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ABSTRACT 

 

This study proposes two network models which simultaneously estimate the value of travel 

time and of travel time reliability based on the risk-averse driver’s route choice behaviour. 

The first model is formulated as a utility maximization problem under monotonic and 

separable link travel times, whereas the second model is formulated as a utility maximization 

problem under non-monotonic and non-separable link travel times. The proposed models have 

the same structure as a user equilibrium (UE) traffic assignment problem with elastic demand. 

It is shown that the first model, which addresses independent stochastic capacity, is 

formulated as an optimization problem with a unique solution and is solved by using an 

algorithm for a UE traffic assignment problem with fixed demand. The second model, which 

addresses both stochastic Origin-Destination (O-D) flow and stochastic link capacity, is 

formulated as a nonlinear complementary problem. O-D demand functions formulated in the 

proposed models are derived from the utility maximization behaviour of the driver in the 

network. Therefore, the network models proposed in this study are consistent with those of 

studies that address the value of travel time and of travel time reliability based on utility 

maximization behaviour without considering the driver’s route choice. Numerical experiments 

are carried out to demonstrate the models presented in this study. 
 

Keywords: value of travel time, value of travel time reliability, road network 

 

 

1. INTRODUCTION 

 

In light of the need to evaluate travel time reliability in terms of its effect on mobility in transport 

networks, many studies have developed models that address uncertainties in the network. Uncertainties 

in the network can be categorized into the three main factors of supply, demand and travel behaviour. 

Studies on travel time reliability in the network began with those that address stochastic Origin-

Destination (O-D) demand flow. By assuming O-D demand flow that follows normal distributions, 

Asakura and Kashiwadani (1991) solved User Equilibrium (UE) traffic assignment problems several 

times by using a set of O-D demand flows that were sampled from normal distributions for the purpose 

of estimating travel time reliability. Clark and Watling (2005) proposed an equilibrium model that 

calculates travel time reliability under stochastic O-D demand flow when that flow follows a Poisson 

distribution. They employed probit-based Stochastic User Equilibrium (SUE) for the driver’s route 

choice behaviour. They applied a method proposed by Isserlis (1918) for the purpose of calculating 

travel time reliability, i.e., variance of stochastic travel time. Nakayama and Takayama (2003) 

proposed an equilibrium model which assumes that O-D demand flow follows a binomial distribution. 

UE traffic assignment was employed for expressing the driver’s route choice behaviour. They 

calculated travel time reliability by applying a moment-generating function. Zhou and Chen (2008) 

proposed an equilibrium model which assumes that O-D demand flow follows a lognormal distribution. 

The driver’s route choice behaviour based on UE was employed. Shao et al. (2006) proposed an 

equilibrium model which assumed an O-D demand flow that followed a normal distribution. The 
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driver’s route choice behaviour based on logit-based SUE was employed. They evaluated travel time 

reliability from the viewpoint of safety margin. 

 

Many studies have addressed stochastic link capacity. Cascetta (1989) and Cascetta and Canterella 

(1991) developed dynamic traffic assignment models by using a Markov chain. The models developed 

in their studies calculated drivers’ equilibrium states under stochastic link capacity. Bell et al. (1993) 

proposed a method that estimated travel time reliability under stochastic link capacity by applying 

sensitivity analysis for logit-based SUE. Cassir and Bell (2002) applied the same method as proposed 

in Bell et al. (1993) and calculated the travel time reliability by assuming both stochastic O-D demand 

flow and stochastic link capacity. Chen et al. (1999) analyzed network capacity reliability under 

stochastic link capacity. They applied the Monte Carlo simulation technique for calculating the 

network capacity reliability. Chen et al. (2002) analyzed network capacity reliability under both 

stochastic link capacity and stochastic O-D demand flow by applying the Monte Carlo simulation 

technique. Lo and Tung (2003) proposed an equilibrium model in which link capacity was assumed to 

follow a uniform distribution. Stochastic link travel time under stochastic link capacity was calculated 

by applying a Mellin transform. Uchida and Munehiro (2010) proposed a method that estimated 

stochastic link capacity from observed traffic data, i.e., density and velocity. They also proposed an 

equilibrium network model under stochastic link capacity that followed an independent normal 

distribution. For the purpose of calculating travel time reliability, they applied a method proposed by 

Bras and Georgakakos (1989) which approximated the first negative moment of a normal distribution 
by a linear function of the normal distribution and its mean. 

 

It is natural to consider both stochastic O-D demand flow and stochastic link capacity in calculating 

travel time reliability. Lam et al (2008) proposed an equilibrium model under stochastic O-D demand 

flow that considered the influence of adverse weather on link capacity. They assumed that the rate of 

decrease in link capacity followed a normal distribution. Shao et al. (2008) extended the model 

proposed by Lam et al. (2008) to a model under a multi-user-class network. Sumalee et al. (2011) 

extended the same model to a model under a multi-modal network. 

 

Watling (2006) proposed an equilibrium model under stochastic travel time that followed a normal 

distribution. The driver’s route choice behaviour was expressed by using a probit-based SUE that also 

considered arrival penalty. Wu and Nie (2011) proposed a unified approach to modelling heterogonous 

risk-taking behaviour in route choice based on the theory of stochastic dominance (SD). They analyzed 

the relationship between an SD-based approach and other route choice models that considered risk-

taking behaviour. In these studies, travel time was expressed by a stochastic variable without 

identifying the source of uncertainties in a network. These studies focused on the driver’s risk-taking 

behaviour. Ng et al. (2011) proposed a methodology to assess travel time reliability under unknown 

travel time distribution. The method proposed in their study is useful when we do not have enough 

data to calibrate the travel time distribution. Chen et al. (2011) extended the α-reliable mean-excess 

traffic equilibrium (METE) model proposed in Chen and Zhou (2010) by explicitly modelling the 

stochastic perception errors within the travellers’ route choice decision processes. Ng and Waller 

(2010) presented a methodology based on the theory of Fourier transforms to assess travel time 

reliability in a transportation network, when the source of uncertainty is given by random road 

capacities. 

 

For the purpose of measuring the benefits from traffic measures in road networks in terms of travel 

time and travel time reliability, the value of travel time and of travel time reliability need to be 

estimated. These can be estimated by using empirical models (e.g., Lam and Small (2001), 

Brownstone and Small (2005)). Hensher et al. (2011) modified a random utility model to include 

attribute-specific extended expected utility forms incorporating decision weights and risk in the 

context of willingness to pay for travel time variability for car commuting travel. Börjesson et al. 

(2012) estimated the value of travel time variability by applying both a scheduling model and an 

implied reduced-form model, using stated-choice data. Studies that addressed the value of travel time 

based on a utility maximization problem without considering the traveller’s route choice behaviour in 

the network began with Becker (1965) and DeSerpa (1971). Recently, some analytical models that 
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address the value of travel time and of travel time reliability based on utility maximization principle 

have been proposed. Fosgerau and Karlström (2010) presented a model that estimates the value of 

travel time variability based on scheduling preferences. Fosgerau and Engelson (2011) considered the 

value of travel time variability under scheduling preferences that were defined in terms of linearly 

time-varying utility rates associated with being at the origin and at the destination. They have shown 

that a measure related to travel time variability is variance of travel time.  

 

Studies that address travel time reliability based on equilibrium network models have not discussed 

how to estimate the value of travel time and of travel time reliability. The value of travel time and of 

travel time reliability were given assumed values in the studies. On the other hand, studies that 

addressed the value of travel time and of travel time reliability as a utility maximization problem have 

not addressed the traveller’s route choice behaviour in the network, even though this is an essential 

factor in estimating these values. The present study proposes two network models that estimate the 

value of travel time and of travel time reliability. The models are derived from a utility maximization 

problem under budget constraints. The models are finally formulated as UE traffic assignment 

problems with elastic demand that express the risk-averse driver’s route choice. By applying the 

network models proposed in this study, the value of travel time and of travel time reliability consistent 

with observed link flows can be estimated. One advantage of the models proposed in this study over 

utility-maximization-based models is that the value of travel time and of travel time reliability are 

estimated by taking account of the risk-averse driver’s route choice behaviour in a road network that is 

not considered in the utility-maximization-based models. However, the value of travel time and of 

travel time reliability determined by the models proposed in this study need to be numerically 

estimated, whereas the values determined by utility-maximization-based models can be analytically 

estimated. This point means that sensitivity analysis based on the utility-maximization-based model is 

easier than sensitivity analysis based on the models proposed in this study. 

 

 

2.  LINK FLOW AND LINK CAPACITY: RANDOM VARIABLES 

 

2.1 Notations 

 

The notations below are adopted for expressing traffic flow characteristics in a road network in this 

study. 

 
N  Set of nodes in the network 
A  Set of links in the network 

I  Set of O-D pairs in the network 

iJ  Set of routes between O-D pair i  

aj  Variable that equals 1 if link a  is part of route j , and 0 otherwise 

iQ
 

Stochastic traffic demand for O-D pair i  

iq
 

Deterministic traffic demand for O-D pair i  

ijF  
Stochastic flow on route j

 between O-D pair i  

ijf
 

Deterministic flow on route j  between O-D pair
 i  

aV
 

Stochastic flow on link a  

av
 

Deterministic flow on link a  

ijp
 

Route choice probability of traffic demand for O-D pair i  when route j  is chosen 

aC
 

Stochastic capacity of link a  

 at  Travel time function of link a  

 a  Travel cost function of link a  

 2
a  Variance function of stochastic link travel time of a  
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 ,ab  Covariance function of stochastic link travel times of a  and b (     ,2
aba   if ba  ).  

icv  
Coefficient of variation of iQ  

acv  Coefficient of variation of aV  

abr  Coefficient of correlation between aV
 
and bV  

abr


 Coefficient of correlation between  at  
and  bt  

 

2.2 Link Flow and Link Capacity 

 

It may be reasonable to assume that stochastic demand flow, iQ , follows an independent theoretical 

distribution, such as a normal, lognormal, Poisson, binomial or other distribution (Clark and Watling, 

2005; Nakayama and Takayama, 2003; Zhou and Chen, 2008; Shao et al., 2006, and so on), that is 

characterized only by mean and variance. The stochastic demand flow follows an independent random 

variable with a mean of  iQE  and a variance of  iQvar . It is reasonable to assume that 

     2var iii QEcvQ    

where icv  is the coefficient of variation of iQ . By applying the assumption that the coefficient of 

variation of path flow is equal to that of O–D demand as employed in Chen et al. (2011), stochastic 

flow on route ij J , ijF , is then given by 

 iJ,I   jiQpF iijij   

ijF  is the random variable with a mean of    iijij QEpFE   and a covariance of 

   iikijikij QppFF var,cov   , where  iij jp J  is route choice probability, which can be 

determined by a route choice model, e.g., the UE traffic assignment model, the SUE traffic assignment 

model and so on.  

 

Stochastic flow on link a ,  aV , is given by 

 A   
I J


 

aFV
i j

ijaja

i

   

 

Therefore, the link flow is a random variable with a mean of 

       A   
I JI J

 
  

aQEpFEVE
i j

iijaj

i j

ijaja

ii

   

and a covariance of 

       
  


I J

2

I J

A,var,cov
i j

iiijbjaj

i j

ijbjajba

ii

baQEcvpFVV    

By introducing abr  and acv , which are respectively the coefficient of correlation between aV
 
and bV  

 A,  ba  and the coefficient of variation of aV   Aa , given by 

 
 

   
A, 

varvar

,cov



 ba

VV

VV
r

ba

ba
ab   

 
 

 
A 

var
 a

VE

V
cv

a

a

a   

we obtain the different expression of  ba VV ,cov  using  aVE  and  bVE  given by 

       A, ,cov  baVEVEcvcvrVV babaabba   

 

It may be reasonable to assume that stochastic link capacity,  AaCa , follows a theoretical 
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distribution, e.g., a normal distribution (Cassir and Bell, 2002; Lam et al., 2008, Sumalee et al., 2011; 

Shao et al., 2008; Uchida and Munehiro, 2010), that is characterized only by mean and variance, and 

that the stochastic link capacity is distributed independently of the O-D flow. Then, the stochastic 

capacity follows a random variable with a mean of   A aCE a  and with a variance and covariance 

of  aCvar  and   A, ,cov baCC ba , respectively. 

 

 

3. DRIVER’S ROUTE CHOICE 

 

3.1 Travel Time 

 

Stochastic link travel time can be expressed by the function of aV  with given aC , i.e.,  aaa CVt ;  by 

applying the conventional Bureau of Public Roads (BPR) function. The stochastic travel time of route 

j  which serves O-D pair i , ij


, is given by 

   iaj

a

aaaij jiCVt J,I ;
A

 





.  

The mean and variance of the stochastic route travel time are respectively given by 

 

     iaj

a

aaaij jiCVtEE J,I ;
A

 





 (1) 

 

         

   

  i

a b

bjajbabaab

a ab

bjajbabaab

a

ajaaa

bjaj

a ab

bbbaaa

a

ajaaaij

jiCCVV

CCVVCV

CVtCVtCVt

J,I ,;,

,;,2;

;,;cov2;varvar

A A

AA

2

AA













 

 

 








 (2) 

(1) and (2) can be calculated by applying a method proposed by Isserlis (1918) under a normal 

distributional assumption. One can refer to Clark and Watling (2005) for the calculations under the 

assumption that  AaVa  follows a multivariate normal distribution, and to Uchida and Munehiro 

(2010) for calculations under the assumption that  aCa   follows a multivariate normal distribution. 

By combining the methods proposed by Clark and Watling (2005) and by Uchida and Munehiro 

(2010), we can derive (1) and (2) under the stochastic link flow and the stochastic link capacity that 

follow normal distributions. 

 

By following Clark and Watling (2005) and Uchida and Munehiro (2010), and applying the two-

dimensional Taylor-series expansion to  aaa CVt ;  at  aVE  and  aCE , the mean link travel time, 

  aaa CVtE ; , can be approximated by a function of the multivariate normal moments under the 

normal assumption. The normal moments for the link flow can be expressed by using  aVE , since the 

link flow is also characterized only by the mean,  aVE , and the variance,     2var aaa VEcvV  . The 

normal moments for the link capacity can be expressed by  aCE  and  aCvar , which are constants. 

Therefore, we assume that   aaa CVtE ;  is expressed by a function of  aVE  and that   aaa CVtE ;  is 

integrable with respect to  aVE  Aa . Hereinafter we denote   aaa CVtE ;  simply as   aa VEt


. 

Note that, as discussed in Sumalee and Xu (2011), this notational system does not mean that 

       aaaaaa CVtECEVEt ;;  . By applying the Taylor-series expansion to  aaa CVt ;  and to 

 bba CVt ; , and by applying the same discussions made above, it is reasonable to assume that 

             bbaabbaaaababaab VEtVEtCVtCVtECCVV

 ;;,;,   

is expressed by a function of  aVE  and  bVE with the given coefficient of correlation, abr , and the 

coefficients of variation, acv  and bcv ; and that  babaab CCVV ,;,  is integrable with respect to both 

 aVE  and  bVE  A,  ba . We will denote  babaab CCVV ,;,  simply as     baab VEVE ,


 in the 
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rest of the paper. Approximations by using a Tailor series expansion are provided in Appendix A. As 

shown in section 5, we have a different expression for the covariance of two link travel times, which is 

          bbaaabbaab VEVErVEVE 


, , where abr


 is the coefficient of correlation between  at  
and  bt . The same conventions as applied to   aa VEt


 and     baab VEVE ,


 will be adopted when 

we address the deterministic link flows, av , instead of the stochastic link flows,  aVE , i.e., 

    aaaaa CvtEvt ;


 and    babaabbaab CCvvvv ,;,,  


. 

 

3.2 Travel Cost 

 

For the purpose of evaluating mean travel time and travel time reliability in terms of their monetary 

value, we introduce travel cost. Factors that influence travel cost can be fuel consumption and 

maintenance costs of a vehicle. We assume that the stochastic link travel cost is expressed by the 

function of aV  with a given aC , i.e.,  aaa CV ; . The stochastic travel cost on route Jj  which 

serves O-D pair i , ij


, is given by 

   iaj

a

aaaij jiCV J,I ;
A

 





  

The mean of the route travel cost is given by 

 

      iaj

a

aaaij jiCVEE J,I ;
A

 





  

We assume that   aaa CVE ;  is expressed by a function of  aVE  and that   aaa CVE ;  is 

integrable with respect to  aVE  Aa . Therefore, we hereinafter denote   aaa CVE ;  simply as 

  aa VE


. The same convention as applied to   aa VEt


 is adopted when we address the deterministic 

link flows, av , instead of the stochastic links flows,  aVE , i.e.,     aaaaa CvEv ; 


. The same 

discussions made in the previous section have been applied in this section. 

 

3.3 Route Choice Problem 

 

Mean travel time, mean travel cost and variance of travel time were formulated in the previous section. 

The risk-averse driver may take into account the variation of route travel time, such as the variance of 

route travel time, as well as the mean travel time and the mean travel cost in their route choice 

decisions. Following Fosgerau and Engelson (2011), we define the travel time reliability in this study 

as the variance of the stochastic travel time. Following Lo and Chen (2000), by using parameters, 

0 , 0  and 0 , the risk-averse driver’s route choice problem can be formulated as the 

following nonlinear complementary problem: 

       0ˆˆ,ˆ,ˆsuch that     find **  zhz0zh0zdFz
TT

  

where 

  TFFFF |J||I1|I||J|111 |I|1
.........F  (3) 

  Tdd |I|1 ...d   

   TE dFz ˆ   

    Tqgzh ˆ   

         Tdcdcdcdc |I||J||I||I|1|I|1|J|1111 |I|1
.........  FFFFg


  

        
T

I

j

ji

j

j QEFEQEFE

i














 



||

J

|I|

J

1

|I|

...q   
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        ijijijij EEc 


var F  (4) 

 
*

F  and *
d  are the vector of equilibrium stochastic route flows and the vector of minimum route 

performance values for all O-D pairs by which the driver’s route choice is determined. The above 

formulation means that if a route is used by the driver, the route performance value,  Fijc


, is equal to 

the minimum route performance value, *
id , which is smaller than or equal to the performance values 

of unused routes. In the rest of the paper, a variable, a parameter or a vector of variables to which the 

superscript * is put means an optimized or equilibrated one. 

 

The above problem can be solved by minimizing the following gap function (Lo and Chen, 2000; 

Watling, 2006): 

 

     
k

kk hzgap zz ˆ,ˆmin    

where 

    
2

22

2

1
, 





  bababa   

 

 

4. VALUES OF TRAVEL TIME AND TRAVEL TIME RELIABILITY 

 

4.1 Monotonic and Separable Case 

 

In the previous section, both O-D demand flow and link capacity were assumed to follow random 

variables. In this section, we consider a situation where the link capacity is represented by an 

independent stochastic variable whereas the O-D demand flow is represented by a deterministic 

variable that will be denoted by iq  instead of iQ . This assumption may be unrealistic, since it is 

generally believed that travel time reliability is path-based. However, the formulation presented in this 

section will play an important role in driving the path-based formulation to be presented in the next 

section. Without a loss of generality, iq  can be regarded as  ii QEq  . Thus, the deterministic route 

flow is then 

 iiijij jiqpf J,I   (5) 

 

The link capacity is still denoted by  AaCa  with the mean of   A aCE a  and the variance and 

covariance of  aCvar  and   0,cov ba CC , respectively. By using the deterministic link flow, av , 

stochastic route travel time is then 

   iajaa

a

aij jiCvt J,I ;
A

 


   

where 

 A  
I J


 

afv
i j

ajija

i

  (6) 

 

In a similar way, the stochastic route travel cost is 

   iajaa

a

aij jiCv J,I ;
A

 


   

 

The mean values of route travel time and route travel cost are respectively given by 

 

     iaj

a

aaij jivtE J,I 
A
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     iaj

a

aaij jivE J,I 
A

 





  

 

In contrast, the variance of the route travel time is 

     iaj

a

aaij jiv J,I var
A

2  





  

 

Note that, since we assume    A 0,cov  baCC ba , therefore we obtain   0, baab vv


 (Uchida 

and Munehiro, 2010). We assume for the time being that  aa vt


,  aa v


 and  aa v2


 are all monotonic 

increasing functions of av . 

 

4.2 Utility Maximization under the Monotonic and Separable Case 

 

In this section, a model that estimates the value of (mean) travel time and of travel time reliability is 

formulated. We set the following three assumptions for the estimation. 

 

A1. Link flows, route flows and O-D flows in the network can be observed or estimated. 

Considering the evolution of ITS technology, it may be possible to observe a large number of 

link flows in a road network. By applying an O-D flow estimation technique using a partial set 

of observed link flows, e.g., Sherali et al. (2003), O-D flows and route flows as well as link 

flows in the network can be estimated. The observed or estimated flow can be regarded as mean 

flow. 

A2. Observed or estimated traffic flows are generated from the optimal behaviour of each driver in 

the network such that the utility level of each driver is maximized subject to the three budget 

constraints of mean travel time, mean travel cost and travel time reliability. We applied the same 

assumption as employed in utility theory: that the observed behaviour is generated based on the 

utility maximization principle. 

A3. Three budget constraints in A2 can be calculated by using the observed or estimated traffic flows. 

If we know the link performance functions in the network that is to be formulated later, it will be 

shown that the three budget constraints can be calculated from the observed or estimated traffic 

flows. The link performance function can be estimated by calibrating parameters in the function 

from link performance data. 

 

In the rest of paper, observed or estimated link flows are shown by av̂ . We employ this convention for 

all kinds of traffic flows. For the purpose of expressing the driver’s route choice behaviour based on 

marginal private costs of mean travel time, mean travel cost and travel time reliability, we will 

introduce three variables: 

  
 




















otherwise0

0  if
~

0
a

a

v

a

aa v
v

dwwt

vt

a 

 (7) 

  
 




















otherwise0

0  if
~

0
a

a

v

a

aa v
v

dww

v

a







 (8) 

  
 




















otherwise0

0  if
~

0

2

2

a

a

v

aaa

aa v
v

dww

v

a







 (9) 
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(7), (8) and (9) will be used to derive three indexes for mean travel time, mean travel cost and travel 

time reliability. Then, consider the following primary problem [PP]: 

   dw
w

α
qquv

i

q

i
I

i




 
I 0

||1
1

,...,max  (10) 

s.t. 

 
Ii

ii qt  (11) 

  
Ii

ii q  (12) 

  
I

2

i

ii q  (13) 

 I i qeq iii


 (14) 

and (5) and (6), where 

     I
~~

J AJ A

 
  

ivt
q

f
vtpt

ii j a

ajaa

i

ij

j a

ajaaiji    

     I~~

J AJ A

 
  

iv
q

f
vp

ii j a

ajaa

i

ij

j a

ajaaiji    

     I~~

J A

2

J A

22  
  

iv
q

f
vp

ii j a

ajaa

i

ij

j a

ajaaiji   (15) 

  



A

ˆˆ~

a

aaa vvt   

  



A

ˆˆ~

a

aaa vv   

  



A

2 ˆˆ~

a

aaa vv  (16) 

 

The objective function u  in (10) can be regarded as a direct utility function (Varian, 1984) in the 

network, since the objective function becomes 

    






II 0

||1 1ln
1

,...,
i

ii

i

q

i
I qdw

w

α
qqu

i

  (17) 

(17) follows the style of a Cobb-Douglas utility function (Cobb and Douglas, 1928) by assuming that 

the O-D demand flow of iq  is the amount of substitute trip i , and that  0i  is the parameter such 

that 1
i

i . The constraints shown by (11)-(13) can be regarded as budget constraints in which 

three different prices, i.e., it , i  and 2
i , are offered to the O-D flow iq . The utility function (17) 

means that the more the O-D flows increase, the higher the utility level is. However, these three budget 

constraints do not allow the O-D flows to increase independently of the observed link flows. In fact, 

the utility level is maximized at the observed link flows if the parameter i  is calibrated precisely 

based on a method shown in Appendix B. The utility maximization problem under budget constraints 

shown by (11)-(13) can be obtained from the individual driver’s utility maximization problem 

(Appendix B). As mentioned earlier, a calibration method of the distribution parameter i  is also 

discussed in Appendix B. In (17),  1ln iq  can be regarded as a partial utility gain that is obtained by 

consuming the O-D demand of iq . It may be reasonable to regard (17) as an expected utility by 

assuming i  as a probability. The Cobb-Douglas utility function has a property whereby the amount 

of goods consumed is determined only by the price of the goods, i.e., the amount of goods consumed is 

independent of the prices of other goods. This property is consistent with the concept of a traffic 

assignment model with elastic demand in which an O-D flow is determined only by the performance 
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value of the corresponding O-D pair. 

 

Unlike in the standard Cobb-Douglas utility function, 1iq  rather than iq  is employed for the purpose 

of equalling the partial utility gain that is obtained by consuming the O-D demand of 0iq  to zero. v  

in (10) represents the corresponding indirect utility function (Varian, 1984).  iii qee


0  in (14) is 

excess demand (Gartner, 1980) that does not appear in the network. iq


 in (14) is a constant given to 

each O-D pair i  that is larger than the supposed maximal traffic demand. it  is an index for mean travel 

time between O-D pair i . In a similar way, i  and 2
i  are indexes for mean travel cost and travel 

time reliability between O-D pair i , respectively. Following A3, three budget constraints with respect 

to mean travel time, mean travel cost and travel time reliability, which are respectively denoted by 

(11)-(13), are calculated by using the observed link flows. Without (5), (6) and (14), PP follows the 

style of a standard utility maximization problem subject to budget constraints. Different from a 

standard utility maximization problem under budget constraints, it , i  and 
2
i  can change according 

to consumption level ( iqi  ) and to the driver’s route choice behaviour. 

 

By applying the relationship between link flows and route flows shown by (6) to (11)-(13), the budget 

constraints denoted by (11)-(13) can be respectively reformulated as 
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We solve PP by applying the partial Lagrangian (Lasdon, 1970) with respect to the budget constraints 

denoted by (18)-(20). Let 
* , 

*  and *  denote the optimal multipliers associated with (18), (19) and 

(20), respectively. The PP is then equivalent to a minimization problem of the Lagrangian L : 
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s.t. (5), (6) and (14). By neglecting the constant terms, i.e.,  * ,  *  and  * , in (21), the 

above problem can be simplified as 
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s.t. (5), (6) and (14) where 

         A  2***  awwwtw aaaa 


  

 

Since  aa v  is monotonic increasing function of av  as shown, the above optimization problem has 

the same structure as a standard UE traffic assignment problem with elastic demand by regarding 

 aa v  as link performance function and  1ii q  as an inverse demand function that is denoted 

by  q
1

iD  where  Tiqq ,...,...,1q . The second term on the right hand side of (22) is written as 
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Therefore, PP is equivalent to the following UE traffic assignment with elastic demand problem [UE-

ED] (Gartner, 1980): 
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We call i  in (23) a prohibitive route performance value for O-D pair i , since the O-D demand is 

calculated as 0 when the corresponding route performance value is i .  The value of travel time,  , 

which is the marginal rate of substitution of mean travel time for mean travel cost can be given by 
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In a similar way, the value of travel time reliability,  , which is the marginal rate of substitution of 

travel time reliability for mean travel cost can be given by 
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v
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We will discuss first the estimation of the link flows under given optimal multipliers. PP and UE-ED 

have a unique solution if the Lagrangian L  is strictly a concave function with respect to feasible  ,   

and  . It is obvious that u  and the three budget constraints shown by (18)-(20) are convex. 

Therefore, the Lagrangian L  is concave with respect to feasible  ,   and   according to the saddle 

point theorem. Further, the inequality constraints denoted by (18)-(20) guarantee that 0*  , 0*   

and 0*  . Therefore,   A avaa  is monotonic increasing function of av  , since we have 

assumed that  aa vt


,  aa v


 and  aa v2


 are all monotonic increasing functions of av . Accordingly, if 

the optimal multipliers 
* , 

*  and *  are obtained, UE-ED can be solved without route enumeration 

by applying an algorithm for the UE traffic assignment problem by adding a dummy link with the link 

performance function of    1 iiiii eqed



 
between O-D pair i  in the network. This procedure is 

the same as that in which a dummy link is added to each O-D pair in user equilibrium with elastic 

demand. Therefore, it can be concluded that PP and UE-ED have a unique solution, since  ii ed  is a 

monotonic increasing function of ie . 

 

We next discuss the estimation of optimal multipliers. Under a feasible set of  ,   and  , the value 

of the Lagrangian, L , the link flows,  ava  , and the vector of O-D flows, q , can be calculated by 

applying an algorithm for the UE traffic assignment problem as discussed above. According to the 

saddle point theorem, the optimal multipliers 
* , 

*  and *  maximize the Lagrangian L . Therefore, 

by applying an algorithm that is obtained by combining an algorithm for the UE traffic assignment 

problem and an algorithm for the convex programming problem, the optimal multipliers can be 

estimated. In fact, the optimal multipliers are the shadow prices of the budget constraints shown by 

(18)-(20) with respect to the direct utility function. 

 

The model presented in this section requires model parameters, i.e., the link flow, the link capacity and 

the calibration parameters for the link performance function to estimate the values of travel time and 
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travel time reliability. The utility maximization based model discussed in section 1 also requires the 

calibration parameters for utility function to estimate these values. However, the number of parameters 

for the utility maximization based model is in general less than those of the model presented in this 

section. 

 

It may be useful if the model presented in this paper can simultaneously address markets other than the 

road transportation market. As discussed in Appendix C, the model proposed in this study can address 

other markets by applying a nested constant elasticity of substitution (CES) utility function. 

 

4.3 Utility Maximization under the Non-monotonic and Non-separable Case 

 

In general, travel cost function is not a monotonic increasing function of link flow, and travel time 

reliability of a route is not equal to the summation of those of the links that comprise the route due to 

the covariance terms. The latter case where we have to consider the covariance of link travel times can 

occur when we address stochastic O-D demand flow and/or correlated stochastic traffic capacity. 

Therefore, in general, the risk-averse driver’s route choice behaviour cannot be formulated as the 

optimization problem shown in the previous section. 

 

For addressing the non-monotonic and non-separable case, we modify (9) as follows: 
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Also, (15), (16) and (20) need to be modified as follows: 
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Recall that the route performance value is given by (4). Following Lo and Chen (2000), the 

equilibrium condition is then 

              0,0,0  iiijijiiijij edcFEedcFE FF


  

The other constraints can be expressed by 
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Therefore, the values of mean travel time and travel time reliability under stochastic O-D demand and 

correlated stochastic traffic capacity can be estimated by solving the following nonlinear 

complementary problem [UE-NCP]: 

       0ˆˆ,ˆ,ˆsuch that     find ***  zhz0zh0zepFz
TT

   

where 

  Tp  (24) 
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and (3), (4). 

 

In the above formulation, a user equilibrium problem with elastic demand is formulated as a nonlinear 

complementary problem that simultaneously considers not only the constraints on mean travel time, 

mean travel cost and travel time reliability denoted by (25) but also the corresponding multipliers 

denoted by (24). UE-ED was extended to UE-NCP so that the path-based travel time reliability could 

be addressed. There are three differences from the model presented in section 3.3. The first point is 

that the model in section 3.3 assumes that the three parameters  ,   and   are given, whereas these 

parameters are the decision variables in UE-NCP. As mentioned earlier, these decision variables are 

the shadow prices of the three budget constraints. The second point is that the model in section 3.3 

addresses fixed demand, whereas UE-NCP addresses elastic demand. Therefore, the O-D demand is 

also the decision variable in UE-NCP. In solving UE-NCP, route enumeration is required, since UE-

NCP is formulated as a route-based problem due to the non-separable property of travel time reliability. 

However, this property is no longer a limitation of the model, since we can apply one of the efficient 

route enumeration techniques (e.g., Zijpp and Catalano (2005)) to obtain a path set in the network. The 

final point is that the minimum route performance value is determined by the function  ii ed , which 

expresses the relationship between excess demand and route performance. Note that without loss of 

generality, the formulation shown above can address a problem under the monotonically increasing 

and separable link performance function. Unlike PP and UE-ED, however, the uniqueness of the 

solution for UE-NCP is not guaranteed, since a non-monotonic and non-separable link performance 

function is assumed. For this reason, we cannot formulate the user equilibrium problem as convex 

programming that has a unique solution. 

 

 
 

5. NUMERICAL EXPERIMENTS 

 

5.1 Experiment under Unknown Values of Travel Time and Travel Time Reliability 

 

This section addresses a problem under the non-separable case. As explained in the previous section, 

we have to consider covariance of link travel times in this experiment. Therefore, the formulation 

shown in section 4.3, i.e., UE-NCP, is applied for expressing the risk-averse driver’s route choice 

behaviour. A test network with the O-D demand flow shown in Figure 1 will be addressed in this 

section. The dotted line in Figure 1 is a dummy link. 
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1 2

3
4

5

 
Figure 1. Test network 1 with an O-D pair 

 

We assume the following mean travel time function, mean travel cost function, and variance and 

covariance of link travel time functions respectively given by  

   
 
 

A   1.0  a
CE

VE
VEt a

a

a
aa 


  

       A   0.5  aVEtVE aaaa


   

       Α   
22  aVEcvVE aaaa


  

            Α, ,  baVEVErVEVE bbaaabbaab 


  

where 

   1aCE   

 05.0acv   

 5.0abr


  

For simplicity, we set the variance of link travel time as equal to the variance of link flow. This setting 

will be adopted in the next numerical example. 

 

The utility function of this problem is 

      1ln 111  QEQEu    

where 

 11    

 

Parameters and observed link flows that are prepared considering neither predefined values of travel 

time and travel time reliability nor the equilibrium condition are shown in Table1. 

 

Table 1. Observed link flows and assumed parameters 

a  1 2 3 4 

 aVE ˆ  100 20 20 80 

a  10 10 10 14 

 

Table 2. Estimates of route performance values 

route ( j ) 1 (1->2->3) 2 (1->4) 

observed route flow (  jFE 1
ˆ ) 20 80 

mean travel time (  jE 1


) 44 42 

mean travel cost (  jE 1


) 22 21 

travel time reliability (  j1var


) 38 61 
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We assume 2001 q


 , which results in   100ˆ
1 QE  and 1001 e . Table 2 shows the estimates of 

route performance values under the observed link flows. The constraints are estimated as 3380 , 

1690  and 49573  from the observed link flows. 

 

As explained earlier, an optimization problem that is equivalent to UE-ED cannot be formulated, due 

to the fact that covariance term      0, baab VEVE


. Therefore, we solved a problem that is 

formulated by UE-NCP. It is well known that the solutions, i.e., route flows and the values of travel 

time and travel time reliability, are invariant to a positive monotonic transformation made to the utility 

function. In solving the problem, we applied the positive monotonic transformed direct utility function 

given by      1
5

1 10~ QEuQEu  . 

 

Table 3. Results of test network 1 
*  *  *   *

1VE   *
2VE   *

3VE   *
4VE  *

1e  

16.68 1.82 8.49 100 20 20 80 100 

 

The results are summarized in Table 3. Exactly the same link flows as the observed link flows were 

estimated in this experiment. The values of travel time and travel time reliability were estimated as 

96.1  and 21.0 . Even though the link flows that are equal to the observed ones are estimated, 

the parameters relating to the route performance value cannot be determined uniquely, since all sets of 

feasible parameters that satisfy the following conditions can generate equilibria.  
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This fact is clear, since the number of unknown parameters is three, whereas the number of equations 

(or the number of equilibrated routes) is two. 

 

5.2 Experiment under Given Values of Travel Time and Travel Time Reliability 

 

This section addresses the link flows calculated based on both the predefined values of travel time and 

travel time reliability and the equilibrium condition. Also, the route performance value calculated by 

using the BPR function is employed. Figure 2 shows a test network with two O-D pairs in which the 

number of equilibrated routes is four, as shown by the sequence of link numbers, 1→2→5, 1→2→6→

7, 1→3 and 1→4→7 between O-D pair 1. There is an independent route, 8→2, between O-D pair 2. 

The two dotted lines in Figure 2 are dummy links. 
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Figure 2. Test network 2 with two O-D pairs 

 

We assume that the following mean travel time function, mean travel cost function, and variance and 

covariance of link travel time functions are respectively given by 
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       Α   
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where al  is length of link a ; 0s  is free flow speed (60[km/hr]); m  and n  are parameters for the BPR 

function ( 2,5  nm ); gp  is gas price (140[JPY/l]);  009.01 r and 059.02 r  are the parameters for 

travel cost function estimated in Uchida (2010); 5.0acv ; and we prepare two cases 

 





d)(correlate 2 casefor 1.0

nt)(independe 1 casefor 0
abr


  

A relatively larger parameter m  than that estimated in the real traffic situation is set, to see easily how 

the equilibrium variables change with change in observed flow. The utility function of this problem is 

           1ln1ln, 221121  QEQEQEQEu    

where  21,  are calculated from (B.9) in Appendix B as (0.96, 0.04) in case 1 and as (0.97, 0.03) in 

case 2. We used     21 ,~ QEQEu  which is obtained by applying a transformation similar to that applied 

to   1QEu  to     21 , QEQEu .  

 

The equilibrated link flows that are assumed as the observed link flows are calculated based on the 

value of time, 40 [JPY/min], and the value of travel time reliability, 20 [JPY/unit variance], as shown 

in Table 4. The budget constraints,  ,   and  , are estimated by using the observed link flows. We 

assume 4001 q


 and 1002 q


 , which results in   320ˆ
1 QE  and 801 e , and in   50ˆ

2 QE  and 

502 e . Table 5 and Table 6 show the estimates of route performance values under the coefficients of 

correlation of 0abr


 and 1.0abr


, respectively. It is shown that the two sets of observed link flows 

under the two cases satisfy the equilibrium condition. 

 

Table 4. Observed link flows and assumed parameters 

a  1 2 3 4 5 6 7 8 

 aVE ˆ ( abr


0) 320.0 160.2 110.1 99.8 70.8 39.4 139.1 50.0 

 aVE ˆ ( abr


0.1) 320.0 145.8 122.0 102.1 75.9 19.9 122.1 50.0 

 aCE  1500 2000 500 700 1500 1500 1500 1500 

al  [km] 10 10 50 30 30 5 10 10 

 

Table 5. Estimates of route performance values (case 1: 0abr


) 

route ji,  

(link seq.) 

1, 1  

(1→2→5) 

1, 2 

(1→2→6→7) 

1, 3 

(1→3) 

1, 4 

(1→4→7) 

2, 1 

(8→2) 

 ijFE ˆ  70.8 39.4 110.1 99.8 50.0 

 ijE 


 54.1 38.0 74.4 55.8 20.4 

 ijE 


 506.8 355.0 623.6 509.5 200.6 

 ij


var  332.7 372.4 286.4 329.3 70.4 

 Fijc


[×10
2
]

 #
 93.3 93.3 93.3 93.3 24.2 

#
20,1,40    
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Table 6. Estimates of route performance values (case 2: 1.0abr


) 

route ji,  

(link seq.) 

1, 1  

(1→2→5) 

1, 2 

(1→2→6→7) 

1, 3 

(1→3) 

1, 4 

(1→4→7) 

2, 1 

(8→2) 

 ijFE ˆ  78.7 24.2 116.5 100.6 50.0 

 ijE 


 54.3 37.9 77.2 55.8 20.3 

 ijE 


 507.0 354.7 628.1 509.5 200.5 

 ij


var  364.6 405.0 312.8 361.4 63.1 

 Fijc


[×10
2
]

 #
 99.7 99.7 99.7 99.7 22.7 

#
20,1,40    

 

We will see how the equilibrium variables change with change in the observed flow. Figure 3 and 

Figure 4 show the estimated value of travel time and of travel time reliability (VOT and VOR, 

respectively) in case 1 and case 2, respectively, when the observed route flow,  21F̂E , varies around 

  50ˆ
21 FE  where the same 1  and 2  as estimated by using the observed link flows in Table 4 are 

applied. It is shown that the model presented in this study estimates correctly the predefined value of 

travel time, 40 [JPY/min], and the predefined value of travel time reliability, 20 [JPY/unit variance], 

from two sets of observed traffic flows at   50ˆ
21 FE . Also, it is shown that the value of travel time 

and of travel time reliability increase with increase in the congestion level of the network (or  21F̂E ) 

in both cases. In addition, it is shown that the rate of increase for the values of travel time and travel 

time reliability are higher in case 1 than in case 2. 

 

Table 7 and Table 8 show the equilibrium route performance values and the estimated parameters 

relating to the value of travel time and of travel time reliability in case 1 and case 2, respectively. 

Interestingly, it is shown that the equilibrium route performance value at each O-D pair does not 

change much when  21F̂E  changes in either cases. However, the parameters relating to both values 

change as  21F̂E  changes. In case 1, *  increases with increase in  21F̂E ; however, *  decreases 

with increase in  21F̂E . *  is invariant to the change in  21F̂E . In case 2, *  increases with increase 

in  21F̂E ; however, both *  and *  decrease with increase in  21F̂E . The rates of change for *  and 

*  are higher in case 1 than in case 2. In addition, *  decreases with increase in  21F̂E  in case 2, 

whereas *  does not change in case 1. As a result, the rates of increase of the value of travel time and 

of travel time reliability are higher in case 1 than in case 2. 
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Figure 4. Estimated VOT and VOR (case2) 

 

Table 7. Estimated variables (case 1) 

 21F̂E  47.5 48.0 48.5 49.0 49.5 50.0 50.5 51.0 51.5 52.0 52.5 

 *
11 ed [×10

2
] 93.4  93.4  93.4  93.3  93.3  93.3  93.2  93.2  93.2  93.1  93.1  

 *
22 ed [×10

2
] 24.4  24.4  24.3  24.3  24.3  24.2  24.2  24.2  24.1  24.2  24.0  

*  35.0 35.9 37.0 37.9 38.9 40.0 41.0 42.0 43.1 44.2 45.2 

*  1.7 1.5 1.4 1.3 1.1 1.0 0.9 0.7 0.6 0.5 0.3 

*  20.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0 

 

Table 8. Estimated variables (case 2) 

 21F̂E  47.5 48.0 48.5 49.0 49.5 50.0 50.5 51.0 51.5 52.0 52.5 

 *
11 ed [×10

2
] 100.0  99.9  99.9  99.8  99.7  99.7  99.5  99.7  99.9  99.5  99.1  

 *
22 ed [×10

2
] 22.7  22.7  22.7  22.8  22.7  22.7  22.7  22.7  22.9  22.7  22.7  

*  37.8 37.9 38.6 38.9 39.6 40.0 40.1 40.4 40.7 40.7 41.0 

*  1.2 1.2 1.1 1.1 1.0 1.0 1.0 1.0 1.0 1.0 0.9 

*  20.3 20.2 20.2 20.1 20.0 20.0 19.9 19.9 19.9 19.7 19.6 

 

 

6. CONCLUDING REMARKS 

 

This study proposed two network models that estimated the value of travel time and of travel time 

reliability in road networks. The proposed models assume that traffic flows in the network can be 

observed (or estimated). The estimated value of travel time and of travel time reliability are consistent 

with the observed traffic flows by taking account of the risk-averse driver’s route choice behaviour. 

The proposed models have the same structures as the UE traffic assignment problem with elastic 

demand. Under the separable and monotonically increasing link performance function, the value of 

travel time and of travel time reliability can be estimated by solving an optimization problem that is 

equivalent to a standard UE traffic assignment problem. In general, the risk-averse driver’s route 

choice behaviour cannot be formulated as an optimization problem, since the link performance 

function is nether separable nor monotonically increasing. Therefore, we formulated a nonlinear 

complementary problem under such situation for estimating the value of travel time and of travel time 

reliability. The O-D demand functions formulated in the proposed models were derived from the utility 

maximization behaviour of the driver in the network. Therefore, the O-D demand function is 

consistent with the studies that address the value of travel time and of travel time reliability based on 

utility maximization behaviour without considering the driver’s route choice. 
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Two numerical experiments under the non-separable link performance function were carried out to 

demonstrate the proposed models. The number of O-D pairs was one in the first experiment and two in 

the second experiment. It is shown that the models proposed in this study can correctly estimate the 

values of travel time and travel time reliability. As expected, it was clarified that the value of travel 

time and of travel time reliability in the network both increased with increase in congestion level. This 

fact is supported by the literature but has not been demonstrated in a network-level problem. It should 

be noted that this fact was obtained from experiments that explicitly addressed the risk-averse driver’s 

route choice behaviour.  

 

Since the value of travel time and of travel time reliability can be different for each O-D pair, the 

formulation of a model under the O-D specific value of travel time and of travel time reliability may 

be a remaining research topic. An extension of the proposed models to a dynamic framework, i.e., the 

time-varying values of travel time and travel time reliability, is an interesting topic. The first research 

topic can be carried out. In the near future, we will present it. The second research topic is challenging 

but needs to be addressed in the research area of the time-varying congestion charging problem. 

 

We provided two strong assumptions in formulating the models, i.e., aV  (or aC ) follows a theoretical 

distribution that is characterized only by  aVE  and  aVvar  (or,  aCE  and  aCvar ), and the Taylor 

series expansion can approximate the link travel time and the variance of two link travel times with 

satisfactory accuracy. These two assumptions allow us to provide the simplified formulation of the 

models. However, these assumptions need to be relaxed for the development of a plausible model, 

which is our future task. 

 

 

Appendix A 

 

By performing the m th-order Taylor series expansion to  aaa
CVt ;  at  aa VEV   and  aa CEC  , 

we obtain 
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Since aV  and aC  are independently distributed, we obtain 

      iaaja

mji

ijaaaa
VEVEcbCVtE  

0

;  

where 

   j

aaja CECEc   

Note that in a traffic assignment problem, jac  can be regarded as constant terms that are expressed by 

the functions of  aCE  and  aCvar  based on the assumption in section 2.2. In a similar way, the i th-

order moment of aV ,    iaa VEVE  , is expressed by a function of  aVE  and     2var aaa VEcvV  . 

Thus, we obtain 
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VEtCVtE


;  

For the calculation of the covariance of two link travel times, we consider first    bbbaaa
CVtCVt ;;   , 

which can be given by 
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By applying the same discussion above, we obtain 
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where  
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Note that in a traffic assignment problem, abjjc
21

 can be regarded as constant terms that are expressed 

by the functions of  aCE ,  bCE  and  ba CC ,cov  based on the assumption in section 2.2. In a similar 

way,       21 i

bb

i

aa VEVVEVE   are expressed by the functions of  aVE ,  bVE  and 

     babaabba VEVEcvcvrVV ,cov . Thus, we obtain 

                 baabbaaabbbaaababaab VEVEVEtVEtCVtCVtECCVV ,;;,;, 


  

 

 

Appendix B 

 

The utility maximization problem of driver k  is given by 
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A variable with the superscript (or the subscript) k  means that the variable is specific to driver k . The 

budget constraints shown by (B.2)-(B.4) can be written as 
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The Lagrangian function for the utility maximization problem is 
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where k  is the Lagrangian multiplier. The first-order conditions for the Lagrangian function are 

 
 

0
1

,,..., ||1








ikk

i

k
i

k
i

k
k
I

k
k

g
qq

qql



 (B.5) 

 
 

0
,,...,

I

||1






i

k
iikkk

k

k
k
I

k
k

qg
qql





 (B.6) 

By solving (B.5) and (B.6), we obtain 
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*   

Since k
i  is the distribution parameter for the Cobb-Douglas utility function, the parameter is given by 

(Varian, 1984)  
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Therefore, we obtain 
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k
i qq ˆ*    
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The observed or estimated O-D flows are then 
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By substituting (B.6) into (B.7), we obtain 
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i

qg ˆ
 (B.9) 

By comparing (B.7) and (B.9), and recalling that the parameter shown by (B.7) corresponds to the 

utility function shown by (B.1), it is clear that i  in (B.9) represents the parameter corresponding to 

the utility function (17). Thus, by aggregating the drivers’ utility maximization behaviours, we obtain 

the model presented in section 4.2. 

 

 

Appendix C 

 

The CES utility function corresponding to (17) is given by 
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i  are the distribution parameters satisfying 

   1
I

1

1 
i

i    

where 1  is substitution elasticity. If 11  , then we obtain the same Cobb-Douglas utility function 

(Varian, 1984) as (17) given by 

    



I

||1 1ln,...,
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where 

 1
I


i

i   

The expense share for goods iq  is fixed in the Cobb-Douglas utility function. 

 

We introduce the composite goods, z , which represents all goods other than those relating to the road 

transportation market. We select z  as a numeraire with the price of one. We apply the maximization 

problem of quasilinear utility function for the nested CES utility function given by 
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0  is substitution elasticity and   is a budget. q  is a parameter to be formulated. The nested CES 

utility maximization problem can be solved in two stages. In the second stage, we solve the following 

problem 



22 

 

      
1

1

I

1

||1

1
1

1
1

1 1,...,max

















 

 






i

iiI qqqq  (C.1) 

s.t. 
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Then we obtain the demand function 
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Next we find the price for goods relating to the transportation market, g , such that   qg   . 

From (C.1) and (C.2), we obtain 
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In the first stage, by using g  shown by (C.3), the following utility maximization problem is solved  

     0

0 1

,max 






 qzqzu q   

s.t. 
  qgz   

By solving the above utility maximization problem, we obtain the following demand functions 
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Note that, q  is independent of  . An effect of the transportation market, e.g., a change in the price of 

goods relating to the transportation market, g , on all other markets which are represented by the 

composite goods can be estimated from above two demand functions. 

 

If 11   in the second-stage problem, the models proposed in this study are obtained as follows. 
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The remaining parameter, q , is given by (Fujiwara et al., 2004) 
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