

HOKKAIDO UNIVERSITY

Title	Production Spectra of the Sigma NN Quasibound States in He-3(K (-), pi (-/+)) Reactions			
Author(s)	Harada, Toru; Hirabayashi, Yoshiharu			
Citation	Few-body systems, 54(7-10), 1205-1209 https://doi.org/10.1007/s00601-013-0673-6			
Issue Date	2013-08			
Doc URL	http://hdl.handle.net/2115/56641			
Rights	The final publication is available at link.springer.com.			
Туре	article (author version)			
File Information	fb20r2_harada.pdf			

Hokkaido University Collection of Scholarly and Academic Papers : HUSCAP

Production spectra of the ΣNN quasibound states in ${}^{3}\text{He}(K^{-}, \pi^{\mp})$ reactions

Toru Harada $\,\cdot\,$ Yoshiharu Hirabayashi

Received: date / Accepted: date

Abstract We theoretically demonstrate the inclusive and semiexclusive spectra in the ${}^{3}\text{He}(K^{-}, \pi^{\mp})$ reactions at 600 MeV/c (4°) within a distorted-wave impulse approximation, using a coupled $(2N \cdot A) + (2N \cdot \Sigma)$ model with a spreading potential. It is shown that a signal of a ${}^{3}_{\Sigma}\text{He}$ quasibound state is clearly observed near the Σ threshold in the π^{-} spectrum, whereas a peak of a ${}^{3}_{\Sigma}$ n quasibound state is relatively reduced in the π^{+} spectrum. The mechanism of Σ production for these spectra is discussed.

Keywords Sigma hypernuclei \cdot Quasibound states \cdot Production

1 Introduction

One of the most important subjects on strangeness nuclear physics is to understand properties of a Σ hyperon in nuclei as well as the nature of ΣN interaction, e.g., the Σ^- hyperon is expected to play an essential role in the description of neutron stars [?]. Many efforts for Σ hypernuclear studies on *s*- and *p*-shell nuclei have been carried out in (K^-, π^{\mp}) reactions at CERN, BNL and KEK. However, it has been known that there is no observation of a Σ nuclear state [?], except ${}^4_{\Sigma}$ He, which is established to be a quasibound (or unstable bound) state experimentally [?,?], as predicted by Ref. [?]. Moreover, Saha *et al.* [?] reported that the Σ -nucleus potential has a strong repulsion in the real part with a sizable imaginary part, analyzing nuclear (π^-, K^+) spectra on C, Si, Ni, In and Bi targets. This repulsion originates from the $\Sigma N {}^3S_1$, I=3/2 channel that corresponds to a quark Pauli-forbidden state in the baryon-baryon system [?].

T. Harada

Osaka Electro-Communication University, Neyagawa, Osaka, 572-8530, Japan. J-PARC Branch, KEK Theory Center, IPNS, KEK, Tokai, Ibaraki, 319-1106, Japan. Tel.: +81-72-825-4584 E-mail: harada@isc.osakac.ac.jp

Y. Hirabayashi Information Initiative Center, Hokkaido University, Sapporo, 060-0811, Japan.

Presented at the 20th International IUPAP Conference on Few-Body Problems in Physics, 20 - 25 August, 2012, Fukuoka, Japan

Table 1 Hypernuclear final states in (K^-, π^{\mp}) reactions on a ³He target

Reactions	(a)	(b)	(c)	(d)
$(K^{-}, \pi^{-}) \ (K^{-}, \pi^{+})$	$pp\Lambda \\ nn\Lambda$	$\frac{d\Sigma^+}{d\Sigma^-}$	$pn\Sigma^+$ $pn\Sigma^-$	$pp\Sigma^0$ $nn\Sigma^0$

On the other hand, several theoretical predictions [?,?,?] have suggested a possible candidate of a ΣNN quasibound state: Koike and Harada [?] found that there are ΣNN quasibound states with S=1/2, T=1 (${}_{\Sigma}^{3}$ He, ${}_{\Sigma}^{3}$ H and ${}_{\Sigma}^{3}$ n) due to the coupling through the ΣN potential which strongly admixes ${}^{1}S_{0}$, I=1 and ${}^{3}S_{1}$, I=0 states in the NN pair. Recently, Garcilazo *et al.* [?] showed that a narrow ΣNN quasibound state exists near Σ threshold in the S=1/2, T=1 channel by $ANN-\Sigma NN$ Faddeev calculations. However, it has long been recognized that there is no evidence of a narrow structure for the ΣNN quasibound state (${}_{\Sigma}^{3}$ n) below the Σ threshold by the ${}^{3}\text{He}(K^{-}, \pi^{+})$ reaction at BNL-E774 experiments [?]. These contradictory arguments are still not settled: Is there a quasibound state in ΣNN systems?

In this article, we theoretically demonstrate the inclusive and semiexclusive spectra in ³He(K^-, π^{\mp}) reactions at 600 MeV/c (4°) within a distorted-wave impulse approximation (DWIA), using a coupled (2*N*- Λ)+(2*N*- Σ) model with a spreading potential. Here we focus on behavior of a signal of the ΣNN quasibound state in the π^- and π^+ spectra in order to study the mechanism of Σ production for these spectra.

2 Calculations

Now we consider hypernuclear final states in (K^-, π^{\mp}) reactions on a ³He target, as shown in Table **??**. The model wavefunctions of 2N-Y systems are assumed to be written as

$$\Psi(^{3}_{Y}\text{He}) = \phi(\{pp\})\varphi_{\Lambda} + \phi([pn])\varphi_{\Sigma^{+}}^{(t)} + \phi(\{pn\})\varphi_{\Sigma^{+}}^{(s)} + \phi(\{pp\})\varphi_{\Sigma^{0}}, \qquad (1)$$

for the π^- spectrum, and those as

$$\Psi({}^{3}_{Y}\mathbf{n}) = \phi(\{nn\})\varphi_{\Lambda} + \phi([pn])\varphi_{\Sigma^{-}}^{(t)} + \phi(\{pn\})\varphi_{\Sigma^{-}}^{(s)} + \phi(\{nn\})\varphi_{\Sigma^{0}}, \qquad (2)$$

for the π^+ spectrum. Here $\phi(\{N_1N_2\})$ and $\phi([N_1N_2])$ denote the 2N wavefunctions with 1S_0 , I=1 and 3S_1 , I=0 state, respectively, and φ_A , $\varphi_{\Sigma^{\pm}}^{(t,s)}$ and φ_{Σ^0} denote relative wavefunctions between 2N and Y (= Λ , Σ^{\pm} or Σ^0), respectively.

According to the KAT theory [?], we calculate the effective 2N-Y potential which is derived from a two-body YN potential microscopically. The effective 2N-Y potential is written by

$$\hat{U}_{cc'} = \langle \phi(c) | \hat{V}^{\text{ex}} \hat{F}^{\text{ex}} | \phi(c') \rangle, \qquad (3)$$

where $\hat{V}^{\text{ex}}\hat{F}^{\text{ex}}$ is an external operator which is constructed from the multiple-scattering operators with YN g-matrices and on/off-shell correlation functions in nuclei [?]. In order to estimate them, we solve the Bethe-Goldstone equation for the YN system in nuclear medium, taking appropriate values of Es and k_f parameters, so that we can reproduce the binding energies of $B_A^{\text{exp}}(^3_A\text{H}) = 0.13$ MeV in experimental data

Fig. 1 Real parts of the effective 2N-Y potential $\hat{U}_{cc'}(R)$ for ${}^{3}_{Y}$ He $(J^{\pi} = 1/2^{+})$ at $E_{\Lambda} = 70$ MeV which corresponds to the Σ threshold region, as a function of a relative distance R between 2N and Y.

and $B_{\Sigma}^{\text{cal}}({}_{\Sigma}^{3}\text{He})$ obtained in three-body calculations [?]. For a spreading (imaginary) potential that describes 2*N*-breakup processes due to the $\Sigma N \to \Lambda N$ conversion, we determine the strength of its potential to reproduce the width of $\Gamma_{\Sigma}^{\text{cal}}({}_{\Sigma}^{3}\text{He})$ [?].

Figure ?? displays real parts of the effective 2N-Y potential $\hat{U}_{cc'}(R)$ for ${}^{3}_{Y}$ He $(J^{\pi} = 1/2^{+})$ at $E_{A} = 70$ MeV which corresponds to the Σ threshold region, as a function of a relative distance R between 2N and Y. Here we used the Nijmegen model F simulated (NF_S) for YN [?], which was often used in full few-body calculations of A = 2-6 hypernuclei [?]. We find that the coupling components of $\{pn\}\Sigma^{+}$ - $\{pp\}\Sigma^{0}$, $[pn]\Sigma^{+}$ - $\{pn\}\Sigma^{+}$ and $[pn]\Sigma^{+}$ - $\{pp\}\Sigma^{0}$ are quite large. This nature originates from the fact that the ΣN potential has a strong spin-isospin dependence, as suggested by recent YN potential models [?].

Let us consider the production spectra of the ΣNN quasibound states in ³He(K^- , π^{\mp}) reactions. The inclusive spectrum of the double-differential cross section within the DWIA [?] is rewritten as

$$\frac{d^2\sigma}{d\Omega_{\pi}dE_{\pi}} = \beta(-\frac{1}{\pi}) \operatorname{Im} \sum_{c'c} \langle F_{c'} | \hat{G}(\omega) | F_c \rangle, \tag{4}$$

where $\hat{G}(\omega)$ is the complete Green's function for the 2N-Y system, and β is a kinematical factor for the translation from K^- -N to K^- - 3 He systems. The production function is written by $F_c = \overline{f}_{\pi Y}(\chi_{\pi}^{(-)})^* \chi_{K^-}^{(+)} \langle \phi(c) | \Psi_A \rangle$, where $\overline{f}_{\pi Y}$ is a Fermi-averaged amplitude for $K^- N \to \pi Y$ in nuclear medium, which is obtained from the elementary amplitude by Gopal *et al.* [?], $\chi_{\pi}^{(-)}$ and $\chi_{K^-}^{(+)}$ are meson distorted waves obtained with

Fig. 2 Calculated spectrum of the ${}^{3}\text{He}(K^{-}, \pi^{-})$ reaction at 600 MeV/*c* (4°) near the $d+\Sigma^{+}$ threshold, together with the contributions of *NNA*, *NN* Σ and *A*- Σ conversion.

the help of the eikonal approximation, and $\langle \phi(c) | \Psi_A \rangle$ is a wave function for a struck nucleon in the ³He target. The recoil effects are taken into account.

The complete Green's function $\hat{G}(\omega)$ describes all information concerning $(2N-\Lambda)+(2N-\Sigma)$ coupled-channel dynamics. We obtain it as a numerical solution of the multichannels radial coupled equations with the 2N-Y potential \hat{U} , which is written as

$$\hat{G}(\omega) = \hat{G}^{(0)}(\omega) + \hat{G}^{(0)}(\omega)\hat{U}\hat{G}(\omega), \qquad (5)$$

where $\hat{G}^{(0)}(\omega)$ is a free Green's function. Therefore, we evaluate the inclusive π^- spectrum from Eq. (??), and also the semiexclusive spectra of (a)-(d) in Table ?? with the identity

$$Im\hat{G}(\omega) = \hat{\Omega}^{(-)\dagger} \{ Im\hat{G}_{\Lambda}^{(0)}(\omega) \} \hat{\Omega}^{(-)} + \hat{\Omega}^{(-)\dagger} \{ Im\hat{G}_{\Sigma^{\pm}}^{(0)}(\omega) \} \hat{\Omega}^{(-)} + \hat{\Omega}^{(-)\dagger} \{ Im\hat{G}_{\Sigma^{0}}^{(0)}(\omega) \} \hat{\Omega}^{(-)} + \hat{G}(\omega) \{ Im\hat{U} \} \hat{G}(\omega),$$
(6)

where $\hat{\Omega}^{(-)} = 1 + \hat{U}\hat{G}(\omega)$ is the Möller wave operator, and $\hat{G}_Y^{(0)}(\omega)$ denotes the free Green's function for the 2N-Y channel [?].

3 Results and discussion

Figures ?? shows the calculated spectrum of the ${}^{3}\text{He}(K^{-}, \pi^{-})$ reaction at 600 MeV/c (4°) near the $d+\Sigma^{+}$ threshold, together with the components of ppA, $d\Sigma^{+}$, $pn\Sigma^{+}$, $pp\Sigma^{0}$ and Λ - Σ conversion, which will be carried out at forthcoming J-PARC facilities. It is recognized that a clear enhancement just below the $d+\Sigma^{+}$ threshold in the π^{-} spectrum is connected with dominance of the secondary process $[{}^{3}_{\Sigma}\text{He}] \rightarrow ppA$, where

Fig. 3 Calculated spectrum of the ${}^{3}\text{He}(K^{-}, \pi^{+})$ reaction at 600 MeV/c (4°) near the Σ threshold, together with the experimental data form BNL-E774 [?]. The dashed line denotes the contribution of the Λ - Σ conversion via the ${}^{3}_{\Sigma}$ n quasibound state.

the produced Σ hyperon in the real or virtual ${}_{\Sigma}^{3}$ He state subsequently interacts with a second nucleon, and it is converted to a Λ via the $\Sigma N \rightarrow \Lambda N$ processes inducing 2Nnuclear breakup due to the mass difference $m_{\Sigma} - m_{\Lambda} \simeq 70$ MeV. We confirm that a pole of the quasibound state ${}_{\Sigma}^{3}$ He with S=1/2, T=1 resides on the second Riemann sheet in the Σ channel, and gives rise to a resonance in the Λ channel. The pole position corresponds to a complex eigenvalue of the 2N-Y system on the complex energy plane. This complex eigenvalue represents

$$E_{\Sigma^+}^{(pole)}(^3_{\Sigma}\text{He}) = +1.2 - i\,3.1 \text{ MeV}$$
 (7)

for NF_S, where the real part of $E_{\Sigma^+}^{(pole)}$ is measured from the $d+\Sigma^+$ threshold, and its width becomes $\Gamma = 6.2$ MeV.

On the other hand, the (K^-, π^+) reaction on a nuclear target seems to be appropriate to search a bound state in the Σ bound region. The reason is because (1) this reaction can only populate a Σ^- configuration in final states by the double-charge exchange reaction, so that the contribution of a Λ can be removed out from the π^+ spectrum, and (2) it has a substitutional mechanism under the near-recoilless condition so as to produce $^3_{\Sigma}$ n which belongs to a S=1/2 isotriplet state from the ³He target, as well as $^3_{\Sigma}$ He. Therefore, we often expect that a signal of the corresponding peak can be clearly observed in the π^+ spectrum, rather than the π^- one.

Figure ?? shows the calculated spectrum of the ${}^{3}\text{He}(K^{-}, \pi^{+})$ reaction at 600 MeV/c (4°), together with the experimental data form BNL-E774 [?]. However, we find that no enhancement below the $d+\Sigma^{-}$ threshold is observed in the π^{+} spectrum although there exists a quasibound state in ${}^{3}_{\Sigma}$ n. The shape of the calculated spectrum seems to agree with that of the E774 data [?].

In order to understand the behavior of the π^+ spectrum, we discuss interference effects among configurations of the NN core states in the Σ production amplitude, because the 2N-Y potential should admix ${}^{1}S_{0}$ and ${}^{3}S_{1}$ states in the NN pair [?],

depending on the nature of the ΣN potential. We get the production amplitude as

$$\langle (\Sigma NN)^0 \pi^+ |T|^3 \mathrm{He}K^- \rangle$$

$$\simeq \overline{f}_{\pi^+ \Sigma^-} \Big(\frac{1}{2} \langle T = 2|^3 \mathrm{He} \rangle + \frac{2\sqrt{3} - \sqrt{2}}{4} \langle_{\Sigma}^3 n|^3 \mathrm{He} \rangle + \frac{2\sqrt{3} + \sqrt{2}}{4} \langle_{\Sigma}^3 n^*|^3 \mathrm{He} \rangle \Big), \quad (8)$$

where $|_{\Sigma}^{3}n\rangle = \alpha |T = 1^{(s)}\rangle + \beta |T = 1^{(t)}\rangle$ as a ground state of $(\Sigma NN)^{0}$. Here we assumed $\alpha = -\beta = 1/\sqrt{2}$ for simplicity [?]. We find that a cross section for $\frac{3}{\Sigma}n$ as a ground state is relatively reduced by a factor $(2\sqrt{3} - \sqrt{2})/4 = 0.51$, whereas that for ${}_{\Sigma}^{3}n^{*}$ as an excited state is enhanced by a factor $(2\sqrt{3}+\sqrt{2})/4=1.22$. This mechanism is inevitable whenever we consider the ${}^{3}\text{He}(K^{-},\pi^{+})$ reaction, and it gives a similar spectrum to the E774 data, as seen in Fig. ??.

4 Summary

We theoretically have demonstrated the inclusive and semiexclusive spectra in the ${}^{3}\text{He}(K^{-},\pi^{\mp})$ reactions at 600 MeV/c (4°) within the DWIA, using the coupled (2N- Λ)+(2N- Σ) model with the spreading potential. The effective 2N-Y potential derived from the KAT theory has a strong spin-isospin dependence, and gives us quasibound states with S=1/2, T=1 (${}^{3}_{\Sigma}$ He, ${}^{3}_{\Sigma}$ H, ${}^{3}_{\Sigma}$ n). Our result shows that a signal of the ${}^{3}_{\Sigma}$ He quasibound state is clearly observed near the \varSigma threshold in the π^- spectrum, whereas a peak of the $\frac{3}{\Sigma}$ n quasibound state is relatively reduced in the π^+ spectrum because of the admixture of the ${}^{1}S_{0}$ and ${}^{3}S_{1}$ states in the NN pair, as seen in the BNL-E774 data. We believe that the π^- and π^+ spectra on the ³He target provide valuable information on properties of $\varSigma NN$ quasibound states so as to study $\varSigma N$ interaction. This investigation is in progress.

Acknowledgements The authors would like to thank T. Fukuda and Y. Akaishi for many valuable discussions. This work was supported by Grants-in-Aid for Scientific Research (C) (No. 22540294).

References

- 1. For example, Balberg, S., Gal, A.: Nucl. Phys. A625, 435 (1997); Baldo, M., et al.: Phys. Rev. C 61, 055801 (2000); Weissenbord, S., et al.: Nucl. Phys. A881, 62 (2012)
- 2 Bart, S., et al.: Phys. Rev. Lett. 83, 5238 (1999)
- Bart, S., et al.: Phys. Rev. Lett. **83**, 3258 (1999)
 Hayano, R.S., et al.: Phys. Lett. **B231**, 355 (1989)
 Nagae, T., et al.: Phys. Rev. Lett. **80**, 1605 (1998)
 Harada, T., et al.: Nucl. Phys. **A507**, 715 (1990)
 Saha, P. K., et al.: Phys. Rev. C **70**, 044613 (2004)

- 6. Saha, P. K., et al.: Phys. Rev. C 70, 044613 (2004)
 7. Oka, M., et al.: Phys. Lett. B130, 365 (1983)
 8. Afnan, I.R., Gibson, B.F.: Phys. Rev. C 47, 1000 (1993)
 9. Koike, Y. H., Harada, T.: Nucl. Phys. A611, 461 (1996)
 10. Garcilazo, H., et al.: Phys. Rev. C 75, 034001 (2007); Phys. Rev. C 75, 034002 (2007)
 11. Barakat, M., Hungerford, E.V.: Nucl. Phys. A547, 157 (1992)
 12. Kurihara, Y., Akaishi, Y., Tanaka, H.: Prog. Theor. Phys. 71, 561 (1984)
 13. Shinmura, S.: private communication, 2011
 14. Norware, H. et al.: Phys. Rev. Lett. 94, 202502 (2005); Nucl. Phys. A754, 110c (2005)

- Nemura, H., et al.: Phys. Rev. Lett. 94, 202502 (2005); Nucl. Phys. A754, 110c (2005)
 Gopal, G.P.: et al., Nucl. Phys. B119, 362 (1977)
- 16. Rijken, Th.A., et al.: Prog. Theor. Phys. Suppl. 185 14 (2010); Fujiwara, Y., et al.: Prog. Part. Nucl. Phys. 58, 439 (2007); Polinder, H., et al.: Phys. Lett. B653, 29 (2007); Inoue, T., et al.: Phys. Rev. Lett. 106, 162002 (2011)
- Morimatsu, O., Yazaki, K.: Nucl. Phys. A483, 493 (1988)
 Harada, T.: Phys. Rev. Lett. 81, 5287 (1998)