INTRODUCTION

In tissue engineering therapy, proliferation and migration of regenerated cells should be facilitated to reform functional tissue following surgical treatment. For this objective, three-dimensional scaffolds, an important element of tissue engineering, are being extensively studied for application in regenerative procedures. Bioceramic materials have mechanical, biocompatible and osteoconductive properties for use as scaffolds in various artificially synthesized types and forms, e.g., bioactive glass, hydroxyapatite (HA), tricalcium phosphate (TCP) and composites. β-TCP presents a greater biodegradable effect in comparison with HA. The β-TCP scaffold in combination with growth factors has been shown to...
stimulate bone augmentation\(^4,^8,^9\). For clinical trials, bone graft substitutes using \(\beta\)-TCP have been widely used in the orthopedic and dental fields\(^{10,11}\).

Regenerative scaffolds should induce rapid replacement by reconstructed tissue following implantation to the healing site. Degradation of \(\beta\)-TCP has revealed, however, that resorption of \(\beta\)-TCP is relatively slow compared to bone re-growth\(^3\). Frequently, a large amount of residual \(\beta\)-TCP is evident in the regenerated tissue\(^{10,11}\). The long-term residue of bioceramics prevents active tissue remodeling, resulting in immature tissue formation\(^5\). Furthermore, infection risk is increased by residual material exposure. In the current study, we prepared three-dimensional scaffolds with high porosity (>90%) using polyurethane foam with several open-cell structure sizes. Foam-type materials have large inner-spaces and may allow tissue ingrowth and rapid biodegradability.

Growth factors are important elements for promoting proliferation and differentiation of cells in tissue engineering. Fibroblast growth factor-2 (FGF2) enhances cell activities associated with wound healing\(^12\). FGF2 application to scaffolds could stimulate rapid tissue recreation in the inner space of the scaffold\(^13\). FGF2 also modulates proliferation and differentiation of osteogenic cells\(^{13-15}\). Highly porous \(\beta\)-TCP scaffolds in combination with FGF2 could be a future component of bone tissue engineering.

In general, the morphology of the scaffold plays a key role in bone tissue engineering. Many investigators have reported that adequate porosity and pore size of scaffold promotes osteoconductivity\(^{16,17}\). The interconnected structure of the bioceramic scaffold was associated with cell growth and differentiation\(^18\). We hypothesized that FGF2-loaded \(\beta\)-TCP scaffolds could stimulate bone augmentation. However, the relationship between FGF2 use and the open-cell structure of highly porous \(\beta\)-TCP scaffolds has not been investigated to date. Accordingly, the aim of the present study was to examine whether the open-cell size of the \(\beta\)-TCP scaffold could affect bone augmentation in rats using FGF2.

MATERIALS AND METHODS

Preparation of \(\beta\)-TCP scaffold

\(\beta\)-TCP slurry was prepared from \(\beta\)-TCP powder (average particle size: 2.3 \(\mu\)m) provided by Tomita Pharmaceuticals (Naruto, Japan). Three open-cell types of polyurethane foam (MF-13, -20 and -30, Inoac Corporation, Nagoya, Japan) were cut and immersed in homogeneous \(\beta\)-TCP slurry. After drying, the foam was sintered in a furnace (1,150 °C).

Figure 1

Photographs of highly porous \(\beta\)-TCP scaffolds. A: 0.6-, B: 0.4-, C: 0.3-mm cell type. Different open-cell structures were exhibited. Scale bars represent 1 mm.
Porous β-TCP scaffolds were prepared in three cell sizes (0.6, 0.4 and 0.3 mm) and had a highly interconnected structure with open-cells (Fig.1).

Evaluation of scaffold characteristics

The structures of the β-TCP scaffolds were examined using a scanning electron microscope (SEM, JSM-7600F, JEOL, Tokyo, Japan) at an accelerating voltage of 1 kV after carbon coating. After embedding the β-TCP scaffold in epoxy resin, the cut surface was also scanned. The porosity of the β-TCP scaffold was calculated according to the following equation: porosity = 100 × (1-ρ₁ / ρ₂), where ρ₁ = bulk density of β-TCP scaffold, ρ₂ = theoretical density of β-TCP. The scaffolds were also characterized using X-ray diffraction (XRD, RINT2000, Rigaku, Tokyo, Japan). Cu Kα radiation at 40 kV and 20 mA was used. Diffractograms were obtained from 2θ = 20° to 50° with an increment of 0.02°, at a scanning speed of 4° / minute. Compression testing was performed on each β-TCP scaffold using a universal testing machine (Autograph AG-X, Shimadzu, Kyoto, Japan). The dimensions of each sample were 10 × 10 × 4 mm³. The cross-head loading speed was set at 1.0 mm / min.

Cell seeding and morphology

β-TCP scaffolds were seeded with 1 × 10⁴ mouse osteoblastic MC3T3-E1 cells and cultured using medium (MEM alpha-GlutaMAX-I, Life Technologies, Figure 2

A) Decortication was performed in the cranial bone. B) The samples were placed on the cranial bone. C) Schematic drawing of histomorphometric analysis. The frontal plane view indicates the following parameters: the area of newly formed bone (1), the area of residual β-TCP (2).
Grand Island, NY, USA) supplemented with 10% fetal bovine serum (FBS, Qualified, Life Technologies) and 1% antibiotics (Pen Strep, Life Technologies). At 24 h of culture, sample surfaces were analyzed by SEM (S-4000, Hitachi, Tokyo, Japan) at an accelerating voltage of 10 kV after platinum coating.

Surgical procedures

Eighteen Wistar male rats (10 weeks old) were given general anesthesia with intraperitoneal injections of 0.6 ml / kg sodium pentobarbital (Somnopentyl, Kyoritsu Seiyaku, Tokyo, Japan), and local injection of 2% lidocaine hydrochloride with 1: 80,000 epinephrine (Xylocaine cartridge for dental use, Dentsply-Sankin K.K., Tokyo, Japan). The experimental protocol followed the institutional animal use and care regulations of Hokkaido University (Animal Research Committee of Hokkaido University, Approval No. 10-42).

After a skin incision was made in the scalp, a flap was reflected. Subsequently, decortication of a 4-mm² area was performed in the cranial bone (Fig. 2-A). Each β-TCP scaffold specimen (6 × 6 × 5 mm) was soaked in FGF2 (FGF2 dose: 0.15 µg / µL, Fiblast® spray 500, Kaken Pharmaceutical, Tokyo, Japan) and then the β-TCP scaffold was placed on the decorticated area (Fig. 2-B). The skin was closed with nylon sutures (Softretch 4-0, GC, Tokyo, Japan) and tetracycline hydrochloride ointment (Achromycin Ointment, POLA Pharma, Tokyo, Japan) was applied to the wound.

Histological procedures and analyses

Five weeks postsurgery, the rats were euthanized using an overdose of sodium pentobarbital. Implants were excised with surrounding tissues and fixed in 10% buffered formalin. Specimens were examined by a micro X-ray CT system (R_mCT2, Rigaku, Tokyo, Japan). Subsequently, specimens were decalcified in 10% EDTA (pH 7.0) and embedded in paraffin according to standard procedures. Six-micrometer-thick sections were prepared and stained with hematoxylin and eosin and Masson’s trichrome. Three stained sections were taken, one from the center of the scaffold and other two from 500 µm either side of the center, and examined using light microscopy. Histomorphometric measurements (Fig. 2-C) were performed using a software package (Image J 1.41, National Institute of Health, Bethesda, MD, USA).

Statistical analysis

The means and standard deviations of each parameter were calculated for each group. Statistical analysis was performed using the Scheffé test for structural parameters and the Games-Howell test for each histometric measurement. P-values <0.05 were considered statistically significant. All statistical procedures were performed using a software package (DR. SPSS 11.0, SPSS Japan, Tokyo, Japan).

RESULTS

Characterization of the β-TCP scaffold

Each β-TCP scaffold showed a reticulated open-cell structure (Fig. 1, 3-A). From SEM observation, cross-sections of the strut of the β-TCP scaffold revealed a tube-shaped structure (defect size: 50 µm). Many micropores with a diameter of approximately 2 µm were observed on the strut surface (Figs. 3-B, C, D). The internal space and micropores resulted from the process of dissolution and burn-up of the polyurethane foam. The cut surface of β-TCP scaffold embedded in resin showed interconnected defects within the strut of the scaffold (Figs. 3-E, F). It seems
likely that the interconnected space is advantageous for protein absorption, cell infiltration and early degradation. There were no significant differences in parameters of density and porosity of the scaffold among the three open-cell types (Table 1). The porosity was calculated to be >90% (Table 1). XRD patterns of the β-TCP scaffold are shown in Fig. 4. Only diffraction peaks belonging to β-TCP were detected among the XRD patterns from each β-TCP scaffold, indicating that pure β-TCP scaffolds had been prepared. The compressive

Figure 3
A) SEM micrograph of the highly porous β-TCP scaffold. B) Fracture surface of the β-TCP scaffold. C) Higher magnification of the boxed area in (B). The internal space was detected in the strut of the scaffold. Micropores were observed on the strut surface. D) Higher magnification of the boxed area in (C). Micropores were also observed at the fracture surface of the strut. E) Cut surface of the strut of the β-TCP scaffold. F) Higher magnification of the boxed area in (E). Interconnection between internal space and micropores is exhibited. Scale bars represent 1 mm (A), 100 µm (B, E), 10 µm (C, F) and 5 µm (D).
strength of the 0.6-mm and 0.4-mm cell type scaffolds was significantly higher than that of 0.3-mm type (Table 1). Osteoblastic MC3T3-E1 cells attached and spread on the β-TCP scaffold, suggesting that the scaffold possesses good cyto-compatibility (Fig. 5-A).

Histological observations

Bone augmentation was stimulated by FGF2-loaded β-TCP scaffold implantation. X-ray CT imaging showed the radiodense enlargement continuous with the pre-existing bone (Fig. 5-B). New bone was frequently found in the interior of the β-TCP scaffold. In the 0.4-mm cell size scaffold, considerable bone formation was clearly detectable (Figs 6-A, B, C).

Table 1

<table>
<thead>
<tr>
<th>Open-cell size</th>
<th>0.6-mm</th>
<th>0.4-mm</th>
<th>0.3-mm</th>
</tr>
</thead>
<tbody>
<tr>
<td>Density (g/cm³)</td>
<td>0.16 ± 0.03</td>
<td>0.20 ± 0.04</td>
<td>0.19 ± 0.02</td>
</tr>
<tr>
<td>Porosity (%)</td>
<td>94.7 ± 0.8</td>
<td>93.5 ± 1.3</td>
<td>93.7 ± 0.5</td>
</tr>
<tr>
<td>Compressive strength (MPa)</td>
<td>0.024 ± 0.001 a</td>
<td>0.023 ± 0.006 a</td>
<td>0.009 ± 0.004</td>
</tr>
</tbody>
</table>

* Statistical difference compared to 0.3-mm cell type.

Figure 4

XRD patterns of β-TCP scaffolds with different cell types: 0.6 (A), 0.4 (B), 0.3 (C) mm, and β-TCP powder (D).

Figure 5

A) SEM micrograph of MC3T3-E1 cells seeded on the β-TCP scaffold. Cell attachment and spreading are shown on the scaffold (stars). B) X-ray CT image. Radiographic signs of bone augmentation (arrowheads) and residual material (arrow) are presented. Scale bars represent 10 µm (A) and 1 mm (B).
Figure 6
β-TCP scaffold implantation facilitated bone augmentation. A: 0.6-, B: 0.4-, C: 0.3-mm cell type. In the 0.4-mm cell size, bone formation was clearly advanced. Abbreviations: NB, new bone. Scale bars represent 1 mm. Staining: hematoxylin and eosin.

Figure 7
A) Giant cells were observed close to residual β-TCP. B) Bone in-growth was frequently demonstrated. C) Ingrowth of connective tissue (arrows) was also observed. D) Blood vessels (arrows) were detected in the residual β-TCP scaffold strut. Abbreviations: NB, new bone. Scale bars represent 100 µm. Staining: hematoxylin and eosin (A, B, D) and Masson’s trichrome (C).
Residual β-TCP was detected around the new bone tissue and was frequently encapsulated by cell-rich connective tissue including giant cells, suggesting that resorption of β-TCP and osteogenesis occurred simultaneously (Fig. 7-A). The β-TCP scaffold seemed to allow tissue in-growth: bone-like tissue formed at the inner space of the β-TCP strut of the scaffold (Figs. 7-B, C). Blood vessels were also formed in the residual β-TCP strut (Fig. 7-D). These events might be associated with the interconnected structure of the β-TCP scaffold and FGF2 loading. Few inflammatory cells were seen around the residual material, indicating that the material possessed high biocompatibility.

DISCUSSION

The regeneration scaffold is a major element of tissue engineering that allows attachment, repopulation and differentiation of cells. In addition, the morphology and the structure of the scaffold can regulate biological reactions. Scaffolds for bone tissue engineering should be designed to mimic native bone structure so that they can integrate into the surrounding bone tissue. In this experiment, a β-TCP scaffold was made from template polyurethane foam using a structure with a larger inner space; the scaffold had high porosity and interconnectivity, much like trabecular bone.

This study examining different β-TCP scaffolds revealed that the biological response to implantation is influenced by open-cell size. Bone formation was facilitated by each β-TCP scaffold sample. However, the fastest bone augmentation and ceramic resorption occurred in the 0.4-mm cell size. Many studies have demonstrated that bone in-growth is affected by the morphology of the materials. In this study, we speculated that the similarity of the scaffold morphology to native trabecular bone might be related to bone formation. Mature bone includes around 1.0-mm-sized pores within the marrow, while newly formed woven bone has a smaller pore size (<0.5 mm). Therefore, 0.4- and 0.3-mm cell type scaffolds were considered to be morphologically suitable for early bone reformation.

Histomorphometric analysis

The histomorphometric analysis data for each material are presented in Table 2. The β-TCP scaffold with the 0.4-mm cell size had the highest osteoconductivity among all groups. Regarding bone area measurement, the 0.4-mm cell size was significantly greater than the 0.6- and 0.3-mm cell sizes. Furthermore, the 0.6-mm type scaffold significantly facilitated bone formation compared to the 0.3-mm type. Resorption of the β-TCP scaffold with the 0.4-mm cell size scaffold was frequently accelerated. The residual material area in 0.4-mm cell size was significantly lower compared with 0.6- and 0.3-mm cell sizes.

Table 2 Histomorphometric analysis after β-TCP scaffold implantation (N = 6, mean ± SD).

<table>
<thead>
<tr>
<th>Open-cell size</th>
<th>0.6-mm</th>
<th>0.4-mm</th>
<th>0.3-mm</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bone area (mm²)</td>
<td>2.75 ± 0.54 ab</td>
<td>3.78 ± 0.58 a</td>
<td>1.24 ± 0.69</td>
</tr>
<tr>
<td>β-TCP area (mm²)</td>
<td>2.83 ± 0.76 b</td>
<td>1.12 ± 0.29</td>
<td>3.08 ± 0.36 b</td>
</tr>
</tbody>
</table>

*Statistical difference compared to 0.3-mm cell type.
Statistical difference compared to 0.4-mm cell type.
Osteogenesis is associated with other parameters of the scaffold, such as density, interconnected structure and stability. The mechanical properties of the regenerative scaffold play a facilitative role in maintaining the regenerative space following application to the body. It was revealed that the 0.6- and 0.4-mm cell sized scaffolds had high compressive strength compared to the 0.3-mm type. The structure of the polyurethane foam affected the stability of the β-TCP scaffold; the low compressive strength in 0.3-mm type was presumably caused by slender struts. The 0.3-mm type would be compressed early after implantation and not maintain the cell-invading and regenerative space. In future, it will be necessary to examine the strut structure of highly porous β-TCP scaffolds.

Application of β-TCP induces phagocytosis by macrophages. In this study, many giant cells resembling macrophages were observed close to β-TCP struts, suggesting that a high local calcium concentration was maintained by β-TCP resorption. Calcium ions released by β-TCP degradation stimulate the alkaline phosphatase activity of osteoblastic cells. It seems likely that higher ion exchange by degradation of the 0.4-mm cell type scaffold additionally enhances bone formation. On the other hand, FGF2 induces biological responses in relation to wound healing. Formation of new bone is prominently stimulated by FGF2 loading. Therefore, implantation of highly porous β-TCP scaffolds with FGF2 provides a favorable environment for osteogenesis.

We conclude that bone augmentation is promoted by morphology and regenerative space maintenance associated with 0.4-mm open-cell sized β-TCP scaffolds. FGF2-loaded β-TCP scaffolds are expected to provide a suitable material for bone tissue engineering.

ACKNOWLEDGMENTS

We thank Tomita Pharmaceuticals Co., Ltd., for providing the β-TCP. This work was supported by JPSP KAKENHI Grant Number 22791916. None of the authors have any conflicts of interest associated with this study.

REFERENCES

(Received, February 4, 2013/ Accepted, March 26, 2013)

Corresponding author:
Dr. Hirofumi MIYAJI, D.D.S.,Ph.D
Department of Periodontology and Endodontology,
Hokkaido University Graduate School of Dental Medicine. N13 W7 Kita-ku, Sapporo 060-8586, Japan.
Tel: +81 11 706 4266
Fax: +81 11 706 4334
E-mail : miyaji@den.hokudai.ac.jp