Production Spectra of the Sigma NN Quasibound States in He-3(K (-), pi (-/+)) Reactions

Harada, Toru; Hirabayashi, Yoshiharu

Few-body systems, 54(7-10): 1205-1209

2013-08

http://hdl.handle.net/2115/56641

The final publication is available at link.springer.com.

article (author version)

fb20r2_harada.pdf

Hokkaido University Collection of Scholarly and Academic Papers : HUSCAP
Production spectra of the ΣNN quasibound states in $^3\text{He}(K^-, \pi^\mp)$ reactions

Toru Harada · Yoshiharu Hirabayashi

Abstract We theoretically demonstrate the inclusive and semiexclusive spectra in the $^3\text{He}(K^-, \pi^\mp)$ reactions at 600 MeV/c (4°) within a distorted-wave impulse approximation, using a coupled ($2N$-Λ)+($2N$-Σ) model with a spreading potential. It is shown that a signal of a $\frac{3}{2}$He quasibound state is clearly observed near the Σ threshold in the π^- spectrum, whereas a peak of a $\frac{1}{2}$n quasibound state is relatively reduced in the π^+ spectrum. The mechanism of Σ production for these spectra is discussed.

Keywords Sigma hypernuclei · Quasibound states · Production

1 Introduction

One of the most important subjects on strangeness nuclear physics is to understand properties of a Σ hyperon in nuclei as well as the nature of ΣN interaction, e.g., the Σ^- hyperon is expected to play an essential role in the description of neutron stars [?]. Many efforts for Σ hypernuclear studies on s- and p-shell nuclei have been carried out in (K^-, π^\mp) reactions at CERN, BNL and KEK. However, it has been known that there is no observation of a Σ nuclear state [?], except 4He, which is established to be a quasibound (or unstable bound) state experimentally [?,?], as predicted by Ref. [?]. Moreover, Saha et al. [?] reported that the Σ-nucleus potential has a strong repulsion in the real part with a sizable imaginary part, analyzing nuclear (π^-, K^+) spectra on C, Si, Ni, In and Bi targets. This repulsion originates from the ΣN 3S_1, $I=3/2$ channel that corresponds to a quark Pauli-forbidden state in the baryon-baryon system [?].

Presented at the 20th International IUPAP Conference on Few-Body Problems in Physics, 20 - 25 August, 2012, Fukuoka, Japan

T. Harada
Osaka Electro-Communication University, Neyagawa, Osaka, 572-8530, Japan.
J-PARC Branch, KEK Theory Center, IPNS, KEK, Tokai, Ibaraki, 319-1106, Japan.
Tel.: +81-72-825-2584
E-mail: harada@isc.osakac.ac.jp

Y. Hirabayashi
Information Initiative Center, Hokkaido University, Sapporo, 060-0811, Japan.
On the other hand, several theoretical predictions [3, 4, 5] have suggested a possible candidate of a ΣNN quasibound state: Koike and Harada [3] found that there are ΣNN quasibound states with $S=1/2$, $T=1$ (1/2^-_K, 1/2^-_H and 1/2^+_n) due to the coupling through the ΣN potential which strongly admixes 1$^+T_0$, $I=1$ and 3$^-T_1$, $I=0$ states in the NN pair. Recently, Garcielo et al. [4] showed that a narrow ΣNN quasibound state exists near Σ threshold in the $S=1/2$, $T=1$ channel by ΛNN-ΣNN Faddeev calculations. However, it has long been recognized that there is no evidence of a narrow structure for the ΣNN quasibound state (1/2^-_n) below the Σ threshold by the 3He(K^-, π^+) reaction at BNL-E774 experiments [5]. These contradictory arguments are still not settled: Is there a quasibound state in ΣNN systems?

In this article, we theoretically demonstrate the inclusive and semiexclusive spectra in 3He(K^-, π^+) reactions at 600 MeV/c (4°) within a distorted-wave impulse approximation (DWIA), using a coupled (2N-Λ)+(2N-Σ) model with a spreading potential. Here we focus on behavior of a signal of the ΣNN quasibound state in the π^- and π^+ spectra in order to study the mechanism of Σ production for these spectra.

2 Calculations

Now we consider hypernuclear final states in (K^-, π^\mp) reactions on a 3He target, as shown in Table ???. The model wavefunctions of $2N$-Y systems are assumed to be written as

$$
\Psi(^3\text{He}) = \phi((pp)) \varphi_A + \phi((pn)) \varphi_{\Sigma^+}^{(t)} + \phi((pn)) \varphi_{\Sigma^+}^{(s)} + \phi((pp)) \varphi_{\Sigma^0},
$$

for the π^- spectrum, and those as

$$
\Psi(^3\text{He}) = \phi((nn)) \varphi_A + \phi((pm)) \varphi_{\Sigma^-}^{(t)} + \phi((pn)) \varphi_{\Sigma^-}^{(s)} + \phi((nn)) \varphi_{\Sigma^0},
$$

for the π^+ spectrum. Here $\phi((N_1N_2))$ and $\phi([N_1N_2])$ denote the $2N$ wavefunctions with 1$^+T_0$, $I=1$ and 3$^-T_1$, $I=0$ state, respectively, and φ_A, φ_{Σ^\mp} and φ_{Σ^0} denote relative wavefunctions between $2N$ and Y ($=\Lambda$, Σ^\pm or Σ^0), respectively.

According to the KAT theory [3], we calculate the effective $2N$-Y potential which is derived from a two-body YN potential microscopically. The effective $2N$-Y potential is written by

$$
\tilde{U}_{cc'} = \langle \phi(c)|\tilde{V}^{\text{ex}}\tilde{F}^{\text{ex}}|\phi(c') \rangle,
$$

where $\tilde{V}^{\text{ex}}\tilde{F}^{\text{ex}}$ is an external operator which is constructed from the multiple-scattering operators with YN g-matrices and on/off-shell correlation functions in nuclei [3]. In order to estimate them, we solve the Bethe-Goldstone equation for the YN system in nuclear medium, taking appropriate values of Es and k_f parameters, so that we can reproduce the binding energies of $B^{\text{ex}}_{\Lambda}(\Lambda H) = 0.13$ MeV in experimental data.

Table 1 Hypernuclear final states in (K^-, π^\mp) reactions on a 3He target

<table>
<thead>
<tr>
<th>Reactions</th>
<th>(a)</th>
<th>(b)</th>
<th>(c)</th>
<th>(d)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(K^-, π^-)</td>
<td>$pp\Lambda$</td>
<td>$d\Sigma^+$</td>
<td>$pn\Sigma^+$</td>
<td>$pp\Sigma^0$</td>
</tr>
<tr>
<td>(K^-, π^+)</td>
<td>$nn\Lambda$</td>
<td>$d\Sigma^−$</td>
<td>$pn\Sigma^−$</td>
<td>$nn\Sigma^0$</td>
</tr>
</tbody>
</table>
and $B_{\Sigma}^{3\text{He}}(\Sigma N)$ obtained in three-body calculations [?]. For a spreading (imaginary) potential that describes $2N$-breakup processes due to the $\Sigma N \rightarrow \Lambda N$ conversion, we determine the strength of its potential to reproduce the width of $\Gamma^{\text{cal}}(\Sigma N)$ [?].

Figure ?? displays real parts of the effective $2N-Y$ potential $\hat{U}_{cc}(R)$ for $^3\text{He}(J^\pi = 1/2^+)$ at $E_A=70$ MeV which corresponds to the Σ threshold region, as a function of a relative distance R between $2N$ and Y. Here we used the Nijmegen model F simulated (NF) for YN [?], which was often used in full few-body calculations of $A=2$-6 hypernuclei [?]. We find that the coupling components of $\{pn\} \Sigma^+ - \{pp\} \Sigma^0$, $\{pn\} \Sigma^+ - \{pp\} \Sigma^0$ and $\{pn\} \Sigma^+ - \{pp\} \Sigma^0$ are quite large. This nature originates from the fact that the ΣN potential has a strong spin-isospin dependence, as suggested by recent YN potential models [?].

Let us consider the production spectra of the ΣNN quasibound states in $^3\text{He}(K^-, \pi^+)$ reactions. The inclusive spectrum of the double-differential cross section within the DWIA [?] is rewritten as

$$\frac{d^2\sigma}{d\Omega dE}\left|_{\text{inclusive}}\right. = \beta \left(-\frac{1}{\pi}\right) \text{Im} \sum_{\omega} (F_{\omega} \langle \hat{G}(\omega) | F_{\omega} \rangle),$$

where $\hat{G}(\omega)$ is the complete Green’s function for the $2N-Y$ system, and β is a kinematical factor for the translation from K^-N to $K^-\text{He}$ systems. The production function is written by $F_{\omega} = \mathcal{T}_{\pi Y}(\chi^{(\omega)}_{K^-}) \chi^{(\omega)}_{\pi} \langle \phi(c) | \Psi_A \rangle$, where $\mathcal{T}_{\pi Y}$ is a Fermi-averaged amplitude for $K^-N \rightarrow \pi Y$ in nuclear medium, which is obtained from the elementary amplitude by Gopal et al. [?]; $\chi^{(\pm)}_{K^-}$ are meson distorted waves obtained with
the help of the eikonal approximation, and \(\langle \phi(c)|\Psi_A \rangle \) is a wave function for a struck nucleon in the \(^3\)He target. The recoil effects are taken into account.

The complete Green’s function \(\hat{G}(\omega) \) describes all information concerning \((2N-A)+(2N-\Sigma)\) coupled-channel dynamics. We obtain it as a numerical solution of the multichannel radial coupled equations with the \(2N-Y\) potential \(\hat{U} \), which is written as

\[
\hat{G}(\omega) = \hat{G}^{(0)}(\omega) + \hat{G}^{(0)}(\omega) \hat{U} \hat{G}(\omega),
\]

where \(\hat{G}^{(0)}(\omega) \) is a free Green’s function. Therefore, we evaluate the inclusive \(\pi^-\) spectrum from Eq. (??), and also the semiexclusive spectra of \((a)-(d)\) in Table ?? with the identity

\[
\text{Im} \hat{G}(\omega) = \hat{\Omega}^{(-)} \dagger \{ \text{Im} \hat{G}^{(0)}_A(\omega) \} \hat{\Omega}^{(-)} + \hat{\Omega}^{(-)} \dagger \{ \text{Im} \hat{G}^{(0)}_{2N}(\omega) \} \hat{\Omega}^{(-)} + \hat{\Omega}^{(-)} \dagger \{ \text{Im} \hat{U} \} \hat{\Omega}^{(-)} + \hat{\Omega}^{(-)} \dagger \hat{G}(\omega) \{ \text{Im} \hat{U} \} \hat{G}(\omega),
\]

where \(\hat{\Omega}^{(-)} = 1 + \hat{U} \hat{G}(\omega) \) is the Möller wave operator, and \(\hat{G}^{(0)}_Y(\omega) \) denotes the free Green’s function for the \(2N-Y\) channel [?].

3 Results and discussion

Figures ?? shows the calculated spectrum of the \(^3\)He\((K^-, \pi^-)\) reaction at 600 MeV/c \((4^\circ)\) near the \(d+\Sigma^+\) threshold, together with the components of \(pp\Lambda\), \(d\Sigma^+\), \(pn\Sigma^+\), \(pp\Sigma^0\) and \(\Lambda-\Sigma\) conversion, which will be carried out at forthcoming J-PARC facilities. It is recognized that a clear enhancement just below the \(d+\Sigma^+\) threshold in the \(\pi^-\) spectrum is connected with dominance of the secondary process \[^3\Sigma\)He \(\rightarrow pp\Lambda\), where
Fig. 3 Calculated spectrum of the $^3\text{He}(K^-, \pi^+)$ reaction at 600 MeV/c (4°) near the Σ threshold, together with the experimental data form BNL-E774 [?]. The dashed line denotes the contribution of the $\Lambda-\Sigma$ conversion via the $\frac{3}{2}^-$ states.

The produced Σ hyperon in the real or virtual ^3He state subsequently interacts with a second nucleon, and it is converted to a Λ via the $\Sigma N \rightarrow \Lambda N$ processes inducing 2N-nuclear breakup due to the mass difference $m_{\Sigma} - m_{\Lambda} \approx 70 \text{ MeV}$. We confirm that a pole of the quasibound state ^3He with $S = 1/2$, $T = 1$ resides on the second Riemann sheet in the Σ channel, and gives rise to a resonance in the Λ channel. The pole position corresponds to a complex eigenvalue of the 2N-Y system on the complex energy plane. This complex eigenvalue represents

$$E_{\Sigma^+}^{(pole)}(^3\text{He}) = +1.2 - i 3.1 \text{ MeV}$$

for NF_S, where the real part of $E_{\Sigma^+}^{(pole)}$ is measured from the $d+\Sigma^+$ threshold, and its width becomes $\Gamma = 6.2 \text{ MeV}$.

On the other hand, the (K^-, π^+) reaction on a nuclear target seems to be appropriate to search a bound state in the Σ bound region. The reason is because (1) this reaction can only populate a Σ^- configuration in final states by the double-charge exchange reaction, so that the contribution of a Λ can be removed out from the π^+ spectrum, and (2) it has a substitutional mechanism under the near-recoilless condition so as to produce $\frac{3}{2}^-$ states which belong to a $S = 1/2$ isotriplet state from the ^3He target, as well as ^3He. Therefore, we often expect that a signal of the corresponding peak can be clearly observed in the π^+ spectrum, rather than the π^- one.

Figure ?? shows the calculated spectrum of the $^3\text{He}(K^-, \pi^+)$ reaction at 600 MeV/c (4°), together with the experimental data form BNL-E774 [?]. However, we find that no enhancement below the $d+\Sigma^-$ threshold is observed in the π^+ spectrum although there exists a quasibound state in $\frac{3}{2}^-$. The shape of the calculated spectrum seems to agree with that of the E774 data [?].

In order to understand the behavior of the π^+ spectrum, we discuss interference effects among configurations of the NN core states in the Σ production amplitude, because the 2N-Y potential should admix 1S_0 and 3S_1 states in the NN pair [?],
depending on the nature of the ΣN potential. We get the production amplitude as

$$\langle (\Sigma NN)^0 | \pi^+ | \text{HeK}^\pm \rangle \approx \frac{1}{2}\langle T = 1 | \pi^- | \text{He} \rangle \pm \frac{2\sqrt{3} - \sqrt{2}}{4} \langle \frac{3}{2}^+ \text{He} | \pi^- | \text{He} \rangle \pm \frac{2\sqrt{3} + \sqrt{2}}{4} \langle \frac{3}{2}^- \text{He} | \pi^- | \text{He} \rangle,$$

where $\langle \frac{3}{2}^+ \text{He} | \pi^- | \text{He} \rangle = \alpha | T = 1 \rangle + \beta | T = 1 \rangle$ as a ground state of $(\Sigma NN)^0$. Here we assumed $\alpha = 1/\sqrt{2}$ for simplicity [?]. We find that a cross section for $\frac{3}{2}^- \text{He}$ as a ground state is relatively reduced by a factor $(2\sqrt{3} - \sqrt{2})/4 = 0.51$, whereas that for $\frac{3}{2}^- \text{He}$ as an excited state is enhanced by a factor $(2\sqrt{3} + \sqrt{2})/4 = 1.22$. This mechanism is inevitable whenever we consider the $\text{He}(K^-, \pi^+) \text{ reaction}$, and it gives a similar spectrum to the E774 data, as seen in Fig. ??.

4 Summary

We theoretically have demonstrated the inclusive and semiexclusive spectra in the $\text{He}(K^-, \pi^+) \text{ reactions}$ at 600 MeV/c (4$^-$) within the DWIA, using the coupled $(2N-A)+(2N-\Sigma)$ model with the spreading potential. The effective $2N-Y$ potential derived from the KAT theory has a strong spin-isospin dependence, and gives us quasibound states with $S=1/2$, $T=1$ $(\frac{3}{2}^+ \text{He}, \frac{3}{2}^- \text{He}, \frac{1}{2}^+ \text{He})$. Our result shows that a signal of the $\frac{3}{2}^- \text{He}$ quasibound state is clearly observed near the Σ threshold in the π^- spectrum, whereas a peak of the $\frac{3}{2}^- \text{He}$ quasibound state is relatively reduced in the π^+ spectrum because of the admixture of the 3S_0 and 3S_1 states in the NN pair, as seen in the BNL-E774 data. We believe that the π^- and π^+ spectra on the He target provide valuable information on properties of ΣNN quasibound states so as to study ΣN interaction. This investigation is in progress.

Acknowledgements The authors would like to thank T. Fukuda and Y. Akaishi for many valuable discussions. This work was supported by Grants-in-Aid for Scientific Research (C) (No. 22540294).

References