they confirmed the presence of the evaporation mass flux through a virtual vacuum simulation.
The general form of the KBC according to the spontaneous evaporation, which is as shown in
Fig. 1, is given as follows:3, 4

fout = fevap(xi , ξi , TL) + fref(xi , ξi , TL, fcoll), for ξz > 0, (1)

where fevap and fref denote the velocity distribution functions of molecules that spontaneously evap-
orate from the vapor-liquid interface and that are reflected at the interface, respectively. xi (x, y,
and z) denotes the physical coordinates, where z indicates the direction normal to the vapor-liquid
interface, and x and y indicate the directions tangential to the interface. ξ i denotes the molecular
velocity (ξ x, ξ y, and ξ z); TL, the liquid temperature; and fcoll, the velocity distribution function of
molecules colliding onto the interface. Equation (1) is then rewritten as3

fout = [αeρ
∗ + (1 − αc)σ ] f̂out, for ξz > 0, (2)

where f̂out denotes the normalized velocity distribution function. One of the conventional forms of
f̂out is written as follows:

f̂ ∗
out = 1

(
√

2π RTL)3
exp

(
−ξ 2

x + ξ 2
y + ξ 2

z

2RTL

)
, for ξz > 0, (3)

where R denotes the gas constant. Alternatively, Ishiyama et al.5 showed the following f̂out in net
condensation:

f̂ ∗∗
out = 1√

2π RTn(2π RTt)
exp

(
− ξ 2

z

2RTn
− ξ 2

x + ξ 2
y

2RTt

)
, for ξz > 0, (4)

where Tn and Tt are the normal and tangential temperatures, respectively, composed of the out-
going molecules. Equation (4) has an anisotropic Gaussian distribution affected by fcoll under net
condensation. For the distribution of f̂ ∗∗

out(TL, fcoll) in net condensation, the results obtained in our
simulation by using the mean field kinetic theory23 were same tendency for those obtained through
MD simulations.5 As seen from Eqs. (3) and (4), the velocity distribution normal to the interface
represents perfect accommodation (Tn = TL). On the other hand, in a recent study,6 Tt was formulated
by using the thermal accommodation coefficient. ρ∗ in Eq. (2) denotes the saturated vapor density at
the liquid temperature TL, and σ is related to the collision molecular mass flux Jcoll at the interface,
which is defined as

σ

√
RTL

2π
= −

∫
ξz<0

ξz fcolldξ = Jcoll, (5)
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where dξ = dξx dξydξz ,
∫
ξz<0 dξ = ∫ 0

−∞ dξz
∫ ∞
−∞ dξx

∫ ∞
−∞ dξy , and σ is a parameter having unit of

density which is obtained when the velocity distribution function for reflected molecules normal to
the interface is the Gaussian distribution at the liquid temperature (Eq. (3) or (4)), and αe = αc = 0:
(1 − αc)σ

√
RTL/2π denotes the mass flux of reflected molecules at the interface when αe �= 0 and

αc �= 0. αe and αc denote the evaporation and condensation coefficients, respectively,3, 4

αe = Jevap

J ∗
out

, αc = Jcond

Jcoll
, (6)

where Jevap is the evaporation molecular mass flux, defined as Jevap = ∫
ξz>0 ξz fevapdξ , where∫

ξz>0 dξ = ∫ ∞
0 dξz

∫ ∞
−∞ dξx

∫ ∞
−∞ dξy . J ∗

out is the outgoing molecular mass flux in equilibrium, given

as J ∗
out = ρ∗√RTL/2π . The condensation molecular mass flux is obtained as Jcond = Jcoll − Jref,

where Jref = ∫
ξz>0 ξz frefdξ = ∫

ξz>0 ξz( fout − fevap)dξ . By definition,4, 9 the evaporation coefficient
is a function of the liquid temperature. Furthermore, Ishiyama et al.5 showed that the values of αe

and αc were identical and constant in various nonequilibrium states.
Here, according to recent experimental and molecular dynamics studies, several values have

been reported for the evaporation and condensation coefficients. From our recent experimental study
with a shock tube,25 the values of the condensation coefficients of water and methanol decrease
with increasing in the magnitude of net condensation. Gu et al.16, 17 conducted MD simulations to
investigate the evaporation and condensation coefficients in vapor-liquid equilibrium and nonequi-
librium states without using vacuum evaporation simulations for argon molecules. The evaporation
coefficients in vapor-liquid equilibrium states are slightly smaller than those obtained in the vacuum
evaporation simulations.16 Furthermore, the evaporation and condensation coefficients vary in net
condensation.17 Cheng et al.21 conducted MD simulations for evaporation flows of Lennard-Jones
fluids. They showed that the condensation probability increases with the normal translational energy
of molecules colliding onto the interface, which is similar to the results of Tsuruta et al.10

Thus, ambiguity still exists in terms of the exact values of the evaporation and condensation
coefficients in net evaporation and condensation. Moreover, one of the most important issues is
that the validations of the KBC, including the determination of the evaporation and condensation
coefficients, are still lacking in the literature. Hence, there is no certainty whether the solution by
using the obtained KBC is correct. A method that validates the constructed KBC for describing the
density, velocity, and temperature profiles of vapor in net evaporation and condensation is desired.

In this paper, we propose a novel method for determining the KBC by combining the precise
simulations of the Enskog-Vlasov equation based on the mean field kinetic theory and the Boltzmann
equation based on the molecular gas dynamics. Since this novel method also validates the KBC, we
can construct appropriate KBCs in net evaporation and condensation to describe the exact variables.
Our target system is a steady net evaporation and condensation between two liquid slabs at different
temperatures, introduced in Sec. II.

II. METHOD OF DETERMINING KINETIC BOUNDARY CONDITIONS

Here, we propose the determination method of the KBCs in net evaporation and condensation
in the present study. A schematic of the present simulation configuration is shown in Fig. 2 (this
configuration is often called two-surface problem). A space filled with pure vapor is created between
two liquid slabs. The liquid temperatures of the left- and the right-hand side slabs are TL1 and TL2

(TL1 > TL2), respectively. Several MD simulations were conducted for this configuration such as
Meland26 and Frezzotti.12 In the molecular gas dynamics, the position where the KBC is prescribed
has been conventionally called interface (for example, see Ref. 1). However, at the molecular
level, the vapor-liquid interface has the transition layer with a finite thickness. Hence, to avoid the
confusion, we refer to the position where the KBC is prescribed as kinetic boundary as shown in
Fig. 2. A uniform and constant net mass flux ρvz is produced in the vapor as a consequence of steady
net evaporation and condensation, where ρ is the vapor density and vz is the vapor velocity in z
direction. The flux is evaluated as the first moment of the molecular velocity distribution function,
which is numerically calculated based on the mean field kinetic theory by solving the Enskog-Vlasov
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Enskog-Vlasov eq.

Jout

Jcoll Joutz
Jcoll

Liquid Liquid

Vapor

Net evaporation 

TL1

Jevap

Jref

Jcond Jcoll

Jout

Net condensation

TL2
Jcoll

Jout
Jevap

Jref

Jcond

z

x

O

FIG. 2. Schematics of the present simulation configuration. Vapor flow is induced by net evaporation and condensation
between two liquid slabs at different temperatures (TL1 > TL2). The bottom figures show the mass flux relations in net
evaporation and condensation.

equation for both of the vapor and liquid phases. In the present study, molecules are regarded as
hard spheres with a long-range attractive tail. The great advantage of the use of the Enskog-Vlasov
equation is its capability of dealing a large number of particles (1.2× 106 molecules are adopted
in this study), which enable us to conduct the simulations with greater accuracy than those with
the MD simulations.12, 26 Because of this feature, the Enskog-Vlasov equation accurately evaluates
even weak net evaporation and condensation induced by small liquid temperature differences ((TL1

− TL2)/TL2 ≈ O(10−2)) with small statistical errors. Here, it should be emphasized that the molecular
velocity distribution functions for both of the vapor and liquid phases, or for the whole calculation
domain, are determined by solving the Enskog-Vlasov equation.

Once the Enskog-Vlasov equation is solved and molecular velocity distribution function is
determined, it is all ready to discuss the validity of the KBC (Eq. (2)) for the Boltzmann equation.
First, KBCs in net evaporation and condensation are rewritten with the use of the solution of
the Enskog-Vlasov equation. The solutions of the Boltzmann equation with the KBCs are then
quantitatively compared with those of the Enskog-Vlasov equation. The comparison verifies whether
the solutions of the Boltzmann equation can properly reproduce the vapor flow obtained the solutions
of the Enskog-Vlasov equation. In the present study, we assume that the functional form of f̂out in
Eq. (2) is f̂ ∗

out(TL) as shown in Eq. (3). One aim of this study is to determine the applicable limit of the
analysis by using this assumption. We also discuss the values of the evaporation and condensation
coefficients determined under this assumption. Recent studies have shown that fout is affected by the
accommodation coefficient of reflected molecules.6, 22 In this study, we assume the accommodation
coefficients normal and tangential to the kinetic boundary are unity. The improvement of the present
method by using fout in consideration of the influence of the accommodation coefficient is the future
work.

Let us consider the kinetic boundary at TL1 in net evaporation. With the use of the evaporation
and condensation coefficients, the uniform net mass flux ρvz in the vapor phase is written as

ρvz = Jout − Jcoll = Jevap + Jref − (Jcond + Jref) = Jevap − Jcond = (αeρ
∗ − αcσ )

√
RTL1

2π
. (7)

Substitution of Eq. (7) in Eq. (2) leads to25, 27

fout =
[
ρvz

√
2π

RTL1
+ σ

]
f̂ ∗
out(TL1), for ξz > 0. (8)
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The same procedure can be adopted for the kinetic boundary in net condensation by using the same
ρvz with the mass flux relation as shown in Fig. 2. The KBC at the kinetic boundary at TL2 in net
condensation is shown as follows:

fout =
[
σ − ρvz

√
2π

RTL2

]
f̂ ∗
out(TL2), for ξz < 0. (9)

With the use of ρvz obtained from the solution of the Enskog-Vlasov equation, the appropriate
KBCs are specified at each kinetic boundary as shown in Fig. 2. The unique macroscopic variables,
e.g., ρ, v, T, etc., of the vapor flow field are obtained by solving the Boltzmann equation with the
KBCs given by Eqs. (8) and (9). It should be emphasized that these variables strongly depend on the
KBCs; hence, we conclude that the KBCs for the Boltzmann equation are validated if and only if
the macroscopic variables obtained from the Boltzmann equation with Eqs. (8) and (9) as the KBCs
show a good agreement with those obtained from the Enskog-Vlasov equation.

Moreover, the modification of Eq. (7) leads to an explicit expression for the condensation
coefficient if the evaporation coefficient is only the function of the liquid temperature

αc = − ρvz

σ

√
RTL1
2π

+ αe
ρ∗

σ
. (10)

Equation (10) shows that the condensation coefficient is uniquely determined once the evapora-
tion coefficient is determined for a given value of TL1 since ρ∗(TL1) and σ are obtained from
the solutions of the Enskog-Vlasov equation and Boltzmann equation, respectively, as shown in
Sec. III. The value of the evaporation coefficient can be successfully estimated without the vacuum
evaporation simulation4 as shown in Sec. IV C.

In two-surface problems, well-known characteristic phenomena occur in certain configurations
and have been called as inverted temperature gradient phenomena28 and negative mass flows.29

Inverted temperature gradient phenomena have been investigated by using MD simulations.12, 26, 30

Moreover, theoretical study was conducted on these phenomena, and the threshold of the occurrence
was reported.31 Negative mass flows were investigated by Onishi29 (but never occurred in the present
simulation). Detailed explanations of these phenomena are beyond the scope of this study.

III. NUMERICAL METHODS

A. Simulation of the Enskog-Vlasov equation

The Enskog-Vlasov equation is a practical equation based on the mean field kinetic theory.15, 32

This equation can describe a hard-sphere fluid under the self-consistent force field generated from
the soft attractive tail. In terms of the one-particle velocity distribution function f, the Enskog-Vlasov
equation is expressed as

∂ f

∂t
+ ξi

∂ f

∂xi
+ Fi (xi , t)

m

∂ f

∂ξi
= CE , (11)

where m is the mass of a hard sphere molecule and Fi is the self-consistent force field, determined
from the Sutherland potential φ

Fi (xi , t) =
∫

‖x1i −xi ‖>a

dφ

dr

x1i − xi

‖x1i − xi‖n(x1i , t)dx1i , φ(r ) =
{+∞ (r < a)

−φa
(

r
a

)−γ
(r ≥ a),

(12)

where a is the molecular diameter, r is r = ‖xi1 − xi‖, φa is a constant parameter, and γ is six. The
treatment of Fi(xi, t) is similar to that in Frezzotti et al.15 The collision term CE is written as

CE =a2
∫

{Y [n(xi + a

2
Ki , t)] f (xi +aKi , ξ̂1i , t) f (xi , ξ̂i , t)−Y [n(xi − a

2
Ki , t)] f (xi −aKi , ξ1i , t)

× f (xi , ξi , t)}H (ξri Ki )(ξri Ki )dξ 1d2 K , (13)
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where Y is the pair correlation function, n is the number density, Ki is the unit vector defined as
Ki = (x1i − xi)/(‖x1i − xi‖), H is the Heaviside function, and ξ̂i and ξ̂1i are the post-collisional
velocity vectors of two colliding molecules. ξ ri is their relative velocity ξ ri = ξ i − ξ 1i. The velocity
distribution function f is defined as dN = (1/m) f dxdξ , where dN is the number of molecules in an
infinitesimal volume element in the 6-dimensional phase space dxdξ , where dx = dxdydz. Hence,
the macroscopic variables (density, velocity, temperature, etc.) are defined as the moments of f 1, 2

ρ =
∫ ∞

−∞
f dξ , vi = 1

ρ

∫ ∞

−∞
ξi f dξ , T = 1

3ρR

∫ ∞

−∞
(ξi − vi )

2 f dξ , (14)

where vi denotes the velocity (vx , vy , and vz).
In this study, the equation of state is given as follows:33

p = ρRT
1 + η + η2 − η3

(1 − η)3
− 2

3
πa3 γ

γ − 3
φan2, η = π

6
na3, (15)

where η is the atomic packing factor. The critical temperature TC is obtained from Eq. (15)

TC = 0.094329
4γ

γ − 3

φa

k
, (16)

where k is the Boltzmann constant.
For the Enskog equation, some numerical schemes were proposed based on the direct simulation

Monte Carlo (DSMC) method.15, 34, 35 In this study, we utilize the Enskog-DSMC method proposed
by Frezzotti.15, 34 The Enskog-Vlasov equation has previously been investigated for the vapor-liquid
system by using the Enskog-DSMC method (for examples, Frezzotti et al.15, 36 and Kobayashi
et al.23).

We consider a one-dimensional steady net evaporation and condensation in this study (see
Fig. 2). The vapor flow is induced from the left- to the right-hand sides along the z axis. The origin
of the z axis is at the left edge in Fig. 2. Figure 3 shows the actual system of the present simulation.
The length of the system LA is 80a. Since the periodic boundary condition is adopted for each side
of the system, the system is symmetric for the positions B1 and B2 from the center of the system
(the length of each domain is LH = 40a). For the simulation, the cell size is �z/a = 1/5 to simulate
the molecular collision and the ensemble average of the macroscopic variables in Eq. (14).

To realize steady net evaporation and condensation by using the constant total molecular number
in the system, the shifting method of the molecules, proposed by Meland,26 is utilized. Hereafter,
we explain about the shifting method for the computational domain between the positions B1 and
B2 shown in Fig. 3. Due to net evaporation and condensation, the number of molecules that move
from the left- to the right-hand sides becomes larger. If the difference in the number of molecules
between the right- and the left-hand sides in half of the computational domain LH is Jshift, then all
molecules are shifted by a distance �zshift toward the right-hand side according to z′

i = zi + �zshift,
where zi is the position of ith molecule. The distance �zshift is determined by

Jshift/2 = n(TL1)U�zshift, (17)

Vapor Vapor Vapor

zO

LA = 80a

LH = 40a

LV

B1 B2

TL1 TL2

Liquid Liquid

FIG. 3. Schematics of the actual simulation configuration.
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FIG. 4. Vapor-liquid equilibrium states obtained from the solutions of the Enskog-Vlasov equation: (a) density field at each
temperature; (b) relationship between the saturated vapor density ρ∗ and liquid temperature TL. Each value is normalized by
the critical value. The solid line is obtained from the Clausius-Clapeyron equation.

where U is the unit area as the cross section of the system and n(TL1) is the number density of the
liquid at the temperature TL1. Molecules that are moved outside of the domain (LH < z′

i ) are inserted
on the left side liquid at the temperature TL1. The position of molecule inserted on the left side liquid
z′′

i is determined by z′′
i = z′

i − LH.
To maintain the constant liquid temperatures TL1 and TL2, the velocity scaling method is applied

within the bulk liquid15 at each time step. The time increment is �t/(a/
√

2RTC) = 0.001. In this
simulation, we define that the bulk liquid is part of 3a from the center of the density transition layer
(see Fig. 4(a), the density transition layer is observed between the bulk vapor and liquid regions).

To solve the boundary value problem of the Boltzmann equation, we require the uniform net
mass flux ρvz , the saturated vapor density ρ∗, and the Knudsen number Kn obtained from the
simulations of the Enskog-Vlasov equation. ρvz is adopted for the KBC in Eqs. (8) and (9), and ρ∗

and Kn are used to determine the length of the computational domain for the Boltzmann equation.
These quantities are obtained as follows.

Various uniform net mass fluxes ρvz are obtained from the simulations of the Enskog-Vlasov
equation by changing the liquid temperatures TL1/TC and TL2/TC. In the present paper, we focus on
the KBC with the liquid temperature TL/TC = 0.60 as the reference temperature. TL/TC = 0.60 is
a low liquid temperature. For example, TL/TC = 0.60 is near the triple point temperature for argon
molecules.4 Twenty simulations are conducted for the cases of net evaporation and condensation at
the reference liquid temperature as shown in Table I: when TL1/TC = TL/TC = 0.60, TL2/TC ranges
from 0.56 to 0.59. On the other hand, when TL2/TC = TL/TC = 0.60, TL1/TC ranges from 0.61 to
0.76.

The saturated vapor densities were estimated by performing the equilibrium simulations for the
Enskog-Vlasov equation. Figure 4(a) shows the density profiles in vapor-liquid equilibrium states at

TABLE I. Simulation conditions in the present study: the liquid temperatures TL1/TC and TL2/TC, the Knudsen number in
the vapor phase, and the compression factor Z defined as Z = p∗(T0)/ρ∗(T0)RT0 = (1 + η + η2 − η3)/(1 − η)3. If TL1/TC is
the reference liquid temperature 0.60, we denote the condition as the case of net evaporation and TL2/TC = 0.60 is the case
of net condensation.

Net evaporation Net condensation
TL1/TC 0.60 0.61 0.62 0.63 0.64 0.65 0.66 0.67 0.68 0.69 0.70 0.71 0.72 0.73 0.74 0.75 0.76
TL2/TC 0.56 0.57 0.58 0.59 0.60
Kn 2.77 2.61 2.46 2.30 2.06 1.93 1.83 1.74 1.65 1.56 1.48 1.41 1.35 1.29 1.23 1.18 1.13 1.09 1.04 1.00
Z 1.01 1.01 1.01 1.01 1.01 1.01 1.01 1.01 1.01 1.02 1.02 1.02 1.02 1.02 1.02 1.02 1.02 1.02 1.03 1.03
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072003-8 Kon, Kobayashi, and Watanabe Phys. Fluids 26, 072003 (2014)

TL1 = TL2 for various temperatures obtained from the simulations of the Enskog-Vlasov equation. The
liquid phase is confined to the regions around the left and right edges. The temperature dependency
of the density profile is the same as that for the previous simulation.15, 23 The relation between the
saturated vapor density and the liquid temperature can be established from these results. Figure 4(b)
illustrates the relation between the saturated vapor density ρ∗ and the liquid temperature TL obtained
from the equilibrium simulation, as shown in Fig. 4(a). The relations for experimental data of argon
and neon37 are also shown. As shown in the figure, the values obtained from the solutions of the
Enskog-Vlasov equation are slightly different from those of argon and neon. However, these values
take same tendency with the liquid temperatures in equilibrium states. The solid line is obtained
from the Clausius-Clapeyron equation assuming an ideal gas

ρ∗

ρC
= A

RTC

TC

TL
exp

(
−�H

RTC

TC

TL

)
, (18)

where the nondimensional constant A/RTC and nondimensional latent heat �H/RTC were obtained
from the nonlinear least squares method within the TL/TC ranges from 0.56 to 0.70: A/RTC is 79.72
and �H/RTC is 5.279. As can be observed, the saturated vapor density is very well fitted by the
Clausius-Clapeyron equation. Similar results were reported by Frezzotti et al.15 Hence, we can
evaluate the saturated vapor density from Eq. (18).

The Knudsen number Kn (=�0/LV) is evaluated by using the length LV of the vapor phase
between kinetic boundaries at TL1 and TL2 and the mean free path �0 = 1/(

√
2πa2n(T0)Y (n(T0))),

where T0 = (TL1 + TL2)/2. The detailed definition of the positions of kinetic boundaries are explained
in Sec. IV A. In this simulation, the range of the Knudsen number was varied from 1.00 to 2.77 as
shown in Table I.

To simulate the Boltzmann equation for the above cases, the vapor must be an ideal gas. In
the vapor phase, the second term in the right-hand side of Eq. (15) can be neglected. Hence, we
estimated the compression factor Z in the vapor phase as

Z = p∗(T0)

ρ∗(T0)RT0
= 1 + η(T0) + η(T0)2 − η(T0)3

(1 − η(T0))3
, (19)

where p∗ is the saturated vapor pressure. From the results, the values of Z are 1.00–1.03 for the
present simulation cases (see Table I): the present simulation is assumed as an ideal gas.

B. Simulation of the Gaussian-BGK (GBGK) Boltzmann

Once the uniform net mass flux ρvz in the vapor phase is obtained from the simulation of
the Enskog-Vlasov equation as explained above, the boundary condition is specified by using
Eqs. (8) and (9), and we can solve the vapor flow from the Boltzmann equation. The Gaussian-BGK
Boltzmann equation38 is solved in this study to fit the Prandtl number of hard sphere molecules as
Pr = 0.66071 (hereafter, we refer to this equation as the GBGK Boltzmann equation). The GBGK
Boltzmann equation is written as

∂ f

∂t
+ ξi

∂ f

∂xi
= p

μ(1 − ν)
[G( f ) − f ], (20)

where μ is the viscosity coefficient and ν is the constant value used to fit the Prandtl number Pr

Pr = 1

1 − ν
. (21)

In this simulation, the value of ν is 1/2. G(f) is written as

G( f ) = ρ√
det(2πτi j )

exp

(
−1

2
(ξi − vi )τ

−1
i j (ξ j − v j )

)
, (22)

where τ ij is defined as

τi j = (1 − ν)RT δi j + ν�i j , (23)

where δij is the Kronecker’s delta and ρ�ij is the stress tensor.
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The length of the system LV used in the simulation of the GBGK Boltzmann equation is
evaluated from the Knudsen number Kn and saturated vapor density ρ∗(T0), both obtained from
the simulations of the Enskog-Vlasov equation. From the GBGK Boltzmann equation, the mean
free path at the temperature T0 is defined as �0 = √

8μ(T0)/(ρ∗(T0)
√

π RT0). By using �0 and Kn
obtained from the simulation of the Enskog-Vlasov equation, we determine the length of the system
as LV = �0/Kn.

The finite differential method is used for the GBGK Boltzmann equation as a one-dimensional
problem. As reported by Chu,39 we can eliminate the molecular velocity components ξ x and ξ y by
multiplying the velocity distribution function f by 1 or ξ 2

x + ξ 2
y and integrating over the whole space

of ξ x and ξ y {
fz(z, ξz, t) = ∫∫ ∞

−∞ f (z, ξ , t)dξx dξy,

hz(z, ξz, t) = ∫∫ ∞
−∞(ξ 2

x + ξ 2
y ) f (z, ξ , t)dξx dξy .

(24)

The numerical simulation is performed for the distribution functions fz and hz, and the time devel-
opment of the macroscopic variables are calculated from the following equations:

ρ =
∫ ∞

−∞
fzdξz, vz = 1

ρ

∫ ∞

−∞
ξz fzdξz, T = 1

3ρR

(∫ ∞

−∞
(ξz − vz)

2 fzdξz +
∫ ∞

−∞
hzdξz

)
. (25)

500 and 2000 grids are utilized for the velocity space ξ z and physical space z coordinates, respectively
(a total of 1× 106 grids). Non-uniform and uniform grids are utilized for the velocity and physical
spaces, respectively: for the velocity space, the minimum size is �ξz/

√
2RT0 = 1.0 × 10−4 near

ξ z = 0 and the maximum size is �ξz/
√

2RT0 = 1.0 × 10−2 far from ξ z = 0. Furthermore, for the
physical space, the grid size is �z/�0

∼=1.0 × 10−4. From the simulation of the GBGK Boltzmann
equation, σ is calculated uniquely by using Eq. (5) to obtain the value of the condensation coefficient
as shown in Eq. (10).

IV. RESULTS AND DISCUSSION

A. Simulation results of the Enskog-Vlasov equation

The uniform net mass flux ρvz , which is required in the KBCs (Eqs. (8) and (9)), was obtained
by numerically solving the Enskog-Vlasov equation in the case of steady net evaporation and con-
densation. Figures 5(a) and 5(b) show the density, velocity, and temperature profiles obtained by
solving the Enskog-Vlasov equation at (a) liquid temperatures TL1/TC = 0.62 and TL2/TC = 0.60,
and at (b) liquid temperatures TL1/TC = 0.76 and TL2/TC = 0.60. Figures 5(c) and 5(d) show the
uniform net mass flux ρvz and density profiles obtained with the same conditions of Figs. 5(a)
and 5(b), respectively. It should be noted that weak net evaporation and condensation occur in
Figs. 5(a) and 5(c) due to the small temperature difference and strong net evaporation and conden-
sation occur in Figs. 5(b) and 5(d) due to the large temperature difference. These figures confirmed
that the temperature and density in the bulk liquids are maintained at the specified temperature and
the equilibrium density, respectively. With the increase in the temperature difference of two liquid
slabs, the vapor flow grows faster and the uniform net mass flux ρvz becomes larger, due to the
stronger net evaporation and condensation. A protrusion in the temperature profile is observed in the
transition layer of the kinetic boundary at TL2/TC = 0.60 in net condensation, as shown in Fig. 5(b).
A similar temperature profile was also observed in the previous MD simulation.40

With the use of the solution of the Enskog-Vlasov equation, the KBCs in net evaporation and
condensation are adequately defined by substituting the uniform net mass flux ρvz in Eqs. (8) and (9).
It should be noted here that the definitions of the positions of the kinetic boundaries at which the
KBCs are prescribed for solving the Boltzmann equation are ambiguous. The central positions of
the density transition layers, whose 10–90 thickness is δ, at the liquid temperatures TL1 and TL2 are
zL1

m and zL2
m , respectively. These are regarded as the reference points. The positions of the kinetic

boundaries at the liquid temperatures TL1 and TL2 are set at zL1
m + ζ δ and zL2

m − ζ δ, respectively,
completely outside of the liquid slabs, as shown in Fig. 5. In this study, ζ was set as 2.5 on referring to
the previous results obtained by MD simulations.5 We confirmed that the solution of the Boltzmann
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FIG. 5. Density, temperature, and velocity profiles obtained by solving the Enskog-Vlasov equation: (a) liquid temperatures
TL1/TC = 0.62 and TL2/TC = 0.60; (b) liquid temperatures TL1/TC = 0.76 and TL2/TC = 0.60. (c) and (d) are the uniform net
mass flux ρvz in the vapor phase for (a) and (b), respectively. The all variables in the ordinate are normalized by the critical
values. The abscissa is normalized by the molecular diameter a.

equation is rather insensitive to the positions of the kinetic boundaries, since no prominent difference
was observed between the solution obtained with ζ = 2.5 and ζ = 4.0.

Figure 6 shows the normalized velocity distribution functions obtained from the solution of
the Enskog-Vlasov equation at the kinetic boundaries with ζ = 2.5. f̂z which is normalized as∫ ∞
−∞ f̂zdξz = 1 is the velocity distribution function normal to the kinetic boundaries. f̂x which is

normalized as
∫ ∞
−∞ f̂x dξx = 1 is the velocity distribution function in the tangential direction. The

solid lines are the normal and tangential components of f̂ ∗
out(TL1) or f̂ ∗

out(TL2), hereafter denote as f̂ ∗
z

and f̂ ∗
x , respectively. These distribution functions are substituted into the KBCs (Eqs. (8) and (9)) to

conduct the numerical simulation of the GBGK Boltzmann equation.
Figures 6(a) and 6(b) show the results with the cases of net condensation at the liquid temperature

TL2/TC = 0.60. Figure 6(a) shows the case of weak net condensation (TL1/TC = 0.62) and Fig. 6(b)
shows the case of strong net condensation (TL1/TC = 0.76). The kinetic boundary in net condensation
is the right-hand side, to whom the normal direction is defined in the negative z direction in this
study (see Fig. 2); hence, the KBC can be prescribed if half of the velocity distribution is known,
i.e., if the function is defined for ξ z < 0. In other words, in net condensation, the KBC (Eq. (9)) can
be determined from the statistical information of molecules with negative velocity in this study.

In the case of weak net condensation, we can observe that the normalized velocity distribution
functions f̂z and f̂x obtained from the solution of the Enskog-Vlasov equation are in good agreement
with f̂ ∗

z and f̂ ∗
x at the liquid temperature TL2/TC = 0.60. In the case of strong net condensation, slight

deviation of f̂x from f̂ ∗
x is recognized: the tangential temperature Tt/TC estimated from f̂x is 0.658. It

is also noted that there exists prominent deviation of f̂z from f̂ ∗
z in vicinity of ξz/

√
2RTL2 = 0 as also

reported in the recent study.40 We conclude that f̂ ∗
out(TL2) can be properly employed as the normalized

velocity distribution function f̂out required in Eq. (9) in the case of weak net condensation.
Figure 6(c) shows the results with the case of net evaporation at the liquid temperature TL1/TC

= 0.60 (TL2/TC = 0.56). The kinetic boundary in net evaporation is the left-hand side, to whom the
normal direction is defined in the positive z direction in this study. Again, the KBC can be prescribed
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FIG. 6. Velocity distribution functions at the kinetic boundary: (a) kinetic boundary in net condensation at TL2/TC = 0.60
(TL1/TC = 0.62); (b) kinetic boundary in net condensation at TL2/TC = 0.60 (TL1/TC = 0.76); (c) kinetic boundary in net
evaporation at TL1/TC = 0.60 (TL2/TC = 0.56).

if half of the velocity distribution function is known; however, in this case, the function must be
defined for ξ z > 0. In other words, in net evaporation, the KBC (Eq. (8)) can be determined from
the statistical information of molecules with positive velocity in this study. We can observe that
the normalized velocity distribution functions f̂z and f̂x obtained from the solution of the Enskog-
Vlasov equation are in good agreement with f̂ ∗

z and f̂ ∗
x at the liquid temperature TL1/TC = 0.60.

We also conclude that f̂ ∗
out(TL1) can be properly employed as the normalized velocity distribution

function f̂out required in Eq. (8) in the case of net evaporation.

B. Validation of kinetic boundary conditions

We obtained the macroscopic variables for vapor flow field by solving the GBGK Boltzmann
equation numerically with the properly defined KBCs (Eqs. (8) and (9)). These macroscopic variables
are the solutions of the boundary value problem that is solely determined by the KBCs; hence, if
the KBCs properly defined, the solutions obtained by the GBGK Boltzmann and Enskog-Vlasov
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FIG. 7. Comparison between density, velocity, and temperature profiles in the vapor phase obtained by solving the Enskog-
Vlasov and GBGK Boltzmann equations. The abscissa χ = 0 denotes the position of the kinetic boundary at TL1 and χ = 1
that of the kinetic boundary at TL2, respectively.

equations should exactly match. The next task is to validate the KBCs by comparing the macroscopic
variables obtained from the solutions of these two equations.

Figure 7 shows the density, velocity, and temperature profiles obtained from the solutions of the
Enskog-Vlasov equation and the GBGK Boltzmann equation for four typical cases, i.e., (i) TL1/TC

= 0.76, TL2/TC = 0.60, (ii) TL1/TC = 0.68, TL2/TC = 0.60, (iii) TL1/TC = 0.62, TL2/TC = 0.60, and
(iv) TL1/TC = 0.60, TL2/TC = 0.56: net condensation occurs at the kinetic boundary at the reference
liquid temperature TL2/TC = 0.60 in the first three cases, and net evaporation occurs at the kinetic
boundary at the reference liquid temperature TL1/TC = 0.60 in the last case. The abscissa χ is the
normalized distance from the left to the right positions of kinetic boundaries: χ = 0 denotes the
position of the left kinetic boundary at TL1, and χ = 1 denotes that of the right kinetic boundary
at TL2.

During net evaporation (case (iv)), the macroscopic variables obtained from the GBGK Boltz-
mann equation are in good agreement with those obtained from the Enskog-Vlasov equation. On the
other hand, during net condensation (cases (i)–(iii)), the deviation of the macroscopic variables ob-
tained from the GBGK Boltzmann equation from those obtained from the Enskog-Vlasov equation
becomes larger as the net condensation strengthens, that is, as TL1/TC increases. It should be noted
that the inverted temperature gradient profile disappears in the solution of the GBGK Boltzmann
equation in the case (i). This result reveals that the KBCs are not properly defined in the case (i)
since the assumption of f̂ ∗

out(TL) is employed as the normalized velocity distribution functions in
Eqs. (8) and (9). We conclude that f̂ ∗

out(TL) is appropriate to be employed as the normalized velocity
distribution function of the KBCs when the cases of net evaporation and weak net condensation;
the maximum deviation of the macroscopic variables obtained from the GBGK Boltzmann equation
from those obtained from the Enskog-Vlasov equation is less than 5%. It should be noted that the
result with TL1/TC = 0.68 (ii) is the criteria case with the maximum deviation of less than 5% in the
present study.

Hereafter, we consider the kinetic boundary in net evaporation or condensation at the reference
liquid temperature as TL/TC = 0.60. For the convenience of the following discussion, we regard
Jcoll/J ∗

coll = σ/ρ∗ as the index of the degree of nonequilibrium, where J ∗
coll is the collision molec-

ular mass flux in equilibrium state defined as J ∗
coll = J ∗

out = ρ∗√RTL/2π . When the vapor-liquid
equilibrium state, σ /ρ∗ equals unity. On the other hand, at the kinetic boundaries in net evaporation
and condensation, the values become σ /ρ∗ < 1 and σ /ρ∗ > 1, respectively. On the basis of the
above discussion, the degree of nonequilibrium σ /ρ∗, for which the normalized velocity distribution
function f̂out can be assumed as f̂ ∗

out(TL), ranges from 0.6 < σ /ρ∗ < 2.3.

C. Determination of the evaporation/condensation coefficients and construction
of kinetic boundary conditions

As discussed in Sec. II, various mass fluxes are defined at the kinetic boundary as shown in
Fig. 2. In order to determine the evaporation and condensation coefficients, we investigate the mutual
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FIG. 8. Relationships between the uniform net mass flux and σ /ρ∗ at the kinetic boundaries: (a) kinetic boundary in net
evaporation at TL/TC = 0.60; (b) kinetic boundary in net condensation at TL/TC = 0.60. J ∗

coll = J ∗
out = ρ∗√RTL/2π.

relationships between these fluxes by further analysis of the solutions of the Enskog-Vlasov and
GBGK Boltzmann equations. We evaluate these coefficients from 20 cases for various temperature
differences between left- and right-hand liquid slabs. The relation between the uniform net mass
flux ρvz normalized by the outgoing molecular mass flux at an equilibrium state J ∗

out, and the degree
of nonequilibrium σ /ρ∗ at the kinetic boundary at the reference liquid temperature TL/TC = 0.60
is shown in Fig. 8. Figures 8(a) and 8(b) show the cases of net evaporation and condensation,
respectively. As already explained, we obtained the uniform net mass flux ρvz from the solution of
the Enskog-Vlasov equation and σ from the solution of the GBGK Boltzmann equation with the use
of the obtained ρvz . In the following discussion, notably, the net evaporation occurs at the kinetic
boundary if the uniform net mass flux ρvz > 0; conversely, net condensation occurs if ρvz < 0 (see
bottom schematics in Fig. 8). When TL1 equals TL2, the degree of nonequilibrium is σ /ρ∗ = 1 and
the uniform net mass flux is ρvz = 0, i.e., the flow field in the vicinity of each kinetic boundary is
in an equilibrium state. With the increase in the temperature difference between TL1 and TL2, the
deviation of σ /ρ∗ from unity increases, i.e., the degree of nonequilibrium increases.

It is the most striking finding that the uniform net mass flux ρvz is well described as a linear
function of the degree of nonequilibrium σ /ρ∗. We employed linear regression analyses with the
use of the following function when 0.6 < σ /ρ∗ ≤ 1 and 1 ≤ σ /ρ∗ < 2.3, for the cases of the net
evaporation and condensation, respectively:

ρvz

J ∗
out

= βne

(
1 − σ

ρ∗

)
, when 0.6 <

σ

ρ∗ ≤ 1, (26)

ρvz

J ∗
out

= βnc

(
1 − σ

ρ∗

)
, when 1 ≤ σ

ρ∗ < 2.3, (27)

where βne and βnc are regression coefficients, calculated as 0.871 and 0.928, respectively. The
obtained fittings completely match the data, where coefficients of determination, R2 for the cases of
net evaporation and condensation are 0.9999 and 0.9998, respectively. One of the authors previously
conducted experiments on water and methanol, and has already proposed a linear relationship
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between net mass flux and the degree of nonequilibrium,25 however, the R2 values of water and
methanol were 0.51 and 0.91, respectively. In the present study, we can clearly show that the
uniform net mass flux ρvz is well described as linear function of the degree of nonequilibrium σ /ρ∗,
owing to the small statistical errors from the solution of the Enskog-Vlasov equation.

We also confirmed that the results are totally insensitive to the length of the vapor phase, LV, as
shown in Fig. 3. The uniform net mass flux ρvz was obtained by the solution of the Enskog-Vlasov
equation with the conditions where LA = 160a, Kn = 0.462, TL1/TC = 0.68, and TL2/TC = 0.60. The
result is shown as the green square in the enlarged view in Fig. 8(b). We conclude that the uniform
net mass flux ρvz at the specified degree of nonequilibrium σ /ρ∗ is independent of LV.

When σ /ρ∗ = 0 in Eq. (26), the only flux created at the kinetic boundary is the evaporation
molecular mass flux Jevap since no collision mass flux Jcoll exists: hence, from Eqs. (6) and (7),
Jevap becomes identical to ρvz , which leads to the conclusion that βne in Eq. (26) is regarded as
the evaporation coefficient αe. The difference between the above obtained value of βne that is
0.871 and the one that is 0.880 obtained from the solution of the Enskog-Vlasov equation with the
use of the vacuum evaporation simulation4 is about 1%; hence, we propose that we invented the
alternative evaluation of the evaporation coefficient. In the present study, the value of αe is set to
be equal to that of βne, 0.871. Figure 9(a) shows the evaporation coefficients obtained from the
present study and recent MD studies. The circle denotes the result of the present study, the square
and triangle denote the results for argon,16, 22 and solid curve is obtained from MD simulations for
argon, water, and methanol with the virtual vacuum simulation.6 From these results, we cannot see
a noticeable difference between our simulation and the MD results6, 22 at TL/TC = 0.60. Substituting
the above defined αe into Eq. (10), we obtained the condensation coefficient αc. Figure 9(b) shows
the relationship between the condensation coefficient αc and the degree of nonequilibrium σ /ρ∗.
During net condensation, the condensation coefficient increases with the increase in the degree of
nonequilibrium, while during net evaporation, it is independent of the degree of nonequilibrium.

With the use of the linear relation as shown in Fig. 8, that is, by substituting Eq. (26) into
Eq. (10), we obtained the explicit form of the condensation coefficient for the case of net evaporation

αc = αe = βne, when 0.6 <
σ

ρ∗ ≤ 1, (28)

where the relation βne = αe, as explained in above discussion, is used. For the case of net conden-
sation, we can also obtain the following equation by substituting Eq. (27) into Eq. (10):

αc = ρ∗

σ

(
αe − βnc

)
+βnc, when 1 ≤ σ

ρ∗ < 2.3. (29)

The line plots shown in Fig. 9(a) predicted by Eqs. (28) and (29).
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FIG. 9. (a) Comparison of evaporation coefficients; (b) condensation coefficient versus σ /ρ∗ at the reference liquid temper-
ature TL/TC = 0.60.
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It is important to emphasize that the proposed method to determine the KBC of the Boltzmann
equation enables us to evaluate both the accuracy of the results by considering the error in macro-
scopic variables that depend on the degree of nonequilibrium and the values of condensation and
evaporation coefficients that also depend on the degree of nonequilibrium. Needless to say that quan-
titative evaluation of these coefficients depends on the model describing the molecular interaction;
however, the method itself proposed is universally applicable regardless to the model.

The uniform net mass flux ρvz can be obtained either by solving the Enskog-Vlasov equation
(for a Sutherland potential) or by conducting MD simulation (if adopting a more practical potential
such as the Lennard-Jones potential). In both cases, the evaporation and condensation coefficients
can be obtained by solving the Boltzmann equation with ρvz substituting into Eqs. (8) and (9).
Moreover, the hard sphere molecules in the present system are replaced with polyatomic molecules
and the uniform net mass flux ρvz in the vapor phase is obtained by MD simulations, the boundary
value problem with KBCs, given by Eqs. (8) and (9), can be solved using the polyatomic version
of the GBGK Boltzmann equation.38 Numerical simulations of the GBGK Boltzmann equation for
polyatomic molecules are presented in Fujikawa et al.3 and Kobayashi et al.25

Furthermore, we can propose the new KBCs to describe the vapor flow accompanied with net
evaporation and condensation from the above results. By substituting Eq. (28) or (29) into Eq. (2),
we can obtain the KBCs in net evaporation and condensation without using the condensation and
evaporation coefficients

fout = [βneρ
∗ + (1 − βne)σ ]

(
√

2π RTL)3
exp

(
−ξ 2

x + ξ 2
y + ξ 2

z

2RTL

)
, for ξz > 0, when 0.6 <

σ

ρ∗ ≤ 1,

(30)

fout = [βncρ
∗ + (1 − βnc)σ ]

(
√

2π RTL)3
exp

(
−ξ 2

x + ξ 2
y + ξ 2

z

2RTL

)
, for ξz > 0, when 1 ≤ σ

ρ∗ < 2.3,

(31)
where TL/Tc is set to 0.60 in the present study. The above equations are similar to the conventional
KBC that is widely used in the kinetic theory.1, 2 The difference between βne and βnc, and the detailed
dynamics of molecular motion at the kinetic boundary are not clear in the present study. However,
by using constant parameters βne and βnc, we can analyze the correct vapor flows. It is one of the
important results of this study that we do not have to change the value of condensation coefficient
according to the value of σ /ρ∗ as shown in Fig. 9, i.e., we can specify the KBC by simply knowing
whether σ /ρ∗ is larger or smaller than unity.

V. CONCLUSIONS

In the present study, the KBCs in net evaporation and condensation were investigated by
combining the simulations of the Enskog-Vlasov and Gaussian-BGK Boltzmann equations for
the two-surface problem. We proposed a state-of-the-art method for determining the evaporation
and condensation coefficients from the uniform net mass flux that accompanies net evaporation
and condensation. The proposed novel method can validate the KBCs by comparing macroscopic
variables of vapor phase obtained from the solutions of the Enskog-Vlasov and GBGK Boltzmann
equations. Furthermore, we confirmed the velocity distribution function of the KBC. Specifically,
in the present configuration, the isotropic Gaussian at the liquid temperature TL/TC = 0.60 can be
assumed as the velocity distribution function of the KBC in 0.6 < σ /ρ∗ < 2.3.

From the simulation results, we evaluated the value of the evaporation coefficient without
the vacuum evaporation simulation. Then, the condensation coefficient was determined by using
the evaporation coefficient. When the vapor-liquid system is in net evaporation, the condensation
and evaporation coefficients are identical and constant. On the other hand, when the vapor-liquid
system is in net condensation, the value of the condensation coefficient increases with the degree of
nonequilibrium σ /ρ∗. Furthermore, the kinetic boundary condition was proposed with the constant
parameters (βne and βnc) instead of the evaporation and condensation coefficients in net evaporation
and condensation. However, the present result for the condensation coefficient shows an inverse
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tendency to those obtained from the previous experiment in net condensation.25 The discrepancy
of the values between the molecular simulations and experiments remains an open question. The
influences of the internal structure and binary component of the molecules for the KBC in net
evaporation or condensation are also unsolved problems.
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