<table>
<thead>
<tr>
<th>項目</th>
<th>内容</th>
</tr>
</thead>
<tbody>
<tr>
<td>タイトル</td>
<td>社会関係をフィンランドの数学教科書における7年生に嵌められた</td>
</tr>
<tr>
<td>著者</td>
<td>東田 博彦</td>
</tr>
<tr>
<td>引用</td>
<td>Journal of Higher Education and Lifelong Learning, 18: 103-113</td>
</tr>
<tr>
<td>発行日</td>
<td>2011-01</td>
</tr>
<tr>
<td>DOI</td>
<td>10.14943/J.HighEdu.18.103</td>
</tr>
<tr>
<td>ドキュメンツ情報</td>
<td>http://hdl.handle.net/2115/56772</td>
</tr>
<tr>
<td>タイプ</td>
<td>bulletin (article)</td>
</tr>
<tr>
<td>案内</td>
<td>案内</td>
</tr>
</tbody>
</table>

高等教育ジャーナル「高等教育と生涯学習」では、社会関係をフィンランドの数学教科書における7年生に嵌められた社会関係を論じています。
Social Relations Embedded in a Finnish Mathematics Textbook for the Seventh Grade

Fumihito Ikeda*
Institute for the Advancement of Higher Education, Hokkaido University

Abstract — My former studies clarified that Finnish education, which has maintained the world’s highest level as shown in an international academic assessment, helps children learn through various kinds of social relations. This study was conducted to examine how a Finnish textbook supports children’s learning. I analyzed the non-mathematical words that appear in the “number and calculation” unit of a seventh grade Finnish mathematics textbook, and determined what kinds of mathematical contexts the words are used in. I found that the Finnish mathematics textbook contained a great many more non-mathematical words than Japanese ones and helps children learn through the social relations that are given by the words. In the future, I will analyze more textbooks and develop some Japanese mathematical materials to support children’s learning through social relations.

(Received on 5 July, 2010)

1. Introduction

Finland has maintained the world highest level in the Program for International Student Assessment (PISA) conducted by the Organization for Economic Cooperation and Development (OECD) every three years. On the other hand, Japanese children’s science literacy has declined to the second-level group, their mathematical literacy dropped to the bottom of the second group, and their reading ability fell to the world average level [National Institute for Educational Policy Research, 2007]. In my previous studies, I examined the factors that caused such differences from the viewpoints of (1) Finnish educational support for children’s learning through various social relations (learning by socio-constructivism) [Ikeda, 2008] and (2) the human skills that are needed in the entrance exam for the teacher training course of Oulu University [Ikeda, 2010].

However, it would take very much time and great efforts to introduce the Finnish learning methods and teacher training system into Japan. Since teachers have to help children construct their own knowledge through various social relations by themselves, the expected role of teachers in the Finnish learning method is very different from that of today’s Japanese teachers. Therefore today’s Japanese teacher training system would have to be changed from its very roots. Even if the system can be changed and teachers who can support such learning are educated, it will be difficult for such new-type teachers to display their ability in real school activities if the incumbent teachers and parents cannot change their thoughts on education. On the other hand, it is also difficult to intro-
duce a Finnish-type entrance examination for the Japanese teacher-training course, since Japanese universities are in a severe struggle for existence because of the decrease in the number of children. Even teacher training courses of national universities cannot help reducing the number of subjects of the original entrance examination to secure a sufficient number of candidates. For example, the results of a study examining what subjects national teacher training education colleges (there are eight in Japan) assigned for the 2011 entrance examination showed that two colleges will have no academic tests in either the first- or second-round examinations, and that six will have some academic tests only in their second-round examinations. Of the latter six colleges, three will have only science tests, two will have science and mathematics tests, and one will have science and national language tests. Assigning various subjects like in Finland weakens their competitiveness in the struggle to gain students. Furthermore, the social surroundings of education in Finland are very different from Japan. For example, the social status of a teacher is very high and there is a great deal of competition in all teacher training courses in Finland [Ikeda, 2010]. Therefore it is not practical to change the entrance examination in order to change Japanese teacher training system.

It is a family that is relatively free from such social factors preventing a revolution of Japanese education system. So it is a realistic way to spread the Finnish learning by socio-constructivism among Japanese families. To promote this, we need to develop some materials that support such learning in a family. Therefore I analyzed a Finnish mathematics textbook for grade 7 (corresponding to the first year of junior high school in Japan) and investigated what kinds of social relations were embedded in the textbook. I hope that this investigation will enable us to develop a Japanese version of such a text.

The reasons I choose the textbook are as follows. Concerning reading ability, which is the most serious problem in Japan, it is easy to get some Finnish textbooks that are translated into Japanese [Pale, et al., 2005; 2006; 2007]. On the other hand, for science, many Japanese researchers have studied various Finnish textbooks or Finnish teacher training systems and various school lessons in Finnish primary and secondary education [Suzuki, 2007]. However, for mathematics, it was only pointed out that other subjects were also involved in a Finnish mathematics textbook [Ikeda, 2008]. Nevertheless, mathematics is the second serious problem in Japan. The gap between mathematics in elementary school and mathematics in junior high school leads children to dislike it [Iwasaki&Okazaki, 1999][Kunimune, 1997][Tanizawa, 2000]. This situation suggests that it is worthwhile to analyze the Finnish mathematics textbook for the seventh grade.

2. Methods

I chose “Laskutaito (Numeracy) 7” [Laurinolli, et al. 2007] as the Finnish mathematics textbook for grade 7. It was published by WSOY, which is one of the biggest textbook publishers in Finland. This textbook has 300 pages and the list of its contents is shown in Appendix 1.

I analyzed the “numbers and calculations” part (from sections 1 to 28) in this textbook, which deals with addition, subtraction, multiplication and division of integers and rational numbers. The reason why I did so was that this part is the first turning point from mathematics in primary school (“Sansu”) to mathematics in junior high school (“Sugaku”) [Okazaki, 2003] and is not only the foundation of the later contents [Yanagimoto, 1990] but also the cognitional foundation for numerical formulas [Linchevski, 1999].

To examine the social relations embedded in this part, I extracted all of its non-mathematical words, and then (1) categorized them and examined how many words belonged to each category, and (2) analyzed what kinds of mathematical contexts they appeared in. Here, social relations means various relations such as personal relations and social roles in the family or job, and person-to-social relations constructed through the media or in some public services such as schools, government offices, etc. [Gergen, 1999]. Socio-constructivism thinks that our knowledge is not constructed in the head independent of these social relations, but rather through social relations and maintaining these relations [Gergen, 1994]. Moreover our knowledge is not based on facts and truth, but depends deeply on “language”, which is just social relations [Gergen, 1994; 1999]. Therefore, by analyzing what kinds of language are used in the mathematics textbook, the social relations embedded in it are clarified [Gergen, 1994; 1999]. In other words, the use of non-mathematical words in a mathematics textbook means that the mathematical knowledge is explained by the social relations the non-mathematical words represent.
3. Results

Each section in the textbook consists of three parts: example questions and their explanation, training questions and applied questions. I call these sentences the main text. In addition to the main text, there are sentences in figures, tables and topics related to the main text. First, I extracted non-mathematical words from all of these sentences and categorized them. The categories of the words, and the number of words in each one are shown in Table 1. Second, I examined how these words were used in the sentences and found the following tendencies.

3.1 Person names

First of all, domestic personal names appear in the main texts and are used for problem settings like “Eetu ate three-fifths of the pizza.” On the other hand, worldwide names such as “Sherlock Holms”, “Dr. Watson”, and “Sir Arthur Conan Doyle” are used mainly in some world records. Only these three words were used in the topic of section 27. In this section children read each question and answer “who is guilty?” by using the mathematical knowledge that was explained before the question.

3.2 Place names

Domestic place names appear mainly in sections 1 and 22. In section 1, which deals with the addition of positive numbers and negative numbers, a map of Finland and its related table contain such words, which are used in questions like, “The morning temperature in Helsinki was +1 degree and this was forecast to rise +3 degrees during the day. What temperature will it become in the day in Helsinki?” The theme of section 22 is addition, subtraction, multiplication and division of decimals, and children calculated the distance of a trekking course based on distances between points on a contour map of an area of Finland. On the other hand, world place names appear mainly in sections 1, 6, 21 and 25. In section 1, the heights of the highest point and the lowest point in each area of the world are shown in a table, and the differences of the two points are calculated. Section 6 deals with demographic changes around the world. In section 21, some calculations of decimals are based on the track and field records of the Sydney Olympic Games. The theme of section 25 is “travel” and various countries’ currencies and their exchange rates are dealt with in it. Furthermore, worldwide place names are also used in some topics with photos.

<table>
<thead>
<tr>
<th>Category</th>
<th>Subcategory</th>
<th>Number of words</th>
</tr>
</thead>
<tbody>
<tr>
<td>Persons</td>
<td>Domestic</td>
<td>36</td>
</tr>
<tr>
<td></td>
<td>Worldwide</td>
<td>12</td>
</tr>
<tr>
<td>Places</td>
<td>Domestic</td>
<td>24</td>
</tr>
<tr>
<td></td>
<td>Worldwide</td>
<td>47</td>
</tr>
<tr>
<td>Science</td>
<td>Biology</td>
<td>41</td>
</tr>
<tr>
<td></td>
<td>Astronomy</td>
<td>25</td>
</tr>
<tr>
<td></td>
<td>Chemistry & Physics</td>
<td>18</td>
</tr>
<tr>
<td>Daily life</td>
<td>Drink & Food</td>
<td>21</td>
</tr>
<tr>
<td></td>
<td>Household goods</td>
<td>13</td>
</tr>
<tr>
<td></td>
<td>Sports & Playing</td>
<td>26</td>
</tr>
<tr>
<td></td>
<td>Travel</td>
<td>39</td>
</tr>
<tr>
<td></td>
<td>Economy</td>
<td>21</td>
</tr>
<tr>
<td></td>
<td>Social</td>
<td>44</td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td>367</td>
</tr>
</tbody>
</table>
For example, section 4 deals with subtraction of negative numbers, and as a related topic an episode with a vulture is introduced. That is, it is a vulture in Cote d’Ivoire that among animals flies the highest in the world.

3.3 Science words

Among science words for biology, animal names appear most frequently. The appearance of animal names is classified into two types: in topics with photos like the vulture previously mentioned and in the results of some calculations. For example, given a correspondence table between numbers and letters, children transform the correct answers of some calculations into letters by referring to the table and then they get an animal name. Plant names, which were mainly vegetables and fruits, appear with their prices and amounts in questions.

Almost all of the words on “astronomy” appear in section 26, whose theme is “the solar system and space.” In this section calculations of distances between planets or galaxies and conversions from astronomical units (AU) into light years are presented.

The words on chemistry and physics are used mainly in sections 1, 23 and 26. In section 1, there is a question comparing some temperatures like the melting point of oxygen, boiling point of mercury and so on. Section 23 contains an applied question related to low-fat milk, and in this question lactose, calcium, vitamins and so on appear as the ingredients of it. Section 26 deals with some calculations involving speed.

3.4 Daily life words

Words about daily life appear most frequently of all the non-mathematical words. Drink and food names or household goods are related to their prices or amounts in some questions. There are two cases in which words related to sports and playing appear. In the first case, they are used with time, speed and distance, and their values are calculated. In the second case, they appear in a survey result on what kinds of sports young people play in section 20. The ratio of each sport is represented as a fraction and calculated. Most of the words on travel appear in section 25 as representations of currencies, exchange rates, transportation costs and so on. The words of economics are used to explain some consumer behaviors in questions. They are accompanied by person names and place names. The category “social” contained words that represent family relations like “mother” and “aunt”, social phenomena like “crime” and “refugee”, social roles like “rector” and “police”, time designations like “November” and “Sunday” and so on. These words are used to explain realistic problems with personal names and place names in the same way as the economic words.

4. Discussion

The result of categorizing the non-mathematical words in the Finnish mathematics textbook showed that its mathematical knowledge contained four types of social relations: Person, Place, Science and Daily life.

The fact that the mathematical knowledge is expressed using various persons’ names shows children that mathematics is combined with real human activities. Especially the fact that many domestic personal names are used in various mathematical contexts shows children that they can learn mathematics through their activities in their real lives. On the other hand, the fact that worldwide persons’ names appear shows children that they can learn mathematics in relation to people throughout the world. These facts help children learn by socio-constructivism through people.

The fact that the mathematical knowledge is expressed by using various place names shows children that mathematics is connected to real places. Especially the fact that many domestic place names are used in various mathematical contexts shows children that they can learn mathematics through familiar places. On the other hand, the fact that worldwide place names appear shows children the connection of mathematics to the relations of places throughout the world. These facts help children learn by socio-constructivism through places.

Science terms mean social relations in school to children, because they become familiar with these terms mainly in school. These terms are related to nature (mainly through many animal names), the physical world (mainly through words on astronomy and physics), and industrial materials (mainly through chemical terms). Thus, science terms help children learn by socio-constructivism through science activities in school.

Terms from daily life, which are accompanied by persons’ names or place names, help children learn mathematics through their ordinary daily lives. This fact shows
children that social relations constructed through children’s daily lives are embedded in mathematical knowledge.

5. Conclusion

As discussed in the previous section, four types of social relations are embedded in the Finnish mathematics textbook for grade 7. However, this conclusion does not mean that if we incorporate socio-constructivism in Japanese textbooks we can improve Japanese education because I have not yet discussed whether Japanese textbooks on mathematics show the same tendency in the usage of non-mathematical words. If they do, we should admit that the decline in mathematical literacy in Japan is not due to the textbooks.

To compare Japanese textbooks with Finnish textbooks, I chose non-mathematical words from a mathematics textbook for first year junior high school published by Kyouiku Shuppan. This textbook is used by 12 of the 24 school districts in Hokkaido. The result of categorizing the words in this textbook is shown in Table 2 and all kinds of words and their categories are shown in Appendix 4.

Although the usages of these words in mathematical contexts are almost the same as in the Finnish text, the variety of non-mathematical words in the Japanese textbook is extremely limited compared to the Finnish one. From this fact, I conclude that there is a much weaker tendency for the Japanese mathematics textbook to connect mathematical knowledge with various kinds of social relations than in the Finnish one.

Two main problems remain to be dealt with. One is that more textbooks should be analyzed. It is possible that the Finnish textbook analyzed in this study happened to contain many non-mathematical words, or conversely, that the Japanese textbook analyzed in this study contained very few non-mathematical words by chance. Therefore it is necessary to analyze more mathematics textbooks to reach a firm conclusion. The other problem is to develop some mathematics materials that support learning via socio-constructivism in the family. As pointed out above, the results and conclusion cannot be generalized exactly as they are. However, it is important to understand that the Japanese textbook analyzed in this study was published by the leading textbook publisher in Japan. Thus, because

<table>
<thead>
<tr>
<th>Category</th>
<th>Subcategory</th>
<th>Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Person</td>
<td>Domestic</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Worldwide</td>
<td>0</td>
</tr>
<tr>
<td>Place</td>
<td>Domestic</td>
<td>16</td>
</tr>
<tr>
<td></td>
<td>Worldwide</td>
<td>4</td>
</tr>
<tr>
<td>Science</td>
<td>Biology</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>Astronomy</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Chemistry & Physics</td>
<td>5</td>
</tr>
<tr>
<td>Daily life</td>
<td>Drink & Food</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>Households</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Sports & Playing</td>
<td>7</td>
</tr>
<tr>
<td></td>
<td>Travel</td>
<td>7</td>
</tr>
<tr>
<td></td>
<td>Economy</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Social</td>
<td>13</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>61</td>
</tr>
</tbody>
</table>
many Japanese children learn mathematics through this textbook, I hope to develop some mathematics learning materials that are embedded with various kinds of social relations and examine their effect as soon as possible.

References

Appendix 1. Contents of a Finnish Mathematics Textbook for 7 grade

The number of each title shows its page number which the section begins

Integers and their calculations
1. Temperature and Heights ..8
2. Integers..10
3. Increase and reduction of positive numbers12
4. Increase and reduction of negative numbers14
5. Addition and subtraction of integer16
6. Demographic changes ...18
7. Multiplication and division of two numbers20
8. Multiplication and division of multiple numbers22
9. Combined with calculations ...24
10. Power ...26
11. Power clauses ..28
12. Power of negative numbers ...30
13. Fraction and factors ..32
14. Application of fraction ..34
15. Refresher exercises ..36

Rational numbers and their calculation
16. Fractions ...38
17. Addition and subtraction of fractional numbers40
18. Multiplication of fractional numbers42
19. Division of fractional numbers44
20. Fractional expressions ..46
21. Decimals ..48
22. Decimals arithmetic ..50
23. Approximate values ..52
24. Evolution ..54

Flexibility tracks
25. In travels ..56
26. Solar and space ...58
27. Detective ..60
28. Refresher exercises and Summary62

Plane geometry ...65

Angles and straights
29. Angles and their classification66
30. Angle measurement and drawing68
31. Straights and plane ...70
32. Cross angles and adjacent angles72
33. Specifics of the same angles ..74
34. Reflexion ...76
Circle
35. Circle78
36. Angles related circle80
37. Geometric drawing: normal and normal bisector 82
38. Geometric drawing: angle halving and transfer 84
39. Refresher exercise86

Polygons
40. Polygon88
41. Angles in triangles90
42. Isosceles and equilateral angles 92
43. Drawing a triangle94
44. Quadrilateral96
45. Parallelogram98
46. Regular polygon100

Coordinates
47. Coordinates102

Single description
48. Mirroring a relationship directly 104
49. Mirroring the regarding point 106
50. Transfer and rotating108

Area and sections
51. Area unit110
52. Rectangle and its area112
53. Parallelogram and its area 114
54. Trapezoid area116

Flexible tracks
55. Plane fulfillment with tiles 118
56. Formular one game120
57. Refresher exercise and Summary 122

Progression and equation125
Progressions
58. Progression126
59. Pattern queue128

60. Arithmetic number progression 130
61. Geometric progression132

Algebra
62. Function machine134
63. Equation with variables136
64. Value of expression138
65. Addition of expressions140
66. Multiplication and division of expression by number ...142
67. Expression formation144
68. Jogging146
69. Refresher exercise148

Equations
70. Balance150
71. Equation152
72. Solution by adding and subtracting 154
73. Solution by multiplying and dividing 156
74. Solution step by step158
75. Verbal tasks160

Straight Line
76. Linear function162
77. Drawing a line using equations164
78. Variety of straight lines 166
79. Intersecting straight lines .168
80. Graph and its interpretation 170

Flexibility tracks
81. Ecological rucksack172
82. Calendar and the days of the weeks174
83. Summer176
84. Refresher exercises and Summary 178

Additional tasks181
Homework247
Answer281
Applied Questions297
Appendix 2. Categorization of Non-Mathematics Words in a Finnish Mathematics Textbook for 7 grade

<table>
<thead>
<tr>
<th>Category</th>
<th>Examples</th>
<th>Number of words</th>
</tr>
</thead>
<tbody>
<tr>
<td>Person’s name</td>
<td>Marion Jones, Obadele Thomson, Aziz Zakari, Maurice Greene, Jonathan Drummond, Kim Collins, Dwain Chambers, Darren Campbell, Ato Boldon, Sherlock Holms, Dr. Watson, Sir Arthur Conan Doyle</td>
<td>48</td>
</tr>
<tr>
<td><Domestic></td>
<td>Helsinki, Tampere, Turku, Jyvaskyla, Oulu, Utsjoki, Kittila, Sodankyla, Kayaani, Vaasa, Lappeenranta, Vantaa, Yllasjarven, Mount Yllas, Varkaankurun laavu, Ojanalva, Kahvikeittan laave, Tunturijarvi, Yllasjarvi, Yllastunturin, Yllasjarvelta, Ojanlalvan, Kahviketaan, Porttipahta lake</td>
<td>24</td>
</tr>
<tr>
<td>Place name</td>
<td>Arabia, Cote d’Ivoire, Abidjanin, Kongo, Ruanda, Niragongon, Romania, Ukraina, Russia, Estonia, Brazil, Bosntia-Herzegovina, Nigeria, Bulgaria, India, China, Germany, France, Italia, Finland, Hungary, Poland, Europe, Barbados, Ghana, USA, St Kitts, England, Trinidad, Japan, Switzerland, Norway, Stockholm, Malmo, Oslo, Bergen, Paris, Marseille, London, Cardiff, Berlin, Hamburg, St. Petersbourg, Moscow, Tokyo, Tokyo Narita Airport, Baker Street</td>
<td>47</td>
</tr>
<tr>
<td><Worldwide></td>
<td>Arabian, Cote d’Ivoire, Abidjanin, Kongo, Ruanda, Niragongon, Romania, Ukraina, Russia, Estonia, Brazil, Roughia-Herzegovina, Nigeria, Bulgaria, India, China, Germany, France, Italia, Finland, Hungary, Poland, Europe, Barbados, Ghana, USA, St Kitts, England, Trinidad, Japan, Switzerland, Norway, Stockholm, Malmo, Oslo, Bergen, Paris, Marseille, London, Cardiff, Berlin, Hamburg, St. Petersbourg, Moscow, Tokyo, Tokyo Narita Airport, Baker Street</td>
<td>47</td>
</tr>
<tr>
<td>Science</td>
<td>Mercury, The Earth, vacuum, Sun, cosmos, Big Bang, Solar system, space, planet, galaxy, the Milky Way, star, Moon, orbital, Venus, Mars, Jupiter, Saturn, Uranus, Neptune, Pluto, AU, light year, Andromeda, Proxima Centauri</td>
<td>84</td>
</tr>
</tbody>
</table>
<Chemistry & Physics> 18
oxygen, mercury, lactose, energy, protein, carbohydrate, fat, calcium, vitamin, amber, temperature, melting point, boiling, light, frost, radioactive decay, frozen point, speed

<Drink & Food> 21
Pizza, Pizzeria, orange juice, apple juice, beverage, soda, cake, pie dough, recipe, bottle, strawberry juice, food, grain, coffee, candy, beef, sirloin, low-fat milk, nutrient, biscuit, sausage

<Households> 13
laundry detergent, freezer, stamp, garage, container, cleaning, fleece, fabric, glass, room, board, rope, bath

<Sports & Play> 26
diving, soccer, sports, football, ice hockey, physical activity, exercise, sprinter, race, trail, trekking, hiking, jogging, fishing, ski jumper, lure, suncream, rubber boat, swimming, maze, dirt, book, mystery, movie, X box, game

<Daily life> 164
letter, flight distance, journey, lakeside, exchange rate, dollar, USD, yen, JPY, pound, GBP, Krona, SEK, Franc, CHF, NOK, Ruble, RUR, price, EUR, mileage, travel, height, horizon, vertical, ocean, depth, radius, island, beach, train, airplane, gasoline, taxi, JR, Narita Express, tire, valve, station

<Economy> 21
wallet, money, cent, mortgage, Euro, bank, cash, receipt, deposit, purchase, shop, gold, ounce, jeweler, stone, diamond, ruby, emerald, sapphire, trade, European Central Bank

<Social> 44
November, week, family, children, crime, mother, father, class, student, house, Police, officer, Rector, the office, suspicion, guilty, surname, bald hair, gentleman, Sunday, pilot, demographics, refugee, population, migration, immigration, birth, death, emigration, young people, aunt, inherit, charity organization, school, scholarship, Red Cross, child right, Sydney Olympic
Appendix 3. Contents of a Japanese Mathematics Textbook for First year of Junior High-school published by Kyouiku Shuppan

The number of each title shows its page number which the section begins

Section 1. Positive number and negative number6
 1. Positive number, negative number8
 2. Addition and subtraction16
 3. Multiplication and division29

Section 2. Letters and mathematics expression48
 1. Usage of letters in mathematics expressions50
 2. Calculation of mathematics expressions59

Section 3. Equation ...72
 1. Equation and its solving74
 2. Applying equation ...84

Section 4. Direct and inverse proportion94
 1. Direct proportion ...96
 2. Inverse proportion106
 3. Applying direct and inverse proportion113

Section 5. Plane geometry118
 1. Symmetrical figures I120
 2. Making figures ..131

Section 6. Solids ...142
 1. Various solids ..144
 2. Volume and surface of solids156

Free study
 Difference in time ..166
 Various placements ...168
 Expression of inequality169
 Landolt ring ..171
 Conditional figures ..172
 Figures transferring174
 Two intersecting circles175
 Regular polyhedrons176
 Volume and surface area of spheres178
 Projection drawings ..180
 Draw in one stroke ..181
 Calculation practices182
 Applied questions ...184
 Answers ...188

Index ..190

<table>
<thead>
<tr>
<th>Category</th>
<th>Examples</th>
<th>Number of words</th>
</tr>
</thead>
<tbody>
<tr>
<td>Person’s name</td>
<td></td>
<td></td>
</tr>
<tr>
<td><Domestic></td>
<td>Aya, Tomoya, Momoko, Taiki</td>
<td>4</td>
</tr>
<tr>
<td><Worldwide></td>
<td></td>
<td>0</td>
</tr>
<tr>
<td>Place name</td>
<td></td>
<td></td>
</tr>
<tr>
<td><Domestic></td>
<td>Sapporo, Akita, Tokyo, Shizuoka, Osaka, Hiroshima, Takamatsu, Fukuoka,</td>
<td>16</td>
</tr>
<tr>
<td></td>
<td>Nagasaki, Naha, Mt. Fuji, Izu, Ogasawara trench, Tokyo tower, Seikan tunnel, Lake Biwa</td>
<td></td>
</tr>
<tr>
<td><Worldwide></td>
<td>Japan, Belgium, Rusia, Tunisia</td>
<td>4</td>
</tr>
<tr>
<td>Science</td>
<td></td>
<td></td>
</tr>
<tr>
<td><Biology></td>
<td></td>
<td>0</td>
</tr>
<tr>
<td><Astronomy></td>
<td>Space shuttle</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>6</td>
</tr>
<tr>
<td><Chemistry & Physics></td>
<td>water level, transparency, water temperature, temperature, sea level</td>
<td></td>
</tr>
<tr>
<td>Daily life</td>
<td></td>
<td></td>
</tr>
<tr>
<td><Travel></td>
<td>road, east, west, route, train, railroad, ticket</td>
<td>7</td>
</tr>
<tr>
<td></td>
<td></td>
<td>7</td>
</tr>
<tr>
<td><Economy></td>
<td>bankbook, profit, loss</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><Social></td>
<td>newspaper, Golden Week, crowds estimation, police superintendent,</td>
<td>13</td>
</tr>
<tr>
<td></td>
<td>homepage, test, points, supermarket, machinery parts factory, town hall,</td>
<td></td>
</tr>
<tr>
<td></td>
<td>bank, food factory, post office</td>
<td></td>
</tr>
</tbody>
</table>