<table>
<thead>
<tr>
<th>項目</th>
<th>内容</th>
</tr>
</thead>
<tbody>
<tr>
<td>タイトル</td>
<td>位置決め制御系における Adaptive Feedforward Cancellation の理論的検証と系統的設計法に関する研究</td>
</tr>
<tr>
<td>著者</td>
<td>藤井 将太</td>
</tr>
<tr>
<td>学位認定機関</td>
<td>北海道大学</td>
</tr>
<tr>
<td>項目</td>
<td>内容</td>
</tr>
</tbody>
</table>

Hokkaido University Collection of Scholarly and Academic Papers: HUSCAP
A Study of Adaptive Feedforward Cancellation in a Positioning System for Theoretical Analysis and Systematic Design
目次

第1章 緒言 4
1.1 研究の背景 ... 4
1.2 本研究の有用性 ... 6
 1.2.1 理論的検証 ... 6
 1.2.2 系統的設計法 ... 6
1.2.3 実装を考慮した AFC 7
 1.2.4 他の制御系との比較 7
1.3 論文の構成 .. 8

第2章 AFCの理論的解析 10
2.1 本章の緒言 .. 10
2.2 AFCによる外乱補償 .. 11
 2.2.1 AFCの適応アルゴリズム 11
 2.2.2 内部モデル原理を用いたAFCの理論的解析 15
2.3 拡張型AFCによる外乱補償 16
 2.3.1 拡張型AFCの適応アルゴリズム 17
 2.3.2 内部モデル原理を用いた拡張型AFCの理論的解析 18
2.4 外乱補償手法としての拡張型AFCの位置付け 20
 2.4.1 共振フィルタについて 21
 2.4.2 共振フィルタと拡張型AFCの理論的比較 24
2.5 本章の結言 .. 27

第3章 AFCの系統的な設計法 28
3.1 本章の緒言 .. 28
3.2 平均化法に基づくAFCの設計法 29
 3.2.1 平均化法 .. 29
 3.2.2 平均化系の導出 30
第3章 ベクトル軌跡に用いたAFCの設計

3.2.3 平均化法に基づくθの設計 31
3.3 ベクトル軌跡に用いたAFCの設計法 32
3.3.1 ベクトル軌跡に基づく設計法 32
3.3.2 θとλの設計について 37
3.3.3 提案法と平均化法によるθの設計について 38
3.4 本章の結言 .. 41

第4章 AFCの理論的検証結果と系統的設計法の有効性の確認 42

4.1 本章の緒言 .. 42
4.2 ベクトル軌跡を用いた系統的AFCの設計法 42
4.2.1 モデリング 43
4.2.2 ベクトル軌跡を用いたAFCの設計 45
4.2.3 設計結果 46
4.3 拡張型AFCによる機構共振に起因した外乱の補償 52
4.3.1 モデリング 53
4.3.2 拡張型AFCの設計 57
4.3.3 設計結果 59
4.4 拡張型AFCと共振フィルタの等価性 62
4.4.1 共振フィルタの設計 62
4.4.2 拡張型AFCと共振フィルタの比較 64
4.5 本章の結言 .. 67

第5章 実装を考慮したAFCの設計 .. 68

5.1 本章の緒言 .. 68
5.2 周波数応答上でのロバスト性を考慮したAFCの設計 68
5.2.1 シミュレーション上での検証 69
5.2.2 実験による検証 74
5.3 可変ゲイン付きAFCの設計 79
5.3.1 補償する外乱について 80
5.3.2 可変ゲイン付きAFCを用いた位置決め制御系 81
5.3.3 シミュレーションによる効果の検証 85
5.4 本章の結言 .. 92
第6章 実装におけるAFCと他の外乱補償制御との比較

6.1 本章の緒言 .. 94
6.2 実装における各制御手法の構成 94
6.3 磁気ディスク装置のヘッド位置決め制御系における比較 98
 6.3.1 各制御手法の設計結果 98
 6.3.2 各制御手法の実装に要するコスト 99
 6.3.3 外乱補償のシミュレーション結果 100
 6.3.4 AFCによる外乱推定について 102
6.4 本章の結言 .. 105

第7章 結言 ... 107

7.1 本論文の結論 ... 107
7.2 今後の展望 .. 109

参考文献 ... 110

謝辞 ... 120

業績目録 ... 121
第1章 緒言

1.1 研究の背景

産業応用の分野において位置決め制御系の果たす役割は非常に大きい。そして、多くの産業製品の位置決め制御系において、位置決め精度の精度向上が求められている [1]。例えば、磁気ディスク装置では、記録密度を増加させるため、ディスクに記録された情報を読み書きするヘッドの位置決め制御系の精度向上が求められている [2] [3] [5] [4]。また、ガルパノスキャナでは、生産量を増加させるため、ミラーを高精度に位置決めするレーザ光の位置決め制御系の精度向上が求められている [6] [7] [8]。そのような要求に応えるため、今日までに位置決め制御系の性能を向上させる制御理論が提案されてきた。

制御理論の歴史を簡単に挙げると [9]、1950年代は主に周波数応答を評価して設計を行った、古典制御理論が体系化された。線形の入出力システムとして伝達関数で表現された制御対象を中心に、周波数応答を評価して望みの挙動を達成する制御理論である。主な成果物として、PID制御がある [10]。1980年代末には周波数応答だけでなく、時間応答も考慮して設計を行う、現代制御理論が体系化された。一階の常微分方程式として状態方程式で表現された制御対象に対して、時間応答や周波数応答などを評価して望みの挙動を達成する制御理論である。主な成果物として、最適レギュレータがある [11]。そして、現在に至るまでではポスト現代制御と呼ばれる制御理論に関する研究が行われている。ポスト現代制御では、実際のモデルとの誤差を考慮した設計、離散時間と連続時間を考慮した設計など、より産業応用の分野での望みの挙動を達成することを目指した制御理論である。主な成果物として、モデルの不確かさを考慮してロバストな設計を行えるH∞制御理論や [12] [13]、未知特性を推定しながら制御を行う適応制御などがある [14]。以上のように、位置決め制御系の設計に用いられる制御理論は数多く提案され、各々の制御理論、有効性などの報告が行われている。

その中で、本研究では適応制御に基づく外乱補償制御である adaptive feedforward cancellation (以下、AFC) に注目した。AFC は 1992 年に Bodson らによって提案
された。外乱を補償できる制御手法である [15]。外乱は高精度位置決めの阻害要因となるため、それを補償できる制御手法は非常に重要である。AFCは外乱を補償する制御手法として、様々な産業製品の位置決め制御系に適用され、位置決め精度が向上できることが確認されている [16] [17] [18] [19] [20]。産業製品の位置決め制御系への実装とともに、AFCは理論的検証やAFCを用いた制御系の設計法に関する研究も行われてきた。それらの研究において、内部モデル原理に基づいたAFCの理論的検証や [21], AFCの時間応答に注目したパラメータの設計例などが報告されている [16]。このように、AFCは産業製品の位置決め制御系において有効性が確認されており、また制御アルゴリズムの理論的検証などもさかんに行われ、代表的な外乱補償として知られている。

本研究においてもAFCによる外乱補償についての研究を行ってきたが、研究を行っていく中でAFCには大きく3つの課題が残されていることが分かった。まず、AFCとフィードバック制御による外乱補償手法との関係性である。AFCの適応アルゴリズムはフィードバックフィルタと同じように伝達関数表現することができる。しかしながら、その伝達関数表現したAFCとフィードバックフィルタとの関係性は未だ明確にされていない。また、様々な制御系における設計例などは報告されているものの、系統的なパラメータ設計法は明確にされていない。さらに、AFCと他の外乱補償制御について比較を行った報告はほとんどなく、外乱補償制御としてのAFCの位置付けも明確になっていないことが挙げられる。つまり、AFCは外乱補償制御としての有効性は実証されているものの、これらの3つの課題が存在するため、未だ体系化されていない制御手法と考えられた。そこで、本研究では、制御理論としてAFCの更なる発展を目指し、上記の3つの課題に応えることで、AFCの体系化を行った。AFCの体系化を行うため、AFCの特性についての理論的検証、系統的なパラメータ設計法の開発、そして外乱補償手法としての位置付けを明らかにするため、他の制御手法との比較を行った。本研究により得られた成果物は、制御理論にとって重要な知見であるとともに、AFCの性能向上につながるため、位置決め制御系の位置決め精度の向上、つまり産業分野の発展に貢献するものである。
1.2 本研究の有用性

本節では、本研究で特に留意した点と、有用性を簡潔に示す。

1.2.1 理論的検証

AFC は一つの外乱補償手法として開発され、多くの産業製品の位置決め制御系における周期外乱の補償について、その有効性が確認されている。そして、内部モデル原理 [22] を用いた理論的検証により、その内部モデルは周期外乱のモデルと一致することが明らかにされている。しかし、位置決め制御系の外乱補償においては、周期外乱以外の外乱、特に制御対象の機械共振によって発生する外乱補償が要求される。本研究では AFC の適応アルゴリズムを理論的に解析し、適応アルゴリズムに忘却係数を新たに加えた拡張型 AFC を開発した [23]。拡張型 AFC は内部モデルとして、2 次の機械共振モデルを含むため、機械共振によって発生する外乱の補償が可能である。

また、拡張型 AFC とフィードバック制御に基づく外乱補償制御と比較したところ、両者の伝達特性は理論的に等価であることが分かった [24] [25]。このことから、今まで不明であった適応制御における設計パラメータとフィードバック制御における設計パラメータを明らかにした。「AFC による機械共振によって発生する外乱の補償」と「適応制御に基づく外乱補償制御とフィードバック制御に基づく外乱補償制御の関係性」は、制御理論における新たな知見である。

1.2.2 統計的設計法

AFC の適応アルゴリズムにおけるパラメータ設計は、適応パラメータが収束するまでの時間応答や、AFC の実装前後のスペクトルの確認を行うなど、試行錯誤を行って設計する。解析的手法による設計が一般的に行われている。しかし、解析的手法はパラメータ設計に試行錯誤を伴うため、設計要する時間的コストが制御論的設計法と比較して大きくなりがちであり、また設計結果に理論的な裏付けが得られないことも多い。

本研究では、周波数応答に基づいた統計的な AFC のパラメータ設計法を提案した [26] [27]。提案手法は「AFC の伝達特性がフィードバック制御による手法と等価である」という知見を活かし、周波数応答に基づくフィードバック制御の設計を進める。
理論をAFCに適用した。AFCの性能は周波数応答上で最適であることが理論的に保証され、設計に複雑な数式を必要としないため、設計に要する時間的コストも非常に小さいため、有用な設計法である。

1.2.3 実装を考慮したAFC

提案法によりAFCを系統的に設計できるようになったが、実際の位置決め制御系にAFCを用いる場合、要求される仕様をAFCが満足できるかが重要となる。特に、外乱補償手法については、実装時の制御系の安定性ロバスト性と、外乱補償が完了するまでの過渡応答が、要求される仕様として挙げられる。実際の位置決め制御系において、制御系の安定性は非常に重要であり、制御対象の特性に変動が生じても制御系が発振することはあってはならない。そこで、ベクトル軌跡を用いた設計法をベースとして、制御対象の変動を考慮したAFCの設計法を提案した[28]。本手法によりロバストなAFCの設計を行うことができる。また、AFCの学習パラメータの収束性を改善する可変ゲイン付きのAFCの設計法を提案した[29]。AFCは適応アルゴリズムに基づいて外乱の補償を行うが、学習パラメータが収束するまでに時間を要する。補償する外乱が変化したとき、学習パラメータが収束するまでの過渡応答が悪化する可能性がある。そこで、本研究では可変ゲイン付きAFCの設計法を提案した。可変ゲインを用いることにAFCの収束性を改善し、過渡応答を改善することができる。制御系にとって重要となるAFCのロバスト性と学習の収束性を改善する、これらの手法は実装において有用な設計法である。

1.2.4 他の制御系との比較

従来までの研究で、外乱補償制御としてAFC以外にも様々な手法が提案されてきた。つまり、位置決め制御系に外乱補償手法を実装する場合、様々な制御手法の中から、設計者はどの制御手法を用いるかを決定する必要がある。そのとき、制御手法が発揮できる性能もさることながら、実装上で重要となる計算量やコストを考慮して決定しなければならない。しかしながら、従来の研究では制御手法の性能と、実装に要する計算量やコスト併せて考慮した比較などはほとんど行われていない。そこで、本研究では外乱補償手法としてのAFCの位置付けと有用性を明確にするため、代表的な2種類の外乱補償手法である、共振フィルタと、繰り返
し制御との比較を行った [30]。その結果，AFC の特徴として，共振フィルタと同
等の外乱補償性能でありながら，繰り返し制御よりも精度良く外乱の推定ができ
ることが挙げられる。実際の位置決め制御系においては，外乱の補償だけではなく，
補償する外乱の情報が必要になることもあるため，AFC は非常に有用な制御法で
ある。ただし，適応アルゴリズムの演算に正弦波のテーブルが必要なため，メモ
リサイズには注意しなければならない。この知見は外乱補償に用いる制御手法の
決定への評価指標となるため，産業製品の位置決め制御系を設計時に有用である。

1.3 論文の構成

本論文の構成を以下に示す。2 章において AFC に対する理論的検証結果を説明
する。まず，本研究の対象である Bodson らが提案した従来の AFC とその理論的
検証について説明する。次に，本研究で提案する拡張型 AFC とその理論的検証を
説明する。拡張型 AFC は適応アルゴリズムに忘却係数を導入し，周期外乱だけで
なく機構共振により発生する振動も補償することができる。また，拡張型 AFC と
フィードバック制御に基づく外乱補償制御である共振フィルタとの理論的比較を説
明する。位置決め制御系の外乱補償手法としてよく用いられる両手法を理論的に
検証した結果，両者の伝達特性は全く同じであることが新たに分かった。3 章では
周波数応答に基づいた AFC の系統的な設計法を説明する。理論的検証により AFC
の伝達特性は共振フィルタと等価であることが分かったため，フィードバック制
御系の設計手法の一つである，ベクトル軌跡を用いた設計法を AFC に適用するこ
とで，周波数応答上で最適な設計を行うことができる。4 章では位置決め制御系に
いて系統的設計法の有効性と理論的検証を確認した結果を説明する。AFC の系
統的な設計法を用いて，磁気ディスク装置の位置決め制御系における周期外乱を
補償する AFC を設計したところ，従来の設計法と比較して性能を向上できること
を確認した。理論的検証結果より得られた，拡張型 AFC による機構共振に起因す
る外乱の補償と，AFC と共振フィルタの等価性を，磁気ディスク装置の位置決め
制御系において確認したので，併せて説明する。5 章では実装を考慮した AFC の
設計について示す。本研究では，位置決め制御系に AFC を実装する上で重要であ
り，また研究例が存在しない AFC のロバスト性，収束性に注目した。ロバスト性
については，制御対象の特性のばらつき，特に機構共振の周波数のばらつきによ
り，AFC が制御系の安定性に大きな影響を与えるという課題がある。そこで，制
御対象のばらつきを考慮した AFC の設計法を提案し，ロバスト性が向上できるこ
とを確認した。AFCの収束性については、制御対象の特性の変化や環境の変化によって外乱の振幅が変化した場合、AFCの学習パラメータが収束するまでに時間を要するという課題がある。そこで、外乱の変化を考慮した可変ゲイン付きAFCを提案し、AFCの収束性を改善できることを示した。6章では、AFCと他の外乱補償制御との比較結果を説明する。外乱補償手法としての、AFCがどのような位置付けにあるか、またどのような有用性をもつか、ということを明らかにするため、代表的な外乱補償制御である共振フィルタと繰り返し制御との比較を行った。7章では、本論文の結論をまとめめる。
第2章 AFCの理論的解析

2.1 本章の緒言

位置決め制御系において、高精度位置決めの阻害要因となる外乱を補償する制御手法は非常に重要な技術であり、今までに様々な制御手法が提案されてきた。その制御手法の一つとして、適応アルゴリズムに基づく外乱補償手法である AFC が挙げられる。AFC は Bodson らによって適応アルゴリズムに基づいた外乱補償制御として開発され [15]，位置決め制御系の周期外乱の補償において有効性が確認されている [16] [17] [18] [19] [20]。その AFC については Messner らにより内部モデル原理を用いた理論的解析が行われ，AFC は周期外乱モデルを内部モデルとして含んでいることが明らかにされた [21]。この理論的検証結果から，AFC は主に周期外乱の補償に用いられてきた。しかし，位置決め制御系においては非周期の外乱の補償も重要となる。そこで，本研究では AFC の適用範囲を拡張するため，内部モデル原理を用いた理論的検証結果を元にして，AFC の機能を拡張し，機構共振に起因する振動も補償できる拡張型 AFC を提案した [23]。拡張型 AFC は適応アルゴリズムに忘却係数を追加した構成であり，機構共振モデルを内部モデルとして含んでいる。従来の AFC と比較して適用可能な範囲が広がり，非常に有用な制御手法といえる。さらに，拡張型 AFC とフィードバックフィルタ制御に基づいた外乱補償手法との比較を行った。外乱を補償する制御手法は AFC 以外にも数多く提案されており，その代表的な外乱補償手法として，共振フィルタが挙げられる [31] [32]。共振フィルタは，外乱が存在する周波数において，フィードバック制御系の感度を下げることにより外乱補償を可能にする [33]。位置決め制御系における外乱補償は，適応アルゴリズムに基づく AFC でも，フィードバック制御に基づく共振フィルタのどちらでも可能であるが，それらの理論的比較などはほとんど行われていない。そこで，外乱補償手法としての拡張型 AFC の位置付けを明らかにするために，フィードバック制御による外乱補償手法との理論的比較を行った [24] [25]。本章では，まず AFC のアルゴリズムと内部モデル原理を用いた理論的解析を説明し，次に拡張型 AFC のアルゴリズムと内部モデル原理を用いた理論
的解析を説明する。そして、拡張型 AFC と代表的なフィードバック制御による外乱補償手法である共振フィルタとの理論的比較結果を説明する。

2.2 AFCによる外乱補償

AFC は 1992 年に Bodson らによって提案された、適応アルゴリズムに基づいて周期外乱を補償する制御方式であるが [15]、その翌年の 1993 年に Sack らとともに適応アルゴリズムに位相パラメータを追加し、収束性を改善した AFC を報告している [16]。一般的に、AFC はこの適応アルゴリズム中に位相パラメータを含めたものが知られており、本論文で説明する AFC も適応アルゴリズム位相パラメータを含んだ AFC とする。この AFC については、Messner らにより内部モデル原理に基づいて、周期外乱の外乱モデルを内部モデルとして含むことが明らかにされている [21]。以上は従来研究の成果物であるが、後の議論に関係するため、本節で AFC の適応アルゴリズムとその理論的解析結果を説明する。

2.2.1 AFC の適応アルゴリズム

AFC は、制御対象の出力端に加わる周期性外乱のゲインと位相を適応アルゴリズムにより推定し、この推定した結果に基づいて制御系に加わる周期外乱をフィードフォワード的に補償する。図 2.1 に位置決め制御系に AFC を実装したときブロック線図を示す。P は制御対象、C はフィードバック制御器であり、r(k) は参照信号、e(k) は位置誤差信号、u(k) は AFC の出力信号、そして d(t) は周期外乱を示す。また、t は時間、k はサンプル数、z は 1 サンプル遅れ演算子である。AFC 出力 u(k) はフィードバック制御器 C の出力に加算され、適応アルゴリズムに基づいて生成した出力により周期外乱を補償する。

AFC の適応アルゴリズムは特定の周波数の正弦波と余弦波の係数を適応的に変化させ、その周波数における外乱を推定し、外乱を打ち消す信号を生成する。適応アルゴリズムを式 (2.2), (2.3) に示す。

$$p(k) = p(k-1) + \lambda e(k) \cos(\omega Tk + \theta)$$ (2.1)
$$q(k) = q(k-1) + \lambda e(k) \sin(\omega Tk + \theta)$$ (2.2)

p(k) と q(k) は学習パラメータ、ω は AFC で補償する外乱の周波数、λ は学習率、そして θ は位相である。適応アルゴリズムは 1 サンプル前までの学習結果 p(k - 1),
図 2.1: AFC を適用した位置決め制御系のブロック線図

$q(k - 1)$ に、位置誤差信号 $e(k)$ に λ と補償する周波数の正弦波、余弦波を乗算した結果を加算し、更新していく。上記のアルゴリズムに基づいて学習を繰り返し、$p(k)$ と $q(k)$ が収束したとき、外乱の推定が完了したことを示す。正弦波、余弦波の係数 $p(k)$ と $q(k)$ の学習結果を用いた、AFC の出力 $u(k)$ は以下の式となる。

$$u(k) = p(k-1) \cos(\omega Tk) + q(k-1) \sin(\omega Tk). \tag{2.3}$$

位置決め制御系に加わる外乱 $d(t)$ は、適応アルゴリズムの学習結果を用いた $u(k)$ によって補償される。AFC により補償する周期外乱 $d(t)$ は正弦波、余弦波の和として次の式で表現される。

$$d(t) = \hat{p}(t) \cos(\omega t) + \hat{q}(t) \sin(\omega t). \tag{2.4}$$

$u(k)$ と $d(t)$ の式から、AFC は適応アルゴリズムにより周期外乱自体の推定を行い、その推定結果を用いて外乱の補償を行う制御方式だと分かる。

位置決め制御系において周期外乱の補償だけでなく、外乱の振幅、位相などの情報を得たいときがある。AFC では周期外乱の振幅と位相は $p(k)$ と $q(k)$ の結果
図 2.2: AFC の学習パラメータ \(p(k), q(k) \) の時間波形

から、簡単に算出することができる。まず、外乱の振幅の推定結果は以下の式となる。

\[
|d_{afc}(t)| = K \sqrt{p^2(k) + q^2(k)} \quad (2.5)
\]

ここで、\(K \) は \(\omega \) における制御対象 \(P \) のゲインである。図 2.1 においては \(u(k) \) と \(d(t) \) の間に \(P \) があるため、外乱の振幅は \(p(k) \) と \(q(k) \) の二乗和に \(P \) のゲインを乗算して算出される。外乱の位相の推定結果については以下の式で算出される。

\[
\arg(d_{afc}(t)) = \arctan \frac{p(k)}{q(k)} + \angle P. \quad (2.6)
\]

以上のように、複雑な計算式を用いることなく、外乱の振幅と位相を算出することができるのである。

AFC により、900Hz の周期外乱の補償を行ったときのシミュレーション結果を一例として説明する。図 2.2 は学習パラメータ \(p(k) \) と \(q(k) \) の時間波形を示している。一定時間経過 (約 50ms 経過) 後に \(p(k) \) と \(q(k) \) が収束しており、適応アルゴリズムによる学習が完了したことが分かる。図 2.3 は外乱 \(d(t) \) と AFC により推定した外乱 \(d_{afc}(t) \) の時間波形の時間波形を示している。約 50ms 経過後に \(d(t) \) と \(d_{afc}(t) \) の
図 2.3: 外乱 \(d(t) \) と推定信号 \(d_{afc}(t) \) の時間波形

図 2.4: 位置誤差信号 \(e(k) \) の時間波形
時間波形がほぼ一致しており、AFCによる外乱推定が完了したことが分かる。そして、図2.4には位置誤差信号$e(k)$の時間波形を示している。AFCを適用した場合は約50ms経過後、つまり適応アルゴリズムによる学習が完了してからは、$e(k)$の振幅はほぼ0となっており、AFCによる外乱の補償が適切に行われていることが分かる。

2.2.2 内部モデル原理を用いたAFCの理論的解析

AFCは周期外乱を補償するために開発された外乱補償手法であり、その制御特性は内部モデル原理を用いて理論的に解析されている。内部モデル原理とは「外乱を補償するためには制御器と制御対象からなる関ループ特性が、その外乱モデルを含んでなければならない」という制御理論である[22]。外乱補償を行う制御系を設計する場合、この内部モデル原理を用いて理論的解析を行うのが一般的である。

内部モデルに基づいた解析を行うため、関ループ特性が外乱モデルを含んでいることを確認する必要がある。図2.1に示した位置決め制御系において、制御器はフィードバック制御器CとAFCから構成されるが、Cは制御系の安定化のために設計され、周期外乱補償を目的とした制御器ではないとする。そのため、内部モデル原理に基づいて、AFCにより周期外乱を補償するためには、AFC自体が内部モデルとして周期外乱のモデルを含んでいる必要がある。しかし、AFCは微分形式で表現されているため、このままでは評価することが難しい。そこで、前節で説明したAFCの適応アルゴリズムにx変換を用いて、AFCの出力力関係を伝達関数として表現する。まず、微分形式である適応アルゴリズムを以下のように表現する。

$$p(k) = \sum_{a=1}^{k} \lambda e(a) \cos(\omega Ta + \theta) \quad (2.7)$$

$$q(k) = \sum_{a=1}^{k} \lambda e(a) \sin(\omega Ta + \theta) \quad (2.8)$$

式(2.6), (2.7)を式(2.3)に代入すると、$u(k)$は次式のように書き改められる。

$$u(k) = \sum_{a=0}^{k} \lambda e(a) \cos(\omega Ta + \theta) \cos(\omega Tk) + \sum_{a=0}^{k} \lambda e(a) \sin(\omega Ta + \theta) \sin(\omega Tk) \quad (2.9)$$
ここで、加法定理を用いて三角関数に関する項を式 (2.10) のように変換する。

\[
\cos(\Omega T a + \theta) \cos(\Omega T k) + \sin(\Omega T a + \theta) \sin(\Omega T k) \\
= \cos(\theta) \cos(\Omega T k - a) + \sin(\theta) \sin(\Omega T (k - a)).
\]

(2.10)

この変換を用いると、\(u(k) \) は式 (2.11) となる。

\[
u(k) = \sum_{a=0}^{k} \lambda \cos(\theta) \cos(\omega T (k - a)) + \sum_{a=0}^{k} \lambda \sin(\theta) \sin(\omega T (k - a)) \]

(2.11)

式 (2.11) に \(z \) 変換を用いると、次式のように伝達関数を求めることができる。

\[
F_{AFC}(z) = Z[\lambda \cos(\theta) \cos(\omega T k)] Z[\lambda \sin(\theta) \sin(\omega T k)] \\
= \frac{\lambda z^2 \cos(\theta) + z \cos(\omega T) \cos(\theta)}{z^2 - 2z \cos(\omega T) + 1} + \frac{\lambda z \sin(\omega T) \sin(\theta)}{z^2 - 2z \cos(\omega T) + 1} \\
= \lambda \frac{z^2 \cos(\theta) - z \cos(\omega T + \theta)}{z^2 - 2z \cos(\omega T) + 1}.
\]

(2.12)

式 (2.12) が AFC の伝達関数表現となる。この伝達特性は \(\lambda \cos(\omega T k - \theta) \) の \(z \) 変換に等しい。つまり、AFC は内部モデルとして三角関数の \(z \) 変換した特性を含んでいるので、内部モデル原理により三角関数で表現可能な周期外乱を補償することができる。

2.3 拡張型 AFC による外乱補償

前節では Bodson らが提案した従来の AFC を説明した。その AFC は周期外乱を補償するために開発されたものであり、その制御特性は内部モデル原理により理論的に検証されている。しかしながら、位置決め制御系において周期外乱だけでなく、特に制御対象の機構共振に起因して発生する振動の補償が要求されることが多い。本研究では、AFC の適用範囲を拡張するため、内部モデル原理を用いた理論的検証結果を元にして、AFC の機能を拡張し、機構共振に起因する振動も補償できる拡張型 AFC を提案した。拡張型 AFC は適応アルゴリズムに忘却係数を追加した構成であり、機構共振モデルを内部モデルとして含んでいる。本節では、その拡張型 AFC の適応アルゴリズムと適応アルゴリズムを理論的に解析した結果を説明する。
図 2.5：拡張型 AFC を適用した位置決め制御系のブロック線図

2.3.1 拡張型 AFC の適応アルゴリズム

本研究で提案する拡張型 AFC について説明する。図 2.5に拡張型 AFC を適用したときの位置決め制御系のブロック線図を示す。基本的な構成は従来の AFC 同じであるが、拡張型 AFC では適応アルゴリズムに忘却係数を導入しているのが異なる点である。その適応アルゴリズムを式 (2.13), (2.14) に示す。

\[
\begin{align*}
p(k) &= e^{-\zeta \omega T k} p(k-1) + \lambda e(k) \cos(\sqrt{1-\zeta^2 \omega T k} + \theta) \\
q(k) &= e^{-\zeta \omega T k} q(k-1) + \lambda e(k) \sin(\sqrt{1-\zeta^2 \omega T k} + \theta).
\end{align*}
\]

\(\zeta \) は適応アルゴリズムの忘却係数の大きさを決めるパラメータであり、上記の式中における \(e^{-\zeta \omega T k} \) (\(e \) は自然対数を表す) が適応アルゴリズムにおける忘却係数である。\(\zeta = 0 \) のときは従来の AFC の適応アルゴリズムと同じである。適応アルゴリズムは 1 サンプル前までの学習結果 \(p(k - 1), q(k - 1) \) に, \(e(k) \) と \(\lambda \) と補償する周波数の正弦波, 余弦波を乗算した結果を加算し更新していくが, 1 サンプル前までの学習結果 \(p(k - 1), q(k - 1) \) は時間が経過することに影響を小さくする, つま
り過去の学習結果を忘却する形式となっている。その拡張型 AFC の出力は次式となる。

\[u(k) = p(k - 1) \cos(\sqrt{1 - \zeta^2} \omega T k) + q(k - 1) \sin(\sqrt{1 - \zeta^2} \omega T k). \quad (2.15) \]

上記のアルゴリズムに基づいて学習を繰り返し、\(p(k) \) と \(q(k) \) が収束したとき、\(u(k) \) により機構共振に起因する外乱を補償できる。

2.3.2 内部モデル原理を用いた拡張型 AFC の理論的解析

拡張型 AFC についても内部モデル原理を用いて理論的に解析し、機構共振に起因する外乱補償が可能であることを確認した。まず、適応アルゴリズムを以下のように表現する。

\[
p(k) = \sum_{a=1}^{k} e^{-\Omega T(k-a)} \lambda e(a) \cos(\Omega T a + \theta), \quad (2.16)
\]

\[
q(k) = \sum_{a=1}^{k} e^{-\Omega T(k-a)} \lambda e(a) \sin(\Omega T a + \theta). \quad (2.17)
\]

ここで、減衰固有角振動数を \(\sqrt{1 - \zeta^2} \omega = \Omega \) のようにおき、式 (2.16), (2.17) を式 (2.15) に代入すると、\(u(k) \) は次式のように書き改められる。

\[
u(k) = \sum_{a=0}^{k} e^{-\zeta \omega T(k-a)} \lambda e(a) \cos(\Omega T a + \theta) \cos(\Omega T k) + \sum_{a=0}^{k} e^{-\zeta \omega T(k-a)} \lambda e(a) \sin(\Omega T a + \theta) \sin(\Omega T k) \quad (2.18)
\]

さらに、式 (2.19) の加法定理を用いて三角関数に関する項を変換する。

\[
cos(\Omega T a + \theta) \cos(\Omega T k) + \sin(\Omega T a + \theta) \sin(\Omega T k) \\
= \cos(\theta) \cos(\Omega T (k - a)) + \sin(\theta) \sin(\Omega T (k - a)). \quad (2.19)
\]

加法定理による変換と併せて、\(z \) 変換と積み込み定理を用いると、拡張型 AFC の入出力関係を式 (2.20) のように伝達関数表現できる。

\[
F_{AFC}(z) = Z \left[e^{-\zeta \omega T k} \lambda \cos(\theta) \cos(\Omega T k) \right] + \\
Z \left[e^{-\zeta \omega T k} \lambda \sin(\theta) \sin(\Omega T k) \right] \\
= \lambda \frac{z^2 \cos(\theta) + e^{-\zeta \omega T} z \cos(\Omega T) \cos(\theta)}{z^2 - 2e^{-\zeta \omega T} z \cos(\Omega T) + e^{-2\zeta \omega T}} +
\]

18
図 2.6: 外乱モデルの周波数応答

\[
\begin{align*}
\lambda \frac{e^{-\zeta \omega T} z \sin(\Omega T) \sin(\theta)}{z^2 - 2e^{-\zeta \omega T} \cos(\Omega T) + e^{-2\zeta \omega T}} \\
= \frac{z^2 \cos(\theta) - ze^{-\zeta \omega T} \cos(\Omega T + \theta)}{z^2 - 2ze^{-\zeta \omega T} \cos(\Omega T) + e^{-2\zeta \omega T}}.
\end{align*}
\]

(2.20)

この伝達関数は、次式の離散時間系の機構共振モデルを含んでいる。

\[
P(z) = \frac{K_p}{z^2 - 2ze^{-\zeta \omega_p T} \cos(\omega T) + e^{-2\zeta \omega_p T}}.
\]

(2.21)

\(K_p\) はゲイン、\(\zeta_p\) は減衰比、\(\omega_p\) は共振周波数を示す。拡張型 AFC は内部モデルとして機構共振モデルを含んでいるため、内部モデル原理により機構共振に起因する外乱を補償することができる。そのため、従来の AFC と比較して補償可能な外乱の種類が増加するので、適用可能な範囲が広がったといえる。

ここで、900Hz の機構共振に起因する外乱の補償を行ったときのシミュレーション結果を一例として説明する。まず、AFC により補償する機構共振（外乱）モデルの周波数応答を図 2.6 に示す。この外乱モデルは 900Hz で約 25dB のピークを持つモデルである。このモデルに起因して発生する外乱を補償する拡張型 AFC の周波数応答を図 2.7 に示す。図 2.7 には従来の AFC の周波数応答も併せて示している。従来の AFC との大きな違いは、拡張型 AFC は忘却係数 \(e^{-\zeta \omega T k}\) により、周波
図2.7: 従来のAFCと拡張型AFCの周波数応答

従来のAFCと拡張型AFCの周波数応答の比較を示すグラフ。25dBの差を示しています。

2.4 外乱補償手法としての拡張型AFCの位置付け

前節では、本研究で提案する機構共振に起因する外乱も補償可能な拡張型AFCを説明した。拡張型AFCは周期外乱だけでなく、機構共振に起因する外乱も補償可能であり、様々な位置決め制御系の外乱補償に適用可能である。しかしながら、今までにフィードバック制御に基づく外乱補償手法も提案され、幅広い位置決め制御系の外乱補償に用いられている。代表的なフィードバック制御に基づく外乱
図 2.8: 位置誤差信号 $e(k)$ の時間波形

補償手法の一つとして，共振フィルタが挙げられる。共振フィルタは，AFC のように適応アルゴリズムに基づいて直接外乱を推定するのではなく，外乱が存在する周波数において，制御系の感度を下げる制御系を実装することで，外乱補償を実現している。その有効性は，周期外乱補償だけでなく，機構共振に起因する外乱補償においても確認されている。つまり，周期外乱と機構共振に起因する外乱の補償は，共振フィルタと拡張型 AFC のどちらの手法を用いても可能であるが，それらの差異は明らかにされていない。そこで，本研究ではフィードバック制御に基づく外乱補償手法の一つである共振フィルタと，拡張型 AFC の理論的に比較した。その結果を本節で説明する。

2.4.1 共振フィルタについて

共振フィルタは，熱海らによって提案された，位置決め制御系におけるフィードバック制御に基づく外乱補償手法の一つである [31] [32]。図 2.9 に位置決め制御系に共振フィルタを実装したときブロック線図を示す。共振フィルタ F も AFC と同
図 2.9: 共振フィルタを適用した位置決め制御系のブロック線図

様にフィードバック制御器 C と並列に実装されることが多い。共振フィルタは特定周波数における制御系のゲインを下げるフィルタであり、その伝達関数は式 (2.22) となる。

\[F_{res}(s) = \frac{s - z_r}{s^2 + 2\zeta_r\omega_n s + \omega_n^2}, \]

(2.22)

ここで、\(\kappa_r \) はフィルタのゲイン、\(z_r \) はフィルタの零点、\(\zeta_r \) は減衰比、そして、\(\omega_n \) は目標とする共振角周波数である。このフィルタにより、\(\omega_n \) における制御系のゲインを下げて外乱補償を実現する。また、この伝達特性は \(\zeta_r = 0 \) のときは、\(t \) を時間として定義すると、\(\kappa_r \cos(\omega t - \text{arg}(F_{res}(j\omega))) \) のラプラス変換に等しく、内部モデルとして三角関数を含んでいるので、周期外乱の補償が可能である。また、\(\zeta_r = 0 \) でないときは、連続時間系の機構共振モデルと等しく、内部モデル原理により、機構共振に起因する外乱を補償できることが分かる。900Hz の外乱を補償する共振フィルタを適用するシミュレーションを一例として示す。図 2.10 は位置決め制御系の開ループ特性の周波数応答を示し、図 2.11 は出力周波数の周波数応答を示す。共振フィルタを適用することで、900Hz における伝達関数のゲインが小さくなっていることが分かる。この制御系は 900Hz における信号に対する感度が非常に小さくなっているため、位置決め制御系に加わる 900Hz の外乱による位置決め精度の悪化はほとんど見られない。つまり、共振フィルタにより 900Hz の外乱が補償可能であることを示している。図 2.12 には共振フィルタ出力 \(u(k) \) の時間応答を示し、図 2.13 に位置誤差信号 \(e(k) \) の時間応答を示す。\(u(k) \) の過渡応答が収束後、\(e(k) \) の振幅がほぼ 0 になっていることが分かる。よって、共振フィルタによる外乱補償の効果は時間応答からも確認できる。

22
図 2.10: 開ループ特性の周波数応答

図 2.11: 感度関数の周波数応答
2.4.2 共振フィルタと拡張型 AFC の理論的比較

前節で説明した共振フィルタは、拡張型 AFC と同様に周期外乱と機構共振に起因する外乱の補償を実現できる。どちらの手法も位置決め制御系における外乱補償が可能であるが、両者の比較をした研究例は報告されていない。本研究では両者の理論的比較を行ったので、それを本節で説明する。

まず、両者の制御特性を比較するため、離散時間系で表現される AFC に合わせて、連続時間系で表現される共振フィルタを z 変換した。まず、共振フィルタの伝達関数は次式のように書き改める。

\[
F(s) = \frac{s - z_r}{s^2 + 2\zeta_r\omega_r s + \omega_r^2} = \frac{s + \zeta_r\omega_r + \alpha_r\Omega_r}{(s + \zeta_r\omega_r)^2 + \Omega_r^2}. \tag{2.23}
\]

\[
-z_r = \zeta_r\omega_r + \alpha_r\Omega_r, \tag{2.24}
\]

\[
\sqrt{1 - \zeta^2\omega_r} = \Omega_r. \tag{2.25}
\]

式 (2.23) の伝達関数に整合 z 変換を適用する。整合 z 変換により極と零点を離散時
図 2.13: 位置誤差信号 $e(k)$ の時間応答

間系モデルに変換したモデルは次式となる。

$$F_{res}(z) = \mathcal{Z} [F(s)] = \kappa \frac{z(z - e^{-\zeta \omega T \cos(\Omega T)})}{z^2 - 2e^{-\zeta \omega T \cos(\Omega T)} + e^{-2\zeta \Omega T} + \alpha \frac{ze^{-\zeta \omega T \sin(\Omega T)} \sin(\Omega T)}{z^2 - 2e^{-\zeta \omega T \cos(\Omega T)} + e^{-2\zeta \Omega T} + \Omega T}.$$ \hspace{2cm} (2.26)

式 (2.26) は共振フィルタの離散時間系モデルを示す。この離散時間系モデルは、さらに式 (2.27) のように書き改めることができる。

$$F_{res}(z) = \lambda \frac{z(z - e^{-\zeta \omega T \cos(\Omega T)}) \cos(\theta)}{z^2 - 2e^{-\zeta \omega T \cos(\Omega T)} + e^{-2\zeta \Omega T} + \Omega T} + \frac{ze^{-\zeta \omega T \sin(\Omega T)} \sin(\Omega T)}{z^2 - 2e^{-\zeta \omega T \cos(\Omega T)} + e^{-2\zeta \Omega T} + \Omega T}.$$ \hspace{2cm} (2.27)

式 (2.27) は、拡張型 AFC の伝達関数である。式 (2.20) は同じであることが分かる。

これは、適応アルゴリズムに基づく制御手法である AFC と、フィードバック制御
に基づく制御手法である共振フィルタの特性能全く同じであることを示している。両者は全く異なる理論に基づいた制御手法でありながら、その特性は等しい。これは、制御理論における新たな知見である。

また、各パラメータに注目した理論的比較を以下にまとめる。共振フィルタの減衰比ζr、零点zr、ゲインκr、共振フィルタにより補償する角周波数ωrとの関係性は以下になる。

\[\zeta_r = \zeta, \quad (2.28) \]

- 式(2.28)において、ζrは共振フィルタにおける減衰比である。また、ζは拡張型 AFC の適応アルゴリズムにおいて、古いデータの影響を指数関数的に減らす、忘却係数である。つまり、適応アルゴリズムにおける忘却係数は、機構共振のエネルギーの減衰を示す減衰比に相当することが分かった。

\[-z_r = \zeta \omega + \alpha_r \Omega \]
\[= \zeta \omega + \tan(\theta) \Omega, \quad (2.29) \]

- 式(2.29)において、zrは共振フィルタの零点を示す。また、θは拡張型 AFC の適応アルゴリズム中の位相角を示す。zrは共振フィルタの適用周波数においてフィードバック制御系の位相特性を調整するパラメータであるが、適応アルゴリズム中のθにより拡張型 AFC も同じように調整できることが分かった。

\[\kappa_r = \lambda \cos(\theta), \quad (2.30) \]

- 式(2.30)において、κrは共振フィルタのゲインを示す。つまり、拡張型 AFC の適応アルゴリズム中の学習率λと位相角θは出力ゲインを決定していることが分かった。しかしながら、前に記述した関係から、位相角θはフィードバック制御系で考えた場合の零点の調整に利用するべきである。そのため、適応アルゴリズムにおける学習率λの調整が、共振フィルタにおけるゲインκrの調整に相当する。
\(\omega_r = \omega \)

(2.31)

- 式 (2.31) において，\(\omega_r \) は共振フィルタで制御系の感度を下げる共振角周波数を示し，\(\omega \) は拡張型 AFC で推定する外乱の共振角周波数を示す。両者は 1 対 1 に対応することが分かった。

以上のような結果から，フィードバック制御に基づく外乱補償手法である共振フィルタと，適応アルゴリズムに基づく外乱補償手法である拡張型 AFC は，異なる概念に基づいて開発された外乱補償手法でありながら，入出力関係を示す伝達関数は全く同じであることが分かった。また，それぞれの手法におけるパラメータの関係性を明らかにした。

2.5 本章の結言

本章では，まず従来の AFC と内部モデル原理に基づいた理論的検証を説明した。その検証結果に基づいて，本研究で提案する適応アルゴリズムに忘却係数と導入した拡張型 AFC を説明した。適応アルゴリズムに忘却係数を導入することで，拡張型 AFC の内部モデルは 2 次の共振モデルと等価となる。これは，内部モデル原理から機構共振に基づく外乱も補償可能であることを示している。拡張型 AFC は周期外乱だけでなく，機構共振に基づく外乱，つまり非周期の外乱を補償可能であるので，従来 AFC と比較して適用可能な範囲を広げることができるという意味で有用である。さらに，拡張型 AFC と代表的な外乱補償手法である共振フィルタとの理論的な比較を行い，その結果を説明した。共振フィルタはフィードバック制御に基づく外乱手法であり，外乱が存在する周波数において制御系の感度を下げることによって外乱を補償する。それに対し，AFC は適応アルゴリズムによって外乱を推定し，その推定結果に基づいて外乱の補償を行う。両手法は異なる概念に基づいて外乱補償を行うが，本研究における理論的検証により，両手法は等価であることが示された。この適応アルゴリズムに基づく外乱補償手法と，フィードバック制御に基づく外乱補償手法が等価であるという結果は，制御理論において新たな知見である。
第3章 AFCの系統的な設計法

3.1 本章の緒言

前章で説明したように AFC は適応アルゴリズムによりパラメータを更新し、外乱の推定を行う。その推定された結果に基づいて外乱補償を行うが、適応アルゴリズム中には設計者が事前に決定するパラメータが存在する。適応アルゴリズムにおける１サンプルあたりの学習率と、アルゴリズム中で利用する三角関数の位相の２つである。それらのパラメータを決定する AFC の設計法としては、平均化法に基づく方法 [34] [35]、根軌跡に基づく方法 [36]、適応則の線形時不変 (Linear Time Invariant; LTI) 表現に基づく方法 [37] などが提案されている。これらの設計法を時間領域に基づくものと周波数領域に基づくものに大別すると、平均化法に基づく方法は前者、根軌跡と LTI 表現に基づく方法は後者に分類される。平均化法に基づく方法では、適応則の収束性 (時間応答) を最適化する極配置の方法が提案されている。これより、AFC の時間領域の最適化に関しては解が得られていると言える。一方、根軌跡と LTI 表現に基づく方法では、制御系の周波数応答 (ナイスート線図など) に基づく適応則パラメータの設計方法が提案されているが、これらは適用する制御系において一つの設計例として説明されている。AFC の周波数領域における最適化に関しては、未解決の問題として残されていた。位置決め制御系の性能は、定常応答の特性を示している、周波数領域で評価されることが多いため、周波数領域上で系統的な設計法を提案することが重要だと考えられる。そこで、本研究では周波数領域の観点から AFC の性能を最適化する設計法を提案した [26] [27]。提案手法では、適応則の LTI 表現を利用して制御系の周波数応答を求める。この周波数応答の位相特性に基づいて適応則パラメータを設計する。従来の周波数領域に基づく設計法は主にゲイン特性に着目したものであり、位相特性を積極的に利用したものではなかった。この結果、従来手法により設計された制御系では、感度関数に不要なピークゲインが生じるという問題があった。一方、提案手法では位相特性に着目することにより、不要なピークゲインが生じないように感度関数上で AFC のパラメータを最適化することができる。本手法は、複雑
3.2 平均化法に基づく AFC の設計法

本節では、従来研究で提案されている平均化法に基づく AFC の設計法について概説する [34] [35]。この設計法は、フィードフォワード制御系を設計するときと同じように、主に時間領域に基づいた設計法であり、適応パラメータの時間応答に注目している。平均化法を用いた設計法は文献で提案されている設計法であるが、後の議論に関係するため、その設計法をここで説明する。

3.2.1 平均化法

平均化法は、周期的な挙動を示す線形系を対象として、その周期で平均化した方程式によって非線形系の挙動を近似解析する手法である。対象とする非線形系を以下に示す。

\[
\dot{x} = \nu f(x, t) + O(\nu^2), \quad (3.1)
\]

\[
x(0) = x_0
\]

ここで、\(x \) は \(n \) 次元の実ベクトル、\(\nu \) は正の微少量、\(x_0 \) は与えられた初期値である。また、\(f \) は \(n \) 次元の実ベクトル関数であり、時間 \(t \) に関して区間的に連続、更に、周期 \(T \) の周期関数である。このとき、以下の極限が唯一存在すると仮定する。

\[
f(z) = \lim_{T \to \infty} \frac{1}{T} \int_0^T f(z, \tau) d\tau \quad (3.2)
\]

上記仮定が成り立つ場合、式 (3.2) から \(\nu^2 \) の項 \((O(\nu^2)) \) を無視すると以下の平均化系が導出される。

\[
\dot{z} = \nu f(z), \quad (3.3)
\]

\[
z(0) = x_0
\]
このとき，これらの系の解について，時間間隔 $1/\nu$ で以下の近似が成り立つ。

$$||x(t) - z(t)|| = \leq c\nu, \quad 0 \leq t \leq L/\nu \quad (3.4)$$

ここで，c と L は正の一定値である。

3.2.2 平均化系の導出

平均化法は主に連続領域において定義されているので，AFC に平均化法を適用する準備として，連続時間系で表現したときの AFC を考える。まず，AFC の出力 $u(t)$ は式 (3.5) となる。

$$u(t) = x^T(t)\gamma(t), \quad (3.5)$$

$$x(t) = \begin{bmatrix} p(t) \\ q(t) \end{bmatrix} \quad (3.6)$$

$$\gamma(t) = \begin{bmatrix} \cos(\omega t) \\ \sin(\omega t) \end{bmatrix} \quad (3.7)$$

また，学習パラメータ $p(t)$, $q(t)$ の適応則は次式となる。

$$p(t) = -\lambda \cos(\omega t + \theta) y(t) \quad (3.8)$$

$$q(t) = -\lambda \sin(\omega t + \theta) y(t) \quad (3.9)$$

文献では AFC をフィードフォワード系として考え，$y(t)$ については次式で表現している。

$$y(t) = P[u(t) - d(t)] \quad (3.10)$$

式 (3.8)，(3.9) の適応則は次式のように書き改めることができる。

$$\dot{x}(t) = -\lambda Q\gamma(t) y(t) \quad (3.11)$$

$$Q = \begin{bmatrix} \cos(\theta) & -\sin(\theta) \\ \sin(\theta) & \cos(\theta) \end{bmatrix} \quad (3.12)$$

式 (3.11) が連続時間系で表現した AFC の適応則である。ここで，学習率 λ と位相パラメータが θ が適応則の設計パラメータである。これらのパラメータを決定する。
のために，AFCに平均化法を適用する。\(\nu = \lambda, f(x, t) = -Q\gamma(t)y(t) \)として，平均化法を適用すると，次式の平均化系が求められる。

\[
\dot{z} = -\frac{1}{2}\lambda Q\gamma(t)P(z(t) - x_d). \tag{3.13}
\]

\[
P = \begin{bmatrix}
P_R & P_I \\
-P_I & P_R
\end{bmatrix}.
\tag{3.14}
\]

\[
P_R = |P(j\omega)|\cos(\angle P(j\omega)), \tag{3.15}
\]

\[
P_I = |P(j\omega)|\sin(\angle P(j\omega)). \tag{3.16}
\]

ここで，\(P_R \)と\(P_I \)は以下のように角周波数\(\omega \)における\(P \)の実部と虚部である。また，\(x_d \)は周期外乱\(d(t) \)を次式で表現したときの，正弦波と余弦波の係数である。

\[
d(t) = \hat{p}(t)\cos(\omega t) + \hat{q}(t)\sin(\omega t) \tag{3.17}
\]

\[
x_d = \begin{bmatrix}
\hat{p}(t) \\
\hat{q}(t)
\end{bmatrix}, \tag{3.18}
\]

更に，\(\psi(t) = z(t) - x_d \)とすると，式(3.14)の平均化系を以下のように表現することができる。

\[
\dot{\psi}(t) = A\psi(t) \tag{3.19}
\]

\[
A = -\frac{1}{2}\lambda Q P \tag{3.20}
\]

適応パラメータ\(x(t) \)が外乱のパラメータ\(x_d \)に等しくなったとき，外乱の推定が完了し，AFCによる外乱の補償が可能となる。つまり，\(\psi(t) \)は推定パラメータの推定誤差を表現している。

3.2.3 平均化法に基づく \(\theta \)の設計

前節で\(\psi(t) \)は推定パラメータの推定誤差を表現していることを示したが，その推定パラメータの収束性は\(A \)の固有値で調整することができる。\(A \)の固有値\(\epsilon \)を求めると以下のようになる。

\[
\epsilon = -\frac{1}{2}\lambda(\epsilon_R \pm j\epsilon_I), \tag{3.21}
\]

\[
\epsilon_R = P_R\cos(\theta) + P_I\sin(\theta), \tag{3.22}
\]

\[
\epsilon_I = P_R\sin(\theta) - P_I\cos(\theta) \tag{3.23}
\]
文献 [16] では、θ を次式のように設定することが提案されている。

\[\theta = \angle P(j\omega) \] \hspace{1cm} (3.24)

式 (3.24) のように θ を設計すると、式 (3.23) の虚部 \(\epsilon_f \) が 0 となり、固有値は以下のように実軸上に配置される。

\[\epsilon = -\frac{1}{2} \lambda |P(j\omega)| \] \hspace{1cm} (3.25)

この結果、推定パラメータの応答は非振動的となり、AFC の収束性が最適化された状態となる。

3.3 ベクトル軌跡に用いた AFC の系統的な設計法

前節では、時間領域に基づいた設計法である平均化法の説明を行った。本研究では、前章で説明した理論的検証結果である、AFC の特性とフィードバック制御である共振フィルタの特性が等しい」という知見に基づいて、共振フィルタの設計で用いられる、ベクトル軌跡を用いた設計を AFC の設計に用いることを提案した [26] [27]。適応則を LTI 表現した AFC に対して、ベクトル軌跡を用いた設計を用いることで、周波数応答上で最適化できる。これは、従来の研究では確立されていなかった、周波数応答上での適応アルゴリズムにおける位相パラメータの最適化を実現することができる。本節では、その設計法を説明する。

3.3.1 ベクトル軌跡に基づく設計法

フィードバック制御系において LTI 表現した \(F_{AFC} \) は、図 3.1 に示すように記述することができ、AFC の設計を線形制御の理論に基づいて行うことができる。特に、LTI 表現を利用することにより AFC の周波数応答を求めることができるため、一般的なフィードバック制御系における外乱を補償するフィルタの設計と同様に、周波数応答に基づいた設計を行うことができる。従来の研究においても LTI 表現した AFC の伝達関数を用いて、パラメータを周波数応答上で設計する手法が提案されている。しかしながら、それらの AFC の設計法は主にゲイン特性を着目したものであり、位相特性は積極的に考慮されているものではなかった。

これに対して、位相条件も考慮したベクトル軌跡を用いた設計法が提案され、磁気ディスク装置の位置決め制御系の分野で、近年用いられている。これは、共振特
図 3.1: LTI 表現した AFC 付きの位置決め制御系のブロック線図

図 3.2: 等価変換を行った位置決め制御系のブロック線図

性の安定化を主な目的とした手法であり，共振フィルタの設計によく用いられる手法である。本研究では，理論的検証において得られた「AFC の伝達特性はフィードバック制御に基づく共振フィルタと等価である」という知見に基づいて，ベクトル軌跡を用いた設計法をAFC に適用することにより，位相条件も考慮したAFC の設計法を提案した。
図3.2に、図3.1を \(d = 0 \) として等価変換した制御系のブロック線図を示す。ここで、\(R \) は AFC の伝達関数 \(F_{AF} \) 転御対象 \(P \) を直列結合した伝達関数である。これより、開ループ伝達関数は \(PC + R \) となる。この開ループ伝達関数 \(PC + R \) を図3.3に示す。ここで、ナイキスト線図上における \([-1, 0]\) は不安定点である。\(PC \) のベクトル軌跡における角周波数 \(\omega \) の点の実部を \(a(j\omega) \), 虚部を \(b(j\omega) \) と記述する。\(a(\omega) \), \(b(\omega) \) は以下のようになる。

\[
\begin{align*}
a(\omega) &= Re[P(j\omega)C(j\omega)] \quad (3.26) \\
b(\omega) &= Im[P(j\omega)C(j\omega)] \quad (3.27)
\end{align*}
\]
また、\(\phi \) は \([-1, 0]\) と \([a(j\omega), b(j\omega)]\) を通る直線と、実軸に平行な直線のなす角であり、以下のように求められる。

\[
\phi = \angle(1 + PC(j\omega)) \quad (3.28)
\]
開ループ伝達関数 \(PC + R \) のベクトル軌跡において、伝達関数 \(R \) によって描かれるベクトル軌跡は図3.3の円のような軌跡となる。このとき、この円の軌跡が不安定点 \([-1, 0]\) から最も離れるように設計するのが、ベクトル軌跡を用いたフィルタの設計法である。設計にベクトル軌跡を用いるのは、周波数応答上で制御系の外乱補償性能に評価よく用いられる感度関数と、ベクトル軌跡の間には密接な関係があるからである。ある周波数の感度関数ゲインが大きいと、その周波数における信号に対して感度が高いことを示し、低いと感度が低いことを示す。そのため、外乱が存在する周波数において、感度関数ゲインを下げるフィルタを設計することで外乱補償を実現する。ナイキスト線図上の \(L(j\omega) \) と感度関数ゲイン \(|S|\) の関係を簡単に示したのが図3.4となる。ナイキスト線図上で座標 \([-1, 0]\) を中心とした半径1の円内においては、感度関数ゲインが1以上になり、その周波数における信号を増幅される。円外は感度関数ゲインが1未満であり、その周波数における信号を抑圧される。そのため、外乱に対して高感度であるためにはナイキスト線図上で、ベクトル軌跡を \([-1, 0]\) から遠ざければよい。特にベクトル軌跡が \([-1, 0]\) を通過する場合、感度関数のゲインが無限大となる周波数が存在する。このような制御系は不安定となるため、安定性の観点からも \([-1, 0]\) から遠ざける必要がある。そのため、\(R \) のベクトル軌跡が不安定点 \([-1, 0]\) から最も離れるときに感度関数を最適化できたといえる。

感度関数ゲインを下げるためには、\([-1, 0]\) からベクトル軌跡を遠ざける必要がある。そのため、図3.5に示すように \([-1, 0]\) から \([a(j\omega), b(j\omega)]\) までの距離 \(D \) が最
図 3.3: ナイキスト線図上における $PC + R$ のベクトル軌跡

図 3.4: ナイキスト線図上におけるベクトル軌跡と感度関数ゲインの関係
図 3.5: ナイスト線図上での不安定点と AFC のベクトル軌跡との距離

図 3.6: ベクトル軌跡を用いた AFC の設計法
大となればよいというとき、図 3.6 に示すように \([-1, 0]\) と \([a(j\omega), b(j\omega)]\) を通る直線 \(l\)と, \([a(j\omega), b(j\omega)]\) における円の接線 \(m\) が直交するとき, 距離 \(D\) が最大となる。この関係から, AFC の伝達関数 \(F_{AFC}\) が満たすべき位相条件は以下のように求められる。

\[
\angle F_{AFC}(j\omega) = \angle R(j\omega) - \angle P(j\omega), \tag{3.29}
\]

\[
= \angle(1 + PC(j\omega)) - \angle P(j\omega), \tag{3.30}
\]

\[
= \angle \left(\frac{P(j\omega)}{1 + PC(j\omega)} \right), \tag{3.31}
\]

\[
= -\angle(G(j\omega)) \tag{3.32}
\]

ここで, \(G\) は次式で表現される伝達関数である。

\[
G = \frac{P}{(1 + PC)} \tag{3.33}
\]

3.3.2 \(\theta\) と \(\lambda\) の設計について

AFC の伝達関数 \(F_{AFC}\) において, 角周波数 \(\omega\) における位相を求めるとき, \(\angle F(j\omega) = -\theta\) となる。これより, AFC の伝達関数 \(F_{AFC}\) が図 3.6 の位相条件を満たすためには, \(\phi\) を次式のように設定すればよいことが導かれる。

\[
\theta = \angle G(j\omega) \tag{3.34}
\]

このように, ナイキスト線図上で \([-1, 0]\) からの距離という明確な指標をもって, 試行錯誤を伴うような解析的設計法ではなく, 系統的にパラメータを決定することができる。そして, \([-1, 0]\) からの距離が最大化されているならば, ナイキスト線図上で, つまり周波数応答上で最適化できているといえる。また, \(\theta\) の決定には複雑な数式を用いることなく, ナイキスト線図上で幾何学的に決定でき, 解べきべき数式も式 (3.34) のみであり, 非常に簡便な設計法である。

AFC の設計パラメータの一つである \(\lambda\) は LTI モデル \(F_{AFC}\) においてはゲインを決めるパラメータであり, 基本的には補償する外乱モデルのゲインに合わせて設計すればよい。しかし, \(\lambda\) は式 (3.24) に見られるように \(A\) の固有値に関係しており, 定性的には \(\lambda\) を大きくするほど推定パラメータの収束が早くなる。そのため, 推定パラメータの収束速度を向上したい場合は, 外乱モデルのゲイン以上に設計することも可能である。ここでは, 適応則の LTI 表現に基づいて \(\lambda\) の上限値を決めめる方法を示す。
図 3.7: 図 3.1 を等価変換した位置決め制御系のブロック線図

図 3.7 に、図 3.1 を \(d = 0 \) として等価変換した制御系を示す。ここで、\(G \) は式 (3.33) の伝達関数である。図 3.7 の開ループ伝達関数は \(GF_{AFC} \) となるが、AFC の伝達関数を \(F_{AFC} = \lambda F'_{AFC} \) と記述すると、開ループ伝達関数は \(\lambda G F'_{AFC} \) となる。
これより、\(\lambda \) の最大値はゲイン余裕の観点から以下のように求めることができる。

\[
\lambda_{max} = \frac{1}{|G(j\omega_p)||F'(j\omega_p)|} \quad (3.35)
\]

ここで、\(\omega_p \) 開ループ伝達関数 \(\lambda G F'_{AFC} \) の位相が -180 度になる角周波数である。また、AFC を適用する周波数を \(\omega_i \) とするとき、式 (3.35) は次式のように書き改めることができる。

\[
\lambda_{max} = \frac{|\omega_i^2 - \omega_p^2|}{|G(j\omega_p)|\sqrt{\omega_i^2 \sin^2(\theta) + \omega_p^2 \cos^2(\theta)}} \quad (3.36)
\]

以上より、制御系全体の安定性を満たす \(\lambda \leq \lambda_{max} \) の範囲内で \(\lambda \) は値を設定することができる。適応パラメータの収束性を改善したい場合は、上記の範囲内で大きな \(\lambda \) を設定すればよい。しかし、\(\lambda \) を大きくすることで安定性は悪化するため、特に求められない限りは、外乱モデルのゲインに合わせて設定するのがよいと考えられる。

3.3.3 提案法と平均化法による \(\theta \) の設計について

前節までに、提案法による周波数応答上でのパラメータ設計と、従来法である平均化法による時間応答上でのパラメータ設計を説明した。両者の設計結果を比較すると、適応アルゴリズムの位相パラメータ \(\theta \) の設計結果に違いがあることが
図 3.8: AFC を適用したときのベクトル軌跡

分かった。平均化法による設計では $\theta = \angle P(j\omega)$ と設計するのに対し、提案法では $\theta = \angle G(j\omega)$ と設計する。しかし、$\theta = \angle P(j\omega)$ は、AFC をフィードフォワード制御系として捉え、$y(t), u(t), d(t)$ の関係を $y(t) = P[u(t) - d(t)]$ のように考えた場合に導出される位相条件である。しかしながら、AFC をフィードバック制御系の外乱補償に適用する場合は、AFC はフィードバック制御系として考えるべきである。なぜなら、本研究の理論的解析により AFC はフィードバック制御と特性が等しいという結果が得られているからである。つまり、平均化法による設計においても、AFC をフィードバック制御系として捉えた場合の $y(t), u(t), d(t)$ の入出力関係から位相条件を導出するべきである。その入出力関係は $y(t) = G[u(t) - d(t)]$ であり、平均化系の固有値に基づいて導出された位相条件は $\theta = \angle G(j\omega)$ となり、ベクトル軌跡で導出される位相条件と全く同じである。

その位相条件を用いて、900Hz の周期外乱の補償に AFC を行ったときのシミュレーション結果を一例として説明する。図 3.8 はナイキスト線図上でのベクトル軌跡を示しており、青の実線がベクトル軌跡を用いた設計により $\theta = \angle G(j\omega)$ とした場合の結果で、赤の破線が $\theta \neq \angle G(j\omega)$ の場合の結果である。破線のベクトル軌跡
図 3.9: AFC を適用したときの感度関数の周波数応答

図 3.10: AFC の適応パラメータ p(k), q(k) の時間応答
と比較して，実線のベクトル軌跡は不安定点 [-1, 0] から遠ざかる軌跡に近っていることが分かる。図 3.9 は感度関数の周波数応答について示しており，青の実線がベクトル軌跡を用いた設計により \(\theta = \angle G(j\omega) \) とした AFC を適用した場合の結果で，赤の破線が \(\theta \neq \angle G(j\omega) \) とした場合の結果である。また，黒の実線は AFC を適用しなかった場合の制御系の感度関数である。AFC を適用しなかった場合の感度関数ゲインと比較して，\(\theta = \angle G(j\omega) \) とした AFC を適用した場合の感度関数ゲインが大きくなっている部分はない。一方，\(\theta \neq \angle G(j\omega) \) とした場合の設計結果は，900Hz 付近で大きなピークが生じている。これは，900Hz 付近のベクトル軌跡が [-1, 0] に接近してしまったために生じたピークである。

すなわち，平均化法に基づいて平均化系の固有値を実軸上に配置するという観点から導出された \(\phi \) に関する条件と，適応則の LTI 表現に基づいて位相条件を最適化するという観点から導出された \(\phi \) に関する条件が一致することが見出された。これは，AFC では適応則の収束性の最適化と感度関数ゲインの最適化が等価になることを示しており，理論的に新たな知見といえる。

3.4 本章の結言

本章では，まず従来の AFC の設計法である平均化法に基づく設計法を説明した。平均化法による AFC の設計は，主に適応パラメータや位置誤差信号の時間応答に基づいた設計法である。その設計法では時間応答上での最適化は補償されているが，周波数応答上での評価は行われていなかった。位置決め制御系の性能の開ループ特性や，感度関数など周波数応答上で評価されることも多いため，周波数応答上での AFC の設計法の開発も重要だと考えられる。そこで，本研究ではフィードバック制御系の設計手法を利用した，ベクトル軌跡を用いた AFC の系統的な設計法を提案した。2 章で示した理論的検証により，AFC とフィードバック制御である共振フィルタが等価であることが分かった。その知見を活かして，周波数応答上での系統的な設計が可能な AFC の設計法を確立した。提案手法は周波数応答上で性能が最適であることが保証されており，AFC の設計パラメータはナイキスト線図上で幾何学的に設計できる。その設計には複雑な数式を必要としないので，簡便にパラメータを設計でき，実用において有用であるといえる。また，提案手法と平均化法による設計法との関係性も明らかにした。これは，時間応答上での設計法と周波数応答上での設計法の関係性を明らかにしたという意味であり，制御理論における新たな知見といえる。
第4章 AFCの理論的検証結果と系統的設計法の有効性の確認

4.1 本章の緒言

本章では位置決め制御系の外乱補償手法として AFC を実装したときの有効性を実験結果、またはシミュレーション結果を用いて示す。特に、前章までに説明した理論的検証と設計法を中心に、以下の３点についての結果を注目した。

・ベクトル軌跡を用いた系統的な AFC の設計法の有効性について
・拡張型 AFC による機構共振に起因した外乱補償の有効性について
・拡張型 AFC と共振フィルタの等価性について

まず、ベクトル軌跡を用いた AFC の設計法の有効性について示す。周波数応答上で最適化できることが提案手法の特徴であるので、周波数応答上での設計結果を中心に示す。次に、適応アルゴリズムに忘却係数を追加した拡張型 AFC の有効性を示す。拡張型 AFC は周期外乱だけでなく、機構共振に基づく外乱も補償できるのが特徴であるので、機構共振に基づく外乱の補償結果を中心に示す。そして、理論的検証結果で得られた拡張型 AFC と共振フィルタとの等価性についての検証結果を説明する。拡張型 AFC と共振フィルタは理論的に等価（伝達関数が同じ）であることを示したが、時間応答、及び周波数応答で等価になることをシミュレーションで確認したので、その結果について示す。

4.2 ベクトル軌跡を用いた系統的な AFC の設計法

提案したベクトル軌跡を用いた設計法を、磁気ディスク装置の周期外乱を補償する AFC の設計に用いて有効性を確認した。図 4.1 は磁気ディスク装置の基本的な構成を示している。磁気ディスク装置は Voice Coil Motor (VCM)，磁気ヘッド，
図 4.1: 磁気ディスク装置の構成図

ディスク, そしてスビンデルモータから構成される。ヘッドの位置決めシステムでは, 制御入力は VCM と磁気ヘッドを駆動するサーグーアンプに供給される電圧である。制御量はディスク書き込まれているヘッドの位置信号であり, 磁気ヘッドによって読まれる。ディスク上でデータの読み書きをする場合は, 目標位置のトラックに磁気ヘッドを追従させる必要がある。その位置決め制御系はナノスケールの精度が要求され, 位置決め精度を向上させるために様々な手法が提案されてきた [38] [39] [40] [41] [42] [44] [43] [45] [46]。主な位置決め精度の阻害要因として, ディスクに位置信号を書き込んだサーグートラックの歪みや, ディスクの偏心などに起因して, ディスクの回転に伴った周期外乱が挙げられる。ディスク上でデータを正確に読み書きするために, 位置決め制御系の精度を改善するために, 周期外乱は補償しなければならない [47] [48] [49]。そこで, 周期外乱を補償する AFC をベクトル軌跡用いて設計し, 有効性の確認を行った。

4.2.1 モデリング

まず, 磁気ディスク装置の位置決め制御系のモデリングについて説明する。図 4.2 は制御対象となる磁気ディスク装置の周波数応答を示す。実線が実験結果, 破線が実験結果に対してカーブフィッティングで成作したモデルである。破線で示された周波数応答は式 (4.1) で示される数式モデルの周波数応答である。

\[P_c(s) = K_p \sum_{m=1}^{6} \frac{\kappa_p(m)}{s^2 + 2\zeta_p(m)\omega_p(m)s + \omega_p^2} \] \hspace{1cm} (4.1)
図 4.2: 制御対象 P の周波数応答

表 4.1: 制御対象 P のパラメータ

<table>
<thead>
<tr>
<th>m</th>
<th>$\kappa_p(m)$</th>
<th>$\zeta_p(m)$</th>
<th>$\omega_p(m)$[rad/s]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1.00</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>-1.00</td>
<td>0.03</td>
<td>$2\pi \times 5000$</td>
</tr>
<tr>
<td>3</td>
<td>0.04</td>
<td>0.02</td>
<td>$2\pi \times 6500$</td>
</tr>
<tr>
<td>4</td>
<td>-0.07</td>
<td>0.02</td>
<td>$2\pi \times 7000$</td>
</tr>
<tr>
<td>5</td>
<td>-0.20</td>
<td>0.02</td>
<td>$2\pi \times 8200$</td>
</tr>
<tr>
<td>6</td>
<td>-0.40</td>
<td>0.03</td>
<td>$2\pi \times 9700$</td>
</tr>
</tbody>
</table>

ここで，m は制御対象の共振モードの数を示し，$m = 1$ は剛体モードを示す。モードの次数は，カーブフィッティングで作成したモデルの周波数応答が，測定結果で確認される主要なピークに合うように選択した。また，制御対象のゲインは $K_p = 6.88 \times 10^5$，κ_p は各モードのゲイン（モード影響定数），ω_p は各モードの共振角周波数であり，ζ_p は各モードの減衰比である。κ_p，ζ_p，ω_p の数値を表 4.1 に示す。各パラメータは実験結果の周波数応答と，数式モデルの周波数応答が一致するように選択した。図 4.3 はフィードバック制御器 C の周波数応答を示している。

また，補償する周期外乱の周波数は 8 種類 (240, 360, 720, 1440, 2160, 2880, 3600, 4320Hz) と仮定した。
4.2.2 ベクトル軌跡を用いた AFC の設計

ベクトル軌跡を用いた AFC の設計結果について示す。このモデルで適用したAFCは以下の式で表現される。

\[
\begin{align*}
 u_i(k) &= p_i(k - 1) \cos(\omega_iTk) + q_i(k - 1) \sin(\omega_iTk) \quad (4.2) \\
 p_i(k) &= p_i(k - 1) + \lambda_i \epsilon \cos(\omega_iTk + \theta_i) \quad (4.3) \\
 q_i(k) &= q_i(k - 1) + \lambda_i \epsilon \sin(\omega_iTk + \theta_i) \quad (4.4)
\end{align*}
\]

\(i\) は AFC の数を示しており、このモデルでは 8 種類の周波数の周期外乱を補償するので、\(i = 1 - 8\) である。また、補償対象としたのは周期外乱であるので、忘却係数は 0 とし、表記を割愛した。この 8 種類の AFC のパラメータを、制御系の開ループのベクトル軌跡を [-1, 0] から遠ざけるように \(\lambda_i\) と \(\theta_i\) を設計した。このとき、先行研究で提案されている設計法と比較を行った。その設計法は \(\theta\) を、AFCを制御対象の位相角 \(\arg P(j\omega)\) に設定するという手法である。

それぞれの手法での設計したときの周波数応答を図 4.4, 4.5 に示す。また、\(\lambda_i, \theta_i\) についての数値データを表 4.2 に示す。図 4.4, 4.5 から両者の周波数特性、特に位相特性が異なっていることが分かる。それは、表 4.2 に示した \(\theta_i\) からも分かる。
図 4.4: 従来の設計法を用いた AFC の周波数応答

図 4.5: 提案した設計法を用いた AFC の周波数応答

4.2.3 設計結果

まず、周波数応答に関する結果を示す。位置決め制御系の開ループの周波数応答を図 4.6, 4.7 に示す。図 4.6 は従来の設計法を用いた周波数応答で、図 4.7 は提
表 4.2: AFC の設計パラメータ

<table>
<thead>
<tr>
<th>i</th>
<th>frequency [Hz]</th>
<th>λ_i</th>
<th>θ_i [deg]</th>
<th>λ_i</th>
<th>θ_i [deg]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>240</td>
<td>2^{-3}</td>
<td>-181.37</td>
<td>2^{-1}</td>
<td>-125.11</td>
</tr>
<tr>
<td>2</td>
<td>360</td>
<td>2^{-3}</td>
<td>-182.74</td>
<td>2^{-2}</td>
<td>-145.57</td>
</tr>
<tr>
<td>3</td>
<td>720</td>
<td>2^{-2}</td>
<td>-184.11</td>
<td>2^{-2}</td>
<td>-150.00</td>
</tr>
<tr>
<td>4</td>
<td>1440</td>
<td>2^{-2}</td>
<td>-188.23</td>
<td>2^{-1}</td>
<td>-63.00</td>
</tr>
<tr>
<td>5</td>
<td>2160</td>
<td>2^{-6}</td>
<td>-160.35</td>
<td>2^{-2}</td>
<td>-19.65</td>
</tr>
<tr>
<td>6</td>
<td>2880</td>
<td>2^{-3}</td>
<td>-164.82</td>
<td>2^{-1}</td>
<td>15.18</td>
</tr>
<tr>
<td>7</td>
<td>3600</td>
<td>2^{-2}</td>
<td>117.10</td>
<td>2^{-1}</td>
<td>62.90</td>
</tr>
<tr>
<td>8</td>
<td>4320</td>
<td>2^{-2}</td>
<td>60.74</td>
<td>2^{-1}</td>
<td>119.26</td>
</tr>
</tbody>
</table>

案した設計法を用いた周波数応答である。この開ループの周波数応答からベクトル軌跡を計算し、ナイキスト線図上に図示した結果を図 4.8, 4.9, 4.10, 4.11 に示す。図 4.8 は従来の設計法のベクトル軌跡であり、図 4.9 はその拡大図である。図 4.10 は提案した設計法のベクトル軌跡であり、図 4.11 はその拡大図である。従来法のベクトル軌跡に注目すると、破線で示した AFC を適用していないときのベクトル軌跡と比較して、[-1, 0] に接近していることが分かる。AFC を適用することにより、外乱に対して感度が高くなった周波数があることを示している。一方、提案法のベクトル軌跡は破線と比較して、[-1, 0] に極端に接近していることはない。図 4.12, 4.13 は感度関数の周波数応答を示している。図 4.12 は従来法の AFC を適用したときの結果である。この周波数応答を見ると、AFC を適用した付近の周波数にピークが存在していることが分かる。これは、ベクトル軌跡が [-1, 0] に接近してしまったためである。特に 3600Hz 付近における、感度関数の H_{∞} ノルムは 16.3dB であり、この周波数付近における外乱の振幅を増幅してしまう。図 4.13 は提案法の AFC を適用したときの結果である。感度関数上に特に目立ったピークは存在しておらず、感度関数の H_{∞} ノルムも 9.9dB であり、これは AFC を適用しなかったときの H_{∞} ノルムに等しい。つまり、ベクトル軌跡が [-1, 0] から遠ざかるように設計できていることが分かる。

次に時間応答に関する結果を示す。まず、matlab の simlink を用いて作成したシミュレーションモデルを使った結果を示す。図 4.14 は位置決め制御系に 8 種類の周波数の sin 波を周期外乱として加えたときの、位置誤差信号の時間応答を示している。従来法と比較して位置誤差信号が収束するまでの時間が短くなり、時間

47
図 4.6: 従来の設計法を用いた AFC を適用したときの開ループ特性の周波数応答

図 4.7: 提案した設計法を用いた AFC を適用したときの開ループ特性の周波数応答

応答が改善されていることが分かる。収束に関わるパラメータは学習率 α_i であるが、提案法は $[-1, 0]$ から遠ざかるように設計できており、制御系の安定性も改善
図 4.8: 従来の設計法を用いた AFC を適用したときのベクトル軌跡

図 4.9: 従来の設計法を用いた AFC を適用したときのベクトル軌跡の拡大図

しているため、従来法と比較して λ_i を大きく設計できる。そのため、従来法と比較して適応アルゴリズムの収束性の改善につながる。提案法は実機実験でも有効性を確認した。実機実験で取得した位置誤差信号の時間応答を図 4.15 に示す。得られた時間応答において、連続 5 サンプル 0.15 track 未満となったときの 5 サンプ
図 4.10: 提案した設計法を用いた AFC を適用したときのベクトル軌跡

図 4.11: 提案した設計法を用いた AFC を適用したときのベクトル軌跡の拡大図

ル目の時間を収束した時間と定義すると，提案法により AFC を設計した場合は従来法と比較して，収束に要した時間は約 4 分の 1 であった。さらに，収束後の位置誤差信号の振幅も小さくなっていることが分かる。これは，提案法により設計した場合は，感度関数にピークが生じないためである。表 4.3 に数値結果を示す。
図 4.12: 従来の設計法を用いた AFC を適用したときの感度関数

図 4.13: 提案した設計法を用いた AFC を適用したときの感度関数
図 4.14: シミュレーションにおける位置誤差信号 $e(k)$ の時間応答

表 4.3: 設計結果

<table>
<thead>
<tr>
<th></th>
<th>Conventional</th>
<th>Proposed</th>
</tr>
</thead>
<tbody>
<tr>
<td>H_∞ norm of S</td>
<td>16.3dB</td>
<td>9.9dB</td>
</tr>
<tr>
<td>Convergence time</td>
<td>81.3ms</td>
<td>21.7ms</td>
</tr>
<tr>
<td>Convergent value (peak to peak)</td>
<td>0.110track</td>
<td>0.056track</td>
</tr>
</tbody>
</table>

提案法は H_∞ ノルム、収束性、そして定常応答の 3 点とも改善できていることが分かる。

4.3 拡張型 AFC による機構共振に起因した外乱の補償

本節では、拡張型 AFC により機構共振に起因した外乱を補償した結果を示す。拡張型 AFC は、磁気ディスク装置におけるディスクフラッタと呼ばれる外乱の補償に適用することで、その有効性を確認した。ディスクフラッタは、ディスクが高速に回転することにより発生する流体加振力に起因するものであり、ディスク全体がその機構共振により歪む特性を有している。そのため、ヘッド位置決め制御系は、これらのディスクフラッタに起因するトラック軌跡の変形にヘッド位置
図 4.15: 実験における位置誤差信号 $e(k)$ の時間応答

を追従させる必要がある [50] [51] [52]。そのため、このディスクの機構共振によって発生する外乱を拡張型 AFC により補償した。

4.3.1 モデリング

拡張型 AFC の有効性は、磁気ディスク装置のベンチマーク問題 (Ver. 3.1) [2] に定義されている位置決め制御系のシミュレーションモデルに対して行った。磁気ディスク装置のベンチマークモデルは幅広く用いられており、ベンチマークモデルに基づいた研究成果も数多く報告されている [53] [54] [55] [56]。ベンチマーク問題における制御対象 P は式 (4.5) で表わされる。m は制御対象の共振モードの数を示し、$m = 1$ は剛体モードを示す。共振モードの数はベンチマーク問題 (Ver. 3.1) で規定されているモードの数と同じである。κ_p, ζ_p, ω_p の数値を表 4.4 に示す。

$$P(s) = K_p \sum_{m=1}^{7} \frac{\kappa_p(m)}{s^2 + 2\zeta_p(m)\omega_p(m)s + \omega_p^2(m)}.$$
(4.5)

ここで、K_p は 3.74×10^9 である。ヘッド位置決め制御系は演算時間遅れを有するサンプル値制御系にて実現されている。そのため、コントローラーにとって制御対象は、機構系、サンプラー、0 次ホールド、等価無駄時間を含んだ特性となる。そこ
表 4.4: ベンチマークモデルにおける制御対象 $P(s)$ のパラメータ

<table>
<thead>
<tr>
<th>m</th>
<th>$\omega_p(m)$</th>
<th>$\kappa_p(m)$</th>
<th>$\zeta_p(m)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0</td>
<td>1.00</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>$2\pi \times 3000$</td>
<td>0.01</td>
<td>0.005</td>
</tr>
<tr>
<td>3</td>
<td>$2\pi \times 4100$</td>
<td>-1.00</td>
<td>0.02</td>
</tr>
<tr>
<td>4</td>
<td>$2\pi \times 5000$</td>
<td>0.03</td>
<td>0.001</td>
</tr>
<tr>
<td>5</td>
<td>$2\pi \times 8200$</td>
<td>1.00</td>
<td>0.02</td>
</tr>
<tr>
<td>6</td>
<td>$2\pi \times 12300$</td>
<td>-1.00</td>
<td>0.02</td>
</tr>
<tr>
<td>7</td>
<td>$2\pi \times 16400$</td>
<td>1.00</td>
<td>0.02</td>
</tr>
</tbody>
</table>

図 4.16: ベンチマークモデルにおける制御対象 P の周波数応答

で、ヘッド位置決め機構系の制御対象モデル P として、無駄時間を含む0次ホールドにより機構系特性 P_m を離散化したものを与える。ここで、サンプリング時間 $T = 38.4 \times 10^{-6}$, 同値無駄時間 $T_d = 20 \times 10^{-6}$ である。求まった制御対象の周波数応答を図 4.16 に示す。

また、安定化用のフィードバックコントローラ C は、PI-lead コントローラ C_p と、2種類のノッチフィルタ C_{n1}, C_{n2} の積として与える。ディジタルフィルタとして制御系に実装する際には、C_p は双一次変換を用いて、C_{n1}, C_{n2} は周波数重み
図 4.17: ベンチマークモデルにおけるフィードバック制御器 C の周波数応答

付双一次変換を用いて離散化する。制御帯域（オープンループゲイン 0dB クロス周波数）1 kHz, ゲイン余裕 5 dB 以上, 位相余裕 30 以上を実現するように設計した結果, C_p と C_{n1}, C_{n2} は以下のように求めた。

$$C_p(s) = \frac{0.0408(s + 2\pi \times 10)(s + 2\pi \times 250)}{s(s + 2\pi \times 4000)}$$ \hspace{1cm} (4.6)

$$C_{n1}(s) = \frac{s^2 + 2\zeta_{n1c}\omega_{n1c}s + \omega_{n1c}^2}{s^2 + 2\zeta_{n1c}\omega_{n1c}s + \omega_{n1c}^2}$$ \hspace{1cm} (4.7)

$$C_{n2}(s) = \frac{s^2 + 2\zeta_{n2c}\omega_{n2c}s + \omega_{n2c}^2}{s^2 + 2\zeta_{n2c}\omega_{n2c}s + \omega_{n2c}^2}$$ \hspace{1cm} (4.8)

ここで,

$$\zeta_{n1c} = 0.1, \zeta_{n2c} = 0.5, \omega_{n1c} = 2\pi \times 4700,$$

$$\zeta_{n2c} = 0.1, \zeta_{n2c} = 0.8, \omega_{n2c} = 2\pi \times 8000.$$ \hspace{1cm} (4.9)

図 4.17 に C の周波数応答を示す。

ベンチマーク問題において、ディスクフラッタによって発生する外乱は, 分散 1 の白色ガウシアンノイズをディスクフラッタの外乱モデルに印加したときの出力と定義されている。そのディスクフラッタの外乱モデルは式 (4.10) で表現される。

$$D(s) = \sum_{i=1}^{7} \frac{2a_{di}\zeta_{di}\omega_{di}^2}{s^2 + 2\zeta_{di}\omega_{di}s + \omega_{di}^2}$$ \hspace{1cm} (4.10)

55
表 4.5: ディスクフラッタの外乱モデルのパラメータ

<table>
<thead>
<tr>
<th>i</th>
<th>Gain of models</th>
<th>Damping ratio</th>
<th>Natural frequency</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.09</td>
<td>0.01</td>
<td>$2 \times \pi \times 750$</td>
</tr>
<tr>
<td>2</td>
<td>0.17</td>
<td>0.01</td>
<td>$2 \times \pi \times 780$</td>
</tr>
<tr>
<td>3</td>
<td>0.20</td>
<td>0.01</td>
<td>$2 \times \pi \times 900$</td>
</tr>
<tr>
<td>4</td>
<td>0.17</td>
<td>0.01</td>
<td>$2 \times \pi \times 1020$</td>
</tr>
<tr>
<td>5</td>
<td>0.06</td>
<td>0.005</td>
<td>$2 \times \pi \times 1080$</td>
</tr>
<tr>
<td>6</td>
<td>0.09</td>
<td>0.01</td>
<td>$2 \times \pi \times 1230$</td>
</tr>
<tr>
<td>7</td>
<td>0.06</td>
<td>0.005</td>
<td>$2 \times \pi \times 1800$</td>
</tr>
</tbody>
</table>

図 4.18: ディスクフラッタの外乱モデルの周波数応答

表 4.5 は、その外乱モデルのパラメータを示しています。図 4.18 は外乱モデルの周波数応答を示しています。図 4.19 はディスクフラッタに起因する外乱の時間波形を示しており、これを位置決め制御系の外乱として加える。
図 4.19: ディスクフラッタに起因する外乱 \(d(t) \) の時間波形

表 4.6: 拡張型 AFC の設計パラメータ

<table>
<thead>
<tr>
<th>(i)</th>
<th>Learning rate (\lambda_i)</th>
<th>Phase (\theta_i [\text{deg}])</th>
<th>Forgetting factor (\zeta_i) [%]</th>
<th>Natural frequency (\omega_i [\text{rad/s}])</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.15</td>
<td>-103.16</td>
<td>0.01</td>
<td>(2 \times \pi \times 750)</td>
</tr>
<tr>
<td>2</td>
<td>0.17</td>
<td>-105.35</td>
<td>0.01</td>
<td>(2 \times \pi \times 780)</td>
</tr>
<tr>
<td>3</td>
<td>0.20</td>
<td>-114.33</td>
<td>0.01</td>
<td>(2 \times \pi \times 900)</td>
</tr>
<tr>
<td>4</td>
<td>0.17</td>
<td>-113.87</td>
<td>0.01</td>
<td>(2 \times \pi \times 1020)</td>
</tr>
<tr>
<td>5</td>
<td>0.10</td>
<td>-88.88</td>
<td>0.005</td>
<td>(2 \times \pi \times 1080)</td>
</tr>
<tr>
<td>6</td>
<td>0.12</td>
<td>-142.04</td>
<td>0.01</td>
<td>(2 \times \pi \times 1230)</td>
</tr>
<tr>
<td>7</td>
<td>0.10</td>
<td>-188.25</td>
<td>0.005</td>
<td>(2 \times \pi \times 1800)</td>
</tr>
</tbody>
</table>

4.3.2 拡張型 AFC の設計

ディスクフラッタに起因する振動を補償するため、拡張型 AFC の設計を行った。拡張型 AFC は式 (4.13) で与えられる。

\[
\begin{align*}
u(k) &= \sum_{i=1}^{7} p_i(k-1) \cos(\omega_i T k) + q_i(k-1) \sin(\omega_i T k) \quad (4.11) \\
p_i(k) &= e^{-\zeta \omega_i T_k} p_i(k-1) + \lambda_i e(k) \cos(\omega_i T k + \theta_i) \quad (4.12)
\end{align*}
\]
図 4.20: AFC の周波数応答

\[
q_i(k) = e^{-\zeta \omega_i T k} q_i(k - 1) + \lambda_i e(k) \sin(\omega_i T k + \theta_i)
\]

（4.13）

ディスクフラッタに起因する外乱は、7 種類のディスクの機構共振によって発生するとして想定したシミュレーションモデルなので、7 種類の拡張型 AFC を設計した。表 4.6 に設計した各パラメータを示す。\(\theta_i \) の設計は、本研究で提案しているベクトル軌跡を用いた設計法を用いている。\(\lambda_i, \zeta, \omega_i \) は外乱モデルを参照にして設計した。

拡張型 AFC の周波数応答を図 4.20 に赤の破線で示す。また、図 4.20 において従来の AFC で設計した場合、つまり忘却係数 \(\zeta_i = 0 \) の周波数応答を青の実線で示す。両者は特にゲイン特性が大きく異なる。従来の AFC は伝達関数で表現したときの減衰率を 0 の機構共振モデルに等しいので、\(\omega_i \) におけるゲインは無限大になる。\(\omega_i \) におけるゲインの調整はできないため、外乱を過分に補償する可能性がある。一方、拡張型 AFC の伝達関数は機構共振モデルそのものを内部モデルとして含み、\(\zeta_i \) によりゲイン調整が可能である。\(\zeta_i \) はディスクフラッタの外乱モデルと合うように設計することで、ディスクフラッタに起因する振動を過不足なく補償することができる。
拡張型 AFC と従来の AFC を磁気ディスク装置のベンチマーク問題で定義されている、matlab の simlink を用いたシミュレーションにより効果を確認した。まず、拡張型 AFC の時間応答を確認した。図 4.19 に示す外乱 d(t) を入力したときの、位置誤差信号 c(k) の時間波形を図 4.21 に示す。図 4.21(a) は AFC を用いない場合、図 4.21(b) は従来の AFC を用いた場合、そして図 4.21(c) は拡張型 AFC を用いた場合の時間波形である。まず、それぞれの時間波形から AFC を用いることで位置誤差信号の振幅が小さくなっていることが分かる。また、AFC と拡張型 AFC のどちらを用いた場合でも、ほぼ同じ効果が得られることが分かる。

図 4.21: 位置誤差信号: c(k) の時間応答

4.3.3 設計結果
図 4.22: AFC を適用したときの開ループ特性の周波数応答

しかしながら、両者の違いは周波数応答上で確認できる。図 4.22 は開ループ特性の周波数応答を示し、図 4.23 は開ループ特性のベクトル軌跡を示している。青の実線は AFC を適用したときのベクトル軌跡、赤の破線は拡張型 AFC を適用したときのベクトル軌跡を示している。AFC を適用したときのベクトル軌跡は、拡張型 AFC を適用した場合と比較して [-1, 0] に近づいていることが分かる。図 4.24 に感度関数を示す。図 4.24 から、従来の AFC を適用した感度関数の H_∞ ノルムは拡張型 AFC を適用した場合よりも大きい。これは、ベクトル軌跡が [-1, 0] に近づいていることからも分かるが、その原因は制御系のウォーターベッド効果によるものである。ウォーターベッド効果とは、すべての周波数において感度関数のゲインを下げることができないため、ある周波数で感度関数ゲインを下げたとき、他の周波数における感度関数ゲインが持ち上がる現象である。従来の AFC では ω_i において無限大のゲインであり、かつゲインの調整ができないため、ウォーターベッド効果による感度関数ゲインの増加分の調整はできない。一方、拡張型 AFC は ω_i におけるゲインを ζ_i で調整できるため、ウォーターベッド効果による影響を調整、周波数応答の整形が可能である。その結果、拡張型 AFC は、従来の AFC と比較して H_∞ ノルムを小さく抑えることができた。
図 4.23: AFC を適用したときのベクトル軌跡

図 4.24: 感度関数の周波数応答

表 4.7 にシミュレーションで得られた数値結果を示す。位置誤差信号の 3σ 値は従来の AFC, 拡張型 AFC ともにほぼ同じ数値であった。一方, H_∞ ノルムは拡張
型 AFC を用いたときの方が小さく、さらに位置決め制御系のゲインマージンと位相マージンも拡張型 AFC を用いたときの方が大きい。拡張型 AFC は \(\omega_l \) においてゲインの調整を行い、ディスクフラッタに起因した外乱に対して過不足なく補償することができるため、従来の AFC と同じ補償効果でありながら、制御系の安定性を改善できることを示している。

4.4 拡張型 AFC と共振フィルタの等価性

3 章に示した理論的検証から、適応アルゴリズムに基づいた外乱補償手法である拡張型 AFC と、フィードバック制御に基づいた共振フィルタは、異なる概念に基づいた外乱補償手法であるにも関わらず、伝達関数は同じになることがある。本節では、拡張型 AFC と共振フィルタの等価性について、シミュレーション上で確認を行った結果を示す。前節で示した磁気ディスク装置のベンチマーク問題で定義される、ディスクフラッタに起因した外乱を補償する共振フィルタを設計し、拡張型 AFC と比較を行った。

4.4.1 共振フィルタの設計

制御対象 \(P \), フィードバックコントローラ \(C \), 外乱モデル \(D \) は前節で示したモデルと同じとして、ディスクフラッタに起因した外乱を補償する共振フィルタを設計した。拡張型 AFC の設計と同様に、ベクトル軌跡を用いた設計法を用いて、共振フィルタを設計した。共振フィルタの伝達関数は式 (4.14) として与えた。表 4.8 に各パラメータの値を示す。

\[
F_{\text{res}}(s) = \sum_{i=1}^{7} \kappa_{ri} \frac{s - z_{ri}}{s^2 + 2\zeta_{ri}\omega_{ri}s + \omega_{ri}^2}.
\] \hspace{1cm} (4.14)

\(\kappa_{ri} \), \(\zeta_{ri} \), \(\omega_{ri} \) は外乱モデルを参照にして設計した。\(z_{ri} \) はベクトル軌跡上で \([-1, 0]\).

表 4.7: シミュレーション結果

<table>
<thead>
<tr>
<th></th>
<th>Conventional AFC</th>
<th>Proposed AFC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Position error signal 3(\sigma)</td>
<td>12.4 nm</td>
<td>12.0 nm</td>
</tr>
<tr>
<td>(H_{\infty}) norm of (S)</td>
<td>8.5 dB</td>
<td>6.5 dB</td>
</tr>
<tr>
<td>Gain margin</td>
<td>6.05 dB</td>
<td>6.93 dB</td>
</tr>
<tr>
<td>Phase margin</td>
<td>22.03 deg</td>
<td>27.80 deg</td>
</tr>
</tbody>
</table>
表 4.8: 共振フィルタの設計パラメータ

<table>
<thead>
<tr>
<th>i</th>
<th>Gain of filters κ_{ri}</th>
<th>Zero z_{ri}</th>
<th>Damping ratio ζ_{ri} [%]</th>
<th>Natural frequency ω_i[rad/s]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>-0.114</td>
<td>4007</td>
<td>0.01</td>
<td>$2 \times \pi \times 750$</td>
</tr>
<tr>
<td>2</td>
<td>-0.083</td>
<td>8676</td>
<td>0.01</td>
<td>$2 \times \pi \times 780$</td>
</tr>
<tr>
<td>3</td>
<td>0.159</td>
<td>-4586</td>
<td>0.01</td>
<td>$2 \times \pi \times 900$</td>
</tr>
<tr>
<td>4</td>
<td>0.127</td>
<td>-5760</td>
<td>0.01</td>
<td>$2 \times \pi \times 1020$</td>
</tr>
<tr>
<td>5</td>
<td>-0.001</td>
<td>79601</td>
<td>0.005</td>
<td>$2 \times \pi \times 1080$</td>
</tr>
<tr>
<td>6</td>
<td>-0.098</td>
<td>5384</td>
<td>0.01</td>
<td>$2 \times \pi \times 1230$</td>
</tr>
<tr>
<td>7</td>
<td>0.012</td>
<td>-97296</td>
<td>0.005</td>
<td>$2 \times \pi \times 1800$</td>
</tr>
</tbody>
</table>

図 4.25: 共振フィルタの周波数応答

から遠ざかるように設計した。設計した共振フィルタの周波数応答を図 4.25 に示す。この共振フィルタを位置決め制御系に実装したときの特性を、拡張型 AFC と比較した。
4.4.2 拡張型AFCと共振フィルタの比較

前節と同様に、拡張型AFCと共振フィルタを磁気ディスク装置のベンチマークモデルに適用し、周波数応答と時間応答を確認した。まず、それぞれの時間応答を比較した。位置誤差信号$e(k)$の時間波形を図4.26に示す。黒の実線はフィルタがないとき、青の実線は拡張型AFCを実装したとき、赤紫色の破線は共振フィルタを実装したときの時間波形である。黒の実線と比較して、両手法とも位置誤差信号が小さくなっていることが分かるが、時間波形は完全に一致していることが分かる。また、フィルタの出力$u(k)$の時間波形を図4.27に示す。青の実線は拡張型AFCを実装したとき、赤紫色の破線は共振フィルタを実装したときの時間波形である。$u(k)$の時間波形も一致していることが分かった。また、両手法の実装したときの周波数応答も確認した。図4.28に関ループ特性を、図4.29に関ループ特性のベクトル軌跡を示す。両図において、青の実線は拡張型AFCを実装したとき、赤紫色の破線は共振フィルタを実装したときの結果であるが、2つの線は完全に重ねていることが分かる。図4.30には感度関数の周波数特性を示している。黒の実線はフィルタがないとき、青の実線は拡張型AFCを実装したとき、赤紫色の破線は共振フィルタを実装したときの時間波形である。黒の実線と比較して、両手法ともディスクフラッタに起因する外乱を補償するように、感度関数のゲインを

図4.26: 位置誤差信号$e(k)$の時間応答
図 4.27: フィルタ出力 $u(k)$ の時間応答

図 4.28: 開ループ特性の周波数応答

下げていることが分かるが、この周波数応答もまた完全に一致している。以上の結果から、理論的検証通りに、拡張型 AFC と共振フィルタの特性は位置決め制御
図 4.29: ベクトル軌跡

図 4.30: 感度関数の周波数応答

系のシミュレーション結果からも等価であることが確認された。
4.5 本章の結言

本章では、まずベクトル軌跡を用いた AFC の設計法の有効性を示した。ベクトル軌跡を用いた設計法により、周波数応答上でパラメータを最適化できることを示した。その結果、提案手法は従来法と比較して、位置決め精度が向上できることを、磁気ディスク装置の位置決め制御系におけるシミュレーションと実験により確認した。次に、提案する拡張型 AFC の有用性について示した。内部モデル原理を用いた理論的検証結果のとおりに、拡張型 AFC は機構共振に基づく外乱を補償可能であることを磁気ディスク装置のベンチマークモデルを用いて確認した。そのため、拡張型 AFC は従来の AFC と比較して補償可能な外乱の種類が増え、有用性が増したといえる。さらに、拡張型 AFC と共振フィルタの等価性を確認した結果を示した。AFC 共振フィルタは時間応答、及び周波数応答で完全一致することをシミュレーションにおいても確認した。この結果から、両者が等価であるという理論的検証を実証することができたといえる。
第5章 実装を考慮したAFCの設計

5.1 本章の緒言

前章までにAFCの理論的検証結果、そして理論的検証結果を元にしたAFCの系統計な設計法の有効性を中心に説明した。これより、理論上においては最適なAFCのパラメータ設計を行うことができる。本研究では、さらに実際の位置決め制御系への実装を考慮したAFCの設計法を提案した。特に、以下の2点に注目した。

- 周波数応答上でロバスト性を考慮したAFCの設計について
- 収束性を考慮した可変ゲイン付きAFCの設計について

実際の位置決め制御系において、制御系の安定性は非常に重要であり、特に制御対象の変動などが生じた場合においても、制御系が発振することがあってはならない。そこで、本研究では周波数応答上で制御対象の変動を考慮したAFCの設計を提案した。さらに、位置決め制御系に速応性を求められる場合、外乱補償に要する時間を短縮する必要がある。本研究では、AFCのパラメータの収束性を改善する、可変ゲイン付きAFCを提案した。本章では、これらの手法について説明する。

5.2 周波数応答上でロバスト性を考慮したAFCの設計

制御系設計時の要求仕様の一つとして、制御系のロバスト性が挙げられる [57] [58] [59]。ロバスト性とは設計に用いたモデル（ノミナルモデル）の特性と、実際に制御する制御対象の特性の間で生じる誤差を許容し、安定に動作できるか、ということが指標になる。特に、磁気ディスク装置のような大量生産品は公差などによって生じる制御対象の特性ばらつきが大きく、制御系のロバスト性が重要となる。そこで、本研究ではロバスト性を考慮したAFCの設計について検討した。その結果を本節で説明する。
5.2.1 シミュレーション上での検証

まず、AFCのロバスト性を検証するためにシミュレーション上で検証を行った。ロバスト性の検証ではナイキスト線図上でのAFCのベクトル軌跡に注目した。ベクトル軌跡上のロバスト性の評価は$H\infty$制御理論などでも一般的に用いられている。ロバスト性において重要となるのは、4章で説明したパラメータ設計のときと同じく、開ループ特性のベクトル軌跡上の最近点と$[-1, 0]$からとの距離である。制御対象のばらつきに対して、この距離をある程度確保できていれば、例えば距離が0.316以上ならば、全ての周波数において感度関数ゲインは10dB以下である。そこで、制御対象のばらつきに対して、AFCを実装したときのベクトル軌跡における最近点の変動に注目する。

$[-1, 0]$からの距離は、AFCのパラメータθの設計時に示したように、フィルタの零点、つまりフィルタの位相角に大きな影響を受ける。距離が最大となるフィルタの位相角を達成するのが最適なθとなるが、最適なθは制御対象の位相特性のばらつきによって変化する。位置決め制御系をもつ多くの産業製品、磁気ディスク装置、ガルパノスキャナ、ボールねじ駆動型ステージなどの制御対象は、剛体モードといいくつかの共振モードとの和によって表現される。このような制御対象の位相特性は、各共振周波数において±180度変化するという特徴をもつ [60]。共振周波数以外の周波数では、制御対象のばらつきによる位相変化は小さいため、AFCの設計はノミナルモデルに対して行え問題ない。共振周波数がばらつく場合は、その周波数付近の位相特性は大きく変化し、AFCの特性に影響を与える。その影響をシミュレーションにより確認した。

図5.1に制御系のブロック線図を示す。$x(k)$は制御対象Pの位置とする。AFCのロバスト性に注目した検証とするため、フィードバック制御器としてはAFCのみを実装した形式とした。また、図5.2にPの周波数応答を示す。Pは次式に示す共振モデルとして与え、各パラメータは表5.1に示す。

$$P = \frac{K_p}{s^2 + 2\zeta_p\omega_p + \omega_p^2}. \quad (5.1)$$

共振モデルのばらつきが制御系へ与える影響を検証するため、ノミナルモデルと併せて4種類の振動モデルを与えた。その振動モデルの周波数応答も図5.2に示している。

このシミュレーションモデルにおいて、共振周波数付近の80Hzの正弦波外乱をAFCにより補償するシミュレーションを行った。まず、制御対象のばらつき、つ
図 5.1: 制御系のブロック線図

図 5.2: 制御対象 P の周波数応答

まり摂動モデルの周波数応答を考えずに、ノミナルモデルに対して AFC の設計を行った。最初に、ノミナルモデルに対する結果を示す。図5.3は $x(k)$ の時間波形を示し、AFCにより正弦波外乱を補償できていることが分かる。図5.4は適応パラメータ $p(k), q(k)$ の時間波形を示し、約6秒経過後にパラメータが収束していることが分かる。次に、ノミナルモデルに用いた AFC を、摂動モデル 4 (Variation
表 5.1: 制御対象 $P(s)$ のパラメータ

<table>
<thead>
<tr>
<th></th>
<th>ω_p [rad/s]</th>
<th>ζ_p [%]</th>
<th>K_p</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nominal</td>
<td>$2 \times \pi \times 81$</td>
<td>0.001</td>
<td>2000</td>
</tr>
<tr>
<td>Variation1</td>
<td>$2 \times \pi \times 80.2$</td>
<td>0.001</td>
<td>2000</td>
</tr>
<tr>
<td>Variation2</td>
<td>$2 \times \pi \times 79.8$</td>
<td>0.001</td>
<td>2000</td>
</tr>
<tr>
<td>Variation3</td>
<td>$2 \times \pi \times 79.5$</td>
<td>0.001</td>
<td>2000</td>
</tr>
<tr>
<td>Variation4</td>
<td>$2 \times \pi \times 79$</td>
<td>0.001</td>
<td>2000</td>
</tr>
</tbody>
</table>

図 5.3: ノミナルモデルにおける位置 $x(k)$ の時間応答

図 5.4: ノミナルモデルにおける適応パラメータ $p(k), q(k)$ の時間応答

model 4) に適用したときの結果を示す。図 5.5 は $x(k)$ の時間波形を示し、図 5.6 は適応パラメータ $p(k), q(k)$ の時間波形を示しており、どちらの時間波形からも発散していることが分かる。このシミュレーションにおける開ループ特性のベクトル軌跡を図 5.7 に示し、図 5.8 に感度関数を示す。特に摂動モデル 4 に対する感度関数は AFC を適用した付近の周波数 80Hz においてピークが生じていることが分かる。ベクトル軌跡は [-1, 0] に極めて近づいており、摂動モデル 4 に対しては制御系が発振する可能性が高い。実際に、先に示したように時間応答シミュレーションから発振していることが確認された。つまり、この制御系は共振モデルのばらつきを許容するロバスト性を確保できていない。

そこで、共振モデルのばらつきを許容する AFC の設計について検討を行った。ロバスト性の指標は制御システムにも依るが、本検討では共振モデルのばらつきに対して、感度関数ゲインが 10dB 以下であることとする。図 5.9 に P のベクトル軌跡を示す。このシミュレーションにおける摂動モデルは、ノミナルモデルと比

71
図 5.5: 振動モデル 4 における位置 $x(k)$ の時間応答
図 5.6: 振動モデル 4 における適応パラメータ $p(k), q(k)$ の時間応答

図 5.7: 開ループ特性のベクトル軌跡
図 5.8: 感度関数の周波数応答

軽じて共振周波数のみが異なるため、ナイキスト線図上でのベクトル軌跡は重なる。このベクトル軌跡において、80Hz の正弦波外乱を補償する AFC を設計した場合、ベクトル軌跡上での、ノミナルモデルにおける設計点 (80Hz) と、挙動モデル 4 の設計点は、図 5.9 に示すように変化する。これは、ノミナルモデルと比較して共振周波数が変化したためである。特に、挙動モデル 4 の 80Hz の点は P のベクトル軌跡において、[-1, 0] との最近点となる。AFC はベクトル軌跡上での 80Hz の点に対して設計するため、ノミナルモデルと比較して設計点が変化する場合、最適なパラメータも変化する。

ロバスト性の考慮した AFC を設計するためには、変動も考慮したベクトル軌跡

72
表 5.2: AFCの設計結果

<table>
<thead>
<tr>
<th></th>
<th>ω [rad/s]</th>
<th>θ [deg]</th>
<th>λ</th>
</tr>
</thead>
<tbody>
<tr>
<td>Design for the nominal model</td>
<td>2 × π × 80</td>
<td>-70</td>
<td>30</td>
</tr>
<tr>
<td>Design for the variation model 4</td>
<td>2 × π × 80</td>
<td>-83</td>
<td>65</td>
</tr>
</tbody>
</table>

において、最近点となる点で、[-1, 0] から最も遠ざかるように設計すればよい。このシミュレーションモデルにおいては、図 5.9 の摺動モデル 4 の設計点に相当する。摺動モデル 4 の設計点で設計した AFC のパラメータを表 5.2 に示す。ノミナルモデルでの設計結果と比較して、まず θ が異なることが分かる。これは、設計点が変化したため、最適な θ が変化したためである。また、λ は80Hz における感度関数のゲインが、ノミナルモデルでの設計結果と同じになるように調整した。

図 5.10 はベクトル軌跡を示し、図 5.11 は感度関数の周波数応答を示す。ベクトル軌跡はノミナルモデルと 4 つの摺動モデルの全てのモデルにおいて、[-1, 0] から遠ざかる設計がでている。また、感度関数のゲインは全てのモデルにおいて 10dB 未満を達成している。図 5.12 はノミナルモデルの位置信号 x(k)を示し、図 5.13 は適応パラメータ p(k), q(k) の時間波形を示している。図 5.14 は摺動モデル 4 の位置信号 x(k) 示し、図 5.15 は適応パラメータ p(k), q(k) の時間波形を示している。AFC はノミナルモデル、摺動モデルともに外乱を補償することができており、また適応パラメータも発振することなく収束していることが分かる。以上の結果から、制御対象のばらつきを考慮した設計を行うことで、AFC のロバスト性が改善できることが確認された。
図 5.10: 制御対象のばらつきを考慮してAFCを設計したときの開ループ特性のベクトル軌跡

図 5.11: 制御対象のばらつきを考慮してAFCを設計したときの感度関数の周波数応答

図 5.12: 制御対象のばらつきを考慮してAFCを設計したときのノミナルモデルにおける$x(k)$の時間応答

図 5.13: 制御対象のばらつきを考慮してAFCを設計したときのノミナルモデルにおける$p(k), q(k)$の時間応答

5.2.2 実験による検証

AFCのロバスト性については実機実験による検証も併せて行った。図5.16には実験に使用したシステムを示す。実験に用いたシステムは1自由度系であり、制御対象は$442\text{mm (長さ)} \times 100\text{mm (幅)} \times 10\text{mm (厚さ)}$のアルミニウムプレートであり、両端は固定されている。このプレートに起振器から外乱として入力される振動をAFCにより補償することが、制御目的である。プレートの中央に取り付
図 5.14: 制御対象のばらつきを考慮してAFCを設計したときの振動モデル4における$x(k)$の時間応答

図 5.15: 制御対象のばらつきを考慮してAFCを設計したときの振動モデル4における$p(k), q(k)$の時間応答

図 5.16: 実験システム

けられているVCMアクチュエータは、AFCを組み込んでおり、プレートの振動を補償するために動作する。VCMアクチュエータの入力はプレートの位置信号であり、出力はAFCにより算出した補償信号である。プレートの速度とアクチュエータの速度はlaser Doppler velocimetry (LDV) によって測定し、測定結果を積分した値を位置信号として算出している [61] [62]。図 5.17 は制御システムの概略図を示しており、このシステムにおけるプレートの位置を評価した。

プレートの反対の面 (VCMアクチュエータの裏側) には、重りを取り付けてい
Disturbance caused by
Vibration exciter
(80Hz sine wave)

Plane plate with mass
+ actuator

Enhanced AFC's output
for disturbance compensation

AFC

Displacement of plane plate:
calculation from LDV data

Displacement of actuator:
calculation from LDV data

図 5.17: 制御系の概略図

図 5.18: 制御対象 P(起振器からプレートの位置まで)の周波数応答

が、外乱補償の実験を2種類の重りに対して行った。mass 1 の重さは3.78kg、mass 2 の重さは4.16kgである。これは、制御対象の共振周波数を調整するための重りである。図5.18は入力を起振器、出力をプレートの位置としたときの周波数応答を示している。青線はmass 1を取り付けたときの周波数応答であり、赤線はmass 2を取り付けたときの周波数応答である。その共振周波数は、mass 1については81.85Hzであり、mass 2については79.50Hzである。外乱として起振器で入力する信号は80Hzの正弦波である。まず、AFCをmass 1を取り付けた場合の周波数応答に対して設計した。図5.19にプレートにmass 1を取り付けたときの位置信号の時間応答を示す。この時間応答からAFCが正弦波外乱を補償できている
図 5.19: mass 1 を取り付けたときの位置信号の時間応答

図 5.20: 制御対象の変動を考慮しなかったときのベクトル軌跡

図 5.21: 制御対象の変動を考慮しなかったときの感度関数

ことが分かる。

次に、プレートに mass 2 を取り付けたときの結果を確認した。このとき、設計には mass 1 から mass 2 への共振周波数の変動は考慮していない。図 5.20 にベクトル軌跡、図 5.21 に感度関数の周波数応答を示す。mass 1 を取り付けた場合
図 5.22: 制御対象の変動を考慮したときのベクトル軌跡
図 5.23: 制御対象の変動を考慮したときの感度関数

図 5.24: mass 2 を取り付けたときの制御対象 P（起振器からプレートの位置まで）の周波数応答

は、ベクトル軌跡は [-1, 0] から離れており、また感度関数の最大ゲインは 10dB 未満であることが分かった。一方、mass 2 を取り付けた場合、ベクトル軌跡は [-1, 0] に接近しており、感度関数の約 79.5Hz においてピークが生じていることが分か
図 5.25: AFC 出力の時間応答: 左図 制御対象の変動を考慮して AFC を設計した場合, 右図 制御対象の変動を考慮せずに AFC を設計した場合

なる。これは, AFC のパラメータを mass 2 の周波数応答を考慮せずに設計したためである。そこで, 両方の周波数応答を考慮, つまり共振周波数の変動を考慮して, [-1, 0] からの最近点において再度, 設計した。そのときのベクトル軌跡を図 5.22に, 感度関数を図 5.23に示す。ベクトル軌跡は [-1, 0] から遠ざかり, 感度関数の最大ゲインは mass 1, mass 2 とともに 10dB 未満を達成できていることが分かった。図 5.24には mass 2を取り付けたときのプレートの位置信号の時間波形を示している。制御対象の変動を考慮した場合は外乱が補償できているのに対し, 制御対象の変動を考慮しなかった場合は, 制御系が発振していく様子が分かる。約 2 秒後から値が増加していないのは, VCM アクチュエータの出力が飽和しているためである。図 5.25に VCM アクチュエータ, つまり AFC の出力の時間波形を示す。この実験では VCM 出力の最大値を 0.5V と設定しているため, 出力が飽和していることが分かる。一方, 制御対象の変動を考慮した場合は外乱を補償するような信号が出力できていることが分かる。よって, 実験結果からも変動を考慮した設計を行うことにより, AFC のロバスト性を向上できることが分かった。

5.3 可変ゲイン付き AFC の設計

AFC は外乱を推定するように適応パラメータを更新して外乱の補償を行うが, 適応パラメータが収束するまでに時間を要する。AFC により補償する外乱が周囲環境の変化などにより変化した場合, パラメータを再学習する必要があり, 収束するまでの過渡応答において, 位置決め精度が悪化するという問題がある。そこ
5.3.1 補償する外乱について

磁気ディスク装置のヘッド位置決め制御に、目標となるトラック間を高速に移動するシーク制御と、データの読み書きを行うためにトラック中心に精度良く追従するフォロイニング制御がある[2]。シーク制御により目標トラックまで移動し、目標トラックにおいてフォロイニング制御に切り替わるが、このときに、シーク動作終了直後に過渡応答が発生する[63]。隣接トラックのデータを誤って読み書きすることを防ぐため、位置誤差信号の過渡応答が収束してからフォロイニング制御に移るが、このときに要した時間はデータ転送速度に影響する。データ転送速度は記録容量と並んで磁気ディスク装置にとって特に重要な項目であり、データ転送速度を向上するために、過渡応答が収束するまでに要する時間を短縮する制御手法の開発が行われてきた[64][65]。過渡応答が発生する要因の一つに、外乱の振幅変化が挙げられる。特に、前章で説明したディスクの回転に伴った周期外乱とディスクフラッタに起因する外乱は、ディスクの半径方向で振幅が変化するという特徴がある。

図5.26は横軸をディスク半径方向の位置、そして縦軸をディスクの最内周で正規化した周期外乱の振幅とした図である。OD (outer diameter) はディスクの最外周を示し、ID (inner diameter) はディスクの最内周を示す。周期外乱はトラックの歪みや、ディスクの偏心などに起因して発生するが、それらはディスクの中心を固定するネジによるディスクの歪みを要因である[66][67][68]。ディスクの歪みは内周の方が大きいので、周期外乱の振幅と半径位置の関係は図5.26に示したようになる。

ディスクフラッタはディスクが流体加振力により励起される振動であり、その振動モードは節円の数mと節半径の数nの組(m,n)で表される。そのモード形状から、一般的に節円の数が0の振動モードは振幅が大きく節円の数が1以上の振動モードは振幅が小さいという特性を有する。そのため、実際に位置決め誤差として検出されるディスクフラッタは節円の数が0のモードが支配的となる。図5.27に、節円の数が0であるディスクフラッタのモード形状を示す。この図から明らかのように、位置決め誤差として観測されるディスクフラッタは、ディスクの同一半径上ではほぼ同じ位相を有する応答となり、ディスク中心からの距離に応じて
図 5.26: ヘッド位置と最内周で規格化した周期外乱の振幅の関係

図 5.27: ディスクフラッタのモード形状

その振幅が変化する。その振幅は、ディスクフラッタのモード形状に依存するが、一般的に内周で小さく外周で大きな値となる [52] [69]。図 5.28 は横軸をディスク半径方向の位置、縦軸をディスクの最外周で規格化したディスクフラッタに起因する振動の振幅を示す。

5.3.2 可変ゲイン付き AFC を用いた位置決め制御系

AFC を用いて外乱を補償する場合、シーク動作中に AFC 自身の過渡応答が発生することが問題となる。そこで、シーク動作中はフィルタの演算を停止させ、目標トラック近傍において適応パラメータを 0 とした後に演算を再開させる方式が
図 5.28: ヘッド位置と最外周で正規化したディスクフラッタ起因の外乱振幅の関係
考えられるが、この方式ではディスクフラッタ振動を抑圧するまでに時間がかか
るという問題がある。このような問題に対応するため、シーク動作中におけるフィ
ルタへの入力信号を切り替える手法が提案されている。図 5.29 にフィルタへの入
力信号を切り替えるヘッド位置決め制御系のブロック線図を示す。ここでゲ
インであり、シーク動作時は 0、それ以外は 1 となる。この方式では、シーク開始
時からシーク動作完了付近まで AFC への入力信号が 0 となるため、シーク動作に
起因する AFC の過渡応答の発生を防ぐことが可能となる。つまり、この手法では、
シーク動作中の AFC の出力はシーク動作直前の状態量を初期値とした自由振動の
応答となる。

前述のように、周期外乱とディスクフラッタはディスク内周での振幅とディス
ク外周での振幅が大きく異なる特性を有する。つまり、シーク動作が長距離にな
る場合、シーク動作前のディスクフラッタの振動振幅とシーク動作後に到達する
ヘッド位置でのディスクフラッタの振動振幅が大きく異なることとなる。このような
状況に対して、入力信号を切り替える AFC を適用した場合、AFC の制御入
力はシーク動作直前のヘッド位置でのディスクフラッタを補償する信号を出力し
続けるため、到達したヘッド位置でのディスクフラッタ振動を補償する出力とは
ならない。つまり、外周のヘッド位置から内周のヘッド位置へシーク動作を行った
場合はディスクフラッタの振動に対して AFC の出力は大きすぎるものとなり、内
周のヘッド位置から外周のヘッド位置へシーク動作を行った場合はディスクフラッ
図5.29: フィルタへの入力信号を切り替えるヘッド位置決め制御系のブロック線図

このような問題を解決するため、本研究では可変ゲイン付き AFC を用いたヘッドラベル位置決め制御系を提案する。図5.30に可変ゲイン付き AFC を用いたヘッド位置決め制御系のブロック線図を示す。ここで、G_i は AFC の入力端に導入する可変ゲインであり、G_o は出力端に導入する可変ゲインである。

G_o はヘッド位置に応じて変化するゲインであり、その特性は AFC が対象とする外乱振動の振幅がヘッド位置に応じて変化する特性と一致するように選定する。たとえば、ヘッド位置を x とし、最外周に相当するヘッド位置での位置決め誤差として観測されるディスクラフラッタ起因振動を $d_0(t)$ とする。さらに、ヘッド位置 x に応じて位置決め誤差として観測されるディスクラフラッタ起因振動 $d(t,x)$ は

$$d(t,x) = d_0(t)f_g(x), \quad (5.2)$$

と変化すると仮定する。ここで、$f_g(x)$ はディスクラフラッタのヘッド位置 x に応じた振幅であり、そのモード形状に依存するものとする。このような場合、G_o はディスクラフラッタ振幅の特性同様に

$$G_o(x) = f_g(x), \quad (5.3)$$

83
図 5.30: 可変ゲイン付き AFC を用いたヘッド位置決め制御系のブロック線図

として与える。G_i はヘッド位置に応じて変化するゲインであるが、過渡応答を防ぐためにシーケ動作時は 0 とする。また、それ以外の場合は

$$G_i(x) = 1/G_o(x), \quad (5.4)$$

とする。これらの可変ゲインを導入することにより、以下のような効果が期待される。

- G_i の効果により、ヘッドが最外周以外で位置決めしている場合においても、AFC の状態変数を最外周で検出されるディスクフックの状態変数の推定値とすることが可能となる。また、シーケ動作中には AFC の入力信号は 0 となるため、シーケ動作に起因する過渡応答の発生を防ぐことが可能となる。

- G_o の効果により、シーケ動作中においても常に位置決め誤差上、ディスクフックの振動に最適な制御入力を u_f として与えることが可能となる。

- シーケ動作時以外においては、$G_i \times G_o$ の特性は 1 であるので、可変ゲインを導入した場合においても、制御系ループは可変ゲインを導入しない場合と同一となる。また、シーケ動作時には AFCへの入力は 0 となるため、AFCは制御系ループの外側となり、制御系の安定性には影響を与えない。そのた
5.3.3 シミュレーションによる効果の検証

本節では、提案手法の有効性を検証するため、ディスクフラッタが存在する場合の制御系設計例およびそのシミュレーション結果を示す。検証に用いるヘッド位置決め制御系の制御対象とフィードバック制御器は、5.2.1節に示す磁気ディスク装置のベンチマークモデルと同一とした。本シミュレーションでは、周期外乱とディスクフラッタに起因する外乱に注目し、それぞれは以下のように与えた。周期外乱として角周波数 360 × 2π rad/s の正弦波信号とした。ディスクフラッタは式 (5.5) で表現される外乱モデルに分散 1 の白色ガウシアンノイズを加えたときの出力とした。

\[
D(s) = \frac{2a_d \eta_d \omega_d^2}{s^2 + 2\eta_d \omega_d s + \omega_d^2}, \tag{5.5}
\]

ここで、各パラメータは以下のようになる。

\[
a_d = 0.20, \quad \eta_d = 0.01, \quad \omega_d = 900 \times 2\pi. \tag{5.6}
\]

そして、RRO の振幅変化は図 5.26 を参考にして、\(f_{oR}(x) \) として以下のように定義した。

\[
f_{oR}(x) = 196430x^3 - 2393x^2 + 9x + 0.2. \tag{5.7}
\]

また、ディスクフラッタに起因する外乱の振幅変化は、図 5.28 を参考にして、\(f_{od}(x) \) として以下のように定義した。

\[
f_{od}(x) = 2000x^2 - 85x + 1. \tag{5.8}
\]

また、ディスクフラッタに起因する外乱を補償するため、制御系には拡張型 AFC を適用した。適用した拡張型 AFC は以下の式で表わされる。

\[
u(k) = \sum_{i=2}^{2} p_i(k - 1) \cos(\sqrt{1 - \zeta_i^2} \omega_i T_k) +
\sum_{i=2}^{2} q_i(k - 1) \sin(\sqrt{1 - \zeta_i^2} \omega_i T_k), \tag{5.9}
\]

\[
p_i(k) = e^{-\zeta_i \omega_i T_k} p_i(k - 1) + \lambda_i \ e(k) \cos(\sqrt{1 - \zeta_i^2} \omega_i T_k + \theta_i), \tag{5.10}
\]

\[
q_i(k) = e^{-\zeta_i \omega_i T_k} q_i(k - 1) + \lambda_i \ e(k) \sin(\sqrt{1 - \zeta_i^2} \omega_i T_k + \theta_i). \tag{5.11}
\]

85
表 5.3: 拡張型 AFC の設計パラメータ

<table>
<thead>
<tr>
<th>i</th>
<th>AFC gain λ_i</th>
<th>Damping ratio ζ_i[%]</th>
<th>Angular frequency ω_i[rad/s]</th>
<th>Phase θ_i [deg]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.10</td>
<td>0</td>
<td>360 ×2π</td>
<td>-150.35</td>
</tr>
<tr>
<td>2</td>
<td>0.17</td>
<td>0.01</td>
<td>900 ×2π</td>
<td>-113.87</td>
</tr>
</tbody>
</table>

表5.3は設計した拡張型AFCのパラメータを示す。ここで、拡張型AFCに用いる可変ゲインは以下のように与えた。 \(G_{oR}(x) \) はRROを補償する拡張型AFCの出力端に加えるゲインであり、以下の式で表わされる。

\[
G_{oR}(x) = 1/196430x^3 - 2393x^2 + 9x + 0.2
\] (5.12)

そして、\(G_{od}(x) \) はディスクフラッタに起因する振動を補償する拡張型AFCの出力端に加えるゲインであり、以下の式で表わされる。

\[
G_{od}(x) = 1/2000x^2 - 85x + 1
\] (5.13)

出力端に加えるゲインは外乱モデルのゲイン変化に合わせて設定した。また、入力端に加えるゲインは \(G_{iR}(x), G_{id}(x) \) とし、以下のように与えた。

\[
G_{iR}(x) = \begin{cases}
1/G_{oR}(x) & \text{(following control)} \\
0 & \text{(seeking control)}
\end{cases}
\] (5.14)

\[
G_{id}(x) = \begin{cases}
1/G_{od}(x) & \text{(following control)} \\
0 & \text{(seeking control)}
\end{cases}
\] (5.15)

シーク制御中は、拡張型AFCの過渡応答が発生しないように入力端の0に設定する。フォローグイン中は制御系に影響を与えないよう、出力端と入力端の積が1とするため、出力端のゲインの偏数と設定している。

上記のように、磁気ディスク装置のベンチマークモデルに外乱、及び拡張型AFCと可変ゲインを設定しシミュレーションを行った。まず、周波数応答上の結果を示す。図5.31 に開ループ特性の周波数応答、図5.32には開ループ特性のベクトル軌跡、そして図5.33 には感度関数の周波数応答を示す。周期外乱が存在する360Hzと、ディスクフラッタに起因する振動が存在する900Hzにおいて感度関数のゲインを下げるような設計ができていることが分かる。
図 5.31: 開ループ特性の周波数応答

図 5.32: 開ループ特性のベクトル軌跡

次に時間応答を確認した。図 5.34 はシミュレーションモデルのブロック線図を示す。シーク制御のためにフィードフォワード信号を加えているが、F_{acc} は加速度
図 5.33: 感度関数の周波数応答

\[F_{acc} \]

図 5.34: シーク制御を行うシミュレーションモデルのブロック線図

フィードフォワード信号、そして \(F_{pos} \) は位置フィードフォワード信号である。このシミュレーションではヘッド位置 \(x \) の最外側を 0 m、そして \(x \) 最内周を 0.02 m としている。外乱 \(d(t) \) は RRO とディスクフラッタに起因する外乱を含む信号である。

まず、ディスクの最外周 \(x = 0 \) から最内周 \(x = 0.02 \) にヘッドを移動させるシーク制御を行った。シーク制御を行う時間は 5 - 12.6 ms の間であり、200 サンプル
図 5.35: OD から ID に移動するときのフィードフォワード信号

図 5.36: OD から ID に移動するときの外乱 $d(t)$ の時間波形

に相当する。図 5.35 に F_{acc}, F_{pos} の時間波形を示す。図 5.35(a) によるとヘッド位置を動かしたとき、$d(t)$ の時間波形は図 5.36 に示すようになる。最内周では周期外乱の振幅が大きいため、シーク終了後 (12.6 ms 以降) の $d(t)$ は主に周期外乱を含んでいる。本研究で提案する可変ゲイン付き AFC の有効性を確認するため、シーク動作中は入力を 0 にし、$p(k)$ と $q(k)$ の更新を止めて、シーク動作を終了後から
図 5.37: OD から ID に移動するときの位置誤差信号 $e(k)$ の時間波形

更新を再開する、従来法と比較を行った [70]。図 5.37 には目標トラック付近の位置誤差信号を示す。提案法は従来法と比較して、シーク制御終了後の位置誤差信号をすぐに補償できていることが分かる。図 5.38 に AFC の出力を示す。従来法においては、シーク制御中は入力を 0 としているので、出力の振幅を変化させることはできない。そのため、シーク制御終了後から収束までに時間を要している。一方、提案法は同じく入力は 0 であるが、出力は可変ゲイン G_{oR}、G_{od} によりシーク制御中もヘッド位置に応じて、変化させることができる。そのため、シーク終了直後から外乱の補償が可能である。

次に、ディスクの最内周 $x = 0.02$ から最外周 $x = 0$ にヘッドを移動させるシーク制御を行った。シーク制御を行う時間は 5 - 12.6 ms の間である。図 5.39 に F_{acc} と F_{pos} の時間波形を示す。図 5.40 に $d(t)$ の時間波形を示す。最外周ではディスクフラック起因の外乱の振幅が大きいため、シーク終了後 (12.6 ms 以降) の $d(t)$ は主にディスクフラックに起因する外乱を含んでいる。図 5.41 は目標トラック付近の位置誤差信号であるが、提案法は、シーク制御終了後の位置誤差信号をすぐに補償できていることが分かる。図 5.42 は AFC の出力を示し、提案法の出力は可変ゲイン G_{oR}、G_{od} によりシーク制御中もヘッド位置に応じて、変化させていることができる。以上の結果から、磁気ディスク装置のヘッド位置決め制御系における
図 5.38: OD から ID に移動するときの拡張型 AFC の出力 \(u(k) \) の時間波形

図 5.39: ID から OD に移動するときのフィードフォワード信号

シーク制御終了後の位置決め精度を、可変ゲイン付き AFC により改善できることが確認された。
図 5.40: ID から OD に移動するとときの外乱 $d(t)$ の時間波形

図 5.41: ID から OD に移動するとときの位置誤差信号 $e(k)$ の時間波形

5.4 本章の結言

本章では、実際の位置決め制御系への実装を考慮した AFC の設計について示した。実際の産業製品の位置決め制御系に AFC を適用する場合、制御系が発振しな
図 5.42: ID から OD に移動するときの拡張型 AFC の出力 $u(k)$ の時間波形

イオンに安定に動作すること、また外乱の補償に要する時間を短縮することが望まれる。本研究では、AFC のロパスト性と適応アルゴリズムの収束性に注目し、それらを改善する手法の提案を行った。前者については制御対象の変動を考慮した設計法を提案し、1 自由度系の制御対象についてのシミュレーションと実験により、有効性を検証した。本手法により、制御対象の変動を考慮した AFC のパラメータ設計を行うことができ、安定性を確保したい場合は、有用な設計法である。後者については、可変ゲイン付き AFC を提案し、磁気ディスク装置のベンチマークモデルにおいて、適応アルゴリズムの収束性能が改善できることを確認した。特に、位置決め制御系に速応性が求められる場合は、本手法は有用な設計法である。
第6章 実装におけるAFCと他の外乱補償制御との比較

6.1 本章の緒言

4章ではAFCの系統的な設計法、また5章では実装を考慮した設計法を説明し、AFCの性能を理論上最適化できることを示した。そして、シミュレーション結果と実験結果から、位置決め制御系における外乱補償手法として、AFCの有効性を示すことができた。一方で、従来までに位置決め制御系における外乱補償制御として、AFC以外にも様々な手法が提案されている。つまり、位置決め制御系外乱補償手法を実装する場合、様々な制御手法の中から、設計者はどの制御手法を用いるかを決定する必要がある。そのとき、制御手法が発揮できる性能もさることながら、実装上で重要となる計算量やコストを考慮して決定しなければならない。しかしながら、従来の研究では制御手法の性能と、実装に要する計算量やコスト併せて考慮した比較などはほとんど行われていない。そこで、本研究では実装におけるAFCの特徴を、代表的な外乱補償制御である共振フィルタと繰り返し制御 [71] [72] との比較を行うことで明らかにした。本章では、その内容について示す。

6.2 実装における各制御手法の構成

本研究では、位置決め制御系における外乱制御手法としてAFC、共振フィルタ、繰り返し制御に注目し、それぞれの手法について実装における特徴を確認した。産業製品において市場での競争力を高めるために、まず考えられるのは、製品の価格を下げることがある。位置決め制御系にとってコストに関わる項目としては、構成の複雑さ、実行に必要な計算量、及び要求されるメモリ量が挙げられる [73]。そこで、各制御手法の実装時の構成、発生する計算量、及び要求されるメモリ量についての検証を行った。その検証結果を以下に示す。
図 6.1: 位置決め制御系に実装するときの AFC のブロック線図

1. まず、AFC についての検証結果を示す。図 6.1 に位置決め制御系に実装するときの AFC の構成を図示する。AFC は適応アルゴリズムによって外乱を推定し、推定結果に基づいて外乱の補償を行うが、AFC の適応アルゴリズムを実行するために、正弦波もしくは余弦波のテーブルを用意する必要がある。正弦波、余弦波のテーブルの値は ROM(Read only memory) 上に格納され、そのメモリサイズは分解能にもよるが、計算精度を確保するためにも 2048byte 程度は必要だと考えられる [74] [75]。その適応アルゴリズムの演算を行うにあたって 5 個の加算と 9 個の乗算が必要な計算量として発生する。また、設計パラメータである学習率 λ, 位相 θ, 忘却係数 ζ の 3 個の変数を ROM 上に、サンプリング毎に更新を行う適応パラメータ p(k) と q(k) の 2 個の変数を RAM(Random access memory) 上に格納する必要がある。
図6.2: 位置決め制御系に実装するときの共振フィルタのブロック線図

2. 次に、共振フィルタについての検証結果を示す。図6.2は共振フィルタのような2次フィルタの一般的な構成を示している。多くの産業製品の位置決め制御系におけるコントローラは離散系で実装されているので、ここでは離散化した共振フィルタの実装を考える。その離散化した共振フィルタは次式で表現される。

\[F_{\text{res}}(z) = \frac{Az^2 + Bz + C}{z^2 - Ez - F}. \] (6.1)

式(6.1)はLTIモデルであり、特に適応アルゴリズムなどは存在しないので、AFCと比較して共振フィルタの構成はシンプルである。そのLTIモデルの演算を行うにあたって、発生する計算量は4個の加算と5個の乗算である。また、共振フィルタの極とゼロ点を決定するパラメータA, B, C, D, Eの5個の変数をROM上に、サンプリング毎の値が更新される状態量x(k)とy(k)の2個の変数をRAM上に格納する必要がある。
図 6.3: 位置決め制御系に実装するときの繰り返し制御のブロック線図

3. 最後に，繰り返し制御についての検証結果を示す。繰り返し制御は内部モデル原理に基づいた外乱補償制御として知られている。繰返し制御は，1 周期前の偏差信号を利用することにより，繰返し動作など周期的な目標入力に高精度で追従させる制御方式であり，周期外乱の除去にも有効である。1 周期前の偏差信号をメモリループに格納し，格納した信号により偏差信号を打ち消すように制御入力として加えることで，外乱補償を実現している [76] [77] [78]。図 6.3 に位置決め制御系における繰り返し制御の構成を示す。メモリループは 1 周期分の偏差信号を格納し，偏差信号を打ち消すように制御入力として加える。メモリループのサイズは制御系のサンプリング時間に依存するが，1 周期分の信号を RAM 上に格納する必要がある。また，メモリループ自体は信号を格納するだけなので，特に計算は発生しない。しかし，制御系の安定性を考えてローパスフィルタを併せて実装するのが一般的であり，そのローパスフィルタには計算が発生する。離散化したローパスフィルタは次式で表現される。

\[
F_{\text{low}}(z) = \frac{G}{z - H}.
\]

式 (6.2) を演算するためには，設計パラメータ \(G, H \) の 2 個の変数を ROM 上に，1 個の状態量を RAM 上に格納する必要がある。
表 6.1: AFC の設計結果

<table>
<thead>
<tr>
<th>i</th>
<th>学習率 λ_i</th>
<th>相位 θ_i [deg]</th>
<th>忘れ因子 ζ_i [%]</th>
<th>頻度 ω_i [rad/s]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.15</td>
<td>-103.16</td>
<td>0</td>
<td>$2\pi \times 120$</td>
</tr>
<tr>
<td>2</td>
<td>0.17</td>
<td>-105.35</td>
<td>0</td>
<td>$2\pi \times 240$</td>
</tr>
<tr>
<td>3</td>
<td>0.20</td>
<td>-114.33</td>
<td>0</td>
<td>$2\pi \times 360$</td>
</tr>
</tbody>
</table>

表 6.2: 共振フィルタの設計結果

<table>
<thead>
<tr>
<th>i</th>
<th>カットオフ周波数 κ_{ri}</th>
<th>ゼロ z_{ri}</th>
<th>ダンピング比 ζ_{ri} [%]</th>
<th>頻度 ω_{ri} [rad/s]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>-0.114</td>
<td>4007</td>
<td>0</td>
<td>$2\pi \times 120$</td>
</tr>
<tr>
<td>2</td>
<td>-0.083</td>
<td>8676</td>
<td>0</td>
<td>$2\pi \times 240$</td>
</tr>
<tr>
<td>3</td>
<td>0.159</td>
<td>-4586</td>
<td>0</td>
<td>$2\pi \times 360$</td>
</tr>
</tbody>
</table>

6.3 磁気ディスク装置のヘッド位置決め制御系における比較

本節では、磁気ディスク装置のヘッド位置決め制御系において AFC, 共振フィルタ、そして繰り返し制御の比較を行った結果を説明する。前章までに、AFC と共振フィルタに関しては磁気ディスク装置のベンチマーク問題を用いた設計例で説明しているが、繰り返し制御も磁気ディスク装置の周期外乱補償に適用した研究例があるため [79] [80]、磁気ディスク装置のベンチマークモデルを用いた比較を行った。検証に用いるヘッド位置決め制御系の制御対象とフィードバック制御器は、5.2.1 節に示す磁気ディスク装置のベンチマークモデルと同一とした。比較においては周期外乱に注目し、120Hz, 240Hz, 360Hz の正弦波信号を補償するシミュレーションを行った。

6.3.1 各制御手法の設計結果

周期外乱を補償するために AFC, 共振フィルタ, 繰り返し制御の設計を行った。AFC は式 (4.13), 共振フィルタは式 (4.14) で表現され、どちらの手法も 3 章で説明したベクトル軌跡を用いた設計法を利用している。設計した各パラメータを、AFC については表 6.1 に、共振フィルタについては表 6.2 に示す。
表 6.3: 実装に必要な計算量とメモリ量

<table>
<thead>
<tr>
<th></th>
<th>AFCs</th>
<th>Resonant filters</th>
<th>Repetitive controller</th>
</tr>
</thead>
<tbody>
<tr>
<td>Addition</td>
<td>15</td>
<td>12</td>
<td>1</td>
</tr>
<tr>
<td>Multiplication</td>
<td>24</td>
<td>15</td>
<td>1</td>
</tr>
<tr>
<td>ROM</td>
<td>2064byte</td>
<td>30byte</td>
<td>4byte</td>
</tr>
<tr>
<td>RAM</td>
<td>12byte</td>
<td>12byte</td>
<td>440byte</td>
</tr>
</tbody>
</table>

繰り返し制御において、設計に必要なパラメータは、ローバスフィルタのカットオフ周波数のみである。そのため、AFC と共振フィルタと比較して設計が非常に容易である。外乱は360Hz以下であるので、カットオフ周波数は1000Hzとした。そのローバスフィルタは次式になる。

\[
L(z) = \frac{0.1535}{z - 0.8465}.
\] (6.3)

6.3.2 各制御手法の実装に要するコスト

次に、各手法における実装に要するコストを、計算量とメモリ量に注目して見積もった。本シミュレーションでは各 ROM, RAM に格納する変数のサイズは 2byte としている。

計算量については、1 つの AFC を演算するために 5 個の加算と 8 個の乗算が必要であるため、3 つの AFC については 15 個の加算と 24 個の乗算が必要になる。メモリ量については、1 つの AFC について 3 個の変数を ROM 上に、2 個の変数を RAM 上に格納する必要があるため、3 つの AFC の演算に必要な ROM 上に格納する変数のサイズは 18byte (3×3×2byte), RAM 上に格納する変数のサイズは 12byte (3×2×2byte) である。また、AFC は適応アルゴリズムの演算に sine テーブルが必要であり、ROM 上に格納するテーブルのサイズを 2048byte とすると、ROM 上に計 2064byte を用意する必要がある。

共振フィルタの計算量については、3 つの共振フィルタについては 12 個の加算と 15 個の乗算が演算に必要となる。また、メモリ量については、ROM 上に 30byte, RAM 上に 12byte を用意する必要がある。

繰り返し制御については、まずローバスフィルタの演算に 1 個の加算と、1 つの乗算が必要になる。また、ローバスフィルタの演算に必要な変数は 2 つなので、必
図 6.4: 開ループ特性の周波数応答

要なメモリ量は ROM 上で 4byte だけである。メモリループにおいては、加算や乗算などの計算は必要ないが、1 周期分の位置誤差信号を格納する必要がある。このシミュレーションにおける 1 周期分の信号は 220 サンプルとなるので、RAM 上に 220 個の変数、つまり 440byte を RAM 上に用意する必要がある。

表 6.3 に各制御手法の計算量とメモリサイズについて示す。共振フィルタは必要なメモリ量が最も小さく、計算量も AFC と比較して小さい。AFC は演算に sine テーブルを用意する必要があったため、ROM のサイズが大きい。繰り返し制御は計算量が小さく実装が容易だと考えられるが、RAM のサイズが他の手法と比較して、非常に大きい。一般的に RAM は ROM より高価であるため、実装に要するコストを考えると、繰り返し制御が最も大きい。以上の結果から、実装に要するコストは共振フィルタ、AFC、繰り返し制御の順で小さいことが分かる。

6.3.3 外乱補償のシミュレーション結果

図 6.4 に開ループ特性の周波数応答を示し、図 6.5 に感度関数の周波数応答を示す。3 章で示したように AFC と共振フィルタは理論上等価であるので、それぞれの周波数応答も一致する。120Hz, 240Hz, 360Hz における感度関数ゲインが下がっ
図 6.5: 感度関数の周波数応答

ていることが分かる。また、位置誤差信号 \(e(k) \) を確認した。図 6.6 に \(e(k) \) の時間波形を示し、AFC と共振フィルタを適用したときの時間波形が完全に一致していることが分かった。また、繰り返し制御を適用したときの位置誤差信号は、AFC と共振フィルタを適用したときと比較して、大きいことが分かる。AFC と共振フィルタの外乱補償性能は等価であるが、フィルタ出力 \(u(k) \) を生成する過程は全く異なる。共振フィルタは RAM に格納された状態量 \(x(k) \) と \(y(k) \) を用いた演算により出力が生成される。120Hz の周期外乱を補償する共振フィルタの \(x(k) \)、\(y(k) \) の時間波形を図 6.7 に示す。AFC は RAM に格納された適応パラメータ \(p(k) \)、\(q(k) \) を用いた演算により出力が生成される。120Hz の補償する AFC の \(p(k) \)、\(q(k) \) の時間波形を図 6.9 に示す。そして、フィルタ出力 \(u(k) \) の時間波形を図 6.8 に示す。\(u(k) \) を生成する過程が異なるにも関わらず、AFC と共振フィルタの \(u(k) \) の時間波形は一致する。

以上の結果から、外乱補償性能については、AFC と共振フィルタは繰り返し制御よりも優れており、AFC と共振フィルタの補償性能は等価であることが分かる。
図 6.6: 位置誤差信号 $e(k)$ の時間応答

図 6.7: 共振フィルタの状態量 $x_1(k), y_1(k)$ の時間波形

6.3.4 AFC による外乱推定について

前節の結果で、外乱補償性能については、理論的な解析通りに AFC は共振フィルタと等価であることが示された。しかしながら、共振フィルタと比較した場合、
図6.8 フィルタ出力 $u(k)$ の時間波形

図6.9 AFCの適応パラメータ $p_1(k), q_1(k)$ の時間波形
実装における AFC の有用性として外乱補償と外乱推定を同時に行えることが挙げられる。

AFC は外乱 \(d(k) \) を推定するように適応パラメータ \(p(k), q(k) \) を更新している。その推定された外乱 \(d_{afc} \) は次式で表わされる。

\[
d_{afc}(k) = K(p(k - 1) \cos(\sqrt{1 - \zeta^2} T) + q(k - 1) \sin(\sqrt{1 - \zeta^2} T)). \tag{6.4}
\]

外乱 \(d(t) \) と AFC により推定された外乱 \(d_{afc}(k) \) を図 6.10 に示す。また、繰り返し制御は位置誤差信号を格納しているので、外乱の周波数における制御対象のゲイン \(K \) を乗算して、外乱の推定を行うことができる (stored signal × \(K \))。その時間波形も図 6.10 に併せて示している。繰り返し制御で格納した信号から推定した信号は、\(d(t) \) と比較して誤差があることが分かる。一方、AFC による推定信号である \(d_{afc}(k) \) は、適応パラメータ収束後は、\(d(t) \) と一致していることが分かる。よって、外乱の推定精度は AFC の方が繰り返し制御より優れていることが分かる。また、共振フィルタを用いて外乱を推定する場合は、外乱から共振フィルタまでの伝達関数である \(\frac{P}{1 + P} \) を出力に乗算する必要があるため、文献 [81] に説明されるような手法を用いて、制御対象 \(P \) を精確に同定しなければならない。そのため、共振フィルタを用いて外乱の補償を行うのは AFC と比較して難しく、推定するためには計算を追加する必要があるため、実装コストの増加につながる。

外乱を精度良く推定できるという AFC の特徴は、外乱の補償と推定を同時に行いたいときに非常に有用である。特に、磁気ディスク装置のヘッド位置決め制御においてはディスクの偏心を Self-Monitoring, Analysis and Reporting Technology (SMART) に報告するのに役立つと考えられる。SMART とは磁気ディスク装置の障害の早期発見・故障の予測を目的として磁気ディスク装置に搭載されている機能である [82] [83]。この機能は、各種の検査項目をリアルタイムに自己診断し、その状態を数値化する。その一つに、衝撃や温度変化によって生じたディスクのシフト量を報告する ‘Disk shift (ID: 220)’ という機能がある。ディスクのシフト量は、位置誤差信号に観測される 1 次 RRO の振幅によって評価される。そのため、AFC による 1 次 RRO の推定結果を SMART への報告として用いることができる。また、磁気ディスク装置の位置決め制御系以外においても、推定された信号から外乱モデルの同定や、推定された外乱の振幅の変化から制御系の異常検知といったことに用いることができる。
図 6.10: 外乱 \(d(t) \)，AFC により推定外乱 \(d_{afc}(k) \)，繰り返し制御で格納した信号から推定した外乱の時間波形

6.4 本章の結言

本章では、AFC、共振フィルタ、そして繰り返し制御の 3 種類の制御手法の比較を行い、それぞれの制御系の特徴を明らかにした。そのシミュレーションによって得られた各制御手法の特徴について以下に記載する。

- AFC の外乱補償性能は、共振フィルタと並んで 3 つの制御手法の中で最も良かっただ。また、AFC の特徴として外乱補償を同時に外乱の推定ができることが挙げられる。位置決め制御系が外乱を推定する必要があるときは、新たにセンサを付け加える必要がなく、システムとしてのコストを削減できる可能性がある。特に、磁気ディスク装置のヘッド位置決め制御系においては、推定結果を SMART の機能として利用できるので、非常に有用である。また、磁気ディスク装置の位置決め制御系以外においても、推定された信号から外乱モデルの同定や、推定された外乱の振幅の変化から制御系の異常検知といったことに用いることができる。
共振フィルタの外乱補償性能は、AFC と並んで 3 つの制御手法の中で最も良かった。また、共振フィルタの特徴として、必要とするメモリ量が小さいことが挙げられる。位置決め制御系が使用するメモリ量を最小化したいときは、有用である。

繰り返し制御については、3 つの制御手法の中で設計が最も容易であることが挙げられる。ローバスフィルタのカットオフ周波数のみを設計すればよい。必要とする RAM が多いが、構成に必要な演算はローバスフィルタの加算と乗算のみであり、計算量も小さい。設計が容易であり、構成が簡単であるためシンプルな位置決め制御系を構築できるのが、有用性として挙げられる。

従来の研究では、実装に要するコストまで考慮した外乱補償手法の比較はほとんど行われていなかったので、それぞれの制御手法の特徴は新たな知見である。また、この知見は外乱補償に用いる制御手法の決定への評価指標となるため、制御系を設計するときに有用である。
第7章 結言

7.1 本論文の結論

本論文は、位置決め制御系における適応制御に基づいた外乱補償制御であるAFCの研究に関するものである。研究対象となるAFCは、位置決め制御系において位置決め精度を悪化させる外乱を補償する制御手法であり、その有効性は磁気ディスク装置などの産業製品に適用されている。本論文では、AFCに基づいての理論的検証、系統的パラメータの設計法の提案を行い、制御理論としての体系化を行った。さらに、AFCを他の制御手法と比較することで、外乱補償手法としての位置付けを明確にした。

2章では、従来のAFCについて内部モデル原理に基づいた理論的検証を元にして、適応アルゴリズムに忘却係数と導入した拡張型AFCを提案した。そして、拡張型AFCの内部モデルが2次の共振モデルと等価であることを示し、内部モデル原理から共振に基づく外乱も補償可能であることを示した。また、拡張型AFCの外乱補償手法としての位置付けを明確にするため、代表的な外乱補償手法である共振フィルタの理論的な比較を行い、両手法が理論的には等価であることを示した。適応アルゴリズムに基づく外乱補償手法と、フィードバック制御に基づく外乱補償手法が等価であるという結果は、制御理論において新たな知見である。

3章では、フィードバック制御系の設計手法である、ベクトル軌跡を用いたAFCの系統的な設計法を提案した。従来のAFCの設計は、適応パラメータや位置誤差信号の時間応答に基づいた、解析的手法による設計が行われてきた。提案手法は周波数応答上で性能が最適であることが保証されており、その条件の設計パラメーターはナイキスト線図上で幾何学的設計できる。設計には複雑な数式を必要としないので、簡便にパラメータを設計できる。また、従来の平均化法に基づく設計法との関係性も明らかにした。

4章では、ベクトル軌跡を用いたAFCの系統的な設計法、理論的検証を元にして提案した拡張型AFCの有用性、また拡張型AFCと共振フィルタの等価性を確認した結果を示した。ベクトル軌跡を用いた設計法により、周波数応答上でパラ
メータを最適化し、位置決め精度が向上できることを、磁気ディスク装置の位置決め制御系におけるシミュレーションと実験により確認した。また、拡張型 AFCにより機構共振に基づく外乱を補償可能であることを磁気ディスク装置のベンチマークモデルを用いて確認した。さらに、AFC と共振フィルタの等価性をシミュレーションにおいても実証することができた。

5章では、実装を考慮した AFC の設計について示した。実際の産業製品の位置決め制御系に AFC を適用する場合、制御系が発振しないように安定に動作すること、また外乱の補償に要する時間を短縮することが望まれる。本研究では、AFC のロバスト性と適応アルゴリズムの収束性に注目し、それらを改善する手法の提案を行った。前者については制御対象の変動を考慮した設計法を提案し、1自由度系の制御対象についてのシミュレーションと実験により、有効性を検証した。後者については、可変ゲイン付き AFC を提案し、磁気ディスク装置のベンチマークモデルにおいて、適応アルゴリズムの収束性が改善できることを確認した。

6章では、AFC と他の外乱補償手法との比較を行った。今まで提案されていいた位置決め制御系における外乱補償手法と比較して、AFC の特徴としての位置付けを明らかにした。AFC の特徴として外乱補償と外乱推定を同時に行えることが挙げられる。新たにセンサ等を配置することなく、外乱の情報を得ることができるので、位置決め制御系にとって有益になることが多い。磁気ディスク装置のベンチマークを用いたシミュレーションにより、十分な外乱補償性能と推定精度であることが確認された。また、この比較によって得られた知見は外乱補償に用いる制御手法の決定への評価指標となるため、制御系設計に有用である。

以上の検討結果から、理論的検証による AFC の特性、実装まで考慮した系統的な設計法の有効性、そして外乱補償制御における位置付けを明確にすることができ、本研究の目的である AFC の体系化を実現した。
7.2 今後の展望

本研究の今後の展望として、以下の項目が挙げられる。

- 産業製品の位置決め制御系における、拡張型 AFC を用いた非周期外乱の補償
- AFC の外乱推定機能を陽に用いた制御系の設計
- 外乱の周波数推定機能を有する AFC の開発

本研究の成果の一つである拡張型 AFC により、非周期外乱の補償が可能であることを示した。しかし、新しい技術であるため、未だ産業製品への適用は広がっていない。そこで、拡張型 AFC を産業製品の位置決め制御系に適用し、位置決め精度の向上に貢献できることを示していくことが今後の展望の一つとして挙げられる。また、他の制御手法と比較して、外乱推定できることが AFC の大きな利点であることを明らかにしたが、外乱推定機能を陽に利用した制御系の開発は未だに行われていない。そこで、外乱推定機能を陽に用いた制御系の設計、例えば外乱推定結果から故障検知機能を有する制御系の設計などを進めていきたい。最後に、外乱の周波数推定機能を有する AFC の開発が挙げられる。現状の AFC は、特定周波数の外乱を推定し、補償する適応アルゴリズムとなっているが、この適応アルゴリズムを拡張し、外乱の周波数も併せて推定できれば、AFC はさらに幅広い分野の産業製品に適用可能になると考えられる。
参考文献

[1] 足立 修一, 「MATLAB による制御のための上級システム同定」，東京電機大学出版局，2004

[10] 須田 信英, 「PID制御」, システム制御情報ライブラリー, 1992

[57] 藤森 篤, 「ロボスト制御」, コロナ社, 2001

謝辞

本研究の遂行ならびに博士論文作成にあたって、多大なご指導とご鞭撻を賜りました、北海道大学 大学院工学研究院 人間機械システムデザイン部門 椎原 遠朗教授に心より感謝申しあげます。椎原 遠朗教授には博士課程で行った研究内容の精査や、研究内容をまとめた投稿論文の査読など、熱心なご指導をいただきました。また、審査会の準備などご多用のところ大変なお手数をおかけいたしました。心より感謝申しあげます。学位論文審査において、貴重なご指導とご助言を頂いた北海道大学 大学院工学研究院 人間機械システムデザイン部門 但野 茂教授、小林 幸徳教授、成田 吉弘教授に心より感謝申しあげます。北海道大学 大学院工学研究院 人間機械システムデザイン専攻 スマートメカニズム研究室の皆様に心より感謝申しあげます。特に、矢作 修一君、大北 竜平君には実験を実施するための環境を整備して頂き、数多くのご助言を頂きました。心より感謝申しあげます。本研究を共同で行って頂きました、中村 滋男氏、小林 正人氏、奥山 淑氏、熱海 武憲氏、小田井 正樹氏に心より感謝申しあげます。社会人博士課程への進学への理解と支援をして頂いた (株)日立製作所、(株)HGST ジャパンに心より感謝申しあげます。最後に、本研究を行う上で私の心の励みとなった婚約者、そしてこれまで何一つ不自由なく学生生活を送らせて頂いた家族に心より感謝申しあげます。
業績目録

学術雑誌掲載論文

6. S. Yabui, I. Kajiwara and R. Okita, "Robustness Analysis of an Enhanced Adaptive Feed-forward Cancellation," Journal of Advanced Mechanical De-

国際会議

国内会議

1. 藪井 将太, 弓場井 一裕, 平井 淳之,「HDD のヘッド位置決め制御におけるサポートベクター回帰に基づいた VRFT によるスイッチング制御器の設計」, 平成 19 年 電気関係学会東海支部連合大会論文集, O-126 (2007).

5. 藪井 将太, 弓場井 一裕, 平井 淳之,「HDD のヘッド位置決め制御におけるモデルフリー制御器設計法によるスイッチング制御器の直接設計」, 平成 20 年 電気学会産業計測制御研究会論文集 IIC-09 (2009).
6. 蔡井 将太, 熱海 武憲, 「ハードディスクドライブのヘッド位置決め制御系におけるディスクフラッタ振動の補償方式」，平成23年 電気学会産業計測制御研究会論文集 IIC-11-156（2011）.

7. 奥山 淳, 蔡井 将太, 熱海 武憲, 「位相条件を考慮したAFCに関する一考察」，平成23年 電気学会産業計測制御研究会論文集 IIC-11-160（2011）.

8. 蔡井 将太, 奥山 淳, 小林 正人, 熱海 武憲, 「磁気ディスク装置における回転同期振動抑圧のための適応フィードフォワード制御器の最適設計」，平成23年 電気学会産業応用部門大会論文集，2-89（2011）.

表彰

1. 日本機械学会 情報・知能・精密機器部門 2012年度ベストプレゼンテーション表彰:
受賞案件”DEVELOPMENT OF OPTIMIZED ADAPTIVE FEED-FORWARD CANCELLATION WITH DAMPING RATIO FOR HEAD POSITIONING SYSTEM IN HARD DISK DRIVES ”，2012 ASME-ISPS / JSME-IIP Joint International Conference on Micromechatronics for Information and Precision Equipment (MIPE 2012)

2. 日本機械学会奨励賞 (技術):
案件” 適応フィードフォワード制御による磁気ディスク装置の高機能化技術の開発 ”，(2014/4 受賞)