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Abstract

This study explores the usefulness of stable isotopic compogitite) along with
other chemical tracers and air mass trajectory to iiyethié primary and secondary sources
of carbonaceous aerosols. Aerosol samples (n = 84) were edlEmtinuously from April
2003 to April 2004 at Gosan site in Jeju Island, South Koreacdimeentrations of total
carbon (TC), HCI fumed carbonate-free total carbon (fum@jlahd theid**C were
measured online using elemental analyzer interfaced to esodtip mass spectrometer (EA-
IRMS). Similar concentrations of TC and fumed-TC and thiafilar 3°C values suggest the
insignificant contribution of inorganic carbon to Gosan aerosols. Tmhty averaged
5"*Crc showed the lowest in April/May (-24.2 to -24.3%ahich is related with the highest
concentrations of oxalic acid (a secondary tracer). Thdtrimdicates an enhanced
contribution of TC from secondary sources. The monthly aver@g€s in July/August (-
23.0 to -22.5%0) were similar to those in January/Febru@B;1%o. to -22.7%.). However,
chemical tracers and air mass transport pattern suggegtehazollution source regions in
January/February are completely different from those in Jubydét. Highe®*C values in
July/August are aligned with higher concentration ratios ofmedracers (azelaic acid/TC
and methanesulfonate/TC), suggesting an enhanced contributicariok organic matter to
the aerosol loading. High&C values in January/February are associated with higher
concentrations of phthalic acid and/KC, indicating more contributions of carbonaceous
aerosols from fossil fuel and,@lant biomass combustion. This study demonstrates that
5"%Crc, along with other chemical tracers and air mass t@jgctan be used as a tracer to
understand the importance of primary versus secondary pollutioresafrcarbonaceous

aerosols in the atmosphere.
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1. Introduction

Atmospheric particular matter (PM) affects the earthtiative balance by absorbing
and scattering solar radiation (direct aerosol effect) (Mumand Ludwig, 1967;
Ramanathan et al., 2001) and acting as cloud condensation nud¥i (i[@direct aerosol
effect) (Roberts et al., 2003; Twomey, 1974). They also iatjraffect the radiative balance
by changing land and ocean biogeochemical cycles through physialfor by adding
nutrients (Mahowald, 2011). The studies on extreme air polluticoépiand
epidemiological and toxicological studies, have shown the reldbetwgezen PM mass
concentrations and increased human mortality and morbidity (Popecakery, 2006). The
climate and health effects largely depend upon the cheooogbosition of atmospheric
aerosols. It is therefore very important to understand theicheoomposition and pollution
sources of atmospheric aerosols to formulate effective catiankgies.

The 8"C of total carbon&*Crc) has been successfully used to identify and apportion
the pollution sources in different parts of world (Agnihotrilet2011; Cachier et al., 1985;
Cao et al., 2011; Chesselet et al., 1981; Jung and Kawamura kztdmura et al., 2004;
Kirillova et al., 2013; Kundu et al., 2010a; Martinelli et 2002; Miyazaki et al., 2010;
Narukawa et al., 2008; Turekian et al., 2003; Widory et al., 2@040f these studies used
the 3°Crc for understanding the primary pollution sources of carbonaceous aerosol
Secondary organic aerosols, generated in the atmospherecoantgor more than 50% of
atmospheric aerosols (Cabada et al., 2004). It is thereforetanpto understand whether
5"%Crc can be used to understand the primary versus secondaryquoiatirces of

carbonaceous aerosols in the atmosphere.
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Although there are some differences in 3 in aerosols emitted from various
pollution sources, th&"*Crc values of particles significantly overlap among the piolfut
sources. Th&"Cr¢ values of coal combustion-particles are -24.4 to -23.4%o,wdnie
similar to those of gasoline combustion-derived partic2$.8+ 0.6%.) (Widory et al.,
2004). Thed*Cr¢ values of particles derived from the combustion of diasdlfuel oil are -
26 £ 0.5%0, which are different than those of particles ftoencombustion of coal and
gasoline. However, th&Crc values of fossil fuel combustion-derived particles falhie
range of -20 to -37%o, which a®>Crc values of particles emitted from lants (Das et al.,
2010; Jung and Kawamura, 2011; Kohn, 2010; Turekian et al., 1998)"*0ie values of
biogenic- and anthropogenic- secondary organic aerosols (SOA) alapaed'*Crc of
particles from G plant. For example, th&#*Crc of B-pinene ozonolysis-SOA has been
reported to be -29.6 + 0.2%. whereas 8¢ of toluene irradiation-SOA has been reported
to be -32.5 + 0.3%o (Fisseha et al., 2009; Irei et al., 2006et@., 2011). Thé"Crc values
of C, plants-derived particles are -8 to -18%o (Das et al., 20afeKian et al., 1998) whereas
those of marine-derived particles are -20 to -22%. (Chetssehl., 1981; Fontugne and
Duplessy, 1978; Fry et al., 1998). Due to the overlapping betweendjoe pollution
sources, it is not straightforward to delineate among thatmoil sources using only the
5"*Crc. Some previous studies us#dCrc values along with the air mass transport patterns
(e.g., Cachier et al., 1985). TBEC along with air mass transport patterns and chemical
tracers are likely to provide better information about theugiol sources.

Here we present the seasonal variation ¢ in aerosol samples collected from
Gosan site at Jeju Island, South Korea. Then, we inteh@etitserved isotopic composition
and its seasonal variations based on the chemical t{@e@lg acid, phthalic acid, azelaic

acid, methanesulfonate and)kand air mass transport pattern to understand the importance
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of both the secondary and primary sources of carbonaceous aefbsothiemical tracers

used in this study have been adopted from the previous studies (&Laid2010d).

2. Experiment

2.1. Site Description

Gosan site is situated on a clif {1 m above sea level) at the western edge of Jeju
Island (33°29' N, 126°16' E) (Fig. 1). It is ~100 km south of KorBeninsula;-500 km east
of Jiangsu province or Shanghai in Chir@200 km west of Kyushu Island in Japan, and

~1000 km northeast of Taiwan. The site is covered with grdmgdblere are no trees. Local

anthropogenic emissions are very limited at the Gosan gited{Ket al., 2010c, d; Lee et al.,
2007). Hence, Gosan site has been used as an idealesrduate air pollution as a result of

the outflows from East Asia (Arimoto et al., 2004; Kawamural.e 2004).

2.2. Aerosol sampling

Total suspended particles (TSP) in the atmosphere weeztsnllat Gosan site over
2—7 days throughout the year from 2003 April to 2004 April. A high volumsaapler
(Kimoto AS-810) and prebaked (450 °C for 6 hours) quartz fiber fi20 x 25 cm, Pallflex

2500 QAT-UP) were used to collect TSP samples (n = 84). Thalsawas installed on the
roof of a trailer house~<3 m above the ground). Filters were placed in clean and prébake

glass jar (150 mL) with a Teflon-lined screw cap beforé after the sampling. Samples
were shipped to Sapporo, Japan and then preserved in a daet fieeam at -20 °C until

analysis. Field blank filters were collected every month.



123 2.3. Chemical analysis

124 A small disc (area 2.54 djof each filter sample was wrapped with a cleaned tin cup
125 using tweezers. An autosampler was used to introduce theesamto the elemental

126 analyzer (EA; model: NA 1500 NCS, Carlo Erba Instruments. sEmples are oxidized in a
127 combustion column packed with chromium trioxide at 1020 °C irtransphere of pure

128 oxygen. The derived CQvas isolated on a gas chromatograph (GC) installed withiartgA
129 then measured with a thermal conductivity detector. Aliguo@®fgas were then

130 introduced online into an isotope ratio mass spectrometerifioQuest, Delta Plus) through
131 a ConFlo Il interface (ThermoQuest) to moniti/**C ratios. The carbon isotopic

132 composition was calculated using the following standard isot@picersion equation.

(13C/12C)sample
S§13C (%o0) = — 1] x1000
( 00) (136/12C)standard
133 Another aliquot of filter samples was analyzed for TC Had'“C ratios after the

134 HCI-fume treatment to remove carbonate carbon (e.g., @a®@wvamura et al., 2004). The
135 TC concentration in the field blank sample was 0.7-6% of abfd3S concentrations and the
136  3'°C values are reported after blank correction. The replaraéyses (n=3) of aerosol

137 samples show that the analytical errors are in the rang@-&.3%.. We have compared our
138 TC concentrations with organic carbdd@) and elemental carbon (EC) concentrations
139 measured by an OC/EC analyzer (Sunset LaboratoryRortland, OR)lt shows that

140 monthly average contributions of OC to TC ranged from 46.5-92.4&6dge 64.8%)

141 whereas the contributions of EC to TC ranged from 7.6-30.1%a@®€el8.9%). Overall, the
142 TC concentrations were 19.6% (on average) higher than the 0@ ahd EC

143  concentrations.

144 Dicarboxylic acids, including oxalic, phthalic and azelaic avidee determined

145 using GC-FID (GC, Agilent 6980) and GC/MS (Thermoquest, TraS¢ (Mawamura et al.,



146  2010; Kundu et al., 2010d). Methanesulfonate (MSA, a secondary nraiee), K (a

147  biomass-burning tracer) were measured using a Metrohm 761 ion ¢ogoapy (IC)

148 system (Kundu et al., 2010d). The data of dicarboxylic acid#\ &® K" are reported
149 elsewhere (Kundu et al., 2010d).

150
151 3. Resultsand discussion

152 3.1. Seasonality of total carbon (TC) and carbonate-freetotal carbon (fumed-TC)

153 Fig. 2 and Table 1 show the seasonal variations in monthlgpge®iconcentrations
154 of TC and fumed-TC in Gosan aerosols. The seasons in this seudgfaned as December to
155 February as winter, March to May as spring, June to August asesuamth September to
156 November as fall. The average concentrations of TC anddunC were found to be the
157  highest in April/May (6.7 and 769 m°) and the lowest in July/August (2.0 and g2m®).
158 The intermediate levels of concentrations were observéetioolder months

159  (October/November: 3.5 and 344 m® and January/February: 5.0 and gg8m®). Similar
160 levels of TC and fumed-TC suggest that most of carbonaceoosads are composed of
161 organic carbon and elemental carbon and the contribution of inorgemion is insignificant
162 in Gosan aerosols. The concentration levels of this studyarparable with those (0.6-16
163 ug m°) reported for aerosol samples collected from April 2008doch 2002 at Gosan site
164 (Kawamura et al., 2004). The contributions of TC to aerosol rmaged from 0.1% to

165 16.2% with an annual average of 6.6%. Higher contributions dbT@rosol mass (7.3-
166 10.0%) were observed in the spring (7.3-10.0%) and fall (7.8-®2eépt November)

167 months. The lowest TC contributions were recorded in summe6(8%) and winter (5.3-
168 6.0%) months.

169 Highest concentrations and contributions of TC in spring months aristesrisvith

170 the facts that almost all of the air masses in springransported from the heavily polluted



171 regions in east China, Korea and Japan (Fig. 1) and higher paotoelh activity in the East
172  Asian atmosphere (Mauzerall et al., 2000). The lowest comtiEmis and contributions in
173  July are due to the transport of clean air masses froBabieChina Sea and Yellow Sea
174 (Fig. 1). Higher concentrations of TC in the colder monthsutaotand winter) are

175 associated with air mass transport from northeastern provoh€dsna (Fig. 1) where the
176 emissions from coal and other fossil fgeimbustion, as well as biofuel combustion, increase
177 significantly in cold seasons (Cao et al., 2011; Kundu e2@1.0c). Higher contribution of
178 TC to aerosol mass in the autumn months may be associ#tteamlvenhanced emissions
179 from agricultural straw burning (Yang et al., 2008; Wang .e28i09).

180

181  3.2. Seasonality of "°C for TC and fumed-TC

182 The monthly averaged*Crc ranged between -24.4%o to -22.5%o with the lowest
183 value in May and the highest value in August (Fig. 3a).3f@ values in July/August (-23.0
184 to -22.5%0) were similar to those in the colder months (OcteB8r2%., December: -23.4%o,
185 January: -22.7%. and February: -23.1%o). A similar trend &/t valuesof -24.4%o to -

186  22.4%. was observed for fumed-TC. No significant differendbéd*>C values was found
187 before and after the HCI-fume treatment of filter. Thelltesuggests that carbonate such as
188 CaCQ from dusts was not present and/or it was reacted wiB©OHN the atmosphere during
189 a long-range transport from the source regions. This is inastntr the situation of 2001 and
190 2002 spring, when carbonate carbon was suggested to remairagrasels as th&°C

191 values of fumed-TC were lower than &#€C values of TC particularly in the spring

192 (Kawamura et al., 2004).

193 The lowerd'3C values in April/May are involved with the higher concatitns of

194 oxalic acid (Fig. 3b). It is well established that oxald is predominantly generated in the

195 atmosphere due to the oxidation of various organics in tharghaqueous phase (Warneck,
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2003; Kawamura and Yasui, 2005; Kundu et al., 2010b; Myriokefalitakils, &2011). The
relation of lowes®™C with oxalic acid peak may suggest an increased contriboftion
secondary organic aerosols to carbonaceous aerosols at Gasan site

The &"C values in April/May at Gosan site are 5.5-8.4%o highantthose observed
in SOA from the ozonolysis @-pinene and from the OH oxidation of toluene (Fig. 5a). This
could be interpreted by (a) dilution of secondary sources by tke timary sources having
higherd™C values, and (b) enrichment’3€ by the isotopic fractionation due to the
chemical ageing of organic aerosols during long-range atmospfarsport. Dilution of the
secondary sources can be evidenced by the transport of variowssaes during April/May
at Gosan site (Fig. 1). Recently, a significant enrichroehC in remaining oxalic acid has
been demonstrated during the photolysis of oxalic acid under aque®asipliae presence
of Fe"*/Fe?* (Pavuluri and Kawamura, 2012).

The concentrations of azelaic acid, methanesulfonate ame#e normalized to
better understand the role of oceanic and biomass burning emissiriveng the seasonal
variations of'C. Higherd™C values in summer are related with the higher concésirat
ratios of methanesulfonate/TC and azelaic acid/TC (Figh)4Azelaic acid and
methanesulfonate are oxidation products of oleic acid and dirsetfigé, respectively,
which are emitted from the oceans (Karl et al., 2007; Kawa and Gagosian, 1987). The
association of highe¥**C with higher ratios of methanesulfonate/TC and azelait E€
suggests an increased contribution of sea spray to carbonaetossls. Marine-derived
carbonaceous particles are enriched Within comparison to particles resulting from
vehicular emissions, {plants and secondary sources (Fig. 53)T& ratios in summer were
also observed to be higher than those in May and Septenfigere3ult indicates higher

contribution from biomass burning of, @lants such as wheat, rice and corn straws which is
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associated with the burning crop residue by the end of harvest el air mass transport
from polluted East China Sea and Yellow Sea.

The 8"C values in colder months are similar to those in July/Autig. 3).
However, the trajectory analysis shows that pollution sourcé®iodlder months are
different than the pollution sources in July/August at Gosar(Big. 1). The highe¥'*C
values in the colder months are linked with the higher coret@ris of phthalic acid (Fig.
3c). Phthalic acid is either generated in the atmosphetteebyxidation of aromatic
hydrocarbons emitted from fossil fuel combustion or emitted piiyrfaom fossil fuel
combustion (Fraser et al., 2003; Kawamura and Kaplan, 1987). Thhigtieed*°C values
in cold seasons can be interpreted by an enhanced contributiondaband gasoline
burning. Particles produced by the combustion of coal and gasatigeaerally more
enriched in*C than other sources such as diesel and fuel oil, SOA aptht derived
particles (Fig. 5a). Large quantities of coal are burnedefsidential heating in north China
during November to March (Cao et al., 2011). Air mass trangadterns also suggest that
most of the air masses in cold seasons are transportedan &tesfrom northeast China
(Fig. 1).

Higher3*3C values in the cold seasons are also associated witeriéoncentration
ratio of K'/TC (Fig. 4c), suggesting an enhanced contribution from bisiasing of G
plants such as wheat, rice and corn straws. Biomass caarbbas been legally prohibited
in urban areas of China since 1998 (Cao et al., 2011). Chinargaguiral population living
in the village and straws are not a high-demand fuel. #ldndng and after the harvest
season, farmers often burn crop straws in the fieldcasgenient and inexpensive way to
dispose agricultural waste to advance crop rotation (Yang €0a8; Wang et al., 2009; Fu
et al., 2012). In addition, straws are also used for domesséiting during cold seasons and

for cooking fuels in the rural areas throughout the year.
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3.3. Identification of the source regions using 8C of total carbon (TC)

The comparison a5**Crc in aerosols between source regions and receptor site will
provide important information about the sources and source regiossagproach may also
present information on potential isotopic fractionation dudeécet/olution of organic
aerosols as a result of chemical and physical processesadjbr pollution sources at Gosan
site are east China, Korea and Japan in spring, theClhast Sea/Yellow Sea in summer,
and northeastern China in fall and winter (Fig. 1). Figss Bbmpare th&*Crc in aerosols
between Gosan site and source regions suggested by airajes®ry analysis.

The 3"*Cr¢ of atmospheric aerosols in spring in China are not availatitei
literature. It can be assumed that 3¢ in spring will have similar values of summer
aerosols as a result of higher contributions of SOA. The a@&@c in summer aerosols
collected in 2003 was reported to be -26.4%. in north China an@Ps2m south China (Cao
et al., 2011). The averad&Crc in spring aerosols at Gosan is -24.1%o, which is about 2%o
higher than th&"*Crc in summer aerosols in China (Figs. 5b,c). Similarly,aherage
5'3Crc in winter aerosols at Gosan site is 1.5%o higher than floosel in north China
atmospheric aerosols collected in 2003 winter (Figs. 5b,chef&*Crc at Gosan than the
source regions may be explained'®® enrichment during the long-range transport by
physical/chemical evolution of organic aerosols and/or mixturabdws air masses from
China having differenb**C signatures. The averad€Crc in summer aerosols at Gosan is
>3%o higher than those observed in summer aerosols in north andovo#h(Figs. 5b,c),
further confirming the marine contributions to carbonaceous aerosd ¢ of marine
aerosols collected during the season of higher biological igoti¥BA) has been reported to

be higher than those of marine aerosols collected during lowegiual activity (LBA) in

11
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the western Pacific Ocean (Miyazaki et al., 2010). Ffiérc has also been observed to
increase in the continental aerosols when air massednaesported from the oceans

(Cachier et al., 1996; Narukawa et al., 2008; Cao et al., 2013).

4. Conclusions

We found that total carbon (TC) in atmospheric aerosols cetldodbm Golan site,
Jeju Island is mainly composed of organic carbon and elemental aaithamegligible
amount of inorganic carbon. Inorganic carbon was insignificant evgpring when Asian
dusts emitted from arid regions in China and Mongolia aendfansported over the
sampling site, indicating that Asian dusts may have beatet by acids such as sulfuric
acid in aerosols during a long-range atmospheric transponifiSant seasonal variations of
the 3'*C of both TC and fumed-TC were found in Gosan aerosols withr laadiges in
July/August and January/February and smaller values in Kail/ Seasonal variations were
interpreted by the differences in pollution sources, sourcenmeg@nd secondary formation of
organic aerosols in the atmosphere. Sincétf@ values of TC are overlapping between the
pollution sources in the atmosphere, it is risky to solely depadd’C to identify the
pollution sources. The overlapping issue was dealt in this stiidyttve considerations of the
air mass transport patterns and secondary chemical trackiding oxalic, azelaic, and
phthalic acids, methanesulfonate arid Rhis study demonstrates t&fCrc, along with
chemical tracers and air mass trajectory, can be sadracer to understand the importance
of primary versus secondary sources of carbonaceous pollutianstlidly also shows the
possible isotopic enrichment of TC in aerosols by 1.5-3%. during arborge transport of

atmospheric aerosols from the source regions to Gosan site.
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Table 1. Monthly averaged stable carbon isott
ratios of bulk carbon in atmospheric aerosol
samples collected from Gosan site, Jeju Island.

313C (%o)

Date Number of
samples ?TC  Pfumed-TC

January 8 -22.7 -22.6
February 8 -23.1 -22.6
March 10 -22.8 -22.7
April 17 -24.2 -24.1
May 11 -24.4 -24.4
June 7 -23.8 -23.8
July? 1 -23.0 -22.9
August 4 -22.5 -22.4
Septembér 2 -22.8 -23.1
Octobef 2 -23.2 -23.1
November 6 -24.2 -23.8
December 8 -23.4 -23.2

#TC stands for total carbon.

’fumed-TC is the remaining carbon on the filter afeanoval of inorganic
carbon by HCI.

‘Additional aerosol samples cannot be collectedutyy $eptember and
October due to the mechanical failure of the adsmmplers.
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Figure Captions:

Fig. 1. Map showing geographical region around Gosan site along with mawbigged
patterns of air mass transport. Gosan site is situatibe west coast of Jeju Island, South
Korea. Backward trajectories for 3-days at 500 m agl wexen with NOAA HYSPLIT

model.

Fig. 2. Monthly-averaged variations of the concentrations total carb@h gid fumed-TC in
Gosan aerosols. The fumed-TC was determined after HCl tharanent. The error bar

represents one standard deviation.

Fig. 3. Monthly averaged variations 6f°C in Gosan aerosols along with chemical tracers. a)
3"*Crc, andd*Ciumed-16 b) oxalic acid (secondary organic aerosols (SOA) tracer from

various precursors), and c) phthalic acid (SOA tracer fooxigation of aromatic VOC).

Fig. 4. Variations of the monthly averaged concentration ratios)&Z@laic acid/TC, (b)

methanesulfonate/TC and (c):/KC.

Fig. 5. Alignment of3*Crc in Gosan atmospheric aerosols (middle panel) witdt@c in
major source aerosols (upper panel) and in source region aeflosar panel). Data of
source regions are adopted fré@ao et al., 2011 arftMiyazaki et al., 2010. Data of the
sources are adopted fréividory et al., 2004%Turekian et al., 2003Das et al., 2010;

Jung et al., 201 PFisseha et al'rei et al., 2006; anlirei et al., 2011.
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Figure 4
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